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Abstract
We propose a method to generate cutting-planes from multiple covers of knapsack
constraints. The covers may come from different knapsack inequalities if the weights
in the inequalities form a totally-ordered set. Thus,we introduce and study the structure
of a totally-orderedmultiple knapsack set. The validmulti-cover inequalitieswe derive
for its convex hull have a number of interesting properties. First, they generalize the
well-known (1, k)-configuration inequalities. Second, they are not aggregation cuts.
Third, they cannot be generated as rank-1 Chvátal-Gomory cuts from the inequality
system consisting of the knapsack constraints and all their minimal cover inequalities.
We also provide conditions under which the inequalities are facets for the convex hull
of the totally-ordered knapsack set, as well as conditions for those inequalities to fully
characterize its convex hull. We give an integer program to solve the separation and
provide numerical experiments that showcase the strength of these new inequalities
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1 Introduction

In this paper we study cutting-planes related to covers of 0–1 knapsack sets. A 0-1
knapsack set is a set of the form

Kknap:={x ∈ {0, 1}n | aT x ≤ b},

with (a, b) ∈ Z
n+1+ , and a cover is a subset C ⊆ {1, . . . , n} such that

∑
j∈C a j > b.

The associated cover inequality (CI)

∑

j∈C

x j ≤ |C | − 1

is valid for the knapsack polytope conv(Kknap) and is not satisfied by the incidence
vector of C . There is a long and rich literature on (lifted) cover inequalities for the
knapsack polytope [1, 10, 12, 16, 23], and the reader is directed to the recent survey
[13] for a thorough introduction.

In this paper we consider the 0–1 multiple knapsack set

K = {x ∈ {0, 1}n | Ax ≤ b}, (1)

where [A, b] ∈ Z
m×(n+1)
+ . A standard and computationally useful way for generating

valid inequalities for conv(K ) is to generate lifted cover inequalities (LCIs) for the
knapsack sets defined by the individual constraints of K [6]. In this way, the exten-
sive literature regarding valid inequalities for conv(Kknap) can be leveraged to solve
integer programs whose feasible region is K . In contrast to conv(Kknap), very little
is known about the polyhedral structure of conv(K ). In this paper, we introduce a
family of cutting-planes, called multi-cover inequalities (MCIs), that are derived by
simultaneously consideringmultiple covers that satisfy a certain condition. The covers
may come from any inequality in the formulation, as long as the weights appearing in
the knapsack inequalities are totally-ordered. Moreover, when only a single cover is
given, the associated MCI reduces to a CI.

More formally, we present a new approach to generate valid inequalities for a spe-
cial multiple knapsack set, called the totally-ordered multiple knapsack set (TOMKS).
The multiple knapsack set K in (1) is called a TOMKS if the column vectors
{A·1, A·2, . . . , A·n} of the constraint matrix A ∈ Z

m×n+ form a chain ordered by
component-wise order. Without loss of generality we may assume A·1 ≥ A·2 ≥
. . . ≥ A·n .

TOMKS can arise in the context of chance-constrained programming. Specifically,
consider a knapsack constraint where the weights of the items (a) depend on a random
variable (ξ ), and we wish to satisfy the chance constraint

P{a(ξ)T x ≤ β} ≥ 1 − ε, (2)

selecting a subset of items (x ∈ {0, 1}n) so that the likelihood that these items fit
into the knapsack is sufficiently high. In the scenario approximation approach pro-
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Multi-cover inequalities for totally-ordered... 849

posed in [5, 18], an independent Monte Carlo sample of N realizations of the weights
(a(ξ1), . . . a(ξ N )) is drawn and the deterministic constraints

a(ξ i )T x ≤ β ∀i = 1 . . . , N (3)

are enforced. In [17] it is shown that for every δ ∈ (0, 1), if the sample size N is
sufficiently large:

N ≥ 1

2ε2

(

log

(
1

δ

)

+ n log(2)

)

,

then any feasible solution to (3) satisfies the constraint (2) with probability at least
1 − δ. If the random weights of the items a1(ξ), a2(ξ), . . . an(ξ) are independently
distributed with meansμ1 ≥ μ2 . . . ≥ μn , then the feasible region in (3) may either be
a TOMKS, or the constraints can be (slightly) relaxed to obey the ordering property.

The TOMKSmay arise in more general situations as well. For a general binary set,
if two knapsack inequalities aT

1 x ≤ b1 and aT
2 x ≤ b2 have non-zero coefficients in

few common variables, their intersection may be totally-ordered, and the MCI would
be applicable in this case. In the general case, if variables are fixed to zero or one, the
induced facemay be a TOMKS, and the resulting inequalities could then be lifted to be
valid for the original set. In the special case where the multiple covers come from the
same knapsack set, theMCI can also produce interesting inequalities. For example, the
well-known (1, k)-configuration inequalities for conv(Kknap) [20] are a special case
of MCI where two covers come from the same inequality and have particular structure
(see Proposition 2). We also give an example where a facet of conv(Kknap) generated
by a recent lifting procedure described by Letchford and Souli [16] is a MCI.

Interestingly, as observed byLaurent andSassano [15], the convex hull of a TOMKS
can be exactly characterized by all the associated minimal CIs if and only if the set of
minimal covers has no minor isomorphic to Jq = {{2, . . . , q}, {1, i} for i = 2, . . . , q}
with q ≥ 3, where the definition of minor can be found in Sect. 4. When the set of
minimal covers does have aminor isomorphic to Jq , our new inequalities are important.
In particular, when the minimal cover set is exactly Jq , conv(K ) can be fully described
by bound constraints, CIs, and a single MCI.

MCIs are generated by a simple algorithm (Algorithm 1) that takes as input a special
family of covers C = {C1, C2, . . . Ck} that obeys a certain maximality criterion (see
Definition 3). For many types of cover-families C , the MCI may be given in closed-
form. We also give a condition under which an MCI defines a facet of conv(K ) in
Sect. 4, as well as a condition for the MCIs to fully describe conv(K ).

MCIs may be generated by simultaneously considering multiple knapsack inequal-
ities defining K . Another mechanism to generate inequalities taking into account
information from multiple constraints of the formulation is to aggregate inequalities
together, forming the set

A(A, b):=
⋂

λ∈Rm+

conv({x ∈ {0, 1}n | λT Ax ≤ λT b}.
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Inequalities valid forA(A, b) are known as aggregation cuts, and have been shown to
be quite powerful from both an empirical [9] and theoretical [4] viewpoint. The well-
known Chvátal-Gomory (CG) cuts, lifted cover inequalities, and weight inequalities
[22] are all aggregation cuts. In Example 6, we show that MCIs are not aggregation
cuts. Furthermore, in Example 7, we show that MCIs cannot be obtained as a (rank-1)
Chvátal-Gomory cut from the linear systemconsisting of allminimal cover inequalities
from K .

The paper is structured as follows: In Sect. 2, we define a certain type of dominance
relationship between covers that is necessary to introduce the MCIs. The MCIs are
defined in Sect. 3, where we also provide some examples to demonstrate that MCIs are
not dominated by other well-known families of cutting-planes. Utilizing a combinato-
rial property of themulti-cover, in Sect. 3.2 we introduce a strengthening procedure for
MCI. In Sect. 4 we provide a sufficient condition for the MCI to be facet-defining for
conv(K ), and we show a family of instances where the MCI inequalities are the only
non-trivial inequalities besides cover inequalities for conv(K ). Lastly in Sects. 5 and 6
we discuss the separation problem for MCIs, and we present numerical experiments
showing the additional integrality gap that can be closed by MCIs when compared to
CIs.

Next, we detail the differences between this paper and the preliminary IPCOversion
[7]. First, the MCI defined in [7] is referred to as the simple-MCI in this paper, while
the MCI defined in this paper refers to a larger, more general, class of inequalities.
This family contains both the simple-MCI and the antichain multi-cover inequalities
AMCI in [7] as special cases. For that reason, the AMCI section in [7] is not present
in this paper. Moreover, in Sect. 3 we introduce an analogous concept of extended
cover inequality (ECI) for MCI, namely the extended MCI, and in Sect. 4 we provide
a special scenario for MCIs to fully describe conv(K ). Lastly, Sects. 5 and 6 contain
new results about separation and numerical experiments.

To conclude this section, we introduce some notation that will be used in the rest
of the paper. For a positive integer n, we denote by [n]:={1, . . . , n}. The incidence
vector of a set S ⊆ [n] is denoted by χ S . Therefore, given a TOMKS K , we say that
a set S ⊆ [n] is a cover for K if χ S /∈ K . For a vector x ∈ R

n and a set S ⊆ [n], we
define x(S):= ∑

i∈S xi . This in particular implies x(∅) = 0. We denote the power set
of a set S by 2S , which is the set of all subsets of S. Lastly, we denote by e j the j-th
unit vector of the ambient space.

2 A dominance relation

In this section we define a dominance relation between covers and show some of its
properties. Throughout this section, for any set S ⊆ [n] and i ∈ [|S|], we denote by
S(i) the i th smallest element in S.

Definition 1 (Dominance) For S, T ⊆ [n], we say that S dominates T and write S �T ,
if |S| ≥ |T | and S(i) ≤ T(i) for i = 1, . . . , |T |.

The dominance relation in Definition 1 is reflexive, antisymmetric, and transitive,
so (2[n], �) forms a partially ordered set. For two sets S, T ⊆ [n], we say S and T are
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comparable if S � T or T � S. The dominance relation has a natural use in the context
of covers. In fact, if C2 is a cover for a TOMKS K and C1 dominates C2, then C1 is
also a cover for K . By Definition 1, we have the following equivalent statement.

Observation 1 For S, T ⊆ [n], we have S � T if and only if for every x ∈ R,

|{s ∈ S | s ≤ x}| ≥ |{t ∈ T | t ≤ x}|.

Proof First, we show the “only if” direction. Arbitrarily pick x ∈ R and let κ:=|{t ∈
T | t ≤ x}|. If κ = 0 then we clearly have |{s ∈ S | s ≤ x}| ≥ 0. If κ ≥ 1,
then from S � T , we know that the κth smallest element of S is not larger than the
κth smallest element of T , which is also not larger than x . Hence we obtain that
|{s ∈ S | s ≤ x}| ≥ κ .

Nowwe show the “if” direction. By picking x sufficiently large, we have |S| ≥ |T |.
Nowwe assume for a contradiction that S(i) > T(i) for some i ∈ [|T |]. Then by picking
x :=(S(i) + T(i))/2, we obtain |{s ∈ S | s ≤ x}| ≤ i − 1 < i ≤ |{t ∈ T | t ≤ x}|,
which violates the initial condition. 	


Next we present two technical lemmas about dominance which follow from Obser-
vation 1.

Lemma 1 Let S, T ⊆ [n] with S �= T . Then for every S′ ⊆ S ∩ T , we have S � T if
and only if S \ S′ � T \ S′.

Proof ByObservation 1, it suffices to show that, for every x ∈ R, we have |{s ∈ S | s ≤
x}| ≥ |{t ∈ T | t ≤ x}| if and only if |{s ∈ S \ S′ | s ≤ x}| ≥ |{t ∈ T \ S′ | t ≤ x}|.

Note that for every x ∈ R, we have

|{s ∈ S | s ≤ x}| = |{s ∈ S′ | s ≤ x}| + |{s ∈ S \ S′ | s ≤ x}|,
|{t ∈ T | t ≤ x}| = |{t ∈ S′ | t ≤ x}| + |{t ∈ T \ S′ | t ≤ x}|.

This completes the proof of the lemma. 	


Lemma 2 Let S ⊆ [n] and let S, T ⊆ S′. Then, S � T if and only if S′ \ T � S′ \ S.

Proof By Observation 1, it suffices to show that, for every x ∈ R, we have |{s ∈ S |
s ≤ x}| ≥ |{t ∈ T | t ≤ x}| if and only if |{s ∈ S′\S | s ≤ x}| ≤ |{t ∈ S′\T | t ≤ x}|.

Note that for any x ∈ R, we have

|{s ∈ S′ | s ≤ x}| = |{s ∈ S′ \ S | s ≤ x}| + |{s ∈ S | s ≤ x}|,
= |{t ∈ S′ \ T | t ≤ x}| + |{t ∈ T | t ≤ x}|.

This completes the proof of the lemma. 	
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3 Multi-cover inequalities and variation

Throughout this section, we consider a TOMKS K :={x ∈ {0, 1}n | Ax ≤ b},
and we introduce the multi-cover inequalities (MCIs), which form a novel family
of valid inequalities for K . Each MCI can be obtained from a special family of covers
{C1, . . . , Ck} for K that we call a multi-cover. In order to define a multi-cover, we
first introduce the discrepancy family.

Definition 2 (Discrepancy family) For a family of setsC = {C1, . . . , Ck}, we say that
{C1 \∩k

h=1Ch, . . . , Ck \∩k
h=1Ch} is the discrepancy family of C , and we denote it by

D(C ).

Now we can define the concept of a multi-cover.

Definition 3 (Multi-cover) Let C be a family of covers for K . We then say that C is a
multi-cover for K if for any set T ⊆ ∪D∈D(C ) D, there exists some D′ ∈ D(C ) such
that T � D′ or D′ � T .

Example 1 Consider the TOMKS:

K :={x ∈ {0, 1}5 | 19x1 + 11x2 + 5x3 + 4x4 + 2x5 ≤ 31,

16x1 + 10x2 + 7x3 + 5x4 + 3x5 ≤ 30}.

We have that C = {C1, C2}:={{1, 2, 5}, {1, 3, 4, 5}} is a multi-cover. In fact, it is
simple to check that C1 and C2 are covers for K . Furthermore, the discrepancy family
of C is D(C ) = {{2}, {3, 4}}, and for any T ⊆ {2, 3, 4}, if |T | = 1 we have {2} � T ,
while if |T | ≥ 2 we have T � {3, 4}. �

For a given family of covers {C1, . . . , Ck} for K , throughout this paper, for ease
of notation we define C0:= ∩k

h=1 Ch , C := ∪k
h=1 Ch , C̄h :=C \ Ch for h ∈ [k], and

similarly T̄ :=C \ T for any T ⊆ C .
We are now ready to introduce ourmulti-cover inequalities for K . These inequalities

are defined by the following algorithm.

Algorithm 1Multi-cover inequality (MCI)
Input: A multi-cover {C1, . . . , Ck } for K .
Output: A multi-cover inequality.

1: Let {i1, . . . , im }:=C \ C0, with i1 < . . . < im .
2: Set αi :=1 if i ∈ {i1, . . . , im }, and αi :=0 otherwise.
3: for t = m − 1, . . . , 1 do
4: let αit be any integer ≥ maxh∈[k]:it ∈Ch max
∈C̄h :
>it

α
 + 1.

5: for j ∈ C0 do
6: let α j be any integer ≥ minh∈[k] max

{
max
< j ,
∈C̄h

α
,
∑


> j,
∈C̄h
α
 + 1

}
.

7: Set β:=maxk
h=1 α(Ch) − 1.

8: return the inequality αT x ≤ β.

We remark that inAlgorithm1, in the casewherewe take theminimumormaximum
over an empty set (see Step 4 and 6), the corresponding minimum or maximum should
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be set to zero. It is worth noting that, within this Algorithm 1, once a value is assigned
to some αi at At Step 2 and 6, it will never change throughout the proceeding of this
algorithm.

For the above algorithm, we have the following easy observation.

Observation 2 Given a multi-cover {Ch}k
h=1, Algorithm 1 performs a number of oper-

ations that is polynomial in |C | and k. Furthermore, supp(α) = C.

At Step 4 and 6 of Algorithm 1, when the ≥ is fixed to =, the obtained MCI is
called the simple-MCI, which was given in [7]. Note that given a multi-cover, we can
obtain several MCIs, but only one simple-MCI.

Definition 4 (simple-MCI) Given a multi-cover {C1, . . . , Ck} and one of its MCIs
αT x ≤ β, if for every i ∈ C \ C0, αi = maxh∈[k]:i∈Ch max
∈C̄h :
>i α
 + 1 and for
every j ∈ C0, α j = minh∈[k] max

{
max
< j,
∈C̄h

α
,
∑

t> j,t∈C̄h
αt + 1

}
, then such

MCI αT x ≤ β is called a simple-MCI (S-MCI).

The main result of this section is that, given a multi-cover for K , then any of its
MCI is valid for conv(K ). Before presenting the theorem, we will need the following
auxiliary result.

Proposition 1 Let {Ch}k
h=1 be a multi-cover and let αT x ≤ β be one of its associated

MCIs. If there exists T ⊆ C \ C0 with T /∈ {C̄h}k
h=1 and T � C̄h′ for some h′ ∈ [k],

then α(T ) > α(C̄h′).

We remark that Proposition 1 does not depend on the specific property of multi-
covers. That is, it holds for any family of covers.

Proof Let T and C̄h′ be the sets as assumed in the statement of this proposition,
with T � C̄h′ . Let T0:=T ∩ C̄h′ , T1:=T \ T0, and T2:=C̄h′ \ T0. Then T = T0 ∪ T1,
C̄h′ = T0 ∪ T2. Since T �= C̄h′ and T � C̄h′ , then we know T1 �= ∅. By Lemma 1, we
know that T1 � T2. If T2 = ∅, then α(T ) = α(T0) + α(T1) > α(T0) = α(C̄h′). Hence
we assume T2 �= ∅. Let T2:={ j1, . . . , jt }. Since T1 � T2 and T1 ∩ T2 = ∅, we know
there exists {k1, . . . , kt } ⊆ T1 such that k1 < j1, . . . , kt < jt .

W.l.o.g., consider k1 and j1. By definition, we have k1 < j1, k1 /∈ C̄h′, j1 ∈ C̄h′ , or
equivalently: k1 < j1, k1 ∈ Ch′ , j1 ∈ C̄h′ . Therefore, j1 ∈ {
 | 
 > k1, 
 ∈ C̄h′, k1 ∈
Ch′ }. By construction of MCI, we know that αk1 > α j1 . For the remaining k2 and
j2, . . . , kt and jt , the same argument yields αk2 > α j2 , . . . , αkt > α jt .
Therefore, α(T ) = α(T1) + α(T0) ≥ αk1 + . . . + αkt + α(T0) > α j1 + . . . + α jt +

α(T0) = α(T2) + α(T0) = α(C̄h′), which concludes the proof. 	

Now we are ready to present the first main result of this paper.

Theorem 1 Given a multi-cover {Ch}k
h=1 for a TOMKS K , then the corresponding

MCIs are valid for conv(K ).

Proof Since supp(α) = C , in order to show that αT x ≤ β is valid for conv(K ), it
suffices to show that, for any T ⊆ C with α(T ) ≥ β + 1, T must be a cover for K .
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Note that by Step 7 of Algorithm 1, we have β + 1 = maxk
h=1 α(Ch), and for any

T1, T2 ⊆ C , α(T1) ≥ α(T2) is equivalent to α(T̄1) ≤ α(T̄2). Therefore from Lemma 2,
it suffices to show that, for any T ⊆ C with α(T̄ ) ≤ mink

h=1 α(C̄h), there exists some
h∗ ∈ [k] such that C̄h∗ � T̄ . We will assume that T /∈ {Ch}k

h=1 since otherwise C̄h∗ � T̄
trivially holds. In the following, the proof is subdivided into two cases, depending on
whether T̄ ∩ C0 = ∅ or not.

In thefirst casewe assume T̄ ∩C0 = ∅. In this case,wehaveC0 ⊆ T . ByDefinition 3
of multi-cover, we know there must exist h∗ ∈ [k] such that either Ch∗ \ C0 � T \ C0,
or T \ C0 � Ch∗ \ C0. By the above assumption C0 ⊆ T and Lemma 1, we know that
either Ch∗ � T or T �Ch∗ . If T �Ch∗ , then Lemma 2 implies C̄h∗ � T̄ , which completes
the proof. So we assume Ch∗ � T , or equivalently, T̄ � C̄h∗ . Since T̄ ⊆ C \ C0 and
T̄ �= C̄h∗ , by Proposition 1 we obtain that α(T̄ ) > α(C̄h∗), and this contradicts the
assumption that α(T̄ ) ≤ mink

h=1 α(C̄h). This concludes our first case.
In the second casewe assume T̄ ∩C0 �= ∅. In this case, it suffices to construct D̄ ⊆ C

with D̄ ∩ C0 = ∅, α(D̄) ≤ α(T̄ ), and D̄ � T̄ . Then since α(T̄ ) ≤ mink
h=1 α(C̄h),

we have α(D̄) ≤ mink
h=1 α(C̄h) where D̄ ∩ C0 = ∅. According to our discussion in

the previous case, we know that there exists some h∗ ∈ [k] such that C̄h∗ � D̄, which
implies C̄h∗ � T̄ since � forms a partial order, and the proof is completed.

Thus, in order to conclude our second case, we now show how to construct D̄ as
discussed above. We arbitrarily pick t∗ ∈ T̄ ∩ C0. Then by Step 6 of Algorithm 1, we
know that there exists h∗ ∈ [k], such that:

αt∗ ≥ max

⎧
⎨

⎩
max


<t∗,
∈C̄h∗
α
,

∑

t>t∗,t∈C̄h∗

αt + 1

⎫
⎬

⎭
.

If {
 ∈ C̄h∗ | 
 < t∗} ⊆ T̄ , then we have α(T̄ ) ≥ ∑

<t∗,
∈C̄h∗ α
 + αt∗ , which

is at least
∑


<t∗,
∈C̄h∗ α
 + ∑
t>t∗,t∈C̄h∗ αt + 1. Since t∗ /∈ C̄h∗ , we know that

∑

<t∗,
∈C̄h∗ α
 + ∑

t>t∗,t∈C̄h∗ αt + 1 = α(C̄h∗) + 1. Hence α(T̄ ) > α(C̄h∗), and

this contradicts the initial assumption α(T̄ ) ≤ mink
h=1 α(C̄h). Therefore we can find

some 
∗ ∈ C̄h∗ , 
∗ < t∗ such that 
∗ /∈ T̄ . Now define D̄:=T̄ ∪ {
∗} \ {t∗}. Since

∗ < t∗, clearly D̄ � T̄ . Also α(T̄ )−α(D̄) = αt∗ −α
∗ , since αt∗ ≥ max
<t∗,
∈C̄h∗ α
,

we know that α(T̄ ) − α(D̄) ≥ 0. If D̄ ∩ C0 = ∅, then we are done. Otherwise, we
can replace T̄ by D̄, consider any index in D̄ ∩ C0 and apply once more the above
discussion. Every time we are able to obtain a set D̄ with |D̄ ∩ C0| decreased by 1. At
the end we will obtain a set D̄ with the desired property: D̄ ∩ C0 = ∅, α(D̄) ≤ α(T̄ ),
and D̄ � T̄ . This concludes our second case.

From the discussion of the above two cases, we have concluded the proof that the
MCI αT x ≤ β is a valid inequality for conv(K ). 	


3.1 Illustrative examples

In this section, we provide some examples to showcase the novelty of our cut-
generating procedure. We start with a simple example to help understand Algorithm 1.
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Example 2 Consider a multi-cover {C1, C2} = {{1, 2, 3, 4}, {1, 2, 4, 5, 6, 7}}, here
C = [7], C0 = {1, 2, 4}, and {i1, i2, i3, i4} = {3, 5, 6, 7}. Next, we compute the
coefficients of one particular MCI.

The coefficient α7 is initialized as 1. For t = 3, the coefficient α6 ≥
maxh∈[2]:6∈Ch max
∈C̄h :
>6 α
 + 1 = 1, and we pick α6 = 1. Similarly, for t = 2, we
pick α5 = 1. For t = 1, we have α3 ≥ maxh∈[2]:3∈Ch max
∈C̄h :
>3 α
 + 1 = 2, and
we pick α3 = 3. For j ∈ C0 = {1, 2, 4}, from Step 6, we have:

α1 ≥ min
h∈[2]max{ max


<1,
∈C̄h

α
,
∑


>1,
∈C̄h

α
 + 1} = 4,

α2 ≥ min
h∈[2]max{ max


<2,
∈C̄h

α
,
∑


>2,
∈C̄h

α
 + 1} = 4,

α4 ≥ min
h∈[2]max{ max


<4,
∈C̄h

α
,
∑


>4,
∈C̄h

α
 + 1} = 3.

Here we pick α j as small as possible, for j ∈ C0. Hence α = (4, 4, 3, 3, 1, 1, 1), and
from Step 7, we have β = maxh∈[2] α(Ch) − 1 = 13. Therefore, we obtain the MCI
4x1 + 4x2 + 3x3 + 3x4 + x5 + x6 + x7 ≤ 13. Note that such MCI is not an S-MCI,
because at Step 4 for t = 1, we selected αi1 = 3 instead of the lower bound 2. �

In fact, for some multi-covers with a specific discrepancy family, we are able to
write some MCIs in closed form. The next example can be seen as a generalization of
the multi-cover in Example 2.

Example 3 Consider {C1, C2} with discrepancy family {{i1}, {i2, . . . , it }}, with i1 <

. . . < it and t ≥ 3. Here the family of covers {C1, C2} is a multi-cover, and the
following inequality is one of its associated MCIs:

∑

i<i1,i∈C

txi +
∑

i1≤i<i2,i∈C

(t − 1)xi

+
t∑


=3

∑

i
−1<i<i
,i∈C

(t − 
 + 2)xi +
t∑


=2

xi
 +
∑

i>it ,i∈C

xi ≤ β,

where β is the left-hand-side term evaluated at the point χC1(or χC2) minus 1. �

In the next example we consider the S-MCI formula for another multi-cover with
a specific structure.

Example 4 Consider {C1, C2} with discrepancy family {{i1, it+1}, {i2, . . . , it }} for
some t ≥ 3, with i1 < . . . < it+1. It is simple to verify that {C1, C2} is a multi-
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cover, and the obtained S-MCI is:

∑

i<i1,i∈C

(2t − 1)xi +
∑

i1≤i<i2,i∈C

(2t − 3)xi +
t∑


=3

∑

i
−1<i<i
,i∈C

(2t − 2
 + 3)xi+

+
t∑


=2

2xi
 +
∑

it <i<it+1,i∈C

2xi + xit+1 +
∑

i>it+1,i∈C

2xi ≤ β,

where β is the left-hand-side term evaluated at the point χC1(or χC2) minus 1. �
Next, we provide another simple example of S-MCI.

Example 5 Consider {C1, C2, C3} with discrepancy family {{i1, i3}, {i1, i4, i5}, {i2,
i3, i5}}, with i1 < . . . < i5. Here the family of covers {C1, C2, C3} is a multi-cover,
and the obtained S-MCI is:

∑

i<i1,i∈C

5xi +
∑

i1≤i<i2,i∈C

3xi + 2xi2 +
∑

i2<i<i3,i∈C

3xi + 2xi3+

+
∑

i3<i<i4,i∈C

2xi + xi4 +
∑

i4<i<i5,i∈C

2xi + xi5 +
∑

i>i5,i∈C

2xi ≤ β,
(4)

where β is the left-hand-side term evaluated at the point χC1(or χC2 , χC3) minus 1.
�

Next, we present some illustrative examples to showcase the utility of MCIs. The
first example shows that, unlike LCIs or CG cuts, S-MCIs are not aggregation cuts for
the original linear system.

Example 6 Consider the TOMKS K and the multi-cover {C1, C2} defined in Exam-
ple 1. Note that point χC1 only violates the first knapsack constraint, and point χC2

only violates the second knapsack constraint. The associated S-MCI is

3x1 + 2x2 + x3 + x4 + x5 ≤ 5, (5)

and (5) is violated by both χC1 and χC2 .
One can further check that the S-MCI (5) is facet-defining for conv(K ). In fact,

conv(K ) can be exactly characterized by this S-MCI, along with the bound constraints
0 ≤ xi ≤ 1, ∀i ∈ [5], and the following four CIs: x1 + x2 + x5 ≤ 2, x1 + x2 + x4 ≤ 2,
x1 + x2 + x3 ≤ 2, x1 + x3 + x4 + x5 ≤ 3.

Now consider an aggregation of the knapsack inequalities for K given by inequality
λ1(19, 11, 5, 4, 2)T x + λ2(16, 10, 7, 5, 3)T x ≤ 31λ1 + 30λ2, where λ1, λ2 ≥ 0. For
any choice of λ1 ≥ 0, λ2 ≥ 0, it can be verified that C1 and C2 cannot both be covers
for the knapsack set given by this single inequality, so any aggregation cut for K can
cut off at most one vector among χC1 and χC2 . Therefore, the inequality (5) is not an
aggregation cut. In some cases, it may be possible to obtain an S-MCI as a CG cut
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for the original linear system augmented with its minimal cover inequalities. In this
example, consider the set

KC I := {x ∈ {0, 1}5 | 19x1 + 11x2 + 5x3 + 4x4 + 2x5 ≤ 31,

16x1 + 10x2 + 7x3 + 5x4 + 3x5 ≤ 30,

x1 + x2 + x3 ≤ 2, x1 + x2 + x4 ≤ 2,

x1 + x2 + x5 ≤ 2, x1 + x3 + x4 + x5 ≤ 3}.

The inequality (5) is indeed a CG cut with respect to KC I , as shown by multipliers
1
12 · (19, 11, 5, 4, 2) + 1

4 · (1, 1, 1, 0, 0) + 1
3 · (1, 1, 0, 1, 0) + 1

2 · (1, 1, 0, 0, 1) + 1
3 ·

(1, 0, 1, 1, 1) = (3, 2, 1, 1, 1), 1
12 · 31 + 1

4 · 2 + 1
3 · 2 + 1

2 · 2 + 1
3 · 3 = 5.75. Hence

(3, 2, 1, 1, 1)T x ≤ �5.75� = 5 is a CG cut for KC I . �
Example 6 demonstrates that MCIs can be obtained from multiple knapsack sets

simultaneously. Specifically, the inequality (5) is facet-defining for conv(K ), but it
is neither valid for {x ∈ {0, 1}5 | 19x1 + 11x2 + 5x3 + 4x4 + 2x5 ≤ 31} nor for
{x ∈ {0, 1}5 | 16x1 + 10x2 + 7x3 + 5x4 + 3x5 ≤ 30}. Example 6 also shows that an
S-MCI can be a CG cut for the linear system given by the original knapsack constraints
along with all their minimal cover inequalities. In the next example, we will see that
this is not always the case.

Example 7 Consider the following TOMKS:

K :={x ∈ {0, 1}8 | 28x1 + 24x2 + 20x3 + 19x4 + 15x5 + 10x6 + 7x7 + 6x8 ≤ 96,

27x1 + 24x2 + 21x3 + 19x4 + 13x5 + 12x6 + 7x7 + 4x8 ≤ 96}.

Define covers C1 = {2, 3, 4, 5, 6, 7, 8}, C2 = {1, 3, 4, 5, 6, 8}, C3 = {1, 2, 3, 5, 6},
C4 = {1, 2, 3, 5, 7, 8}. We have C = [8], C0 = {3, 5}, and the discrepancy family is
D(C ) = {{2, 4, 6, 7, 8}, {1, 4, 6, 8}, {1, 2, 6}, {1, 2, 7, 8}} =: {D1, D2, D3, D4}.

First, we verify that C is a multi-cover. For any set T ⊆ C \ C0 and T /∈ D(C ),
if 1 ∈ T , |T | = 2, then T is clearly dominated by either D2, D3 or D4. If 1 ∈ T ,
|T | = 3, then either T � D3 or D3 � T . If 1 ∈ T , |T | = 4, then T must be comparable
with D2 or D3. If 1 ∈ T , |T | = 5, then T � D1. If 1 /∈ T , then clearly D1 � T since
T ⊆ D1. Hence we have shown that for any T ⊆ C \ C0 and T /∈ D(C ), T must be
comparable with some set in D(C ). Therefore C is a multi-cover.

When Algorithm 1 is applied to C , we obtain the S-MCI αT x ≤ β given by

4x1 + 3x2 + 3x3 + 2x4 + 3x5 + 2x6 + x7 + x8 ≤ 14, (6)

and it can be shown that (6) is facet-defining for conv(K ).
Consider the linear system given by all theminimal cover inequalities for K , as well

as the original two linear constraints. We refer to this linear system as KC I , which
consists of 30 inequalities. Solving max{αT x | x ∈ KC I } gives the optimal value
15.307, so the corresponding CG cut with respect to KC I with the same left-hand-side
coefficient vector α is αT x ≤ 15, which is weaker than inequality (6). �
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Even when the cover-family consists of covers all coming from the same knapsack
inequality, theMCI can produce interesting inequalities. In the next example, we show
an MCI that cannot be obtained as an LCI, regardless of the lifting order.

Example 8 (Example 3 in [16]) Let K :={x ∈ {0, 1}5 | 10x1+7x2+7x3+4x4+4x5 ≤
16}, and consider the multi-cover C :={{1, 3}, {1, 4, 5}, {2, 3, 5}}. From inequality (4)
of Example 5, we know that the corresponding S-MCI is

3x1 + 2x2 + 2x3 + x4 + x5 ≤ 4. (7)

The inequality (7) is the same inequality produced by the new lifting procedure
described in [16], and the authors of [16] state that (7) is a facet of conv(K ) and
it cannot be obtained from any cover inequality by standard sequential lifting meth-
ods, regardless of the lifting order. �

Next,we discuss how thewell-known (1, k)-configuration inequality can be derived
as an MCI.

Proposition 2 Consider a knapsack set K = {x ∈ {0, 1}n | aT x ≤ b}, a nonempty
subset Q ⊆ [n], and t ∈ [n] \ Q. Assume that

∑
i∈Q ai ≤ b and that H ∪ {t} is a

minimal cover for all H ⊂ Q with |H | = k. Then for any T (r) ⊆ Q with |T (r)| = r ,
k ≤ r ≤ |Q|, the (1, k)-configuration inequality

(r − k + 1)xt +
∑

j∈T (r)

x j ≤ r

can be obtained from an MCI associated with two covers of K .

Proof When r = k, then the inequality in the statement reduces to a CI. Hence we
assume r > k. W.l.o.g. we assume a1 ≥ . . . ≥ an . Consider a new knapsack set
K ′:={x ∈ {0, 1}n+1 | a′T x ≤ b}, with a′

i = ai ∀i ≤ t , a′
t+1 = at , a′

j = a j−1 ∀ j >

t + 1. Then clearly we have a′
1 ≥ . . . ≥ a′

n+1.
Since for any H ⊂ Q with |H | = k, H ∪ {t} is a cover for K , we know that for

any j ∈ Q, the set Q ∪ {t} \ { j} is also a cover for K , i.e.,
∑

i∈Q ai − a j + at > b.
From the assumption that

∑
i∈Q ai ≤ b, we have at > a j , or equivalently, t <

j for any j ∈ Q. Now for any T (r) ⊆ Q with |T (r)| = r , k ≤ r ≤ |Q|, let
T (r):={ j1, . . . , jr }with j1 < . . . < jr , so we have t < j1 from above. Then consider
C1:={t} ∪ { jr−k+1, . . . , jr }, C ′

1:={t} ∪ { jr−k+1 + 1, . . . , jr + 1}, and C ′
2:={t + 1} ∪

{ j1 + 1, . . . , jr + 1}. Since { jr−k+1, . . . , jr } ⊂ Q with |{ jr−k+1, . . . , jr }| = k, we
know that C1 is a cover for K , so C ′

1 is a cover for K ′ from the construction of K ′.
Furthermore C ′

2 is a cover for K ′ since a′
t+1 = a′

t . Note that the discrepancy family
of {C ′

1, C ′
2} is {{t}, {t + 1, j1 + 1, . . . , jr−k + 1}}, thus by Example 3, the inequality

(r − k + 1)xt + xt+1 +
r∑


=1

x j
+1 ≤ r (8)
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is an MCI for K ′ associated with {C ′
1, C ′

2}. Since K can be obtained by projecting
out of the variable xt+1 of K ′, we project out the variable xt+1 in (8) and relabel the
indices. We obtain the following (1, k)-configuration inequality for K :

(r − k + 1)xt +
r∑


=1

x j
 = (r − k + 1)xt +
∑

j∈T (r)

x j ≤ r .

	


3.2 ExtendedMCI

In this section, we propose a procedure to strengthen, or extend, an MCI in a similar
fashion to a well-known procedure for CIs [1]. We call the strengthened inequalities
extended MCI (E-MCI).

For any set C ⊆ [n], let min(C) denote the least element in C . Recall that for a
cover C ⊆ [n], its corresponding extended cover inequality ECI is simply:

x([min(C) − 1] ∪ C) ≤ |C | − 1, (9)

where the coefficient of each index i that is less than min(C) is increased from 0 to 1.
For a multi-cover {C1, . . . , Ck} one can perform a similar extension: let αT x ≤ β be
an MCI of this multi-cover, then the inequality x([min(C) − 1]) + αT x ≤ β is also
valid for K . However, the improved coefficients in general can be larger than 1, and
the indices of the variables included in the inequality do not have to be limited in the
set [min(C)−1]. Before introducing the formal definition for our extended inequality,
for any Ch with |Ch | ≥ 2 and vector α, we denote by α2,Ch the second least number
in the multiset {αi , i ∈ Ch}, which allows duplication. Here when Ch is a singleton,
we also use α2,Ch to simply denote the unique element of Ch . In cases where multiple
minimum numbers exist in {αi , i ∈ Ch}, then α2,Ch is simply mini∈Ch αi .

Definition 5 (Extended MCI) Given an MCI αT x ≤ β generated from a multi-cover
{C1, . . . , Ck}. Then the following inequality

∑

i∈[n]\C

(
max

h∈[k]:i<min(Ch)
α2,Ch

)
xi + αT x ≤ β (10)

is called an extended MCI (E-MCI).

Similarly to the remark after Algorithm 1, here for an index i with {h ∈ [k] | i <

min(Ch)} = ∅, the maximum over this empty set is set to be zero. It is easy to observe
that, when (10) is applied to a normal CI, this inequality gives the same ECI as (9).
Next, we prove that inequality (10) is indeed a valid inequality for K .

Theorem 2 For a TOMKS K and an MCI αT x ≤ β generated from a multi-cover
{C1, . . . , Ck}, the E-MCI (10) is valid for K .
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Proof In order to show that inequality (10) is valid for K , it suffices to show that for
any S ⊆ [n] whose incidence vector χ S violates the inequality (10), then S must be
a cover for K . Let E :={i ∈ [n] \ C | ∃h ∈ [k] s.t. i < min(Ch)}. The proof is by
induction on |S ∩ E |.

If |S ∩ E | = 0, χ S violates inequality (10) if and only if χ S violates the original
MCI αT x ≤ β, which implies that S is a cover for K since we know that αT x ≤ β is
valid for K .

Now we prove the inductive step. We assume that when |S ∩ E | = N , for N < |E |,
our statement is true. Assume now that |S ∩ E | = N + 1 and we show that χ S is not
in K . Arbitrarily pick i∗ ∈ S ∩ E , with maxh∈[k]:i∗<min(Ch) α2,Ch = α2,Ch∗ for some
h∗ ∈ [k]. To conclude the proof of the inductive step we consider separately two cases.

In the first case we assume {i ∈ Ch∗ | αi ≥ α2,Ch∗ } ⊆ S. By definition of α2,Ch∗ ,
we know that {i ∈ Ch∗ | αi < α2,Ch∗ } has at most one element, and that element is
larger than i∗ since i∗ < min(C∗

h ). Therefore, we obtain

S ⊇ {i∗} ∪ {i ∈ Ch∗ | αi ≥ α2,Ch∗ }
� {i ∈ Ch∗ | αi < α2,Ch∗ } ∪ {i ∈ Ch∗ | αi ≥ α2,Ch∗ }
= Ch∗ ,

which indicates that S must also be a cover for K . This concludes our first case.
In the second case we assume that there exists j∗ ∈ {i ∈ Ch∗ | αi ≥ α2,Ch∗ } and

j∗ /∈ S. Then we have α j∗ ≥ α2,Ch∗ , which is the coefficient of xi∗ in equality (10).
Consider S′:=S \ {i∗} ∪ { j∗}, which is dominated by S since i∗ < min(C∗

h ). Since

χ S violates inequality (10), we know that χ S′
also violates inequality (10). Note that

|S′ ∩ E | = |S ∩ E |−1 = N , so by the inductive hypothesis, we know that S′ must be a
cover for K . Since S � S′, we obtain that S must also be a cover for K . This concludes
our second case and the proof of the inductive step. 	


The next example is obtained fromExample 8 by simply adding twomore variables.

Example 9 Let K :={x ∈ {0, 1}7 | 10x1 +10x2 +7x3 +7x4 +7x5 +4x6 +4x7 ≤ 16},
and we consider the multi-cover C := {{2, 5}, {2, 6, 7}, {4, 5, 7}}. From Example 5,
we have the following S-MCI:

3x2 + 2x4 + 2x5 + x6 + x7 ≤ 4.

Now we lift the coefficients of indices 1 and 3. For index 3, note that {h ∈ [3] | 3 <

min(Ch)} = {3}, and the second smallest number in {α4, α5, α7} is 2, so the extended
coefficient for x3 is 2. Similarly, for index 1 we have {h ∈ [3] | 1 < min(Ch)} =
{1, 2, 3}, and α2,C1 = 3, α2,C2 = 1, α2,C3 = 2, so the extended coefficient for x1 is 3.
Therefore, we obtain the following E-MCI:

3x1 + 3x2 + 2x3 + 2x4 + 2x5 + x6 + x7 ≤ 4.

In fact, this inequality turns out to be the only non-trivial facet-defining inequality of
conv(K ) that is not an ECI. �
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We give another interesting example with only one knapsack constraint.

Example 10 Let K :={x ∈ {0, 1}6 | 66x1+61x2+54x3+33x4+21x5+16x6 ≤ 130}.
From the multi-cover {C1, C2}:={{2, 3, 6}, {2, 4, 5, 6}} we obtain an MCI: 3x2 +
2x3 + x4 + x5 + x6 ≤ 5. Note that α2,C1 = 2, α2,C2 = 1, so from (10) we obtain
the corresponding E-MCI 2x1 + 3x2 + 2x3 + x4 + x5 + x6 ≤ 5, which is also a
facet-defining inequality for conv(K ). �

4 Facet-defining inequalities

In this section, we provide a sufficient condition for an S-MCI to define a facet of
conv(K ). We also give a family of instances in which all the non-trivial facet-defining
inequalities of conv(K ) are given by MCIs.

Given a multi-cover {C1, . . . , Ck} and an S-MCI αT x ≤ β, we denote by
{it,1, . . . , it,nt }:={i ∈ C \ C0 | αi = t} the set of indices in C \ C0 whose S-MCI
coefficients are all t , where it,1 < . . . < it,nt .

Theorem 3 Let {C1, . . . , Ck} be a multi-cover for a TOMKS K , and let αT x ≤ β be
the corresponding S-MCI. Assume that the following conditions hold:

1. C0 = ∅;
2. For each h ∈ [k], cover Ch is a minimal cover;
3. For any t = 2, . . . ,maxn

i=1 αi , there exists some 
t ∈ [nt−1] and ht ∈ [k], such
that it−1,
t /∈ Cht , it,1, i1,n1 ∈ Cht , and Cht ∪ {it−1,
t } \ {it,nt } is not a cover;

4. There exists some h1 ∈ [k], such that i1,1 ∈ Ch1 and for any i ′ /∈ C, Ch1∪{i ′}\{i1,1}
is not a cover.

5. For any t = 1, . . . ,maxn
i=1 αi , α(Cht ) = β + 1.

Then αT x ≤ β is a facet-defining inequality of conv(K ).

The proof of this theorem is deferred to “Appendix A”.

Example 11 Consider the TOMKS and the multi-cover in Example 8, where the knap-
sack constraint aT x ≤ b is given by (10, 7, 7, 4, 4)T x ≤ 16. We have C1 = {1, 3},
C2 = {1, 4, 5}, C3 = {2, 3, 5}, Then the corresponding S-MCI αT x ≤ β is
3x1 + 2x2 + 2x3 + x4 + x5 ≤ 4. Here we have i1,1 = 4, i1,2 = 5, i2,1 = 2,
i2,2 = 3, i3,1 = 1.

Clearly condition 1 in Theorem 3 holds. Since a(C1)−a3 = 10 ≤ 16, a(C2)−a5 =
14 ≤ 16, a(C3) − a5 = 14 ≤ 16, condition 2 holds as well. For t = 2, let Ch2 = C3,
then i1,1 /∈ Ch2 , i1,2 ∈ Ch2 , i2,1 ∈ Ch2 , and Ch2 ∪ {i1,1} \ {i2,2} = {2, 4, 5} is not
a cover. For t = 3, let Ch3 = C2, then i2,1 /∈ Ch3 , i1,2 ∈ Ch3 , i3,1 ∈ Ch3 , and
Ch3 ∪ {i2,1} \ {i3,1} = {2, 4, 5} is not a cover. So condition 3 holds. Let Ch1 = C2,
then i1,1 ∈ Ch1 , since here C = [5], condition 4 holds. Lastly, α(Ch1) = α(Ch2) =
α(Ch3) = 5, so condition 5 also holds. Hence Theorem 3 yields that this S-MCI is
facet-defining. �

A clutter is a family of subsets of a ground set with the property that no subset
in the clutter is contained in any other subset in the clutter. It is simple to check that
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the set of minimal covers C of a knapsack set is a clutter, which we call the minimal
cover set. For a clutter C and a subset Z of [n], the deletion with respect to Z is
defined as {A ∈ C | A ∩ Z = ∅}, and the contraction with respect to Z is defined as
{A \ Z | A ∈ C}. A minor of C is a clutter that may be obtained from C by a sequence
of deletions and contractions. For a minimal cover set of a TOMKS, we have the
following theorem that was mentioned in Sect. 1.

Theorem 4 Let C be the minimal cover set of a TOMKS K . Then conv(K ) = {x ∈
[0, 1]n | x(C) ≤ |C | − 1,∀C ∈ C} if and only if C has no minor isomorphic to
Jq = {{2, . . . , q}, {1, i} for i = 2, . . . , q} with q ≥ 3.

Theorem 4 follows easily from Theorem 1.1 in [15] (see also [21]) and the fact that
the minimal cover set C of a TOMKS K is indeed a shift clutter as defined in [3]. For
completeness, we provide a proof in “Appendix B”.

From Theorem 4, we know that in order for conv(K ) to have non-trivial
facet-defining inequalities other than CIs, the minimal cover set C must have
minors isomorphic to Jq . Now we consider a special clutter {{1, . . . , p − 1, p +
1, . . . , q}, {1, . . . , p, i} for i = p + 1, . . . , q} for some p = 1, . . . , q − 2, q ≤ n.
After contracting {1, . . . , p − 1}, we obtain a minor {{p + 1, . . . , q}, {p, i} for i =
p+1, . . . , q} that is isomorphic to Jq−p+1. The next theorem states that, if theminimal
cover set is this particular clutter, then we can provide the complete linear description
of conv(K ).

Theorem 5 Let K be a TOMKS whose minimal cover set is {{1, . . . , p − 1, p +
1, . . . , q}, {1, . . . , p, i} for i = p + 1, . . . , q} for some p = 1, . . . , q − 2, q ≤ n.
Then conv(K ) can be described by the bound constraints, the CIs:

∑p
i=1 xi + x j ≤ p,

for j = p+1, . . . , q,
∑p−1

i=1 xi +∑q
i=p+1 xi ≤ q−2, and one MCI: (q−p)

∑p−1
i=1 xi +

(q − p − 1)x p + ∑q
i=p+1 xi ≤ p(q − p) − 1.

Since CI is a special case of MCI, Theorem 5 can be seen as a particular instance
where the facet-defining inequalities are all given by MCIs. The proof of this theorem
can be found in “Appendix C”.

5 Separation problem

The separation problem for a multiple knapsack set K is: “Given a vector x̃ ∈ [0, 1]n ,
either find an inequality that is valid for K and violated by x̃ , or prove that no such
inequality exists”. Even though the separation problems for some well-known classes
of inequalities, e.g., CIs, simple LCIs and general LCIs, have all been shown to be
NP-hard [8, 11, 14], several efficient heuristics and exact separation algorithms have
been proposed [6, 10, 22, 24]. In this section,we propose amixed-integer programming
(MIP) formulation to solve the exact separation problem for MCIs.

First, we introduce the following concept of a skeleton. For D ⊆ [n] and a function
f : D → N, we denote by f (D) := { f (i) | i ∈ D} the image of D under f .

Definition 6 (Skeleton) Let C ⊆ 2[n]. For any i ∈ ∪D∈D(C ) D, let f (i):=k if i is
the k-th least element of ∪D∈D(C ) D. Then we say that { f (D) | D ∈ D(C )} is the
skeleton of C .
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In other words, the skeleton of C is isomorphic to D(C ) by relabelling the elements
of ∪D∈D(C ) D with their order in the set.

Due to the lack of a complete understanding of multi-covers, it is currently chal-
lenging to derive an efficient scheme to separate MCIs. In fact, we conjecture that it
is NP-hard to decide whether a given family of covers is a multi-cover. However,
different multi-covers with the same (or similar) skeleton structure tend to have very
similar combinatorial properties. It turns out that for any fixed skeleton, we are able
to formulate as a MIP problem the separation problem for MCIs whose associated
multi-covers have that skeleton. We present the exact formulation in “Appendix D”.
Here we mainly introduce a different formulation, which enables us to separate a
sub-family of MCIs whose associated multi-cover’s skeleton is either {{1}, {2, . . . , t}}
or {{1, t + 1}, {2, . . . , t}}, for any t ≥ 3. These are the inequalities given in Exam-
ples 3 and 4. Given a vector x̃ ∈ [0, 1]n , we provide below the formulation for the
corresponding separation problem.

min t +
∑

i∈[n]
γi −

∑

i∈[n]
(αi + βi + γi )x̃i

s.t. t ≥
∑

i∈[n]
αi , t ≥

∑

i∈[n]
βi ,

ui + vi + wi ≤ 1, ∀i ∈ [n]
αi ≥ β j + (1 + M)ui − M, βi ≥ α j + (1 + M)vi − M, ∀i, j ∈ [n], j > i

w1,i + w2,i = wi , ∀i ∈ [n]
αi ≤ Mui , βi ≤ Mvi , γi ≤ Mwi , ∀i ∈ [n]
γi ≥

∑

j>i

α j + (1 + nM)w1,i − nM, γi

≥
∑

j>i

β j + (1 + nM)w2,i − nM, ∀i ∈ [n]

γi ≥ α j + Mw1,i − M, γi ≥ β j + Mw2,i − M, ∀i, j ∈ [n], j < i
∑

i∈[n]
A j,i (ui + wi ) ≥ (b j + 1) · λ j ,

∑

i∈[n]
A j,i (vi + wi )

≥ (b j + 1) · μ j , ∀ j ∈ [m]
∑

j∈[m]
λ j ≥ 1,

∑

j∈[m]
μ j ≥ 1,

∑

i∈[n]
vi ≥ 2,

∑

j<i

u j ≥ vi , vi +
∑

j≤i

u j ≤ 2, ∀i ∈ [n]

λ j , μ j ∈ {0, 1}, ∀ j ∈ [m]
ui , vi , wi , w1,i , w2,i , zi ∈ {0, 1}, ∀i ∈ [n]
αi , βi , γi ∈ Z, ∀i ∈ [n].

(Sep2)
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We remark that M is the only pre-fixed parameter for this formulation, which
represents the selected upper bound for all the coefficients of the MCI. Next we show
that the separation problem forMCIs frommulti-covers with skeleton {{1}, {2, . . . , t}}
or {{1, t + 1}, {2, . . . , t}} can be exactly solved by solving the above MIP problem.

Theorem 6 Given a TOMKS K and a point x̃ , there exists a multi-cover C whose
skeleton is {{1}, {2, . . . , t}} or {{1, t +1}, {2, . . . , t}} for some t ≥ 3 and an associated
MCI separates x̃ from K , if and only if (Sep2) has optimal value less than 1.

Proof First, we explain the meaning of the variables in (Sep2). Let C1 and C2 be two
covers. For any i ∈ [n], we define ui :=1{i ∈ C1 \ C2}, vi :=1{i ∈ C2 \ C1}, and
wi :=1{i ∈ C1 ∩ C2}. So we have the second constraint ui + vi + wi ≤ 1 in (Sep2).
Variables αi , βi , γi denote the coefficients for index i in C1 \C2, C2 \C1, and C1 ∩C2
respectively, which is enforced by αi ≤ Mui etc., through some “big-M” constant.
From Step 7 of Algorithm 1,

∑

i∈[n]
(αi + βi + γi )x ≤ max(

∑

i

αi +
∑

i

γi ,
∑

i

βi +
∑

i

γi ) − 1

is the MCI we will obtain. Introducing an additional variable t and constraints t ≥∑
i αi , t ≥ ∑

i βi , we obtain the objective function and the first constraint of (Sep2). In
particular, the objective value is strictly less than 1 if and only if the obtained inequality
is violated by x̃ . Using a big-M formulation, αi ≥ β j + (1 + M)ui − M formulates
the constraint of Step 4 of Algorithm 1: for i ∈ C1 \ C2, αi ≥ max j>i, j∈C2\C2 β j + 1.
By splitting the binary variable wi into two binary variables w1,i and w2,i , and using
the big-M formulation γi ≥ ∑

j>i α j + (1+ nM)w1,i − nM , γi ≥ α j + Mw1,i − M
etc., we are able to formulate the constraint of Step 6 of Algorithm 1:

γi ≥ max{ max
j<i, j∈C1\C2

α j ,
∑

j>i, j∈C1\C2

α j + 1} or

γi ≥ max{ max
j<i, j∈C2\C1

β j ,
∑

j>i, j∈C2\C1

β j + 1}.

Constraints
∑

i∈[n] A j,i (ui + wi ) ≥ (b j + 1) · λ j ,
∑

i∈[n] A j,i (vi + wi ) ≥ (b j +
1) · μ j , and

∑
i λ ≥ 1,

∑
i μi ≥ 1 enforce that C1 and C2 are two covers of K .

Lastly, the constraints
∑

i∈[n] vi ≥ 2,
∑

j<i u j ≥ vi , vi + ∑
j≤i u j ≤ 2 enforce the

skeleton structures {{1}, {2, . . . , t}} or {{1, t +1}, {2, . . . , t}}with t ≥ 3. In particular,
constraint

∑
j<i u j ≥ vi means min{i | i ∈ C1 \ C2} < min{i | i ∈ C2 \ C1}, and

constraint vi + ∑
j≤i u j ≤ 2 means |C1 \ C2| ≤ 2, and max{i | i ∈ C1 \ C2} >

max{i | i ∈ C2 \ C1} if |C1 \ C2| = 2. These are exactly the conditions for {C1, C2}
to have skeleton {{1}, {2, . . . , t}} or {{1, t + 1}, {2, . . . , t}}. 	


It is worth mentioning that the constraint
∑

i∈[n] vi ≥ 2 in (Sep2) can actually
be removed. In that case, (Sep2) will also be able to separate MCIs with skeleton
{{1}, {2, . . . , t}} or {{1, t + 1}, {2, . . . , t}} for some t ≤ 2, as well as the normal CIs,
since the optimal solution to (Sep2) with binary variables u = v = 0 corresponds to
a separating CI, where the cover is given by the support of the w vector.
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6 Numerical experiments

In this section we present results of numerical experiments designed to test the opti-
mality gap closed by our proposed cutting-planes and their variants.

For a given fractional solution, we use the separation formulation (Sep2) to pro-
duce MCIs that arise from multi-covers with two specific skeletons. We also relax the
constraint

∑
i∈[n] vi ≥ 2 therein, so the separation problem may separate CIs as well.

The numerical experiments are conducted as follows: for a given totally-ordered mul-
tiple knapsack problem, in the i-th iteration we optimize the linear objective function
over the current linear relaxation, and obtain an optimal solution xi . We terminate the
experiment if the separation problem (Sep2) associated with xi has optimal value 1
or more. Otherwise, if the optimal value is strictly less than 1, we add the separating
cutting-plane generated from (Sep2) into the current linear relaxation, then proceed
to the next step. The linear relaxation in the first iteration is initialized as the natural
LP relaxation of the problem.

For our experiments, we create synthetic instances of the multiple knapsack prob-
lem: max{cT x | Ax ≤ b, x ∈ {0, 1}n}, where A ∈ Z

m×n+ , c ∈ Z
n+, b ∈ Z

m+. For each
row of the matrix A j , we generate n random integers in the range [1, n2] and then
sort them in non-increasing order. The right-hand-side number b j is generated as a
random integer number in the range [A j,1,

∑
i (A j,i )]. The objective vector c is also

generated from sorting n random integer numbers in [1, n2] in non-increasing order.
We create ten instances of sizes n ∈ {20, 30} and with m ∈ {1, 2, 3} constraints.

We compare the MCI inequality and two of its variants against analogous CIs.
Specifically, we will compare the MCI against the original CI, the E-MCI against the
classical ECI, and a lifted version of MCI (L-MCI) with a lifted CI (LCI). To obtain a
liftedCI or a liftedMCI, we start with the original CI orMCI, and then apply the simple
sequential up-lifting procedure of [19], lifting the variables in the order 1, 2, . . . , n.
In subsequent tables and figures, we use the following abbreviations:

LP : Denotes the natural LP relaxation.
MCI : Denotes the linear relaxation after iteratively solving the separation prob-

lem (Sep2) to add all CIs and MCIs whose associated multi-covers have
skeleton {{1}, {2, . . . , t}} or {{1, t + 1}, {2, . . . , t}}.

E-MCI :Denotes the linear relaxationwhere eachMCI found is strengthened/extended
as in (10).

L-MCI : Denotes the linear relaxation where each MCI is lifted.
CI : Denotes the linear relaxation obtained after adding all CIs. Here the sepa-

ration problem is solved exactly by solving an IP, as in [6].
ECI : Denotes the linear relaxation where each additional inequality is the ECI

of the separating CI in the current iteration.
LCI : Denotes the linear relaxation where each additional inequality is the LCI

of the separating CI in the current iteration.

We report the summary of numerical results in Tables 1 and 2, and more details can
be found in Appendix 5. For different combinations of (n, m), in Table 1, we list the
average optimality gap obtained fromoptimizing over the different relaxations studied.
In Table 2, we list the total number of instances that have been solved to optimality
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Table 1 Average optimality gap
of different cutting-plane
closure. (%)

(n,m) LP MCI E-MCI L-MCI CI ECI LCI

(20, 1) 3.93 1.08 0.27 0.11 2.00 0.65 0.63

(20, 2) 6.01 2.90 1.02 0.21 4.23 1.69 1.12

(20, 3) 6.03 3.89 0.73 0.27 4.67 1.17 1.12

(30, 1) 6.34 4.78 0.59 0.24 5.24 0.68 0.65

(30, 2) 4.76 2.95 0.89 0.19 3.51 1.09 0.83

(30, 3) 3.13 2.50 0.83 0.31 2.67 0.90 0.80

Table 2 Number of instances
solved to optimality. (out of 10)

(n,m) LP MCI E-MCI L-MCI CI ECI LCI

(20, 1) 0 3 4 6 1 1 2

(20, 2) 0 0 2 6 0 1 2

(20, 3) 0 1 4 8 0 2 2

(30, 1) 0 1 3 7 1 3 3

(30, 2) 0 1 5 7 0 4 5

(30, 3) 0 1 2 6 1 2 2

Fig. 1 The x-axis and y-axis of each dot represent the optimality gap closed by LCI and L-MCI for each
instance, respectively

for each method. From these two tables, one can see quite clearly that the L-MCI
is able to close much more optimality gap than its LCI counterpart, and solve most
(60 − 80%) of the instances to optimality. The difference between the two methods
on each instance is shown directly in Fig. 1, where we see that instances with over 3%
optimality gap using LCI may be solved at the root node to optimality with LMCI.

Because our separation method is based on the solution of a difficult MIP problem
(Sep2),weonly conduct our experiments for small-sized knapsack instances.However,
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we believe the computational results are promising enough to encourage others to seek
efficient heuristic separation methods for this large family of inequalities.

7 Conclusion

In this work, we introduced a new family of valid inequalities for the intersection of
knapsack sets and exhibited several scenarios in which the inequalities are not implied
by other known families of cutting-planes. The numerical experiments demonstrated
the potential for this new family of cuts to strengthen the linear programming relaxation
more than known classes of inequalities.Ourwork is among the very first that explicitly
studies the polyhedral structure of the intersection of multiple knapsack sets, and we
hope that the ideas presented here will give rise to new methods for generating strong
valid inequalities for complex binary sets that arise in practical settings.

Appendix A: Proof of Theorem 3

First, by Step 4 in Algorithm 1, we have the following easy observation.

Observation 3 Let {C1, . . . , Ck} be a multi-cover and let αT x ≤ β be its correspond-
ing S-MCI. If there exist some t ∈ N, 
 ∈ [nt ] and h′ ∈ [k] such that it,
 ∈ Ch′ , then
{it,
, . . . , it,nt } ⊆ Ch′ .

Now we can prove Theorem 3.

Proof of Theorem 3 Consider the set of binary points whose support is in one of the
following sets:

S1 := {Cht ∪ {it−1,
t } \ {it,
} | t = 2, . . . ,
n

max
i=1

αi , 
 = 1, . . . , nt }, (11)

S2 := {Cht \ {i1,n1} | t = 2, . . . ,
n

max
i=1

αi }, (12)

S3 := {Ch1 \ {i1,
} | 
 = 1, . . . , n1}, (13)

S4 := {Ch1 ∪ {i ′} \ {i1,1} | i ′ /∈ C}. (14)

First, we want to prove that any set in (11)–(14) is not a cover for K . By condition
3, we know i1,n1 ∈ Cht for any t = 2, . . . ,maxn

i=1 αi , and by condition 4, we know
i1,1 ∈ Ch1 . From Observation 3, we have {i1,1, . . . , i1,n1} ⊆ Ch1 . Hence by condition
2, we know that for any t = 2, . . . ,maxn

i=1 αi , Cht \{i1,n1} is not a cover for K , and for
any 
 = 1, . . . , n1, Ch1 \{i1,
} is not a cover for K . So any set inS2∪S3 is not a cover.
Condition 4 directly states that any set inS4 is not a cover. Furthermore, condition 3
states that it,1 ∈ Cht , then by Observation 3, we know that for any 
 ∈ [nt ], it,
 ∈ Cht .
Also, condition 3 states thatCht ∪{it−1,
t }\{it,nt } is not a cover, soCht ∪{it−1,
t }\{it,
}
is also not a cover of K . Hence any set inS1 is not a cover of K .

Now we want to show that αT x = β is the only hyperplane that contains
all the incidence vectors of the sets in S1 ∪ S2 ∪ S3 ∪ S4. Let uT x = v
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be a hyperplane that contains all those binary points. Then, from the sets in S3,
we know that ui1,1 = . . . = ui1,n1

, and we denote it to be κ . Since for any
t = 2, . . . ,maxn

i=1 αi and 
 = 1, . . . , nt , u(Cht ∪ {it−1,
t } \ {it,
}) = v, we know
that for any t = 2, . . . ,maxn

i=1 αi , uit,1 = . . . = uit,nt
. Furthermore, since u(Cht ∪

{it−1,
t } \ {it,
}) = u(Cht \ {i1,n1}) = v, we obtain that for any t = 2, . . . ,maxn
i=1 αi

and 
 = 1, . . . , nt , uit,
 − uit−1,
t
= ui1,n1

= κ . Lastly, from the points in S3

and in S4, we know that ui ′ = 0 for any i ′ /∈ C . Hence we obtain that, for any
t = 1, . . . ,maxn

i=1 αi , 
 = 1, . . . , nt , we have uit,
 = κ ·t , and for any i ′ /∈ C, ui ′ = 0.
Since αit,
 = t and αi ′ = 0 for any t = 1, . . . ,maxn

i=1 αi , 
 = 1, . . . , nt , i ′ /∈ C , and
{it,1, . . . , it,nt } = {i ∈ C \ C0 | αi = t}, we know that ui = κ · αi for any i /∈ C0.
By condition 1, we have u = κ · α. Using condition 5, it is simple to check that
v = u(Cht ) − κ = κ · α(Cht ) − κ = κ · β for any t = 1, . . . ,maxn

i=1 αi . Thus, we
obtain that (u, v) = κ · (α, β), and this concludes the proof that αT x = β is the only
hyperplane that contains all the incidence vectors of sets in S1 ∪ S2 ∪ S3 ∪ S4,
which are all in the TOMKS K . Since the S-MCI αT x ≤ β is a valid inequality for
conv(K ), we obtain that αT x ≤ β is a facet-defining inequality for conv(K ). 	


Appendix B: Proof of Theorem 4

First, we restate Theorem 1.1 in [15].

Theorem 7 (Theorem1.1 [15]) If a clutterL has no P4:={{1, 2}, {2, 3}, {3, 4}} minor,
then

conv({x ∈ Z
n+ | x(L) ≥ 1,∀L ∈ L }) = {x ∈ R

n+ | x(L) ≥ 1,∀L ∈ L }

if and only if L has no minor isomorphic to one of the following clutters:

1. Q6 = {{1, 3, 5}, {1, 4, 6}, {2, 3, 6}, {2, 4, 5}};
2. Jq = {{2, . . . , q}, {1, i} for i = 2, . . . , q}, q ≥ 3.

We are now ready to present our proof of Theorem 4.

Proof (of Theorem 4) Let C be a minimal cover set of a TOMKS K . We first show that
C has no minor isomorphic to P4 or Q6. To see this, let M = {{i1, i2}, {i2, i3}, {i3, i4}}
be a minor of C isomorphic to P4 and i1 < . . . < i4. Since K is a TOMKS and
{i3, i4} ∈ M , we know that M should also contain {{i1, i3}, {i1, i4}, {i2, i4}}. This is a
contradiction. Now assume that M ′ = {{i1, i3, i5}, {i1, i4, i6}, {i2, i3, i6}, {i2, i4, i5}}
is a minor of C isomorphic to Q6 and i1 < . . . < i6. Then M ′ must also contain
{i2, i3, i5}, and this also gives us a contradiction. For any other possible ordering of
the indices, we can obtain a symmetric argument. This concludes our proof that C has
no minor isomorphic to P4 or Q6.

FromTheorem7,weobtain the following statement: IfC is theminimal cover set of a
TOMKS K , then conv({y ∈ Z

n+ | y(C) ≥ 1,∀C ∈ C}) = {y ∈ R
n+ | y(C) ≥ 1,∀C ∈

C} if and only if C has no minor isomorphic to a clutter Jq , with q ≥ 3. Therefore, all
extreme points of the polytope {y ∈ [0, 1]n | y(C) ≥ 1,∀C ∈ C} are integral if and
only if C has no minor isomorphic to Jq . By substituting the variable y with 1− x , we
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know that conv({x ∈ {0, 1}n | x(C) ≤ |C | − 1,∀C ∈ C}) = {x ∈ [0, 1]n | x(C) ≤
|C | − 1,∀C ∈ C} if and only if C has no minor isomorphic to Jq . Moreover, it was
shown in [2] that conv(K ) = conv({x ∈ {0, 1}n | x(C) ≤ |C |− 1,∀C ∈ C}), and this
completes the proof. 	


Appendix C: Proof of Theorem 5

Proof Let πT x ≤ π0 be a non-trivial facet-defining inequality for conv(K ). Then
clearly we have that π ∈ R

n+, π0 > 0 (see also [12]). W.l.o.g. we can assume π0 = 1.
Denote X :={x ∈ K | πT x = 1}, which has dimension n − 1 since πT x ≤ 1 is
facet-defining. First, we obtain the following claims. 	

Claim 1 πi = 0 for all i = q + 1, . . . , n.

proof of claim For any i ∈ [n] \ [q], there exists some x ′ ∈ X with x ′
i = 0, since

otherwise X ⊆ {x | xi = 1, πT x = 1},which has dimension n −2. If supp(x ′)∪{i} is
a cover for K , then it must contain some minimal cover in Jq . However, supp(x ′) does
not contain any minimal cover (since x ′ is feasible), and i ∈ [n] \ [q] is not contained
in any minimal cover. Hence we know that x ′ + ei ∈ K , which has πT (x ′ + ei ) ≤ 1.
Because πT x ′ = 1, we obtain that πi = 0.

Claim 2 π1 = . . . = πp−1 = π([n]) − 1 > 0.

proof of claim Suppose πi = 0 for some i ∈ [p−1]. From the minimal cover structure
of K , we know that [n]\{i} is not a cover for K . Henceπ([n]) = π([n]\{i}) ≤ 1 = π0,
which means that πT x ≤ 1 is dominated by the bound constraints x j ≤ 1,∀ j ∈ [n],
a contradiction. Furthermore, for any i ∈ [p − 1], there exists some point x ′ ∈ X
with x ′

i = 0, since otherwise X ⊆ {x | xi = 1, πT x = π0} which has dimension
n − 2. Hence 1 = πT x ′ ≤ π([n] \ {i}) ≤ 1, which gives πi = π([n]) − 1, for any
i ∈ [p − 1].
Claim 3 If πp > 0, then π([p]) = 1.

proof of claim Since
∑p

i=1 xi = p−1 is not valid for K , and X is (n−1)-dimensional,
we know that there exists x ′ ∈ X with x ′([p]) = p or x ′([p]) ≤ p − 2. If x ′([p]) ≤
p − 2, then there must exist i, j ∈ [p] such that x ′

i = x ′
j = 0. From Claim 2 and

the assumption of πp > 0, we know it is impossible. Hence there exists x ′ ∈ X with
x ′

i = 1 for any i ∈ [p]. From the minimal cover set K , we know x ′
j = 0 for any

j ∈ [q] \ [p]. Therefore, 1 = πT x ′ = π([p]) = 1.
In the remainder of the proof we consider separately three different cases.
Case 1: πp = 0. In this case, we want to show that πT x ≤ 1 is the same as the

CI
∑p−1

i=1 xi + ∑q
i=p+1 xi ≤ q − 2. First, we prove that x([q]) − x p = q − 2 for

any x ∈ X . If not, since [q] \ {p} is a cover, then there exists some x ′ ∈ X and
i, j ∈ [q] \ {p}, such that x ′

i = x ′
j = 0. We construct a new point x ′′ from x ′ by

switching the j-th component from 0 to 1, and setting x ′′
p = 0. Since x ′′

p = x ′′
i = 0,

we know that x ′′ ∈ K . Note that 1 ≥ πT x ′′ = πT x ′ + π j = 1 + π j , thus we have
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π j = 0. Hence π([n] \ {p, j}) = π([n]). However, [n] \ {p, j} is not a cover, and
we obtain π([n]) ≤ 1, which means that the inequality πT x ≤ 1 is dominated by the
bound constraints, a contradiction. Therefore x([q]) − x p = q − 2 for any x ∈ X .
Since X = {x ∈ K | πT x = 1} is assumed to have dimension (n − 1), we know that
πT x ≤ 1 must be the same inequality as the CI:

∑p−1
i=1 xi +∑q

i=p+1 xi ≤ q −2. This
concludes Case 1.

Case 2: πp > 0, and there exists x ′ ∈ X with x ′
p = 0, such that x ′

i = 1 for any
i ∈ supp(π) ∩ {p + 1, . . . , q}. In this case consider such point x ′. From Claim 2, we
have π([n]\{i}) = 1 for any i ∈ [p−1], thus we know that x ′

i = 1 for any i ∈ [p−1].
Hence πT x ′ = π([n]) − πp = 1, from Claim 2 we have π1 = . . . = πp−1 = πp.
Also by Claim 3, we have π1 = . . . = πp = 1

p . So the original inequality πT x ≤ 1

is just ( 1p , . . . , 1
p , πp+1, . . . , πq , 0, . . . , 0)T x ≤ 1, and from Claim 2, we obtain that

∑q
i=p+1 πi = 1 − 1

p · (p − 1) = 1
p . Multiplying each CI

∑p
i=1 xi + x j ≤ p by the

non-negative number π j for each j = p +1, . . . , q, and summing them up, we obtain
that our facet-defining inequality πT x ≤ 1 is dominated by the CIs

∑p
i=1 xi + x j ≤

p for j = p + 1, . . . , q. This means that πT x ≤ 1 coincides with one of these CIs.
This concludes Case 2.

Case 3: πp > 0, and for any x ′ ∈ X with x ′
p = 0, x ′

j = 0 for some index
j ∈ supp(π) ∩ {p + 1, . . . , q}. In this case, we have the following claim.

Claim 4 πp+1 = . . . = πq = π1 − πp > 0.

proof of claim First, we show that πi > 0 for any i ∈ [q] \ [p]. If not, we have
i ∈ [q] \ [p] such that πi = 0. Arbitrarily pick a point x ′ ∈ X with x ′

p = 0. By the
assumption of this case, then there must exist j ∈ [q] \ [p] such that x ′

j = 0 and
π j > 0. Then we construct one point x ′′ from x ′ by setting the i-th component to 0.
Sinceπi = 0,we haveπT x ′′ = πT x ′ = 1,where x ′′

p = x ′
p = 0, x ′′

j = x ′
j = 0, x ′′

i = 0.

Note that x ′′ + e j is also a feasible point in K . However, 1 = πT x ′′ < πT (x ′′ + e j ),
a contradiction.

Next, we show that πi = π1 − πp for any i ∈ [q] \ [p]. Note that since [q] \ {p}
is a minimal cover, we know that [q] \ {p, i} is not a cover for any i ∈ [q] \ [p].
Hence π([q] \ {p, i}) ≤ 1. Then from Claim 1 and 2, we obtain πp + πi ≥ π1, for
any i ∈ [q] \ [p]. If for some i ′ ∈ [q] \ [p], πp + πi ′ > π1, then π([q] \ {p, i ′}) < 1.
Now we argue that, in this case,

∑p
i=1 xi + xi ′ = p for any x ∈ X . Assuming

x̄i1 = x̄i2 = 0 for some x̄ ∈ X and i1, i2 ∈ [p] ∪ {i ′}. By Claim 2 and the fact
that πT x̄ = 1 and πi > 0 for any i ∈ [p] ∪ {i ′}, we know {i1, i2} = {p, i ′}. So
1 = πT x̄ ≤ π([q] \ {p, i ′}) < 1, which gives the contradiction. Thus πT x ≤ 1
coincides with the CI

∑p
i=1 xi + xi ′ ≤ p. However, we have shown that πi > 0 for

any i ∈ [q] \ [p], and this gives a contradiction because p ≤ q − 2. Therefore, for
any i ∈ [q] \ [p], we have πp + πi = π1.

Let π1 =: λ, then Claim 1 gives πq+1 = . . . = πn = 0, Claim 2 gives π1 = . . . =
πp−1 = λ, Claim 3 gives πp = 1− (p − 1)λ, and Claim 4 gives πp+1 = . . . = πq =
pλ − 1. Also from Claim 2, we have π([n]) − λ = 1, hence: λ = (q − p)(pλ − 1),
which gives λ = q−p

p(q−p)−1 . Therefore, the original facet-defining inequality πT x ≤ 1

coincides with (q − p)
∑p−1

i=1 xi + (q − p −1)x p +∑q
i=p+1 xi ≤ p(q − p)−1. Note
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that for the multi-cover {{1, . . . , p − 1, p + 1, . . . , q}, {1, . . . , p, q}}, the inequality
has the same structure as the one given in Example 3, and the corresponding MCI is
(q − p)

∑p−1
i=1 xi + (q − p − 1)x p + ∑q

i=p+1 xi ≤ p(q − p) − 1. This concludes
Case 3 and finishes the proof. 	


Separation formulation in Sect. 5

Let C be a cover-family. From the definition of multi-cover, C is a multi-cover if and
only its skeletonS satisfies the following property: For any T ⊆ ∪S∈S S, there exists
some S′ ∈ S such that T is comparable with S′. Henceforth all skeletons are assumed
to have such property. Now for a given skeleton S :={S1, . . . , Sk} and a fractional
solution x̃ , we consider the following MIP. We let S:= ∪k

i=1 Si and S̄h :=S \ Sh for
any h ∈ [k].

min t +
∑

i∈[n]
γi −

∑

i∈[n]
(γi +

∑

s∈S

αs
i )x̃i

s.t. t ≥
∑

i∈[n]

∑

s∈Sh

αs
i , ∀h ∈ [k]

∑

s∈S

us
i + wi ≤ 1, αs

i ≤ Mus
i , γi ≤ Mwi ∀i ∈ [n]

∑

i∈[n]
us

i = 1, ∀s ∈ S

αs
i ≥ αs′

j + (1 + M)us
i − M, ∀i, j ∈ [n], j > i, s ∈ S, s′ ∈ 
(s)

wi =
∑

h∈[k]
wh

i , i ∈ [n]

γi ≥
∑

j>i

∑

s∈S̄h

αs
j + (1 + n|S̄h |M)wh

i − n|S̄h |M, ∀i ∈ [n], h ∈ [k]

γi ≥
∑

s∈S̄h

αs
j + |S̄h |Mwh

i − |S̄h |M, ∀i, j ∈ [n], j < i, h ∈ [k]
∑

i∈[n]
(
∑

s∈Sh

us
i + wi )A j,i ≥ (b j + 1)λh

j , ∀h ∈ [k], j ∈ [m]

us
i +

∑

j<i

us+1
j ≤ 1, ∀s = 1, . . . , |S| − 1

m∑

j=1

λh
j ≥ 1, ∀h ∈ [k]

t ∈ R, us
i ∈ {0, 1}, γi , α

s
i ∈ Z, wi , w

h
i , λh

j ∈ {0, 1},
∀s ∈ S, i ∈ [n], j ∈ [m], h ∈ [k].

(Sep-S )
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Here 
(s):={s′ ∈ S | ∃h ∈ [k], s.t. s ∈ Sh, s′ /∈ Sh, s′ > s}, and M is the only
pre-fixed parameter for this formulation, which represents the selected upper bound
for all the coefficients of theMCI. Then, the separation problem ofMCIs with skeleton
S can be solved exactly using the MIP (Sep − S ).

Theorem 8 Given a TOMKS K , a given skeleton S , and a point x̃ , there exists a
multi-cover C whose skeleton is S and an associated MCI that separates x̃ from K ,
if and only if (Sep − S ) has optimal value less than 1.

Proof In (Sep − S ), the binary us
i denotes whether or not the index i of variables

corresponds to the index s in the skeleton; αs
i denotes the MCI coefficient of variable

xi , when us
i = 1; The binary wi denotes whether or not variable index i appears in the

intersection of the multi-cover; γi denotes the MCI coefficient of variable xi , whenwi

= 1; For any h ∈ [k] and j ∈ [m], the binary λh
j denotes whether or not the cover Ch

corresponding to the skeleton element Sh violates the j-th knapsack constraint of the
problem; t + ∑

i∈[n] γi represents the maximum value of α(Ch), h ∈ [k]. Therefore,
our separating MCI is represented by the inequality:

∑

i∈[n]
(γi +

∑

s∈S

αs
i )xi ≤ t +

∑

i∈[n]
γi − 1.

Hence the optimal value of (Sep−S ) is strictly less than 1 if and only if the MCI is
a separating inequality. Now we verify that the constraints in (Sep− S ) are correct.
For each index s ∈ S, since it only corresponds to one variable index i ∈ [n], we have
constraint

∑
i∈[n] us

i = 1,∀s ∈ S. Similarly, for each index i ∈ [n], since it either
appears in the intersection of the covers, or it corresponds to a single index s ∈ S,
or it is not contained in any cover, we have constraint

∑
s∈S us

i + wi ≤ 1, ∀i ∈ [n].
Constraint αs

i ≥ αs′
j +(1+ M)us

i − M , ∀ j > i , s ∈ S, s′ ∈ 
(s) formulates the Step 4

of Algorithm 1, and constraints γi ≥ ∑
j>i

∑
s∈S̄h

αs
j + (1+ n|S̄h |M)wh

i − n|S̄h |M ,

∀i ∈ [n], h ∈ [k], γi ≥ ∑
s∈S̄h

αs
j + |S̄h |Mwh

i − |S̄h |M , ∀ j < i, h ∈ [k] as well as
wi = ∑

h∈[k] wh
i formulate the Step 6 of Algorithm 1. Constraints us

i +∑
j<i us+1

j ≤
1, ∀s = 1, . . . , |S| − 1 formulate the bijective relation between skeleton and the
discrepancy family of multi-cover: if index i ∈ [n] corresponds to the skeleton index
s ∈ S, then any skeleton index s′ > s only corresponds to index j > i . The remaining
constraints are easy to interpret. 	


Numerical results report

The following two tables present the detailed results for the optimality gap obtained
from solving different linear relaxation problems.
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(n, m, seed) LP MCI E-MCI L-MCI CI ECI LCI

(20, 1, 1) 1.05 0.81 0.58 0.48 0.87 0.59 0.59
(20, 1, 2) 3.7 1.92 0.17 0 2.55 0.82 0.82
(20, 1, 3) 0.87 0.24 0.24 0.22 0.68 0.63 0.63
(20, 1, 4) 1.78 0 0 0 1.00 0.16 0
(20, 1, 5) 6.15 1.06 1.06 0.14 2.79 2.07 2.07
(20, 1, 6) 9.90 5.69 0.22 0 6.47 1.01 1.01
(20, 1, 7) 7.29 0 0 0 0 0 0
(20, 1, 8) 3.06 0.41 0.40 0.29 1.99 0.54 0.54
(20, 1, 9) 1.48 0.65 0 0 0.87 0.49 0.49
(20, 1, 10) 4.03 0 0 0 2.81 0.15 0.15
Average 3.93 1.08 0.27 0.11 2.00 0.65 0.63
(20, 2, 1) 3.37 1.79 0.89 0.60 1.83 1.50 0.83
(20, 2, 2) 12.50 7.18 3.16 0 8.68 4.98 0
(20, 2, 3) 1.45 0.27 0.05 0 0.81 0.10 0.08
(20, 2, 4) 3.96 1.66 0.65 0.10 2.79 0.83 0.83
(20, 2, 5) 3.15 1.65 1.39 1.03 2.04 1.65 1.65
(20, 2, 6) 5.43 1.73 0 0 4.34 0 0
(20, 2, 7) 9.63 3.69 0.23 0 6.36 0.67 0.67
(20, 2, 8) 2.49 0.50 0.46 0 1.52 1.06 1.06
(20, 2, 9) 14.64 8.82 2.66 0 10.67 2.83 2.83
(20, 2, 10) 3.45 1.67 0.73 0.41 3.24 3.24 3.24
Average 6.01 2.90 1.02 0.21 4.23 1.69 1.12
(20, 3, 1) 5.53 3.27 0 0 3.27 0 0
(20, 3, 2) 4.46 2.88 1.64 0 3.88 3.08 3.08
(20, 3, 3) 25.31 19.53 0 0 19.80 0 0
(20, 3, 4) 3.77 3.03 1.74 1.64 3.60 2.00 2.00
(20, 3, 5) 4.97 2.32 1.46 0 4.12 1.67 1.67
(20, 3, 6) 1.87 0 0 0 0.28 0.12 0.12
(20, 3, 7) 3.72 0.88 0 0 3.15 1.46 1.46
(20, 3, 8) 3.31 1.66 0.41 0 1.96 0.83 0.83
(20, 3, 9) 1.29 0.87 0.44 0 1.08 0.62 0.16
(20, 3, 10) 6.11 4.42 1.58 1.09 5.53 1.90 1.90
Average 6.03 3.89 0.73 0.27 4.67 1.17 1.12
(30, 1, 1) 7.95 5.29 0.64 0 6.05 0.76 0.76
(30, 1, 2) 2.48 0.91 0.20 0 1.38 0.25 0.25
(30, 1, 3) 24.75 23.35 0.70 0 24.24 0.70 0.70
(30, 1, 4) 2.84 1.37 1.27 0.81 1.48 1.48 1.48
(30, 1, 5) 1.66 0 0 0 0 0 0
(30, 1, 6) 9.45 6.74 1.53 0.77 7.60 1.84 1.84
(30, 1, 7) 1.43 1.27 1.17 0.83 1.31 1.25 1.25
(30, 1, 8) 3.81 2.84 0.42 0 3.17 0.47 0.22
(30, 1, 9) 6.20 4.66 0 0 5.23 0 0
(30, 1, 10) 2.83 1.34 0 0 1.91 0 0
Average 6.34 4.78 0.59 0.24 5.24 0.68 0.65
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(n, m, seed) LP MCI E-MCI L-MCI CI ECI LCI

(30, 2, 1) 5.73 4.42 0.67 0 4.78 0.69 0.69
(30, 2, 2) 5.14 3.25 3.25 0.30 4.05 3.78 3.78
(30, 2, 3) 9.94 7.20 0 0 8.11 0 0
(30, 2, 4) 3.02 0.63 0 0 1.38 0 0
(30, 2, 5) 2.98 2.46 0 0 2.46 0 0
(30, 2, 6) 4.93 2.78 0 0 3.42 0 0
(30, 2, 7) 3.40 2.10 1.99 0 2.80 2.80 0.74
(30, 2, 8) 5.86 5.06 1.35 0.20 5.45 1.35 1.35
(30, 2, 9) 3.04 0 0 0 0.86 0.58 0
(30, 2, 10) 3.59 1.61 1.61 1.37 1.77 1.73 1.73
Average 4.76 2.95 0.89 0.19 3.51 1.09 0.83
(30, 3, 1) 3.76 2.94 1.19 0 3.14 1.32 0.71
(30, 3, 2) 4.13 3.26 0.37 0 3.68 0.38 0.19
(30, 3, 3) 14.64 13.62 3.92 1.67 13.98 4.04 4.04
(30, 3, 4) 1.57 1.49 1.37 0.89 1.55 1.41 1.41
(30, 3, 5) 1.09 1.00 0.60 0.37 1.05 0.61 0.42
(30, 3, 6) 1.46 0 0 0 0 0 0
(30, 3, 7) 0.99 0.88 0.11 0 0.92 0.11 0.11
(30, 3, 8) 1.23 0.55 0 0 0.80 0 0
(30, 3, 9) 0.99 0.77 0.41 0.19 0.83 0.51 0.51
(30, 3, 10) 1.46 0.53 0.37 0 0.70 0.60 0.60
Average 3.13 2.50 0.83 0.31 2.67 0.90 0.80

References

1. Balas, E.: Facets of the knapsack polytope. Math. Program. 8(1), 146–164 (1975)
2. Balas, E., Jeroslow, R.: Canonical cuts on the unit hypercube. SIAM J. Appl. Math. 23(1), 61–69

(1972)
3. Bertolazzi, P., Sassano, A.: An O(mn) algorithm for regular set-covering problems. Theoret. Comput.

Sci. 54(2–3), 237–247 (1987)
4. Bodur, M., Del Pia, A., Dey, S.S., Molinaro, M., Pokutta, S.: Aggregation-based cutting-planes for

packing and covering integer programs. Math. Program. 171(1-2, Ser. A), 331–359 (2018). https://doi.
org/10.1007/s10107-017-1192-x

5. Calafiore, G.C., Campi, M.C.: The scenario approach to robust control design. IEEE Trans. Automat.
Control 51(5), 742–753 (2006). https://doi.org/10.1109/TAC.2006.875041

6. Crowder, H., Johnson, E.L., Padberg, M.: Solving large-scale zero-one linear programming problems.
Oper. Res. 31(5), 803–834 (1983)

7. Del Pia, A., Linderoth, J., Zhu, H.: Multi-cover inequalities for totally-ordered multiple knapsack sets.
Proceedings of IPCO (2021)

8. Ferreira, C.E., Martin, A., Weismantel, R.: Solving multiple knapsack problems by cutting planes.
SIAM J. Optim. 6(3), 858–877 (1996)

9. Fukasawa, R., Goycoolea, M.: On the exact separation of mixed integer knapsack cuts. Math. Program.
128, 19–41 (2011)

10. Gu, Z., Nemhauser, G.L., Savelsbergh, M.W.: Lifted cover inequalities for 0–1 integer programs:
Computation. INFORMS J. Comput. 10(4), 427–437 (1998)

11. Gu, Z., Nemhauser, G.L., Savelsbergh, M.W.: Lifted cover inequalities for 0–1 integer programs:
complexity. INFORMS J. Comput. 11(1), 117–123 (1999)

12. Hammer, P.L., Johnson, E.L., Peled, U.N.: Facet of regular 0–1 polytopes. Math. Program. 8(1), 179–
206 (1975)

13. Hojny,C.,Gally, T.,Habeck,O., Lüthen,H.,Matter, F., Pfetsch,M.E., Schmitt,A.:Knapsack polytopes:
a survey. Ann Oper Res pp. 1–49 (2019)

14. Klabjan, D., Nemhauser, G.L., Tovey, C.: The complexity of cover inequality separation. Oper. Res.
Lett. 23(1–2), 35–40 (1998)

123

https://doi.org/10.1007/s10107-017-1192-x
https://doi.org/10.1007/s10107-017-1192-x
https://doi.org/10.1109/TAC.2006.875041


Multi-cover inequalities for totally-ordered... 875

15. Laurent, M., Sassano, A.: A characterization of knapsacks with the max-flow-min-cut property. Oper.
Res. Lett. 11(2), 105–110 (1992)

16. Letchford, A.N., Souli, G.: On lifted cover inequalities: a new lifting procedurewith unusual properties.
Oper. Res. Lett. 47(2), 83–87 (2019)

17. Luedtke, J., Ahmed, S.: A sample approximation approach for optimization with probabilistic con-
straints. SIAM J. Optim. 19(2), 674–699 (2008). https://doi.org/10.1137/070702928

18. Nemirovski, A., Shapiro, A.: Scenario approximation of chance constraints. In: G. Calafiore,
F. Dabbene (eds.) Probabilistic and randomized methods for design under uncertainty, pp. 3–48.
Springer (2005)

19. Padberg, M.W.: A note on zero-one programming. Oper. Res. 23(4), 833–837 (1975)
20. Padberg, M.W.: (1, k)-configurations and facets for packing problems. Math. Program. 18(1), 94–99

(1980)
21. Seymour, P.D.: The matroids with the max-flow min-cut property. J. Combin. Theory Ser. B 23(2–3),

189–222 (1977)
22. Weismantel, R.: On the 0/1 knapsack polytope. Math. Program. 77(3), 49–68 (1997)
23. Wolsey, L.A.: Facets and strong valid inequalities for integer programs. Oper. Res. 24(2), 367–372

(1976)
24. Wolsey, L.A., Nemhauser, G.L.: Integer and combinatorial optimization, vol. 55. John Wiley & Sons

(1999)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1137/070702928

	Multi-cover inequalities for totally-ordered multiple knapsack sets: theory and computation
	Abstract
	1 Introduction
	2 A dominance relation
	3 Multi-cover inequalities and variation
	3.1 Illustrative examples
	3.2 Extended MCI

	4 Facet-defining inequalities
	5 Separation problem
	6 Numerical experiments
	7 Conclusion
	Appendix A: Proof of Theorem 3
	Appendix B: Proof of Theorem 4
	Appendix C: Proof of Theorem 5
	Separation formulation in Sect. 5
	Numerical results report
	References




