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Abstract
We study the inefficiency of pure Nash equilibria in symmetric network congestion
games defined over series-parallel networks with affine edge delays. For arbitrary
networks, Correa (Math Oper Res 44(4):1286–1303, 2019) proved a tight upper bound
of 5/2 on the PoA. On the other hand, for extension-parallel networks, a subclass of
series-parallel networks, Fotakis (Theory Comput Syst 47:113–136, 2010) proved that
the PoA is 4/3. He also showed that this bound is not valid for series-parallel networks
by providing a simple construction with PoA 15/11. Our main result is that for series-
parallel networks the PoA cannot be larger than 2, which improves on the bound of
5/2 valid for arbitrary networks. We also construct a class of instances with a lower
bound on the PoA that asymptotically approaches 27/19, which improves on the lower
bound of 15/11.

Mathematics Subject Classification 91A10 · 05C57 · 91A68 · 90C27 · 91A14

1 Introduction

Network congestion games are commonly used to model problems in large-scale
networks such as routing in communication networks and traffic planning in road
networks [16, 25]. In a network congestion game there is a finite number of selfish
players, and each of them has to select a path from an origin to a destination. The
edges of the network are regarded as resources that can get congested, because each
player using an edge experiences a delay that is non-decreasing with respect to the
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total number of players using it. Each player aims at minimizing the cost of the path
she selects, which is the sum of the delays of all the edges in the path.

A pure Nash equilibrium (PNE) is a configuration where no player can decrease her
cost by unilaterally deviating to another path, and it represents a stable outcome of the
game. However, since the players act selfishly and independently in a non-cooperative
fashion, a PNE might be far from minimizing the social cost, which is the sum of all
players’ costs.

The inefficiency arising from this lack of coordination is quantified by two mea-
sures: thePrice of Anarchy (PoA) and thePrice of Stability (PoS). The PoA, introduced
by Koutsoupias and Papadimitriou [21], is the largest ratio between the cost of a PNE
and the minimum social cost. The PoS, introduced by Anshelevich et al. [2, 3], is
the smallest ratio between the cost of a PNE and the minimum social cost. Thus, the
PoA and the PoS measure the inefficiency of a PNE in the worst-case and best-case
scenarios, respectively.

The PoA and PoS of network congestion games have been studied in a number of
settings [12, 29, 30]. In non-atomic games, players are infinitesimal agents that control
only a negligible amount of flow and cannot affect each other, while in atomic games
players control a larger, non-negligible amount of flow. Moreover, in the atomic case
players may or may not be allowed to split their flow along different paths. Finally,
special cases have been investigated, which arise from assuming some structural prop-
erties on the graph topology and/or on the delay functions [7, 8, 10, 15, 17]. In this
paper, we consider the atomic setting, and we assume that each player controls one
unit of flow that has to be routed on a single path. Moreover, we consider symmetric
games, where all the players have the same origin-destination pair. We focus on the
special case where the network is a two-terminal series-parallel graph and the edge
delays are affine functions, see Fig. 1 for an example.

First, two-terminal series-parallel networks can be recognized in linear-time [33]
and are relevant in many applications, such as for problems on electric networks,
scheduling and compiler optimization. Moreover, the special structure of these graphs
and their decomposition properties can be exploited to define efficient algorithms for
combinatorial problems that are NP-hard in general [6, 20, 32]. Finally, series-parallel
graphs are graphs with treewidth 2, thus understanding how their structure impacts
the PoA in network congestion games could be the first step towards relating the PoA
to the treewidth parameter. Indeed, exploiting the structure of series-parallel networks
is crucial to prove our main result.

Theorem 1 Suppose that G is a series-parallel (s, t)-graph and that the delay func-
tions are affine. Then the PoA is at most 2.

The best upper bound on the PoA in series-parallel network congestion games with
affine delays that was previously knownwas equal to 5/2, however this bound actually
holds for network congestion games on arbitrary graphs [10]. In contrast, for network
congestion games with affine delays in extension-parallel graphs, Fotakis [15] proved
a bound of 4/3 on the PoA. We recall that extension-parallel networks, similarly to
series-parallel networks, can also be obtained by parallel and series compositions of
extension-parallel components, but in every series composition at least one component
must be a single edge. Thus extension-parallel networks are a subclass of series-
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parallel networks, and indeed theydisplaymuch stronger properties than series-parallel
networks. Notably, paths in extension-parallel networks are linearly independent [23],
in the sense that every path contains an edge not included in any other path. This
property is crucially exploited by Fotakis to prove the bound of 4/3 on the PoA.
However, neither this property, nor the bound of 4/3 on the PoA are valid for the
larger class of series-parallel networks.

In fact, Fotakis provided a counterexample of a series-parallel network where the
PoA is equal to 15/11 > 4/3 [15]. This was the best lower bound on the PoA known
so far for symmetric network congestion games on series-parallel networks and affine
delays.We improve such lower bound by constructing a class of instances with a lower
bound on the PoA that asymptotically approaches 27/19 as the number of players goes
to infinity.

Theorem 2 The PoA of series-parallel congestion games with affine delays is at least
27/19 − ε, where ε → 0 as N → ∞.

Related work The complexity of finding a PNE in network congestion games and
more general congestion games has been widely investigated in the literature. These
games belong to the class of potential games, for which a PNE is guaranteed to exists.
Potential games are characterized by the existence of a potential function, and each
local optimum of such function corresponds to a PNE [24, 27, 28]. Fabrikant et al. [14]
gave a strongly polynomial algorithm to find a PNE in symmetric network congestion
games, and proved that in the asymmetric case network congestion games are PLS-
complete, even in the case of linear delays [1, 14, 18].

The inefficiency of pure Nash equilibria in network congestion games and con-
gestion games has also been widely studied. One way to measure such inefficiency
is by comparing the social cost of a PNE and the minimum social cost. The Price of
Anarchy (PoA) is the largest ratio between the cost of a PNE and the minimum social
cost [21].

For non-atomic network congestion games with delay functions in classD, Rough-
garden proved a tight bound on the PoA that is independent from the network structure
[29, 31]. The bound is a function ρ(D) that only depends onD and is equal to 4/3 for
affine delays. Later, Correa et al. [11, 12] provided a unifying framework to study the
PoA by introducing a function β(D) = 1 − 1/ρ(D).

For general atomic congestion games with affine delays and N ≥ 3 players, Awer-
buch et al. [4, 5] and Christodoulou and Koutsoupias [9] independently provided an
upper bound of 5/2 on the PoA. If the game is symmetric the bound can be improved to
(5N −2)/(2N +1) [9]. Correa et. al. [10] later proved this bound is tight for symmet-
ric network congestion games with linear delays, by exhibiting a family of instances
(parametrized by N ) that achieves this bound. Each instance is composed by N dis-
joint (s, t)-paths, plus some connecting edges that link these paths. We remark that
this construction inherently violates the structure of series-parallel networks, because
of the presence of the connecting edges.

When assuming special properties on the network topology and/or on the delay
functions the above bounds can be improved. A notable example are network con-
gestion games on extension-parallel networks, a subclass of series-parallel networks
The structure of these networks can be exploited to prove several nice properties of
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extension-parallel network congestion games [13, 15, 17, 23]. In particular, Fotakis
studied the PoA in extension-parallel network congestion games and established that
for delay functions in classD the PoA is at most ρ(D) in the symmetric case [15]. For
affine delay functions this bound is equal to 4/3. However the bound is not valid for
the larger class of series-parallel networks. In fact, Fotakis provided a counterexample
of a series-parallel network where the PoA is equal to 15/11 > 4/3 [15], see Fig. 1.

Further structural properties have been investigated in the literature. For example,
Bilò and Vinci [8] improved the bounds of [4, 5, 9, 15] by making the the additional
assumption that the costs of any two strategies available to a same player, when eval-
uated in absence of congestion, are within a factor θ one from the other. Bhaskar et
al. [7] instead focused on the price of collusion in atomic splittable congestion games
on series-parallel networks and proved that the PoA cannot exceed the number of
players. Finally, de Jong et al. [19] studied symmetric congestion games with affine
delays where the strategies of each player are the bases of a k-uniform matroid, and
proved that for this class of games the PoA is at most 28/13.

Our approach To prove that in series-parallel network congestion games with affine
delays the PoA is at most 2, we need to overcome some of the limitations in Fotakis’
approach [15], which is tailored to extension-parallel networks.

The first crucial property exploited in [15] is that there is a one-to-one correspon-
dence between strategy profiles and network flows. Specifically, for a game with N
players having origin s and destination t , each (s, t)-flow of value N corresponds to a
unique strategy profile (up to players’ permutation), because there is a unique decom-
position of the (s, t)-flow into N (s, t)-paths. The second crucial property exploited
in [15] is that all pure Nash equilibria are global optima of the potential function. This
can be used to show that the PoS and the PoA coincide.

Both properties do not extend to series-parallel networks. In particular, each (s, t)-
flow f of value N can be decomposed into different strategy profiles, and while some
of them might be a PNE, some of them might not.

We define a greedy decomposition of f into the single players’ strategies. A similar
definition was introduced to compute to generalized maximum flows in series-parallel
graphs [22, 26].Weprove several properties of greedydecompositions andwecrucially
exploit these properties to derive a bound on the PoA.

For a PNE (s, t)-flow f and a (s, t)-flow o minimizing the total cost, we use the
functionΔ( f , o) defined in [15] to measure “how different” these two (s, t)-flows are.
Fotakis proved that Δ( f , o) ≤ 0 if and only if f minimizes the potential function,
and showed how this implies that the ratio between the cost of f and the cost of o
is at most 4/3. However, series-parallel networks might admit a PNE that is only a
local optimum of the potential function. The crucial block of our proof consists in
establishing that for any PNE f we have Δ( f , o) is at most 1

4 the cost of f , which
will imply that the PoA is at most 2. A similar approach was proposed by [19], who
study the PoA in k-uniform matroid congestion games. In particular, the authors show
that an analogue of Δ( f , o), which measures the “difference” between a PNE f and
a strategy profile o that minimizes the social cost in the k-uniform matroid congestion
game, cannot exceed a constant fraction of the cost of f . We point out that k-uniform
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matroids and flows in series-parallel networks are very different combinatorial objects,
thus the techniques used in [19] cannot be extended to bound Δ( f , o) in our setting.

2 Preliminaries

Notation For a network G we denote by V (G) and E(G) the node set and the edge
set of G, respectively. An edge e ∈ E(G) can be explicitly written as the ordered pair
(u, v), where u is the tail of e and v is the head of e. Directed paths will be simply
referred to as paths. Unless otherwise specified, we will only consider simple paths,
i.e., paths that do not traverse any node multiple times.

A path from node u to node v is called a (u, v)-path. We say that two (u, v)-paths
in G are internally disjoint if they only intersect at u and v.

Paths and cycles ofG are regarded as sequences of edges, thus we may for example
write e ∈ p rather than e ∈ E(p) for a path p.

Let G be an (s, t)-network, i.e., a network with source s and sink t , and let c ∈
R

E(G). An (s, t)-flow is an assignment of values to the edges of G such that, at each
node u other than s and t , the sum of the values of the edges entering u equals
the sum of the values of the edges leaving u. The value of the (s, t)-flow is the
sum of the values of the edges entering t . We might simply use the term flow, if
the source and sink of the flow are clear from the context or not relevant for the
discussion. For a path p in G we define c(p) = ∑

e∈p ce, and for a flow f in G we

define c( f ) = ∑
e∈E(G) ce fe. Finally, for a vector f ∈ R

E(G) we define E( f ) =
{(u, v) : (e = (u, v) ∈ E(G) and fe > 0) or (e = (v, u) ∈ E(G) and fe < 0)}.
Correspondingly, we denote by G( f ) the network (V (G), E( f )). Note that if f ≥ 0,
then G( f ) is a subgraph of G. Given two subsets A and B of E(G), we denote by
A Δ B = (A \ B) ∪ (B \ A) the symmetric difference of A and B. For n ∈ N, we
denote by [n] the set {1, . . . , n}.
Network congestion games Let G = (V , E) be an (s, t)-network. We consider a
network congestion game on G with N players. The strategy set Xi of player i is the
set P of (s, t)-paths in G. Since all the players have the same origin and destination,
their strategy sets all coincide with P and the game is called symmetric. A state of the
game is a strategy profile P = (p1, . . . , pN )where pi ∈ P is the (s, t)-path chosen by
player i , for i ∈ [N ]. The set of states of the game is denoted by X = X1 ×· · ·× XN .
Each state P = (p1, . . . , pN ) ∈ X induces an (s, t)-flow f = f (P) = χ1+· · ·+χN

of value N , where χ i is the incidence vector of pi for all i ∈ [N ]. On the other hand,
each (s, t)-flow f of value N can correspond to several states, since there might be
multiple decompositions of f into N (s, t)-paths.

For each e ∈ E we have a nondecreasing delay function de : [N ] → R≥0. Each
player using e incurs a cost equal to de( fe), i.e., the cost of e depends on the total
number of players that use e in f . Since de is a nondecreasing function, de( j +
1) ≥ de( j) for j ∈ [N − 1], which models the effect of congestion. The delay
functions are called affine if de(x) = aex + be with ae ≥ 0, be ≥ 0 for every
e ∈ E . We denote the cost of a path p in G with respect to a flow f by cost f (p) =∑

e∈p de( fe). Thus, the cost incurred by player i in state P is cost f (pi ). We also
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define cost+f (p) = ∑
e∈p de( fe + 1). Finally, the cost of flow f in G is denoted

by cost( f ) = ∑
e∈E fede( fe), and it corresponds to the sum of all players’ costs.

Note that cost f (p) and cost( f ) coincide with c(p) and c( f ) if c ∈ R
E is defined as

ce = de( fe) for all e ∈ E .

Pure Nash Equilibria and social optima A pure Nash equilibrium (PNE) is a state
(p1, . . . , pi , . . . , pN ) inducing an (s, t)-flow f such that, for each i ∈ [N ] we have

cost f (p
i ) ≤ cost f̃ ( p̃

i ) ∀(p1, . . . , p̃i , . . . , pN ) ∈ X inducing (s, t)-flow f̃ .

A PNE represents a stable outcome of the game, since no player i ∈ [N ] can improve
her cost if she unilaterally changes strategy by selecting a different (s, t)-path p̃i . With
a slight abuse of terminology, we say that an (s, t)-flow f is a PNE if there exists a
PNE P = (p1, . . . , pN ) ∈ X such that f = f (P), i.e., f is the flow induced by
P . On the other hand, we are also interested in a social optimum, defined as a state
that minimizes the total cost cost( f (P)) = ∑

i∈[N ] cost f (P)(pi ) over all the states
P = (p1, . . . , pN ) ∈ X . With a slight abuse of terminology, we say that an (s, t)-flow
o is a social optimum if o minimizes cost(g) over all integral (s, t)-flows g of value
N .

Price of Anarchy and Price of Stability The Price of Anarchy (PoA) is the maximum
ratio cost( f )

cost(o) such that o is a social optimum and f is a PNE. In other words, to compute
the PoA we consider the “worst” PNE, i.e., a PNE whose total cost is as large as
possible. The Price of Stability (PoS) is the minimum ratio cost( f )

cost(o) such that o is a
social optimum and f is a PNE. In other words, to compute the PoS we consider the
“best” PNE, i.e., a PNE whose total cost is as small as possible.
Series-parallel networks An (s, t)-network is series-parallel if it consists of either a
single edge (s, t) or of two series-parallel networks composed either in series or in
parallel. The parallel composition of two networks G1 and G2 is an (s, t)-network
obtained from the union of G1 and G2 by identifying the source of G1 and the source
of G2 into s, and by identifying the sink of G1 and the sink of G2 into t . The series
composition of G1 and G2, denoted by G1 ◦ G2, is an (s, t)-network obtained from
the union of G1 and G2 by letting s be the source of G1, t be the sink of G2, and by
identifying the sink of G1 with the source of G2. Note that, if G is a series-parallel
(s, t)-network, then every flow f of G is acyclic, i.e., there is no directed cycle in
E( f ).

Example 1 Consider the 3-player series-parallel congestion game with affine delays
depicted in Fig. 1. The underlying network G and affine delay functions are showed
in Fig. 1(a). A PNE flow f is represented in Fig. 1(b). The players’ strategies are the
(s, t)-paths p1 = (e1, e2, e6), p2 = (e1, e5, e3), and p3 = (e4, e2, e3). Moreover, the
flow o that minimizes the social cost can be reached from f by deviating one unit of
flow from the path (e1, e2, e3) to the path (e7). As a result, we have cost( f ) = 15 and
cost(o) = 11, and this implies that the PoA is 15/11. This example was originally
introduced by Fotakis to show that the PoA of series-parallel congestion games with
affine delays can be greater that 4/3 [15].
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(a) (b)

Fig. 1 The series-parallel network congestion game of Example 1. The PoA is 15/11

To prove Theorem 1, we will use the function β(D) := supd∈D β(d) introduced in
[11], whereD is a non-empty class of non-negative and non-decreasing functions and,
for a non-negative and non-decreasing function d(x), β(d) := supx≥y≥0

y(d(x)−d(y))
xd(x) .

We remark that when D is the class of affine functions, we have β(D) = 1/4. Given
an arbitrary PNE flow f of G and a social optimal flow o define

Δ( f , o) :=
∑

e: fe>oe

( fe − oe)de( fe) −
∑

e: fe<oe

(oe − fe)de( fe + 1).

By exploiting the definition of β(D) the following inequality can be easily derived
(see proof of Lemma 3 in [15]):

cost( f ) ≤ cost(o) + β(D)cost( f ) + Δ( f , o). (1)

If f is a global minimum of the potential function, then Δ( f , o) ≤ 0 [15]. However,
series-parallel networks might admit PNE that do not minimize the potential function.
To prove Theorem 1, we will exploit the special structure of series-parallel networks
and affine delays, in order to show that Δ( f , o) ≤ 1

4cost( f ), see Theorem 3 and
Corollary 1. This immediately implies that cost( f ) ≤ 2cost(o), establishing that the
PoA is at most 2 for the case under consideration. The main ideas of the proof are
described in the next section.

3 Proof of Theorem 1

To prove Theorem 1 we use the following key result.

Theorem 3 Suppose that G is a series-parallel (s, t)-network and that the delay func-
tions are affine. Let f be a PNE and let C = {(C−

i ,C+
i ) : i ∈ [k]} be a collection of

k (not necessarily distinct) pairs of internally disjoint (ui , vi )-paths in G, such that
| {C−

i : e ∈ C−
i

} | ≤ fe for all e ∈ E(G). Then

Δ(C, f ) :=
k∑

i=1

(cost f (C
−
i ) − cost+f (C

+
i )) ≤ 1

4
cost( f ).
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We will consider the network G(o − f ), which is a collection of simple cycles
{C1, . . . ,Ch} such that each Ci carries si units of flow. For each i ∈ [h] define
C+
i = {e = (u, v) ∈ E : (u, v) ∈ Ci , oe > fe} and C−

i = {e = (u, v) ∈ E :
(v, u) ∈ Ci , oe < fe}. Since G is series-parallel, it is known that C+

i and C−
i are

two internally disjoint (ui , vi )-paths in G [15]. By defining C as the set containing si
copies of (C+

i ,C−
i ) for each i ∈ [h], we can apply Theorem 3. Since Δ( f , o) can be

rewritten as

Δ( f , o) =
h∑

i=1

si (cost f (C
−
i ) − cost+f (C

+
i )),

we have Δ( f , o) = Δ(C, f ), and we obtain the following result.

Corollary 1 Suppose that G is a series-parallel (s, t)-network and that the delay func-
tions are affine. Let f be an arbitrary PNE and let o be a social optimum. Then
Δ( f , o) ≤ 1

4cost( f ).

We remark that, to prove Theorem 1, it is sufficient to use inequality (1) in con-
junction with Corollary 1.

4 Proof of Theorem 3

In this section, we formally prove Theorem 3. To this purpose, we need to first prove
a number of intermediate results.

An acyclic (s, t)-flow f of value N can be decomposed into N simple (s, t)-paths
in multiple ways. Given edge costs ce, e ∈ E , we compute a c-greedy decomposition
P̄ = { p̄1, . . . , p̄N } of f as follows. Set f1 = f , E1 = E( f1). At each step, compute
the (s, t)-path p̄i in (V , Ei ) with highest cost with respect to c, and decrease the
(s, t)-flow fi by 1 on all the edges that belong to p̄i to define fi+1 and Ei+1.

Example 2 (continued) Consider again the network congestion game in Fig. 1 and its
PNE flow f . We define the edge costs as ce = de( fe), e ∈ E(G). The c-greedy
decomposition P̄ of f consists of the (s, t)-paths p̄1 = p̄2 = (e1, e2, e3) and p̄3 =
(e4, e5, e6). The costs of the paths p̄1, p̄2, p̄3 are 6, 6, 3 respectively.

In the next lemma, we prove a first basic property of greedy decompositions.

Lemma 1 Let c ∈ R
E and suppose that G is a series-parallel (s, t)-network. For an

(s, t)-flow f of G of value N, let P be an arbitrary decomposition of f into N (s, t)-
paths

{
p1, . . . , pN

}
with c(pi ) ≥ c(pi+1), i ∈ [N − 1], and let P̄ = {

p̄1, . . . , p̄N
}

be a c-greedy decomposition of f . Then c(p1) ≤ c( p̄1) and c(pN ) ≥ c( p̄N ).

Proof By construction, we have that c(p1) ≤ c( p̄1).
We now prove c(pN ) ≥ c( p̄N ) by proving that p̄N is the cheapest path in G( f )

with respect to c. We proceed by induction on the number of edges |F | in the network
G( f ). If |F | = 1, then G( f ) is an edge. Thus we have p̄1 = · · · = p̄N . This implies
that p̄N is the cheapest path.
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Nowwe assume that when |F | ≤ k, p̄N is the cheapest path in f .When |F | = k+1,
we have that f is composed by two flows f1 and f2 either in series or in parallel. Note
that the number of edges |F1| in G( f1) and the number of edges |F2| in G( f2) are
both at most k.

If f is composed in series by f1, f2, we can define from P̄ two c-greedy decom-
positions P̄1 = { p̄11, . . . , p̄N1 }, P̄2 = { p̄12, . . . , p̄N2 } of f1 and f2, respectively, such
that p̄i = p̄i1 ◦ p̄i2 for all i ∈ [N ]. By our inductive hypothesis, we have that p̄N1 and
p̄N2 are the cheapest paths with respect to c in G( f1) and G( f2) respectively, thus
p̄N = p̄N1 ◦ p̄N2 is the cheapest path with respect to c in G( f ).

If f is composed in parallel by f1, f2, we define P̄1 and P̄2 as the paths of P̄ that
belong toG( f1) andG( f2), respectively. Then P̄1 and P̄2 are c-greedy decompositions
of f1 and f2, respectively. By our inductive hypothesis, the last path in P̄1 is the
cheapest path with respect to c in G( f1), and the last path in P̄2 is the cheapest path
with respect to c in G( f2). The cheapest among these two paths is the last path in P̄ ,
and it must be the cheapest path with respect to c in G( f ). 
�

For a collection of N paths P = {p1, . . . , pN }, c ∈ R
E and x ≥ 0 we define

R(P, c, x) = ∑N
i=1 max

{
0, c(pi ) − x

}
. In the next two lemmas we state crucial

properties for greedy decompositions of arbitrary (s, t)-flows.

Lemma 2 Let c ∈ R
E and suppose that G is a series-parallel (s, t)-network. For an

(s, t)-flow f of G of value N, let P be an arbitrary decomposition of f into N (s, t)-
paths

{
p1, . . . , pN

}
with c(pi ) ≥ c(pi+1), i ∈ [N − 1], and let P̄ = {

p̄1, . . . , p̄N
}

be a c-greedy decomposition of f . Then for all x ≥ 0 we have that R(P, c, x) ≤
R(P̄, c, x).

Proof The proof is by induction on the value N of the flow f . The base case is N = 1.
In this case f is a single path, thus P = P̄ and

R(P, c, x) ≤ R(P̄, c, x). (2)

trivially holds.
Assume that (2) holds for N ≤ k. When N = k + 1 we first prove that (2) holds in

the case where x = x̄ , with x̄ = c( f )
N . We need the following claim. 
�

Claim 1 There is a decomposition P̂ = {
p̂1, p̂2, . . . , p̂N

}
of f such that p̂1 = p̄1

and R(P, c, x̄) ≤ R(P̂, c, x̄).

Proof of claim. For a decomposition P ′ of f into N (s, t)-paths let

�(P ′) = min
{
|q Δ p̄1| : q ∈ P ′, c(q) ≥ x̄

}
.

Note that �(P ′) = 0 if and only if p̄1 ∈ P ′. We want to prove that

min{�(P ′) : R(P, c, x̄) ≤ R(P ′, c, x̄), P ′decomposition of f } (3)
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is zero. Let P̃ = { p̃1, . . . , p̃N } be a decomposition of f that achieves the minimum in
(3) and assume by contradiction that �(P̃) ≥ 1. Let π be an (s, t)-path of P̃ such that
c(π) ≥ x̄ and �(P̃) = |π Δ p̄1|. Since �(P̃) ≥ 1, there exist two internally disjoint
(u, v)-paths in π Δ p̄1. We first restrict our attention to the set of paths P̃uv of P̃
that traverse nodes u and v, and to the corresponding (s, t)-flow h = f (P̃uv). Note

that π ∈ P̃uv . Next, we will show how to construct a decomposition P̆uv of h such
that R(P̆uv, c, x̄) ≥ R(P̃uv, c, x̄) and �(P̆uv) < �(P̃uv). To this purpose, we will use
an intermediate decomposition Q ∪ π of h, where Q = {q1, . . . , qt } is a c-greedy
decomposition of h \ f (π). Our target decomposition P̆uv will be obtained by slightly
modifying this decomposition Q ∪ π . We first prove that

R(Q ∪ π, c, x̄) ≥ R(P̃uv, c, x̄).

In fact, since t ≤ k, by our inductive hypothesiswehave R(P̃uv\π, c, x̄) ≤ R(Q, c, x̄),
and by adding c(π) − x̄ on both sides we obtain the above inequality.

We now specify how to construct P̆uv . Let πuv and q1uv be the (u, v)-subpaths of
π and q1, respectively. By construction, we have that q1uv is the (u, v)-subpath of p̄1.
We define the decomposition P̆uv from Q ∪π by replacing π with π̆ = π \πuv ∪ q1uv

and by replacing q1 with q1 \ q1uv ∪ πuv . This immediately implies

�(P̆uv) ≤ |π̆ Δ p̄1| < |π Δ p̄1| = �(P̃uv).

We prove that

R(P̆uv, c, x̄) ≥ R(Q ∪ π, c, x̄). (4)

Let δ = c(q1uv) − c(πuv). First, δ ≥ 0, because q1uv is a subpath of p̄1. Recalling
that c(π) ≥ x̄ , we obtain

R(P̆uv, c, x̄) = R(Q ∪ π, c, x̄) + δ − max{0, c(q1) − x̄)} + max{0, c(q1) − δ − x̄)}.

If c(q1) ≤ x̄ , since δ ≥ 0, we immediately have (4). If c(q1) ≥ x̄ and c(q1) − δ ≥ x̄ ,
we get

R(P̆uv, c, x̄) = R(Q ∪ π, c, x̄) + δ − (c(q1) − x̄) + (c(q1) − δ − x̄)

= R(Q ∪ π, c, x̄)

Finally, if c(q1) ≥ x̄ and c(q1) − δ ≤ x̄ , we get

R(P̆uv, c, x̄) = R(Q ∪ π, c, x̄) + δ − (c(q1) − x̄)

= R(Q ∪ π, c, x̄) − (c(q1) − δ − x̄)

≥ R(Q ∪ π, c, x̄).
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Thus, in any case (4) holds. We have obtained

R(P̆uv, c, x̄) ≥ R(Q ∪ π, c, x̄) ≥ R(P̃uv, c, x̄).

We finally add to P̆uv the paths in P̃ \ P̃uv . From the previous inequality we get

R(P̆, c, x̄) ≥ R(P̃, c, x̄),

where P̆ = P̆uv ∪ P̃ \ P̃uv . Thus R(P̆, c, x̄) ≥ R(P, c, x̄). This is a contradiction on
the choice of P̃ , since

�(P̆) ≤ �(P̆uv) < �(P̃uv) = �(P̃).


�
With Claim 1 at hand we can prove that (2) holds for N = k+1 and x = x̄ . In fact,

we only need to show that R(P̂, c, x̄) ≤ R(P̄, c, x̄). We consider the (s, t)-flow f \ p̄1
of value k, and its decompositions P̂ \ p̄1 and P̄ \ p̄1. Note that P̄ \ p̄1 is a c-greedy
decomposition of f \ p̄1. By induction we have that R(P̂ \ p̄1, c, x̄) ≤ R(P̄ \ p̄1, c, x̄).
By adding c( p̄1) − x̄ on both sides we obtain R(P̂, c, x̄) ≤ R(P̄, c, x̄), as desired.

We now prove that (2) holds for N = k + 1 and x ≥ 0. First, we remark that for
each decomposition P ′ of f and x ≥ 0 we have

R(P ′, c, x) =
∑

p∈P ′
max {0, c(p) − x} ≥ max{0, c( f ) − (k + 1)x}. (5)

Recall that the paths in P are listed in non-increasing order of cost. If x ≥ c(p1),
then c(pi ) ≤ c(p1) ≤ x for i ∈ [N ] implies R(P, c, x) = 0, and by (5) R(P̄, c, x) ≥
0, thus (2) holds. If x ≤ c(pk+1), then c(pi ) ≥ c(pk+1) ≥ x for i ∈ [N ] implies
R(P, c, x) = c( f ) − (k + 1)x , and by (5) R(P̄, c, x) ≥ c( f ) − (k + 1)x , thus (2)
holds.

Thus we now assume c(pk+1) ≤ x ≤ c(p1). Consider the network H obtained
from G by adding k + 1 parallel edges e1, . . . , ek+1 from t to a new node t ′. Define
c′ ∈ R

E∪{e1,...,ek+1} by setting c′
e = ce for e ∈ E , and

cei =
⎧
⎨

⎩

max{0, α} i = 1
min{0, α} i = k + 1
0 i = 2, . . . , k,

(6)

where α = (k + 1)x − c( f ). Define the (s, t ′)-flow h of value k + 1 obtained from f
by assigning flow value 1 to all the new parallel edges e1, . . . , ek+1. Finally, consider
the decompositions Q = {q1, . . . , qk+1} and Q̄ = {q̄1, . . . , q̄k+1} obtained from P
and P̄ , respectively, by appending edge ei to the i-th paths of the decompositions.
More precisely, qi = pi ◦ ei and q̄i = p̄i ◦ ei for i ∈ [k + 1]. First, we remark that
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x = c′(h)
k+1 . Secondly, by construction Q̄ is a c′-greedy decomposition of h. Since we

have proven that (2) holds for N = k + 1 and x = c′(h)
N , we have

R(Q, c′, x) ≤ R(Q̄, c′, x).

If x ≥ c( f )
k+1 we have α ≥ 0, thus e1 has nonnegative cost and e2, . . . , ek+1 have costs

0. Thus

c′(q1) = c(p1) + α

c′(q̄1) = c( p̄1) + α

c′(qi ) = c(pi ) i = 2, . . . , k + 1

c′(q̄i ) = c( p̄i ) i = 2, . . . , k + 1.

Since, by Lemma 1, x ≤ c(p1) ≤ c( p̄1) we have

R(Q, c′, x) = R(P, c, x) + α

R(Q̄, c′, x) = R(P̄, c, x) + α,

thus (2) holds.
If max{0, c(pk+1)} ≤ x ≤ c( f )

k+1 we have α ≤ 0, thus ek+1 has nonpositive cost and
e1, . . . , ek have costs 0. Thus

c′(qi ) = c(pi ) i ∈ [k]
c′(q̄i ) = c( p̄i ) i ∈ [k]

c′(qk+1) = c(pk+1) + α

c′(q̄k+1) = c( p̄k+1) + α

Since, by Lemma 1, x ≥ c(pk+1) ≥ c( p̄k+1) we have

R(Q, c′, x) = R(P, c, x)

R(Q̄, c′, x) = R(P̄, c, x),

thus (2) holds. 
�
Lemma 3 Suppose that G is a series-parallel (s, t)-network and that the delay func-
tions are affine. Let ce = de( fe) for all e ∈ E. Let f be a PNE and P̄ = P̄( f ) =
{
p̄1, p̄2, . . . , p̄N

}
be a c-greedy decomposition of f . Then c( p̄i+1) ≥ 1

2

∑i
j=1

c( p̄ j )
i

for i ∈ [N − 1].
Proof We prove the lemma by induction on the number of edges |E | in G. In the
base case, we have |E | = 1, i.e., G is a single edge, thus for every p̄i ∈ P̄ we have
c( p̄1) = c( p̄2) = · · · = c( p̄N ) and we are done. Next we assume that when |E | ≤ k,
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any c-greedy decomposition P̄ of the PNE flow f on G satisfies Lemma 3. We need
to prove that when |E | = k + 1, Lemma 3 still holds. Because G is a series-parallel
network and |E | > 1,Gmust be composed in series or in parallel by two series-parallel
subgraphs G1 = (V1, E1) and G2 = (V2, E2). We have |E1| < |E | and |E2| < |E |.
We also denote the subflow of f in G1 by f1, the subflow of f in G2 by f2.

We denote by P∗ = {
p1, p2, . . . , pN

}
a decomposition of f defining the single

players’ strategies of a PNE. We first outline the proof structure. The main idea is to
break down P∗ and P̄ according to the decomposition of G into G1,G2. We will first
prove that f1 and f2 are PNE in G1 and G2, respectively. Then we will argue that the
decompositions P̄1 and P̄2 of f1 and f2 obtained by breaking down P̄ are c-greedy
decompositions inG1,G2, respectively. Finally, we will apply induction.We consider
separately the cases in which G is composed in series and in parallel.
Case 1 : G is composed by G1,G2 in series at node a. Then also G( f ) is obtained by
composing in series G( f1),G( f2) at node a.

We first show that f1 is a PNE flow in G1 and f2 is a PNE flow in G2. For every
(s, t)-path pi ∈ P∗ we have pi = pi1 ◦ pi2, where pi1 is an (s, a)-path in G1 and
pi2 is an (a, t)-path in G2. Thus P∗

1 = {
p11, p

2
1, . . . , p

N
1

}
is a decomposition of f1,

P∗
2 = {

p12, p
2
2, . . . , p

N
2

}
is a decomposition of f2. If f1 is not a PNE flow in G1, there

exists a pi1 ∈ P∗
1 such that c(pi1) will decrease if we switch pi1 to some (s, a)-path q

on G1. Now consider the (s, t)-path pi ∈ P∗, and note that c(pi ) will also decrease
if we switch to the (s, t)-path q ◦ pi2 on G. This contradicts the fact that P∗ is a PNE
in G. The proof for f2 is similar.

Moreover, for each p̄i ∈ P̄ , we have that p̄i = p̄i1 ◦ p̄i2, where p̄i1 is an (s, a)-path
and p̄i2 is an (a, t)-path. We can conclude that P̄1 = {

p̄11, p̄
2
1, . . . , p̄

N
1

}
and P̄2 =

{
p̄12, p̄

2
2, . . . , p̄

N
2

}
are c-greedy decompositions of f1 and f2 respectively, otherwise

P̄ would not be a c-greedy decomposition.
Then by our inductive hypothesis, we know that P̄1 and P̄2 satisfy Lemma 3 because

|E1| < |E | = k + 1 and |E2| < |E | = k + 1. Thus c( p̄i+1
1 ) ≥ 1

2

∑i
j=1

c( p̄ j
1 )

i and

c( p̄i+1
2 ) ≥ 1

2

∑i
j=1

c( p̄ j
2 )

i for i ∈ [N − 1]. Note that because p̄i+1 = p̄i+1
1 ◦ p̄i+1

2 , we

have that c( p̄i+1) = c( p̄i+1
1 ) + c( p̄i+1

2 ). Thus

c( p̄i+1) = c( p̄i+1
1 ) + c( p̄i+1

2 )

≥ 1

2

i∑

j=1

c( p̄ j
1)

i
+ 1

2

i∑

j=1

c( p̄ j
2)

i
= 1

2

i∑

j=1

c( p̄ j )

i
.

Case 2 : G is composed by G1,G2 in parallel. Then also G( f ) is obtained by com-
posing in parallel G( f1),G( f2).

We first show that f1 is a PNE flow in G1 and f2 is a PNE flow in G2. Define
P∗
1 = {

pi ∈ P∗ : pi is a path in G1
}
and P∗

2 = {
pi ∈ P∗ : pi is a path in G2

}
. Note

that P∗ = P∗
1 ∪ P∗

2 , P
∗
1 is a decomposition of f1, and P∗

2 is a decomposition of f2.
If f1 is not a PNE flow in G1, there exists a pi1 ∈ P∗

1 such that c(pi1) will decrease if
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we switch pi1 to some (s, t)-path q in G1. Since pi1 ∈ P∗ and q is an (s, t)-path in G,
this contradicts the fact that f is a PNE flow in G. The proof for f2 is similar.

Moreover, from the c-greedy decomposition P̄ of f we define

P̄1 = {p ∈ P̄( f ) : p is a path in G1}
P̄2 = {p ∈ P̄( f ) : p is a path in G2},

that are c-greedy decompositions of f1 and f2, respectively. For i ∈ [N − 1] define

P̄i = { p̄ j ∈ P̄( f ) : j ≤ i}
P̄i
1 = { p̄ j ∈ P̄i : p is a path in G1}

P̄i
2 = { p̄ j ∈ P̄i : p is a path in G2}.

Note that P̄i = P̄i
1 ∪ P̄i

2 . Our goal is to prove

c( p̄i+1) ≥ 1

2

i∑

j=1

c( p̄ j )

i

= 1

2

∑
p∈P̄i

1
c(p) +∑

p∈P̄i
2
c(p)

|P̄i
1 | + |P̄i

2 |
. (7)

Assume without loss of generality that p̄i+1 ∈ P̄1. Since f1 is a PNE flow in G1, P̄1 is
a c-greedy decomposition of f1, and |E1| < |E | = k + 1, by our inductive hypothesis
we have

c( p̄i+1) ≥ 1

2

∑
p∈P̄i

1
c(p)

|P̄i
1 |

. (8)

If P̄i
2 = ∅, (7) trivially holds. Thus we now assume P̄i

2 �= ∅. In this setting, there are
some paths of P̄i that belong to G2. Thus f1 and f2 are nonzero flows, we must have
fe ≤ N − 1 for all e ∈ E . In the rest of the proof we show

c( p̄i+1) ≥ 1

2

∑
p∈P̄i

2
c(p)

|P̄i
2 |

. (9)

Note that (8) and (9) imply (7).
If |P̄i

2 | = |P̄2|, all the paths of P̄( f ) that belong to G2 appear before p̄i+1. So it is

sufficient to show that c( p̄i+1) ≥ 1
2

∑
p∈P̄2

c(p)

|P̄2| . We have:

c( p̄i+1) =
∑

e∈ p̄i+1

de( fe)
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≥ 1

2

∑

e∈ p̄i+1

de( fe + 1) (10)

≥ 1

2
max

{
c(p) : p ∈ P∗

2

}
(11)

≥ 1

2

∑
p∈P̄2 c(p)

|P̄2|
. (12)

Inequality (10) holds since for each edge e ∈ E we have an affine delay function
de(x) = aex + be with ae ≥ 0, be ≥ 0. More precisely, when ae = be = 0 we have
de( fe) = de( fe + 1) = 0, and when at least one among ae and be is positive we have
de( fe)

de( fe+1) = ae fe+be
ae( fe+1)+be

≥ 1
2 for any fe ∈ [N − 1]. Inequality (11) holds since P∗ is

a PNE and because p̄i+1 is an (s, t)-path. Finally, inequality (12) holds since the cost
of the most expensive path in P∗

2 is higher that the average cost of the paths in P∗
2 ,

which is equal to the average cost of the paths in P̄2.
If |P̄i

2 | < |P̄2|, some of the paths of P̄ that belong to G2 appear before p̄i+1 and
some appear after p̄i+1. We denote by � = min

{
t : p̄t ∈ P̄2, t > i + 1

}
. Then we

have c( p̄i+1) ≥ c( p̄�) because � > i + 1. Since |E2| < |E | = k + 1, by our inductive
hypothesis, we have

c( p̄i+1) ≥ c( p̄�) ≥ 1

2

∑
p∈P̄�−1

2
c(p)

|P̄�−1
2 | ≥ 1

2

∑
p∈P̄i

2
c(p)

|P̄i
2 |

,

which proves (9). This completes the proof. 
�

Example 3 (continued) We illustrate the properties stated in Lemmas 2 and 3 on the
example in Fig. 1. First, the average cost x̄ = c( f )/N = 5. We have R(P, c, x̄) =
(5 − 5) + (5 − 5) + (5 − 5) = 0 and R(P̄, c, x̄) = (6 − 5) + (6 − 5) + 0 = 2. First,
Lemma 2 holds since R(P, c, x̄) = 0 < 2 = R(P̄, c, x̄). For Lemma 3, we observe
that the paths in the c-greedy decomposition P̄ = { p̄1, p̄2, p̄3} have costs 6, 6 and 3,

respectively, thus c( p̄2) = 6 ≥ 3 = 1
2c( p̄

1) and c( p̄3) = 3 ≥ 3 = 1
2
c( p̄1)+c( p̄2)

2 .

Based on Lemma 3, from P̄( f ) = {
p̄1, p̄2, . . . , p̄N

}
, we get a sequence of

positive numbers
{
cost f ( p̄1), cost f ( p̄2), . . . , cost f ( p̄N )

}
such that cost f ( p̄i+1) ≥

1
2

∑i
j=1

cost f ( p̄ j )

i , i ∈ [N − 1]. We now turn our attention to general sequences of
positive numbers that satisfy this property. For m ∈ [N − 1] we define μ(m, N ) =∏N−1

j=m
2 j

2 j+1 .

Lemma 4 Let x ∈ R
N+ such that

∑N
i=1 xi = 1, and let m ∈ [N − 1]. We have:

1. If xi+1 ≥ 1
2i

∑i
j=1 x j for i ∈ [N − 1], then∑m

i=1 xi ≤ μ(m, N ).

2. If xi+1 = 1
2i

∑i
j=1 x j for i ∈ [N − 1], then∑m

i=1 xi = μ(m, N ).
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Proof We first prove statement 1. We proceed by backward induction on m. The base
case is m = N − 1. Since xN ≥ 1

2(N−1)

∑N−1
j=1 x j , we have:

N−1∑

j=1

x j = 1 − xN ≤ 1 − 1

2(N − 1)

N−1∑

j=1

x j . (13)

By Eq. (13), we have 2(N−1)+1
2(N−1)

∑N−1
j=1 x j ≤ 1. This implies that

∑N−1
j=1 x j ≤

2(N−1)
2(N−1)+1 = μ(N − 1, N ). Thus statement 1 holds for the base case.

Next we assume that statement 1 holds for m ∈ {k, . . . , N − 1}, and we prove that
it also holds for m = k − 1. Based on our inductive hypothesis,

∑k
j=1 x j ≤ μ(k, N ).

Moreover, since xk ≥ 1
2(k−1)

∑k−1
j=1 x j , we have:

k−1∑

j=1

x j =
k∑

j=1

x j − xk ≤ μ(k, N ) − 1

2(k − 1)

k−1∑

j=1

x j . (14)

According to (14), we have 2(k−1)+1
2(k−1)

∑k−1
j=1 x j ≤ μ(k, N ). This implies that

∑k−1
j=1 x j ≤ 2(k−1)

2(k−1)+1μ(k, N ) = μ(k − 1, N ). Thus, statement 1 holds.
The proof of statement 2 is analogous, and it is obtained by replacing the inequalities

in (13) and (14) with equalities. 
�

The next lemma provides a lower and an upper bound for μ(m, N ).

Lemma 5 For m ∈ [N − 1] we have
√
2m − 1

2N − 1
≤ μ(m, N ) ≤

√
m

N
.

Proof First we can equivalently write:

μ(m, N ) =
N−1∏

j=m

2 j

2 j + 1
=

√
√
√
√
√

⎛

⎝
N−1∏

j=m

2 j

2 j + 1

⎞

⎠

2

.

We lower bound the argument of the square root as follows.

N−1∏

j=m

(
2 j

2 j + 1

)2

≥ 2m − 1

2m
· 2m

2m + 1
· 2m + 1

2m + 2
· 2m + 2

2m + 3
. . .

2N − 3

2N − 2
· 2N − 2

2N − 1

= 2m − 1

2N − 1
.
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Similarly, we upper bound the argument of the square root as follows.

N−1∏

j=m

(
2 j

2 j + 1

)2

≤ 2m

2m + 1
· 2m + 1

2m + 2
· 2m + 2

2m + 3
· 2m + 3

2m + 4
. . .

2N − 2

2N − 1
· 2N − 1

2N

= 2m

2N
.


�
From the previous results we can establish the following property of a PNE f ,

which will be used to prove Theorem 3.

Lemma 6 Suppose that G is a series-parallel (s, t)-network and that the delay func-
tions are affine. Let ce = de( fe) for all e ∈ E. Moreover, let f be a PNE and let
P̄ = { p̄1, . . . , p̄N } be a c-greedy decomposition of f . We have

R

(

P̄, c,
cost( f )

N

)

≤ 1

4
cost( f ).

Proof Let m be the number of paths in P̄ whose cost is greater than cost( f )/N and
note that

R

(

P̄, c,
cost( f )

N

)

=
m∑

i=1

c( p̄i ) − m

N
cost( f ).

We equivalently prove

m∑

i=1

c( p̄i ) ≤
(
1

4
+ m

N

)

cost( f ). (15)

Define xi = c(pi )/cost( f ) for i ∈ [N ]. Clearly xi ≥ 0 for i ∈ [N ] and∑N
i=1 xi = 1.

By Lemma 3 we know that c( p̄i+1) ≥ 1
2

∑i
j=1

c( p̄ j )
i for i ∈ [N − 1], thus xi+1 ≥

1
2

∑i
j=1

x j
i for i ∈ [N − 1]. By Lemmas 4 and 5 we have

m∑

i=1

c(pi ) = cost( f )
m∑

i=1

xi ≤ μ(m, N )cost( f ) ≤
√
m

N
cost( f ).

To show (15), we finally observe that
√

m
N − m

N ≤ 1
4 , since 0 ≤ m

N ≤ 1 and
√
x−x ≤ 1

4

for x ∈ [0, 1]. 
�
Finally,we state the following elementary property of a PNEflow in a series-parallel

congestion game.
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Lemma 7 Suppose that G is a series-parallel (s, t)-network. Let f be a PNE flow of
value N and let p be an (s, t)-path in G. Then cost+f (p) ≥ cost( f )

N .

Proof Denote by P∗ the set of N (s, t)-paths in the PNE associated to f . Clearly
max

{
cost f (π) : π ∈ P∗} ≥ cost( f )

N . By contradiction, suppose that cost+f (p) <
cost( f )

N . We would obtain that max
{
cost f (π) : π ∈ P∗} > cost+f (p), thus one player

would find profitable to change her strategy into p. This contradicts the fact that f is
a PNE. 
�

We are finally ready to prove the central result of our paper.

Proof of Theorem 3 If C = ∅, the claim trivially holds since Δ(C, f ) = 0. Thus, we
now assume C �= ∅. Let C− = {C−

1 , . . . ,C−
k }. The proof is by induction on

γ (C−,G) = min

{
k∑

i=1

|pi \ C−
i | : pi is an (s, t)-path containing C−

i , i ∈ [k]
}

.

(16)

The base case is γ (C−,G) = 0, in which case for all i ∈ [k] we have pi = C−
i , i.e.,

C−
i is an (s, t)-path. Let P be a decomposition of f containing all the paths in C−,

and let P̄ be a c-greedy decomposition of f , where ce = de( fe) for all e ∈ E . We
obtain:

Δ(C, f ) =
k∑

i=1

(cost f (C
−
i ) − cost+f (C

+
i ))

≤
k∑

i=1

(

cost f (C
−
i ) − cost( f )

N

)

(17)

≤ R

(

C−, c,
cost( f )

N

)

(18)

≤ R

(

P, c,
cost( f )

N

)

(19)

≤ R

(

P̄, c,
cost( f )

N

)

(20)

≤ 1

4
cost( f ). (21)

Inequality (17) holds since for all i ∈ [k] C+
i is an (s, t)-path whose only nodes

in common with C−
i are s and t . Thus, by Lemma 7, we have cost+f (C

+
i ) ≥ cost( f )

N
for all i ∈ [k]. Inequality (18) follows from the definition of c and the fact that

R
(
C−, c, cost( f )

N

)
only contains the nonnegative terms of the summation in (17).

Inequality (19) holds since C− ⊆ P . Inequality (20) holds because of Lemma 2.
Inequality (21) is implied by Lemma 6.
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Now we assume that our claim holds if γ (C−,G) ≤ γ̄ . Our goal is to show that
the claim still holds if γ (C−,G) = γ̄ + 1. To prove that

Δ(C, f )

cost( f )
≤ 1

4

we construct another instance of a N -player network congestion game where

(i) Ĝ is a series-parallel (s, t)-network with affine delays,
(ii) f̂ is an (s, t)-flow of value N in Ĝ and P̂ is a decomposition of f̂ that is a PNE,
(iii) Ĉ = {(Ĉ−

i , Ĉ+
i ) : i ∈ [h]} is a collection of h pairs of internally disjoint paths in

Ĝ with
∣
∣
∣
{
Ĉ−
i : e ∈ Ĉ−

i

}∣
∣
∣ ≤ f̂e for all e ∈ E(Ĝ),

(iv) γ (Ĉ−, Ĝ) ≤ γ̄ , where Ĉ− = {Ĉ−
1 , . . . , Ĉ−

h },
(v)

Δ(C, f )

cost( f )
≤ Δ(Ĉ, f̂ )

cost( f̂ )
.

Intuitively, by decreasing γ (C−,G) at each step we reduce, in a finite number of
steps, to a network Ĝwhere the number of non-(s, t)-paths inC− has strictly decreased.
First, we describe how to construct Ĝ, f̂ , P̂ and Ĉ.

Let G be composed in parallel by G1, . . . ,G�, � ≥ 1, and assume wlog that each
Gi cannot be further decomposed in parallel. Since γ (C−,G) ≥ 1, there is at least a
(w, v)-path C−

j in C− that is not from s to t . We assume wlog that C−
j is contained in

G1, and we define f1 to be the subflow of f in G1. Since C
−
j is not from s to t , G1

can be decomposed in series. Moreover, sinceC−
j andC+

j are internally disjoint, there

must be a component of the series decomposition ofG1 which containsC
−
j . Thus there

exists a node u ∈ V (G1) such that G1 is obtained by composing in series at u two
subgraphsGsu

1 andGut
1 , andC−

j is contained either inGsu
1 or inGut

1 . Correspondingly,
we can also split the flow f1 into an (s, u)-flow f su1 and a (u, t)-flow f ut1 .

Let C−(G1) consist of the paths in C− that are contained in G1. Analogously,
let C−(Gsu

1 ) and C−(Gut
1 ) be the paths of C−(G1) that are contained in Gsu

1 and Gut
1 ,

respectively.Note that eachpathC−
j that is contained inC−(G1)\(C−(Gsu

1 )∪C−(Gut
1 ))

must be an (s, t)-path, since otherwise the path C+
j would also belong to G1 and thus

traverse u, contradicting the assumption that C−
j and C+

j are internally disjoint.

Let P∗ = {p1, . . . , pN } be the (s, t)-paths chosen by the players in the PNE f . Let
α > 0, β > 0. We define two operations, whose pictorial representations are given in
Fig. 2. 
�
Operation 1.

1. Define network Ĝ obtained from G by shrinking Gsu
1 (G1 is replaced by Gut

1 , and
nodes s and u are identified).

2. For each edge e of Ĝ that is in Gut
1 , redefine the delay to be β(1 + α)de( fe).

3. Construct an (s, t)-flow f̂ of value N in Ĝ from f , by replacing f1 with f ut1 . Set
P̂ = { p̂1, . . . , p̂N } to be the (s, t)-paths chosen by the players in f̂ , where p̂i is
the (u, t)-subpath of pi if pi is in G1 and p̂i = pi if pi is not in G1.
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C−
3

C−
2

C−
1

Gsu
1 Gut

1

G \ G1

s t
u

de(fe) ∀e ∈ E(G1)

de(fe) ∀e ∈ E(G \ G1)

(a)

Ĉ−
3 = C−

3

Ĉ−
1 = C−

1,ut

Ĝ1 = Gut
1

Ĝ \ Ĝ1 = G \ G1

s = u t

β(1 + α)de(fe) ∀e ∈ E(Ĝ1)

de(fe) ∀e ∈ E(Ĝ \ Ĝ1)

(b)

Ĉ−
3 = C−

3

Ĝ \ Ĝ1 = G \ G1

de(fe) ∀e ∈ E(Ĝ \ Ĝ1)

Ĉ−
1 = C−

1,su

Ĉ−
2 = C−

2

Ĝ1 = Gsu
1

s t = u

β(1 + 1
α )de(fe) ∀e ∈ E(Ĝ1)

(c)

Fig. 2 This is an example for the operations in Theorem 3, where the dashed lines are paths C−
i in the set

C−. (a) A series-parallel network G. (b) The network Ĝ by applying Operation 1 to G and (c) the network
Ĝ by applying Operation 2 to G

4. Define set Ĉ containing:

(a) all (C−,C+) ∈ C such that C− /∈ C−(G1).
(b) all (C−,C+) ∈ C such that C− ∈ C−(Gut

1 ).
(c) all (C−

ut ,C
+), such that (C−,C+) ∈ C, C− is an (s, t)-path in G1, and C

−
ut is

the subpath of C− from u to t .

Operation 2.

1. Define network Ĝ obtained from G by shrinking Gut
1 (G1 is replaced by Gsu

1 , and
nodes u and t are identified).

2. For each edge e of Ĝ that is in Gsu
1 , redefine the delay to be β(1 + 1

α
)de( fe).

3. Construct an (s, t)-flow f̂ of value N in Ĝ from f , by replacing f1 with f su1 . Set
P̂ = { p̂1, . . . , p̂N } to be the (s, t)-paths chosen by the players in f̂ , where p̂i is
the (s, u)-subpath of pi if pi is in G1 and p̂i = pi if pi is not in G1.

4. Define set Ĉ containing:

(a) all (C−,C+) ∈ C such that C− /∈ C−(G1).
(b) all (C−,C+) ∈ C such that C− ∈ C−(Gsu

1 ).
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(c) all (C−
su,C

+), such that (C−,C+) ∈ C, C− is an (s, t)-path in G1, and C−
su is

the subpath of C− from s to u.

The network Ĝ obtained with Operation 1 (resp. Operation 2) is a series-parallel
(s, t)-network with affine delays, thus (i) is satisfied. For i ∈ [k], denote by cost f (Ci )

the difference cost f (C
−
i ) − cost+f (C

+
i ). Let

D =
∑

C−
i ∈C−

i (Gsu
1 )

cost f (Ci ) +
∑

C−
i ∈C−

(Gut
1 )

cost f (Ci ) +
∑

C−
i ∈C−

(G1)(s,t)-path

cost f (C
−
i ).

The next claim shows that (v) is also satisfied by appropriately performing either
Operation 1 or Operation 2.

Claim 2 If

Δ(C, f )

cost( f )
≤ D

cost( f1)
, (22)

then for each β ≥ 1 and α > 0 either Operation 1 or Operation 2 yields

Δ(C, f )

cost( f )
≤ Δ(Ĉ, f̂ )

cost( f̂ )
. (23)

Otherwise, if inequality (22) does not hold, for each β ≤ 1 and α > 0 either Operation
1 or Operation 2 yields (23).

Proof of claim. If inequality (22) holds and we choose β ≥ 1, then we have:

Δ(C, f )

cost( f )
≤ Δ(C, f ) + (β − 1)D

cost( f ) + (β − 1)cost( f1)
. (24)

If inequality (22) does not hold and we choose β ≤ 1, then (24) still holds. Define

B(ξ) = ξcost( f ut1 ) − cost( f su1 )

A(ξ) = −
∑

C−
i ∈C−(Gsu

1 )

cost f (Ci ) + ξ
∑

C−
i ∈C−(Gut

1 )

cost f (Ci )

−
∑

C−
i ∈C−(G1)(s,t)-path

(
cost f ((C

−
i )su) − ξcost f ((C

−
i )ut )

)
.

It can be checked that if we apply Operation 1 with parameters (α, β) we get:

Δ(Ĉ, f̂ ) = Δ(C, f ) + A(β(1 + α) − 1) = Δ(C, f ) + (β − 1)D + βA(α)

cost( f̂ ) = cost( f ) + B(β(1 + α) − 1) = cost( f ) + (β − 1)cost( f1) + βB(α).
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Moreover, if we apply Operation 2 with parameters (α, β) we get:

Δ(Ĉ, f̂ ) = Δ(C, f ) + A

(

β − 1 + β

α

)

= Δ(C, f ) + (β − 1)D − β

α
A(α)

cost( f̂ ) = cost( f ) + B

(

β − 1 + β

α

)

= cost( f ) + (β − 1)cost( f1) − β

α
B(α).

Thus, if

A(α)

B(α)
≥ Δ(C, f ) + (β − 1)D

cost( f ) + (β − 1)cost( f1)

by applying Operation 1 with parameters (α, β) we get:

Δ(C, f ) + (β − 1)D

cost( f ) + (β − 1)cost( f1)
≤ Δ(C, f ) + (β − 1)D + βA(α)

cost( f ) + (β − 1)cost( f1) + βB(α)
= Δ(Ĉ, f̂ )

cost( f̂ )
.

Otherwise, by applying Operation 2 with parameters (α, β) we get:

Δ(C, f ) + (β − 1)D

cost( f ) + (β − 1)cost( f1)
≤ Δ(C, f ) + (β − 1)D − β

α
A(α)

cost( f ) + (β − 1)cost( f1) − β
α
B(α)

= Δ(Ĉ, f̂ )

cost( f̂ )
.

By choosing β appropriately, by (24) we have the desired result. 
�
In the next two claims we show that if we apply Operation 1 (resp. 2) with appropriate
parameters α and β, then also (ii) is satisfied. Let H be a subgraph of G that is a
two-terminal series-parallel network with terminals u and v, and let P be a set of
(u, v)-paths in H . We define

c(H) = min{cost+f (p) : p is an (u, v)-path in H},
C(P) = max{cost f (p) : p ∈ P}.

Let P∗
1 and P̂1 be the paths in P∗ and P̂ that are contained in G1 and Ĝ1, respectively.

We denote by P∗
1,su and P∗

1,ut the set of (s, u)-subpaths of the paths in P∗
1 and the set

of (u, t)-subpaths of the paths in P∗
1 , respectively. We define

αmin = c(Gsu
1 )

c(Gut
1 )

, βmin = c(G)

c(G1)
, αmax = C(P∗

1,su)

C(P∗
1,ut )

, βmax = C(P∗)
C(P∗

1 )
.

Claim 3 The decomposition of f̂ into { p̂1, . . . , p̂N } obtained by applying Operation
1 (resp. Operation 2) with (α, β) = (αmin, βmin) is a PNE in the network congestion
game on Ĝ.
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Proof of claim. Suppose we apply Operation 1 (resp. Operation 2) with (α, β) =
(αmin, βmin). Note that each path p that is not in G1 can be mapped to an identi-
cal path p̂ in Ĝ such that cost f̂ ( p̂) = cost f (p) and cost

+
f̂
( p̂) = cost+f (p). Moreover,

each path p that is in G1 can be mapped to a path p̂ in Ĝ1 coinciding with the (u, t)-
subpath (resp. the (s, u)-subpath) p′ of p. It can be checked that cost f̂ ( p̂) and cost

+
f̂
( p̂)

in Ĝ are obtained by multiplying cost f (p′) and cost+f (p′) in G by the constant c(G)

c(Gut
1 )

(resp. c(G)
c(Gsu

1 )
).

Our goal is to prove that in { p̂1, . . . , p̂N } no player has an incentive to deviate.
First, we consider the case where p̂i is in Ĝ1. Consider the corresponding path pi

chosen by player i in G1. Since {p1, . . . , pN } is a PNE in G, player i cannot improve
her cost by deviating to another (u, t)-path in Gut

1 (resp. to another (s, u)-path in
Gsu

1 ). Consequently, player i cannot improve her cost by deviating from p̂i to another
(s, t)-path in Ĝ1. This implies that in Ĝ

cost f̂ ( p̂
i ) ≤ c(Ĝ1).

Now we show that player i cannot improve her cost by deviating from p̂i to another
(s, t)-path outside Ĝ1. Note that, if we applied Operation 1, we have

c(Ĝ1) = βmin(1 + αmin)c(Gut
1 ) = c(G)

c(G1)

c(G1)

c(Gut
1 )

c(Gut
1 ) = c(G).

Similarly, if we applied Operation 2, we have

c(Ĝ1) = βmin
(

1 + 1

αmin

)

c(Gsu
1 ) = c(G)

c(G1)

c(G1)

c(Gsu
1 )

c(Gsu
1 ) = c(G).

Clearly, we have c(Ĝ1) = c(G) ≤ c(G \ G1) = c(Ĝ \ Ĝ1). Thus, we obtain

cost f̂ ( p̂
i ) ≤ c(Ĝ1) ≤ c(Ĝ \ Ĝ1).

We remark that for each path p ∈ Ĝ \ Ĝ1 the cost that player i would incur by
deviating to p is cost+

f̂
(p). Since cost+

f̂
(p) ≥ c(Ĝ \ Ĝ1), we conclude that player i

cannot improve her cost by deviating from p̂i to another (s, t)-path outside Ĝ1.
Nowwe consider the case where p̂i is not in Ĝ1. Since inG player i cannot improve

her cost by deviating from pi to another (s, t)-path outside G1 and G \G1 = Ĝ \ Ĝ1,
we have that in Ĝ player i cannot improve her cost by deviating from p̂i to another
(s, t)-path outside Ĝ1. This also implies that in G cost f (pi ) ≤ c(G \ G1).

Nowwe show that player i cannot improve her cost by deviating from p̂i to another
(s, t)-path inside Ĝ1. Since in G player i cannot improve her cost by deviating from
pi to another (s, t)-path inside G1, we also have that in G cost f (pi ) ≤ c(G1). Thus

cost f (p
i ) ≤ c(G) = c(Ĝ1).
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First, recall that cost f̂ ( p̂
i ) in Ĝ is equal to cost f (pi ) inG. Secondly, note that for each

path p ∈ Ĝ1 the cost that player i would incur by deviating to p is cost+
f̂
(p). Since

c(Ĝ1) ≤ cost+
f̂
(p), we conclude that player i cannot improve her cost by deviating

from p̂i to another (s, t)-path inside Ĝ1. 
�
Claim 4 The decomposition of f̂ into { p̂1, . . . , p̂N } obtained by applying Operation
1 (resp. Operation 2) with (α, β) = (αmax, βmax) is a PNE in the network congestion
game on Ĝ.

Proof of claim. Suppose we apply Operation 1 (resp. Operation 2) with (α, β) =
(αmax, βmax). The proof is similar to the previous case, and we will only highlight the
main differences. In this case, applying either Operation 1 or Operation 2 yields

C(P̂1) = C(P∗). (25)

If p̂i is in Ĝ1, player i cannot improve her cost by deviating from p̂i to another
(s, t)-path in Ĝ1. Moreover, we have

cost f̂ ( p̂
i ) ≤ C(P̂1) (26)

= C(P∗) (27)

≤ c(G) (28)

≤ c(G \ G1) (29)

= c(Ĝ \ Ĝ1), (30)

where (26) follows from the definition of C(P̂1), (27) follows from (25), (28) follows
from the fact that {p1, . . . , pN } is a PNE in G, and (30) follows from the definition
of c(G). Since player i would pay cost+

f̂
(p) to deviate to a path p ∈ Ĝ \ Ĝ1, and

because c(Ĝ \ Ĝ1) ≤ cost+
f̂
(p), we conclude that player i cannot improve her cost by

deviating from p̂i to another (s, t)-path outside Ĝ1.
Now we consider the case where p̂i is not in Ĝ1. First, player i cannot improve her

cost by deviating from p̂i to another (s, t)-path outside Ĝ1. Moreover, we have

cost f̂ ( p̂
i ) ≤ C(P∗) (31)

= C(P̂1) (32)

≤ c(Ĝ1), (33)

where (31) follows from the fact that p̂i = pi and the definition of C(P∗), while (32)
follows from (25). Finally, if (33) does not hold, there is a path p in Ĝ1 such that
cost+

f̂
(p) < cost f̂ ( p̂h), where p̂h is the most expensive path in { p̂1, . . . , p̂N } that is in

Ĝ1. This would directly imply that player h in G could improve her cost by deviating
from ph by selecting the cheapest path between u and t (resp. s and u), contradicting
the fact that {p1, . . . , pN } is a PNE in G. 
�
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Finally, we prove that also (iii) and (4) are satisfied if we applyOperation 1 (resp. Oper-
ation 2) with appropriate parameters.

Claim 5 The set Ĉ = {(Ĉ−
i , Ĉ+

i ) : i ∈ [h]} obtained by applying Operation 1
(resp. Operation 2) with (α, β) = (αmin, βmin) or (α, β) = (αmax, βmax) is a col-
lection of pairs of internally disjoint paths in Ĝ with |{Ĉ−

i : e ∈ Ĉ−
i }| ≤ f̂e for all

e ∈ E(Ĝ) and such that γ (Ĉ−, Ĝ) ≤ γ̄ .

Proof of claim. By construction, the set Ĉ obtained with Operation 1 (resp. Operation
2) is a collection of pairs of internally disjoint paths in Ĝ. By construction for each
e ∈ E(Ĝ) we have

|{Ĉ−
i : e ∈ Ĉ−

i }| = | {C−
i : e ∈ C−

i

} | ≤ fe = f̂e.

We now prove that γ (Ĉ−, Ĝ) ≤ γ̄ . To this purpose, we need to decide how to “cover”
each Ĉ− ∈ Ĉ− in the expression defining γ (Ĉ−, Ĝ).

Suppose we performed Operation 1 (resp. Operation 2).

(a) if Ĉ− = C− for some C− ∈ C− \ C−(G1), we use the path that covered C− in
(16).

(b) if Ĉ− = C− for some C− ∈ C−(Gut
1 ) (resp. C− ∈ C−(Gsu

1 )), we use the subpath
from u to t (resp. from s to u) of the path that covered C− in (16).

(c) if Ĉ− = C−
ut (resp. Ĉ

− = C−
su), for some (s, t)-path C− ∈ C(G1) whose subpath

from u to t is C−
ut (resp. whose subpath from s to u is C−

su), we conclude that Ĉ
−

is an (s, t)-path in Ĝ and we use a copy of Ĉ− in (16).

Consider the cycle C−
j ∈ C− that we used to decompose G1 and suppose that C−

j ∈
Gut

1 . If we performed Operation 1, (b) implies γ (Ĉ−, Ĝ) < γ (C−,G) = γ̄ + 1. If we
performed Operation 2,C−

j does not belong to Ĉ, since it was shrunk during Operation
2. Also in this case γ (Ĉ−, Ĝ) < γ (C−,G) = γ̄ + 1. If C−

j ∈ Gsu
1 , we reach the same

conclusion by applying similar arguments. 
�
ByClaims 3 and 4, and since γ (Ĉ−, Ĝ) ≤ γ̄ , we can apply our inductive hypothesis

to conclude that Δ(Ĉ, f̂ ) ≤ 1
4cost( f̂ ). Finally, claims 5 and 2 immediately imply

Δ(C, f ) ≤ 1
4cost( f ). 
�

5 Proof of Theorem 2

In this section, we provide a lower bound on the PoA of series-parallel network con-
gestion games with affine delays that approaches 27/19 as N → ∞.

Let {q1, . . . , qN } be an ordered sequence of positive numbers such that
∑N

i=1 qi = 1
and qi+1 = 1

2

∑i
j=1

q j
i for i ∈ [N − 1]. Let m ∈ [N − 1] and define r = m

N . By
statement 2 in Lemma 4 and Lemma 5 we have

m∑

i=1

qi − m

N
= μ(m, N ) − m

N
≥ (

√
r − r) − ε,
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(a) (b) (c)

(d) (e)

Fig. 3 Consider the input sequence {8, 4, 3} and m=2. For convenience we work with integer numbers,
but we can easily scale the numbers of the sequence so that they sum up to 1. We first average the first
m numbers and get {6, 6, 3}. (d) is the output network G and its corresponding PNE flow f . (a)–(c) are
the intermediate networks and flows according to our construction. (e) is the flow h defined in the proof of
Theorem 2 where k = 1

where ε = √
r −

√
2r N−1
2N−1 .

We define a new sequence {s1, . . . , sN } by averaging {q1, . . . , qm}. Precisely,
s1 = · · · = sm =

∑m
i=1 qi
m and s j = q j for j ≥ m + 1. This implies that

m∑

i=1

si − m

N
=

m∑

i=1

qi − m

N
≥ (

√
r − r) − ε. (34)

Note that si+1 ≥ 1
2

∑i
j=1

s j
i for i ∈ [N − 1].

We construct a series-parallel (s, t)-networkG with affine delays and an (s, t)-flow
f of value N recursively. Let Gm be a single (s, t)-edge with flow fm of value m and
delay equal to s1x

m . For every i ∈ [m, N − 1], we construct Gi+1 and fi+1 using Gi

and fi as follows: we compose in parallel Gi and a new (s, t)-edge with flow value
1 and delay function si+1x and call the new network G̃i and the new (s, t)-flow f̃i .
Next, we compose in series i + 1 copies of G̃i with flow f̃i to get Gi+1 and fi+1. We
also divide the delay functions by i + 1. Then we set f = fN . Finally we compose
GN in parallel with m new (s, t)-edges e1, . . . , em with delay function 1

N x to get G.
By construction, G is a series-parallel network. Figure 3 illustrates our construction.

Lemma 8 The (s, t)-flow f has an (s, t)-path p̄ with flow value m and cost f ( p̄) = s1.

Proof We prove this by induction on i ∈ {m, . . . , N }. The base case is i = m. In this
case fi = fm is a flow of value m on a single (s, t)-edge with delay function s1x

m . The
path p̄m defined by this edge has cost cost fm ( p̄m) = s1.
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Suppose that for each m ≤ i < N it holds that fi has an (s, t)-path p̄i with flow
value m and cost fi ( p̄

i ) = s1. We first construct f̃i by composing in parallel fi and
a new (s, t)-edge. Clearly, p̄i has still flow value m and cost f̃i ( p̄

i ) = s1. Then we

compose in series i +1 copies of flow f̃i to get fi+1 and we divide the delay functions
by i + 1. The new (s, t)-path p̄i+1 is obtained by composing in series i + 1 copies of
p̄i . By construction, this path has flow value m and cost fi+1( p̄

i+1) = s1. 
�
Lemma 9 The (s, t)-flow f has cost 1, and it can be decomposed into N (s, t)-paths
{p1, . . . , pN } that define a PNE in G. Moreover cost f (pi ) = 1/N for all i ∈ [N ],
i.e., each player incurs the same cost.

Proof First, we show that fN has cost
∑N

i=1 si = 1 and it can be decomposed into a
PNE in GN where each player incurs the same cost. We show this by induction on i .
When i = m, Gm is a single (s, t)-edge, and fm is an (s, t)-flow of value m routed
through this edge. Moreover, cost( fm) = s1m

m m = ∑m
i=1 si . Note that we cannot

define any alternative flow in Gm . Moreover, fm admits a unique decomposition into
N (s, t)-paths, thus fm is a PNE flowwhere each player uses the same edge and incurs
the same cost.

Now we assume that when i = k, fk has cost
∑k

i=1 si , and it can be decomposed
into a PNE in Gk where each player incurs the same cost. Our goal is to prove that
the same holds for i = k + 1. Note that in our construction first we define G̃k and f̃k
by composing in parallel fk and a new (s, t)-edge with delay sk+1x and flow value
1. Thus, we first show that f̃k is a PNE flow in G̃k . By the inductive hypothesis, flow
fk can be decomposed into a PNE in Gk where each player’s cost is 1

k

∑k
i=1 si . To

define a decomposition of f̃k , we augment the decomposition of fk by appending
the extra (s, t)-edge used to construct G̃k . Clearly, cost( f̃k) = cost( fk) + sk+1 =∑k+1

i=1 si . Moreover, (i) no player paying 1
k

∑k
i=1 si has an incentive to deviate, since

2sk+1 ≥ 1
k

∑k
i=1 si , and (ii) the player paying sk+1 does not deviate since sk+1 is

the minimum cost (s, t)-path in f̃k . This shows that f̃k is a PNE flow in G̃k . Recall
that in our construction we define Gk+1 and fk+1 by composing in series k + 1
copies of G̃k with flow f̃k , and we divide all the delay functions by k + 1. Clearly,
cost( fk+1) = cost( f̃k) = ∑k+1

i=1 si . We define a decomposition of fk+1 into k + 1
(s, t)-paths as follows. Since there are k + 1 players and k + 1 identical copies of
G̃k composed in series, we let each player choose their original strategy in fk in k
components, and choose the extra edge used to define G̃k in one component. Thus,
in this decomposition of fk+1 each player incurs the same cost and no player has an
incentive to deviate from their strategy.

Finally, we show that f = fN is a PNE flow on G. Recall that we construct G by
composing in parallel GN andm new (s, t)-edges e1, . . . , em with delay function 1

N x .
Since in f every player incurs a cost equal to 1

N , no player has an incentive to deviate
to an edge ei , i ∈ [m]. Thus, f is a PNE flow on G. 
�
Proof of Theorem 2 Consider the network congestion game on the network G defined
above. By Lemma 8, f has an (s, t)-path p̄ with flow value m and cost f ( p̄) = s1. For
each edge e in p̄, let aex be the delay function of e. Note that cost f ( p̄) = ∑

e∈ p̄ aem =
s1 implies that

∑
e∈ p̄ ae = s1

m . Let k ∈ [m] and define l = k
m . Define h as the flow
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obtained from f by moving a subflow of value (m − k) from p̄ to the (s, t)-edges
e1, . . . , em−k , which have all delay function 1

N x .
Then by construction we have:

cost( f ) − cost(h) = mcost f ( p̄) −
(

kcosth( p̄) + (m − k)
1

N

)

= s1m −
(
s1
m
k2 + (m − k)

1

N

)

(35)

=
(
s1
m
m2 − s1

m
k2 − m − k

m
ms1

)

+ m − k

m

(
ms1 − m

N

)

=
( s1
m
mk − s1

m
k2
)

+ m − k

m

(
m∑

i=1

si − m

N

)

, (36)

where equality (35) holds since
∑

e∈ p̄ ae = s1
m . Equality (36) holds since the first m

of si are equal. Now observe that

s1
m
m2 = ms1 = m

N
+
(

m∑

i=1

si − m

N

)

≥ r + [
(
√
r − r) − ε

] = (
√
r − ε), (37)

where the inequality follows from (34). This implies

s1
m
mk − s1

m
k2 = (l − l2)

s1
m
m2 ≥ (l − l2)(

√
r − ε), (38)

where the inequality follows from (37).
From (36) and (38)we obtain

cost( f ) − cost(h) ≥ (l − l2)(
√
r − ε) + (1 − l)

(
m∑

i=1

si − m

N

)

≥ (l − l2)(
√
r − ε) + (1 − l)

[
(
√
r − r) − ε

]
, (39)

where inequality (39) follows from (34). By Lemma 9 we know that cost( f ) =∑N
i=1 si = 1, thus we obtain:

cost(h) ≤ 1 − (l − l2)(
√
r − ε) − (1 − l)

[
(
√
r − r) − ε

]

= 1 + l2
√
r − rl − √

r + r + (1 − l2)ε. (40)

To obtain an upper bound on cost(h) we minimize the right-hand-side of (40) with
respect to r and l. Observe that ε → 0 when N → ∞, thus we solve

min l2
√
r − rl − √

r + r

s.t. r ∈ [0, 1), l ∈ [0, 1],
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which is achieved at r = 4
9 and l = 1

3 . Since
cost( f )
cost(o) ≥ cost( f )

cost(h)
, we obtain a lower

bound for the PoA that asymptotically approaches 27
19 . 
�

We point out that the instance with PoA 15/11 provided by Fotakis in [15] can be
obtained with our approach with N = 3, m = 2 and k = 1, see Figs. 1 and 3. The
crucial insight for obtaining our improved lower bound is that m and k are not fixed
a priori, but they are used as parameters. By optimizing over these parameters in the
final steps of the proof of Theorem 2, we can achieve our improved lower bound on
the PoA.

6 Conclusion

We considered series-parallel network congestion games with affine delays. We have
exploited the assumptions on the network topology and delay functions to improve
the best known bounds on the PoA. Specifically, we have reduced the upper bound
of 5/2, valid for general networks [10], to 2, and we have increased the lower bound
of 15/11 provided by Fotakis [15] to 27/19. It remains open whether this gap can be
closed or further reduced. We conjecture that our upper bound is not tight. In fact, to
prove that the PoA is at most 2, we used inequality (1) together with Corollary 1. In
particular, (1) is derived by using the upper bound

∑

e: fe>oe

fede( fe) ≤ cost( f ),

while Corollary 1 establishes the upper bound:

Δ( f , o) ≤ 1

4
cost( f ).

However, we could find no examplewhere both these upper bounds are simultaneously
tight.

Finally, to extend our upper bound on the PoA of series-parallel network congestion
games with affine delays to the case where the edge delays belong to the family Pd of
polynomials of degree at most d, one would need to extend the result in Corollary 1
and prove

Δ( f , o) ≤ γ (Pd)cost( f ),

where γ (Pd) is a function of d. A straightforward extension of our approach implies
1 − β(Pd) − γ (Pd) ≤ 0, which, according to (1) leads to an inconsequential upper
bound. Thus, a different approach is needed when dealing with polynomial delays.

Acknowledgements We thank the reviewers for their detailed comments and suggestions, that greatly
improved the presentation of the paper. We also thank the Associate Editor for suggesting a construction
that inspired the derivation of our lower bound on the PoA.
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