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Abstract
This work introduces the StoMADS-PB algorithm for constrained stochastic black-
box optimization, which is an extension of the mesh adaptive direct-search (MADS)
method originally developed for deterministic blackbox optimization under general
constraints. The values of the objective and constraint functions are provided by a
noisy blackbox, i.e., they can only be computed with random noise whose distri-
bution is unknown. As in MADS, constraint violations are aggregated into a single
constraint violation function. Since all function values are numerically unavailable,
StoMADS-PB uses estimates and introduces probabilistic bounds for the violation.
Such estimates and bounds obtained from stochastic observations are required to be
accurate and reliable with high, but fixed, probabilities. The proposed method, which
allows intermediate infeasible solutions, accepts new points using sufficient decrease
conditions and imposing a threshold on the probabilistic bounds. Using Clarke nons-
mooth calculus and martingale theory, Clarke stationarity convergence results for the
objective and the violation function are derived with probability one.
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1 Introduction

Blackbox optimization (BBO) is concerned with optimization problems in which the
functions defining the objective and the constraints are given by a process called a
blackbox which returns an output when provided an input but whose inner workings
are analytically unavailable [12]. Mesh adaptive direct-search (MADS) [8, 9] with
progressive barrier (PB) is an algorithm for deterministic BBO. The present work
considers the following constrained stochastic BBO problem

min
x∈D

f (x) (1)

whereD = {x ∈ X : c(x) ≤ 0} ⊂ R
n is the feasible region, c = (c1, c2, . . . , cm)�,X

is a subset of Rn , f (x) = E�0

[
f�0(x)

]
with f : X �→ R, and c j (x) = E� j

[
c� j (x)

]

with c j : X �→ R for all j ∈ J := {1, 2, . . . ,m}. E� j denotes the expectation
with respect to the random variable � j for all j ∈ J ∪ {0}, which are supposed to be
independent with unknown, possibly different, distributions. f�0(·) denotes the noisy
computable version of the numerically unavailable objective function f (·), while for
all j ∈ J , c� j (·) denotes the noisy computable version of the numerically unavailable
constraint c j (·). Note that the noisy objective function f�0 and the constraints c� j , j ∈
J , are the outputs of a blackbox. By means of some useful terminology, constraints
that must always be satisfied, such as those defining X , are differentiated from those
that need only to be satisfied at the solution, such as c(x) ≤ 0. The former will be
called unrelaxable non-quantifiable constraints and the latter, relaxable quantifiable
constraints [41].

Solving stochastic blackbox optimization problems such as Problem (1), which
often arise in signal processing and machine learning [27], has recently been a topic
of intense research. Most methods for solving such problems borrow ideas from the
stochastic gradient method [49]. Several works have also attempted to transfer ideas
from deterministic DFOmethods to the stochastic context. However, most of such pro-
posed methods are restricted to unconstrained optimization. Indeed, after [18] which
is among the first to propose a stochastic variant of the deterministic Nelder-Mead
(NM) method [3, 47] also considered the optimization of functions whose evalua-
tions are subject to random noise and proposed an algorithm which is shown to have
convergence properties, based on Markov chain theory [32]. Another stochastic vari-
ant of NM was recently proposed in [22] and was proved to have global convergence
properties with probability one. Using elements from [17, 23, 40] proposed STORM, a
trust-region algorithm designed for stochastic optimization problems, with almost sure
global convergence results. Additional research that extends the traditional determin-
istic trust-region method to stochastic setting have been conducted in [28, 52]. In [48],
a classical backtracking Armijo line search method [5] has been adapted to the
stochastic optimization setting and was shown to have first-order complexity bounds.
Robust-MADS, a kernel smoothing-based variant of MADS [8], was proposed in [13]
to approach the minimizer of an objective function whose values can only be com-
puted with random noise, and was shown to possess zeroth-order [10] convergence
properties. Another stochastic variant of MADS was proposed in [2] for BBO, where
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Constrained stochastic blackbox optimization using… 677

the noise corrupting the blackbox was supposed to be Gaussian. Convergence results
of the proposed method have been derived, making use of statistical inference tech-
niques. The StoMADS algorithm [11] is another stochastic optimization approach
using estimates of function values obtained from stochastic observations and an algo-
rithmic framework similar to that of MADS. By assuming that such estimates satisfy
a variance condition and are sufficiently accurate with a large but fixed probability
conditioned to the past, a Clarke [25] stationarity convergence result of StoMADS has
been derived with probability one, using martingale theory. A general framework for
stochastic directional direct-search [26] methods was introduced in [33] with expected
complexity analysis.

All the above stochastic optimization methods are restricted to unconstrained prob-
lems and most of them use estimated gradient information to seek an optimal solution.
When the gradient does not exist or is computationally expensive to estimate, heuris-
tics such as simulated annealing methods, genetic algorithms [39], and tabu/scatter
search [38], are also used for problems with noisy constraints but do not present any
convergence theory. Surrogate model-based methods for constrained stochastic BBO
have also been a topic of intense research, including the response surface methodol-
ogy with stochastic constraints [4] developed for expensive simulation. In [16], the
capabilities of the deterministic constrained trust-region algorithm NOWPAC [15] are
generalized to the optimization of blackboxes with inherently noisy evaluations of
the objective and constraint functions. To mitigate the noise in function evaluations,
the resulting gradient-free method SNOWPAC utilizes a Gaussian process surrogate
combined with local fully linear surrogate models. Another surrogate-based approach
that has gained in popularity in various research fields is Bayesian optimization [45].
Various Bayesian optimization methods for constrained stochastic BBO have been
demonstrated to be efficient in practice [42, 54].

Developingdirect-searchmethods forBBOhas received renewed interest since such
methods are generally known to be reliable and robust in practice [6], thereby appear-
ing as the most promising approach in most of real applications where the gradient
does not exist or is computationally expensive to estimate. However, there is rela-
tively scarce research on developing direct-search methods for constrained stochastic
BBO, especially when noise is present in the constraint functions. A pattern search
and implicit filtering algorithm (PSIFA) [29, 30] was recently developed for linearly
constrained problems with a noisy objective function, and was shown to have global
convergence properties. A class of direct-search methods for solving smooth linearly
constrained problems was also studied in [34] but even though using a probabilis-
tic feasible descent based approach, this work assumes the objective and constraints
function values to be exactly computed without noise.

The present work introduces StoMADS-PB, a stochastic variant of the mesh adap-
tive direct-searchwith progressive barrier [9], using elements from [8, 9, 11, 17, 23, 48]
and is, to the best of our knowledge, the first to propose a directional direct-search [26]
stochastic BBO algorithm, capable of handling general noisy constraints without
requiring any feasible initial point. Its main contribution is the analysis of the result-
ing new framework with fully supported theoretical results. StoMADS-PB uses no
(approximate) gradient information to find descent directions or to improve feasibil-
ity, compared to prior work. Rather, it uses so-called probabilistic estimates [23] of the
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678 K. J. Dzahini et al.

objective and constraint function values and also introduces probabilistic bounds on
constraint violation function values. The reliability of such bounds is assumed to hold
with a high, but fixed, probability. Moreover, although no distributions are assumed on
the estimates and no assumption is made about the way the estimates are generated,
they are required to be sufficiently accurate with large, but fixed, probabilities and
satisfy some variance conditions.

Themanuscript is organized as follows. Section 2 presents the general framework of
the proposed StoMADS-PB algorithm. Section 3 explains how the proposed method
results in a stochastic process and discusses requirements on random estimates to
guarantee convergence. Section 4 presents the main convergence results. Section 5
shows how random estimates and bounds can be constructed in practice. Computa-
tional results are also reported in Sect. 5 followed by a discussion and suggestions for
future work. Additional results are provided in the appendix.

2 The StoMADS-PB algorithm

StoMADS-PB is based on an algorithmic framework similar to that of MADS with
PB [9]. For the convergence analysis of Sect. 4, deterministic constraint violations are
aggregated into a single function h called the constraint violation function, defined
using the �1-norm. This in contrast to [9] where an �2-norm was employed.

h(x) :=

⎧
⎪⎨

⎪⎩

m∑

j=1

max{c j (x), 0} if x ∈ X

+∞ otherwise.

According to this definition, h : R
n → R ∪ {+∞} and x ∈ D, i.e., x is feasible

with respect to the relaxable constraints if and only if h(x) = 0. Moreover, if 0 <

h(x) < +∞, then x is called infeasible and satisfies the unrelaxable constraints but
not the relaxable ones. Notice that h(x) = ∞ when x does not satisfy the unrelaxable
constraints.

InMADSwithPB, feasibility improvement is achieved bydecreasing h, specifically
by comparing its function value at a current point xk to that of a trial point xk + sk ,
where sk denotes a trial step around xk . Likewise, to decrease f , MADS with PB uses
objective function values since they are available in the deterministic setting.

For the StoMADS-PB algorithm, one must guarantee some form of decrease in
both f and h, using only noisy information provided by the noisy blackbox outputs
f�0 and c� j , j ∈ J . This section shows how this can be achieved, making use of
ε-accurate estimates introduced in [23] and then presents the general framework of
the proposed method.

2.1 Feasibility and objective function improvements

At iteration k, let xk and xk + sk be two points in X . Since the constraint function
values c j (xk) and c j (xk + sk), j ∈ J = {1, 2, . . . ,m}, are numerically unavailable,
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their corresponding estimates are respectively constructed using evaluations of the
noisy blackbox outputs c� j , j ∈ J . In general for the remainder of the manuscript,
unless otherwise stated, given a function g : X → R, an estimate of g(xk) is denoted
by gk0(x

k) (or simply by gk0 if there is no ambiguity) while an estimate of g(xk + sk)
is denoted by gks (x

k + sk) or gks . In StoMADS-PB, the violations of the estimates
ckj,0(x

k) and ckj,s(x
k + sk) of c j (xk) and c j (xk + sk), respectively, are aggregated in

estimated violations hk0(x
k) and hks (x

k + sk) defined as

hk0(x
k) =

⎧
⎪⎨

⎪⎩

m∑

j=1

max
{
ckj,0(x

k), 0
}

if xk ∈ X

+∞ otherwise

(2)

and hks (x
k + sk) =

⎧
⎪⎨

⎪⎩

m∑

j=1

max
{
ckj,s(x

k + sk), 0
}

if xk + sk ∈ X

+∞ otherwise.

(3)

In order for such estimated constraint violations to be reliable enough to determine
whether h(xk+sk) < h(xk), the estimates ckj,0(x

k) and ckj,s(x
k + sk) need to be suf-

ficiently accurate. The following definition, similar to that of [11], is adapted from [23].

Definition 2.1 Let ε > 0 be a constant and δkp be a nonnegative real number. For a
given function g : X �→ R and yk ∈ X , let gk be an estimate of g(yk). Then gk is said
to be an ε-accurate estimate of g(yk) for the given δkp, if

∣
∣∣gk − g(yk)

∣
∣∣ ≤ ε(δkp)

2.

As in [11], the role of δkp will be played by the poll size parameter introduced later in
Sect. 2.2. The following result provides bounds on h(xk) and h(xk + sk), respectively,
whichwill allow, later in Proposition 2.4, a decrease in the constraint violation function
h by means of a sufficient decrease condition on the estimated violations hk0 and hks .

Proposition 2.2 Let ckj,0 and ckj,s be ε-accurate estimates of c j (xk) and c j (xk + sk),

respectively, for the given δkp, with xk and xk + sk ∈ X . Then the following hold:

�k0(x
k) :=

m∑

j=1

max
{
ckj,0 − ε(δkp)

2, 0
}

≤ h(xk) ≤
m∑

j=1

max
{
ckj,0 + ε(δkp)

2, 0
}

=: uk0(xk)

(4)

and
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680 K. J. Dzahini et al.

�ks (x
k + sk) :=

m∑

j=1

max
{
ckj,s − ε(δkp)

2, 0
}

≤ h(xk + sk)

≤
m∑

j=1

max
{
ckj,s + ε(δkp)

2, 0
}

=: uks (xk + sk)

Proof The result is shown for h(xk) but the proof for h(xk + sk) is the same. Since
ckj,0 is an ε-accurate estimate of c j (xk) for all j ∈ J , it follows from Definition 2.1
that

ckj,0 − ε(δkp)
2 ≤ c j (x

k) ≤ ckj,0 + ε(δkp)
2, for all j ∈ J ,

which implies that

max
{
ckj,0 − ε(δkp)

2, 0
}

≤ max
{
c j (x

k), 0
}

≤ max
{
ckj,0 + ε(δkp)

2, 0
}

. (5)

Finally, summing each term of (5) from j = 1 to m leads to (4). 
�

Definition 2.3 Theestimates �k0(x
k) anduk0(x

k)ofProposition2.2, satisfying�k0(x
k) ≤

h(xk) ≤ uk0(x
k), are said to be ε-reliable bounds for h(xk). Similarly, the estimates

�ks (x
k + sk) and uks (x

k + sk) satisfying �ks (x
k + sk) ≤ h(xk + sk) ≤ uks (x

k + sk) are
said to be ε-reliable bounds for h(xk + sk).

The following result provides sufficient conditions to identify a decrease in h and
will be also used to determine an iteration type later in Sect. 2.2.

Proposition 2.4 Let hk0 andh
k
s be the estimated constraint violations at x

k and xk+sk ∈
X , respectively, that are constructed using of ε-accurate estimates ckj,0 and ckj,s . Let
γ > 2 be a constant. Then the following holds:

if hks − hk0 ≤ −γmε(δkp)
2, then h(xk + sk) − h(xk) ≤ −(γ − 2)mε(δkp)

2 < 0.

(6)

Proof It follows from Proposition 2.2 that

h(xk + sk) − h(xk) ≤
m∑

j=1

max
{
ckj,s + ε(δkp)

2, 0
}

−
m∑

j=1

max
{
ckj,0 − ε(δkp)

2, 0
}

.

(7)

By noticing that

m∑

j=1

max
{
ckj,s + ε(δkp)

2, 0
}

≤
m∑

j=1

max
{
ckj,s, 0

}
+ mε(δkp)

2 = hks + mε(δkp)
2

(8)
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and

m∑

j=1

max
{
ckj,0 − ε(δkp)

2, 0
}

≥
m∑

j=1

max
{
ckj,0, 0

}
− mε(δkp)

2 = hk0 − mε(δkp)
2,

(9)

it follows from (7) that

h(xk + sk) − h(xk) ≤ hks − hk0 + 2mε(δkp)
2 ≤ −(γ − 2)mε(δkp)

2,

where the last inequality follows from the assumption that hks − hk0 ≤ −γmε(δkp)
2.

The proof is complete by noticing that γ > 2. 
�
Remark 2.5 The result of Proposition 2.4 is very important since it allows to identify
a decrease in h making use of the estimated violations hk0 and hks . However, it can be
observed that deriving easily Inequalities (8) and (9) in order to prove (6) is greatly
favored by the use of an �1-norm in the definitions of h and both hk0 and hks . Indeed,
proving a result similar to (6) when an �2-norm is used should not be as easy as it is
in the latter proof. This observation motivates in fact the definition of the progressive
barrier function h (and consequently the definitions of hk0 and hks ) using an �1-norm
unlike [9] where an �2-norm was preferred for the analysis of MADS with PB.

The ε-reliable upper bound uk0(x
k) previously obtained for h(xk) also allows one

to determine the feasibility with respect to the relaxable constraints of a given trial
point xk ∈ X . Indeed, it obviously follows from (4) that h(xk) = 0 if uk0(x

k) = 0,
which is satisfied provided that ckj,0(x

k) ≤ −ε(δkp)
2, for all j ∈ J . This means that

in order for h(xk) = 0 to hold, all the estimates of constraint function values must
be sufficiently negative and not simply zero. By means of the following definition,
StoMADS-PB partitions the trial points into ε-feasible and ε-infeasible points making
use of a nonnegative barrier threshold hkmax which is introduced in the present research,
inspired by [9]

Definition 2.6 Let xk ∈ X be any trial point and letuk0(x
k)be an ε-reliable upper bound

for h(xk). Then xk is called ε-feasible if uk0(x
k) = 0, and it is called ε-infeasible if

0 < uk0(x
k) ≤ hkmax. Similarly, xk + sk ∈ X is called ε-feasible if uks (x

k + sk) = 0,
and it is called ε-infeasible if 0 < uks (x

k + sk) ≤ hkmax.

StoMADS-PBdoes not require that the starting pointbeε-feasible. The algorithm can
be applied to any problem satisfying only the following assumption adapted from [9].

Assumption 1 There exists some point x0 ∈ X such that f 00 (x0) and u00(x
0) are both

finite, and u00(x
0) ≤ h0max.

The next result similar to that in [11] provides a sufficient condition to identify a
decrease in f and also allows one to determine an iteration type in Sect. 2.2.
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682 K. J. Dzahini et al.

Proposition 2.7 Let f k0 and f ks be ε-accurate estimates of f (xk) and f (xk + sk),
respectively, for xk and xk + sk ∈ X . Let γ > 2 be a constant. Then the following
holds:

if f ks − f k0 ≤ −γ ε(δkp)
2, then f (xk + sk) − f (xk) ≤ −(γ − 2)ε(δkp)

2 < 0.

(10)

Proof The proof follows from Definition 2.1 and the equality

f (xk + sk) − f (xk) = f (xk + sk) − f ks +
(
f ks − f k0

)
+ f k0 − f (xk).


�
The incumbent solutions xkinf and xkfeas at the start of a given iteration k are defined

in Definition 2.9 after ranking the trial mesh points of X , making use of the following
dominance notion inspired by [9].

Definition 2.8 The ε-feasible point xk + sk is said to dominate the ε-feasible point xk ,
denoted xk + sk ≺ f ;ε xk , provided f ks − f k0 ≤ −γ ε(δkp)

2 and uks (x
k + sk) = 0.

The ε-infeasible point xk + sk is said to dominate the ε-infeasible point xk , denoted
xk + sk ≺h;ε xk , provided f ks − f k0 ≤ −γ ε(δkp)

2, hks − hk0 ≤ −γmε(δkp)
2 and

0 < uks (x
k + sk) ≤ hkmax.

Definition 2.9 Let Ek be the set of points where the objective and constraint func-
tions have been evaluated at a given iteration k. If no ε-feasible point is generated
by Algorithm 2, then there is no ε-feasible solution. Otherwise, let t ≥ 1 be such
that t − 1 is the iteration where a first ε-feasible point is found. Then xtfeas ∈{
xt−1 + st−1 ∈ Et−1 : ut−1

s (xt−1 + st−1) = 0
}
is an ε-feasible incumbent solution at

the start of iteration t . Define Fk(y) = {xk +sk ∈ Ek : uks (xk + sk) = 0 and xk +
sk ≺ f ;ε y} for all k ≥ t with Fk(y) = ∅ if k ≤ t − 1. Define the sets

Dk(xk) = {
xk + sk ∈ Ek : xk + sk ≺h;ε xk

}
and Ik(xk) =

{
xk + sk ∈ Ek :

hks (x
k + sk) − hk0(x

k) ≤ −γmε(δkp)
2
}
for all k ≥ 0. Let x0inf ∈ X be a starting

point. For all k ≥ t , an ε-feasible incumbent solution at iteration k + 1 is defined as:

xk+1
feas ∈

{
Fk(xkfeas) ifFk(xkfeas) �= ∅{
xkfeas

}
otherwise.

For all k ≥ 0, an ε-infeasible incumbent solution at iteration k + 1 is defined as:

xk+1
inf ∈

⎧
⎪⎪⎨

⎪⎪⎩

Dk(xkinf) if Fk(xkfeas) = ∅ and Dk(xkinf) �= ∅
argmin

xkinf+sk∈Ik (xkinf)

uks (x
k
inf + sk) if Ik(xkinf) �=∅ and Fk(xkfeas)∪Dk(xkinf)=∅

{
xkinf

}
otherwise.
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2.2 The StoMADS-PB algorithm and parameter update

Recall first that MADS with PB is an iterative algorithm where every iteration is
comprised of two main steps: an optional step called the SEARCH [9, 12], and the
POLL. The SEARCH which typically consists of a global exploration may use a
plethora of strategies like those based on interpolationmodels, heuristics and surrogate
functions or simplified physicsmodels [9] to explore the variables space. Each iteration
of StoMADS-PB can also allow aSEARCHstep, but it is not shown here for simplicity.
Similarly to MADS with PB, the POLL step of StoMADS-PB is more rigidly defined,
unlike the freedom of the SEARCH, and consists of a local exploration. During each
of these two steps, a finite number of trial points is generated on an underlying mesh
Mk . Themesh is a discretization of the variable space, whose coarseness or fineness is
controlled by a mesh size parameter δkm , thus deviating from the notation�m

k from [9],
since uppercase letterswill be used to denote randomvariables. For the remainder of the
manuscript, sk = δkmd

k where dk is a nonzero direction. The POLL step is governed
by the poll size parameter δkp which is linked to δkm by δkm = min{δkp, (δkp)2} [12].
As specified earlier, {δkp}k∈N will play the role of the sequence of nonnegative real
numbers introduced in Definition 2.1. Let ẑ ∈ N be a large fixed integer and τ ∈
(0, 1) ∩ Q be a fixed rational constant. For the needs of Sect. 4, note also that as
in [11], δkp is supposed to be bounded above by the positive and fixed constant τ

−ẑ in
order for the random poll size parameter�k

p introduced later in Sect. 3 to be integrable.
The notion of a positive spanning set introduced in the following definition from [12]
is required to define the meshMk and the POLL set Pk .

Definition 2.10 The positive span of a set D ⊆ R
n , denoted pspan(D), is the set of all

nonnegative linear combinations of vectors in D :

pspan(D) =
{
∑

�

λ�d
� : λ� ≥ 0, d� ∈ D

}

⊆ R
n .

The set D is a positive spanning set for Rn if and only if pspan(D) = R
n .

The definitions of the mesh Mk and the POLL set Pk inspired by [9] are given
next.

Definition 2.11 LetD ∈ R
n×p be a matrix, with columns denoted by the setD, which

form a positive spanning set. At the beginning of iteration k, let xkinf and xkfeas denote
respectively the ε-infeasible and the ε-feasible incumbent solutions (there might be
only one), and let Vk := {xkinf, xkfeas} be the set of such incumbents. The meshMk and
the POLL set Pk are respectively

Mk := {xk + δkmd : xk ∈ Vk, d = Dy, y ∈ Z
p} and Pk := Pk(xkinf) ∪ Pk(xkfeas),

where ∀xk ∈ Mk ∩ X , Pk(xk) = {xk + δkmd
k ∈ Mk ∩ X : δkm

∥∥dk
∥∥∞ ≤ δkpb, dk ∈

D
k
p(x

k)} is called a frame around xk , with b = max
{∥∥d ′∥∥∞, d ′ ∈ D

}
. Dk

p(x
k) is a

positive spanning set which is said to be a set of frame directions used for polling
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684 K. J. Dzahini et al.

around xk . The set Dk
p of all polling directions at iteration k is defined by D

k
p :=

D
k
p(x

k
inf) ∪ D

k
p(x

k
feas). When there is no incumbent ε-feasible solution xkfeas, then the

set Vk is reduced to {xkinf}, in which case Pk = Pk(xkinf) and D
k
p = D

k
p(x

k
inf).

The set Dk
p(x

k) of directions used for polling in Algorithm 2 can be created using
Algorithm 1 [11, 12]. A definition of the round(·) function used in the latter algorithm
can be found in [11].

Algorithm 1: Creating the set Dk
p(x

k) of directions for polling around xk

1 Given xk ∈ Mk ∩ X , vk ∈ R
n with

∥∥vk
∥∥ = 1 and δkp ≥ δkm > 0

2 [1] Create Householder matrix
3 Use vk to create its associated Householder matrix

Hk = I − 2vkvk
� ∈ R

n×n

4 and let Hk = [h1 h2 . . . hn]
5 [2] Create poll set

6 Define Bk = {b1, b2, . . . , bn} with b j = round

(
δkp

δkm

h j‖h j‖∞

)
∈ Z

n ,

7 j = 1, 2, . . . , n
8 set Dk

p(x
k) = B

k ∪ (−B
k)

After the POLL step is completed, StoMADS-PB computes not only estimates f k0 ,
f ks , h

k
0 and h

k
s of f (xk), f (xk + sk), h(xk) and h(xk + sk), respectively at trial points

xk ∈ Vk and xk + sk ∈ Pk , but also upper bounds uks (x
k + sk) and uk0(x

k
inf), respec-

tively for h(xk + sk) and h(xkinf). The values of such estimates and bounds determine
the iteration type of the algorithm and govern the way δkp is updated. Adapting the
terminologies from [9] and depending on the values of the aforementioned estimates
and bounds, there are four StoMADS-PB iteration types: an iteration can be either
f -Dominating, h-Dominating (the former and the latter are referred to as Dominat-
ing iterations), Improving, or Unsuccessful. During a Dominating iteration, either the
algorithm has evaluated its first ε-feasible point or a trial point that dominates an
incumbent is generated. An iteration which is Improving is not Dominating but it aims
to improve the feasibility of the ε-infeasible incumbent. Unsuccessful iterations are
those that are neither Dominating nor Improving.

• At the beginning of iteration k, if no available ε-feasible solution has been evaluated
yet, then the iteration is called f -Dominating if for xk ∈ Vk , a trial point xk +sk ∈
Pk satisfying uks (x

k + sk) = 0 is found, in which case h(xk + sk) = 0 due to
Proposition 2.2, meaning that xk + sk is ε-feasible. Otherwise, if an ε-feasible
point that dominates the incumbent is generated, i.e., xk + sk ≺ f ;ε xkfeas for
some xk ∈ Vk , then the inequality f ks (xk + sk) − f k0 (xkfeas) ≤ −γ ε(δkp)

2 leads

to a decrease in f due to Proposition 2.7. In either case, xk+1
feas := xk + sk and

δk+1
p = min{τ−1δkp, τ

−ẑ}. The ε-infeasible incumbent xkinf is not updated, since
there is no feasibility improvement.

• Iteration k is said to be h-Dominating whenever an ε-infeasible point that domi-
nates the incumbent is generated, i.e., xkinf + sk ≺h;ε xkinf, which means that both
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inequalities f ks (xkinf + sk) − f k0 (xkinf) ≤ −γ ε(δkp)
2 and hks (x

k
inf + sk) − hk0(x

k
inf) ≤

−γmε(δkp)
2 hold. Consequently, it follows from Propositions 2.4 and 2.7 that

decreases occur both in f and h. In this case, xk+1
feas = xkfeas and since feasibility is

improved, xk+1
inf is set to equal xkinf + sk while the poll size parameter is updated

as in f -Dominating iterations.
• Iteration k is said to be Improving if it is notDominating but at least one ε-infeasible
point xkinf + sk is evaluated satisfying hks (x

k
inf + sk) − hk0(x

k
inf) ≤ −γmε(δkp)

2.

Indeed, this means that xkinf+sk improves the feasibility of the ε-infeasible incum-
bent xkinf since the previous inequality leads to a decrease inh due toProposition 2.4.
In this case, δkp is updated as in Dominating iterations, xk+1

feas = xkfeas while the ε-
infeasible incumbent is updated according to

xk+1
inf ∈ argmin

xkinf+sk

{
uks (x

k
inf + sk) : hks (xkinf + sk) − hk0(x

k
inf) ≤ −γmε(δkp)

2
}

.

• Finally, an iteration is called Unsuccessful if it is neither Dominating nor Improv-
ing. In this case, δk+1

p = τδkp while neither x
k
inf nor x

k
feas are updated.

While xkinf is updated at the end of each iteration of StoMADS-PB, the barrier thresh-
old is computed at the beginning of each iteration according to hkmax = uk0(x

k
inf) in

order to avoid keeping its possibly inaccurate values from one iteration to another.
In fact, estimates in StoMADS-PB are always computed at the beginning of each
iteration and their accuracies are improved compared to previous iterations as will be
seen in Sect. 5.1. Consequently, even though the sequence {hkmax}k∈N has a decreasing
tendency, it can possibly increase between successive iterations, unlike in the deter-
ministic setting. The goal of StoMADS-PB is to accept only trial points satisfying
h(xk) ≤ hkmax. Any trial point xk for which the inequality uk0(x

k) ≤ hkmax does not
hold is discarded since such an inequality implies that h(xk) ≤ hkmax due to (4).
However, this is a sufficient acceptance condition since uk0(x

k) > hkmax does not nec-
essarily imply that h(xk) ≤ hkmax does not hold, but rather leads to a situation of
uncertainty which is not explicitly distinguished in the present manuscript for the sake
of simplicity.

Remark 2.12 Let t ≥ 1 be such that t − 1 is the index of the first f -Dominating
iteration of Algorithm 2 and assume that t < +∞. Then in Algorithm 2, xkfeas = x0inf
for all k = 0, 1, . . . , t − 1 while xtfeas = x (t−1)+1

feas �= x0inf. Moreover, even though
estimates f k0 (xkfeas), f

k
s (xkfeas + sk), hk0(x

k
feas) and h

k
s (x

k
feas + sk) are computed at xkfeas

and xkfeas + sk ∈ Pk respectively for all k ≤ t − 1, they are not used by the algorithm
until the end of iteration t − 1 and one can even notice that for all k ≤ t − 1, xkfeas
is not an ε-feasible point in the sense of Definition 2.9. Furthermore, no point in Pk

generated using D
k
p(x

k
feas) is evaluated until the end of iteration t − 1. In fact, setting

x0feas to equal x0inf as is done in Algorithm 2 and then computing the latter estimates
are not necessary in practice. However, doing so allows simply the aforementioned
estimates to be defined for all k ≥ 0 for theoretical needs, specifically the construction
of the σ -algebra FC ·F

k−1 in Sect. 3. As emphasized in Definition 2.11, observe that for
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all k ≤ t − 1, there is only one incumbent (ε-infeasible) solution xkinf according to
Definition 2.9.

2.3 Frame center selection rule

Before describing the frame center selection rule, recall the set Vk of incumbent
solutions introduced inDefinition 2.11 and the fact that POLL trial points are generated
inside frames around such incumbents. At a given iteration, there are either one or two
frame centers in Vk . When Vk contains only one point, then using terminologies
from [9], that point is called the primary frame center. In the event that there are two
incumbent solutions xkinf and xkfeas, one of them is chosen as the primary frame center
while the other one is the secondary frame center. Because of the unavailability of f
function values for StoMADS-PB, a specific frame center selection strategy (inspired
by Section 2.5 of [9]) using estimates of such function values is proposed and relies
on the following result.

Proposition 2.13 Let f k0 (xkfeas) and f k0 (xkinf) be ε-accurate estimates of f (xkfeas) and
f (xkinf) respectively. Let ρ > 0 be a scalar.

If f k0 (xkfeas) − ρ > f k0 (xkinf) + 2ε(δkp)
2, then f (xkfeas) − ρ > f (xkinf). (11)

Proof Assume that f k0 (xkfeas) − ρ > f k0 (xkinf) + 2ε(δkp)
2. Then, it follows from the

ε-accuracy of f k0 (xkfeas) and f k0 (xkinf) that

f (xkinf) − f (xkfeas) =
[
f (xkinf) − f k0 (xkinf)

]
+

[
f k0 (xkinf) − f k0 (xkfeas)

]

+
[
f k0 (xkfeas) − f (xkfeas)

]

< 2ε(δkp)
2 − (ρ + 2ε(δkp)

2) = −ρ.


�
Based on the result of Proposition 2.13, xkfeas is always chosen as the StoMADS-PB

primary frame center unless the estimates f k0 (xkfeas) and f k0 (xkinf) satisfy the sufficient
decrease condition in (11) leading to the inequality f (xkfeas) − ρ > f (xkinf), which as
in [9] allows the choice of the infeasible incumbent solution as primary frame center.

3 Stochastic process generated by StoMADS-PB

The stochastic quantities in the present work are all defined on the same probability
space (�,G,P). The nonempty set� is referred to as the sample space and its subsets
are called events. The collection G of such events is called a σ -algebra or σ -field and P
is a finite measure satisfying P(�) = 1, referred to as probability measure and defined
on the measurable space (�,G). Each element ω ∈ � is referred to as a sample point.
Let B(Rn) be the Borel σ -algebra of Rn , i.e., the one generated by its open sets. A
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Fig. 1 StoMADS-PB algorithm for constrained stochastic optimization

random variable X is a measurable map defined on (�,G,P) into the measurable
space (Rn,B(Rn)), where measurability means that each event {X ∈ B} := X−1(B)

belongs to G for all B ∈ B(Rn) [20, 33].
The estimates f k0 (xk), f ks (xk+sk), ckj,0(x

k) and ckj,s(x
k+sk), for j = 1, 2, . . . ,m,

xk ∈ {xkinf, xkfeas} and xk + sk ∈ Pk , of function values are computed at every iteration
of Algorithm 2 using the noisy blackbox evaluations. Because of the randomness of
the blackbox outputs, such estimates can respectively be considered as realizations
of random estimates Fk

0 (Xk), Fk
s (Xk + Sk), Ck

j,0(X
k) and Ck

j,s(X
k + Sk), for j =

1, 2, . . . ,m. Since each iteration k of Algorithm 2 is influenced by the randomness
stemming from such random estimates, Algorithm 2 results in a stochastic process.
For the remainder of the manuscript, uppercase letters will be used to denote random
quantities while their realizations will be denoted by lowercase letters. Thus, xk =
Xk(ω), xkinf = Xk

inf(ω), xkfeas = Xk
feas(ω), sk = Sk(ω), δkp = �k

p(ω) and δkm =
�k

m(ω) denote respectively realizations of Xk , Xk
inf, X

k
feas, S

k , �k
p and �k

m . Similarly,
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f k0 (xk) = Fk
0 (Xk)(ω), f ks (xk + sk) = Fk

s (Xk + Sk)(ω), ckj,0(x
k) = Ck

j,0(X
k)(ω),

ckj,s(x
k + sk) = Ck

j,s(X
k + Sk)(ω), hk0(x

k) = Hk
0 (Xk)(ω), hks (x

k + sk) = Hk
s (Xk +

Sk)(ω), �k0(x
k) = Lk

0(X
k)(ω), �ks (x

k + sk) = Lk
s (X

k + Sk)(ω), uk0(x
k) = Uk

0 (Xk)(ω)

and uks (x
k + sk) = Uk

s (Xk + Sk)(ω). When there is no ambiguity, Fk
0 will be used

instead of Fk
0 (Xk), etc. In general, following the notations in [11, 21, 23, 33, 48],

Fk
0 , F

k
s , H

k
0 and Hk

s are respectively the estimates of f (Xk), f (Xk + Sk), h(Xk) and
h(Xk + Sk). Moreover, as highlighted in [11], the notation “ f (Xk)” is used to denote
the random variable with realizations

{
f (Xk(ω)) : ω ∈ �

}
.

The present research aims to show that the stochastic process
{
Xk
inf, X

k
feas,�

k
p,�

k
m,

Fk
0 , Fk

s , Hk
0 , Hk

s , Lk
0,U

k
0 , Lk

s ,U
k
s

}
resulting from Algorithm 2 has desirable conver-

gence properties with probability one under some assumptions on the estimates Fk
0 ,

Fk
s , C

k
j,0, C

k
j,s , H

k
0 , H

k
s and on the bounds Lk

0,U
k
0 , L

k
s ,U

k
s . In particular, the estimates

Fk
0 , Fk

s ,Ck
j,0 and Ck

j,s will be assumed to be ε-accurate while the bounds will be
assumed to be ε-reliable, with sufficiently high, but fixed, probabilities conditioned
on the past.

Probabilistic bounds and probabilistic estimates

The notion of conditioning on the past is formalized following [11, 21, 23, 33, 48].
Denote by FC ·F

k−1 the σ -algebra generated by F�
0 (X�), F�

s (X� + S�), C�
j,0(X

�) and

C�
j,s(X

�+S�), for j = 1, 2, . . . ,m, for X� ∈ {
X�
inf , X

�
feas

}
and for � = 0, 1, . . . , k−1.

For completeness, FC ·F−1 is set to equal σ(x0) = σ(x0inf). Thus, {FC ·F
k }k≥−1 is a

filtration, i.e., a sequence of increasing σ -algebras of G.
Sufficient accuracy of function estimates is measured using the poll size parameter

and is formalized, following [11, 21, 23, 33, 48], by means of the definitions below.

Definition 3.1 Asequenceof randomestimates {Fk
0 , Fk

s } is said to beβ-probabilistically
ε-accurate with respect to the sequence {Xk, Sk,�k

p} if the events

Jk ={Fk
0 , Fk

s , are ε-accurate estimates of f (xk) and f (xk + sk), respectively for �k
p}

satisfy the submartingale-like condition

P

(
Jk | FC ·F

k−1

)
= E

(
1Jk | FC ·F

k−1

)
≥ β,

where 1Jk denotes the indicator function of the event Jk , i.e., 1Jk = 1 if ω ∈ Jk and
1Jk = 0 otherwise. The estimates are called “good” if 1Jk = 1. Otherwise they are
called “bad”.

Definition 3.2 A sequence of random estimates {Ck
j,0,C

k
j,s} is said to be α1/m-

probabilistically ε-accurate for some j = 1, 2, . . . ,m with respect to the correspond-
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ing sequence {Xk, Sk,�k
p} if the events

I jk = {Ck
j,0,C

k
j,s, are ε-accurate estimates of c j (x

k)

and c j (x
k + sk), respectively for �k

p}

satisfy the submartingale-like condition

P

(
I jk | FC ·F

k−1

)
= E

(
1
I jk

| FC ·F
k−1

)
≥ α1/m .

Recall the ε-reliable bounds �k0, u
k
0 for h(xk), and �ks , u

k
s for h(xk + sk) provided by

Proposition 2.2 making use of ε-accurate estimates ckj,0 and c
k
j,s , for all j ∈ J . Since

Algorithm 2 results in a stochastic process introducing random bounds Lk
0,U

k
0 , Lk

s
andUk

s with realizations �k0, u
k
0, �

k
s and u

k
s respectively, the reliability of such random

bounds has to be quantified probabilistically, using Definition 3.2 and inspired by
Definition 3.1. Indeed, in order to show later in Sect. 4 that the stochastic process
resulting from Algorithm 2 has desirable convergence properties, the reliability of the
random bounds will be required to hold with sufficiently high probability. This notion
of sufficient reliability introduced in the present work is formalized next.

Definition 3.3 A sequence of random bounds {Lk
0,U

k
0 , Lk

s ,U
k
s } is said to be α-

probabilistically ε-reliable with respect to the corresponding sequence {Xk, Sk,�k
p}

if the events

Ik =
{
“Lk0 and Uk

0 are ε-reliable bounds for h(xk)”, and “Lks and Uk
s are ε-reliable bounds

for h(xk + sk)”, respectively for �k
p

}

satisfy the submartingale-like condition

P

(
Ik | FC ·F

k−1

)
= E

(
1Ik | FC ·F

k−1

)
≥ P

⎛

⎝
m⋂

j=1

I jk | FC ·F
k−1

⎞

⎠ ≥ α,

The bounds are called “good” if 1Ik = 1. Otherwise, 1Ik = 0 and they are called
“bad”.

The p-integrability of random variables [11, 20] is defined below and will be useful
for the analysis of Algorithm 2.

Definition 3.4 Let (�,G,P) be a probability space and let p ∈ [1,+∞) be an integer.
Then the space Lp(�,G,P) of so-called p-integrable random variables is the set of
all real-valued random variables X such that

‖X‖p :=
(∫

�

|X(ω)|p P (dω)

) 1
p =: (E (|X |p)) 1

p < +∞.
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As in [11], the following is assumed in order for the random variables f (Xk),
h(Xk) and c j (Xk), j ∈ J , to be integrable so that the conditional expec-
tations E

(
f (Xk)|FC ·F

k−1

)
, E

(
c j (Xk)|FC ·F

k−1

)
, j ∈ J and E

(
h(Xk)|FC ·F

k−1

)
are

well-defined [20].
In the assumption below, f and h are assumed to be locally Lipschitz. In general, a

function g : X → R is called locally Lipschitz if it is Lipschitz with a finite constant
in some nonempty open neighborhood intersected with X [9].

Assumption 2 The objective function f and the constraint violation function h are
locally Lipschitz with constants λ f > 0 and λh > 0, respectively. The constraint
functions c j , j ∈ J , are continuous on X . The set U ⊂ X containing all incumbents
realizations is compact.

Proposition 3.5 Under Assumption 2, there exists a finite constant κ
f
max satisfying∣∣ f (xk)

∣∣ ≤ κ
f
max for all xk ∈ U . Moreover, the random variables f (Xk), h(Xk),

c j (Xk) and �k
p belong to L1(�,G,P), for all j ∈ J and for all k ≥ 0.

Proof Since f is locally Lipschitz on the compact set U , f is bounded on U . Con-
sequently, there exists a finite constant κ

f
max such that

∣∣ f (xk)
∣∣ ≤ κ

f
max for all

xk ∈ U . Similarly, there exist κh
max satisfying

∣∣h(xk)
∣∣ ≤ κh

max and κc
max such that∣∣c j (xk)

∣∣ ≤ κc
max for all j ∈ J and all xk ∈ U since h is locally Lipschitz and c j is

continuous on U . Thus, E (∣∣ f (Xk)
∣∣) := ∫

�

∣∣ f (Xk(ω))
∣∣P(dω) ≤ κ

f
max < +∞. Sim-

ilarly, E
(∣∣h(Xk)

∣
∣) ≤ κh

max ≤ +∞ and for all j ∈ J , E
(∣∣c j (Xk)

∣
∣) ≤ κc

max ≤ +∞.
Finally, the integrability of �k

p follows from the fact that �k
p(ω) ≤ τ−ẑ for all ω ∈ �,

which implies that E
(∣∣∣�k

p

∣∣∣
)

:= ∫
�

∣∣∣�k
p(ω)

∣∣∣P(dω) ≤ τ−ẑ < +∞. 
�
Next are stated some key assumptions on the stochastic variables in Algorithm 2,

some of which are made in [11] and will be useful for the convergence analysis in
Sect. 4. Approaches for computing random estimates and bounds satisfying these
assumptions in a simple random noise framework are discussed in Sect. 5.1.

Assumption 3 For fixed α, β ∈ (0, 1), the following hold for the random quantities
generated by Algorithm 2 at iteration k.

(i) The sequenceof estimates {Fk
0 , Fk

s }generatedbyAlgorithm2 isβ-probabilistically
ε-accurate.

(ii) The sequence of estimates {Fk
0 , Fk

s } generated by Algorithm 2 satisfies the fol-
lowing variance condition for all k ≥ 0:

E

(∣∣∣Fk
s − f (Xk + Sk)

∣∣∣
2 | FC ·F

k−1

)
≤ ε2(1 − √

β)(�k
p)

4

and E

(∣∣
∣Fk

0 − f (Xk)

∣∣
∣
2 | FC ·F

k−1

)
≤ ε2(1 − √

β)(�k
p)

4.

(12)

(iii) For all j = 1, 2, . . . ,m, the sequence of estimates {Ck
j,0,C

k
j,s} is α1/m-

probabilistically ε-accurate.
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(iv) For all j = 1, 2, . . . ,m, the sequence of estimates {Ck
j,0,C

k
j,s} satisfies the

following variance condition for all k ≥ 0:

E

(∣∣∣Ck
j,s − c j (X

k + Sk)
∣∣∣
2 | FC ·F

k−1

)
≤ ε2

(
1 − α1/2m

)
(�k

p)
4

and E

(∣∣∣Ck
j,0 − c j (X

k)

∣∣∣
2 | FC ·F

k−1

)
≤ ε2

(
1 − α1/2m

)
(�k

p)
4.

(13)

(v) The sequence of random bounds {Lk
0,U

k
0 , Lk

s ,U
k
s } is α-probabilistically ε-

reliable.

An iteration k for which 1Ik1Jk = 1, i.e., for which the events Ik and Jk both occur,
will be called “true”. Otherwise, k will be called “false”. Even though the present
algorithmic framework does not allow one to determine which iterations are true or
false, Theorem 3.6 shows that true iterations occur infinitely often. Theorem 3.6 will
also be useful for the convergence analysis of Algorithm 2, more precisely in Sect. 4.3.

Theorem 3.6 Assume that Assumption 3 holds for αβ ∈ (1/2, 1). Then true iterations
of Algorithm 2 occur infinitely often.

Proof Consider the random walk

Wk =
k∑

i=0

(2 · 1Ii1Ji − 1). (14)

Then, since Wk is a submartingale with bounded increments (and, as such, cannot

converge), the result follows from the fact that

{
lim sup
k→+∞

Wk = +∞
}
occurs almost

surely, the proof of which can be derived from that of Theorem 4.16 in [23], where a
similar random walk was studied. Indeed, the latter result means that

P

({
ω ∈ � : ∃K (ω) ⊂ N such that lim

k∈K (ω)
Wk(ω) = +∞

})
= 1,

which implies that 1Ii1Ji = 1 infinitely often. 
�

The following lemma will be useful later in the analysis of StoMADS-PB. In fact,
for a given realization of Algorithm 2, the inequality hks −hk0 ≤ −γmε(δkp)

2 leads to a
decrease in h at iteration k as was shown in Proposition 2.4 if the event Ik occurs, i.e.,
when the bounds are ε-reliable. But when the bounds are not ε-reliable, the algorithm
can accept a step which leads to an increase in h. Later in the proof of Theorem 4.2,
such an increase will be controlled in expectation by making use of (15).
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Lemma 3.7 Let Assumption 3-(iv) hold for α ∈ (0, 1). The sequence of random esti-
mated violations {Hk

0 , Hk
s } satisfies

E

(∣∣∣Hk
s − h(Xk + Sk)

∣∣∣ | FC ·F
k−1

)
≤ mε(1 − α)1/2(�k

p)
2

and E

(∣∣∣Hk
0 − h(Xk)

∣∣∣ | FC ·F
k−1

)
≤ mε(1 − α)1/2(�k

p)
2.

(15)

Proof Before showing (15), observe that

∣∣∣Hk
0 − h(Xk)

∣∣∣ =
∣∣∣∣∣
∣

m∑

j=1

max{Ck
j,0, 0} −

m∑

j=1

max{c j (Xk), 0}
∣∣∣∣∣
∣

≤
m∑

j=1

∣
∣∣max{Ck

j,0, 0} − max{c j (Xk), 0}
∣
∣∣ ≤

m∑

j=1

∣
∣∣Ck

j,0 − c j (X
k)

∣
∣∣ ,

(16)

where the last inequality in (16) follows from the inequality |max{x, 0} − max{y, 0}| ≤
|x − y|, for all x, y ∈ R. Moreover, it follows from the conditional Cauchy-Schwarz
inequality [20] that for all j ∈ J ,

E

(∣∣∣Ck
j,0 − c j (X

k)

∣∣∣ |FC ·F
k−1

)
≤

[
E

(∣∣∣Ck
j,0 − c j (X

k)

∣∣∣
2 |FC ·F

k−1

)]1/2
×

[
E

(
1|FC ·F

k−1

)]1/2

≤ ε
(
1 − α1/2m)1/2 (�k

p)
2 ≤ ε (1 − α)1/2 (�k

p)
2 (17)

where the first inequality in (17) follows from (13). Thus, taking the conditional
expectation with respect to FC ·F

k−1 in (16) and then using (17) yield

E

(∣∣∣Hk
0 − h(Xk)

∣∣∣ |FC ·F
k−1

)
≤

m∑

j=1

E

(∣∣∣Ck
j,0 − c j (X

k)

∣∣∣ |FC ·F
k−1

)
≤ mε (1 − α)1/2 (�k

p)
2,

and similarly E

(∣∣∣Hk
s − h(Xk + Sk)

∣∣∣ |FC ·F
k−1

)
≤ mε (1 − α)1/2 (�k

p)
2.


�

4 Convergence analysis

Using ideas inspired by [9, 11, 23, 40, 48], this section presents convergence results
of StoMADS-PB, most of which are stochastic variants of the convergence results
in [9]. It introduces the random time T at which Algorithm 2 generates a first ε-
feasible solution. Then assuming that T is either almost surely finite or almost surely
infinite, a so-called zeroth-order result [10, 11] is derived showing that there exists
a subsequence of Algorithm 2-generated random incumbents with mesh realizations
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becoming infinitely fine and which converges with probability one to a limit. This is
achieved by showing, by means of Theorem 4.2, that the sequence of random poll size
parameters converges to zero with probability one. Section 4.2 analyzes the function
h and the random ε-infeasible incumbents generated by Algorithm 2. In particular, it
gives conditions underwhich an almost sure limit of a subsequence of such incumbents
is shown in Theorem 4.10 to satisfy a first-order necessary optimality condition via
the Clarke generalized derivative of h with probability one. Then, a similar result for
f and the sequence of ε-feasible incumbents is derived in Theorem 4.14 of Sect. 4.3.
The proofs of the main results of this section are presented in the Appendix. For the
sake of clarity in the presentation, the following definition is introduced.

Definition 4.1 A sequence
{
Xk

}
k∈N of StoMADS-PB random incumbents is either a

sequence
{
Xk∨T
feas

}
k∈N of random ε-feasible incumbents provided T < +∞ almost

surely, or a sequence
{
Xk
inf

}
k∈N of random ε-infeasible incumbents. A similar def-

inition is considered for the sequences of realizations
{
xk

}
k∈N,

{
xk∨tfeas

}
k∈N and{

xkinf
}
k∈N of

{
Xk

}
k∈N,

{
Xk∨T
feas

}
k∈N and

{
Xk
inf

}
k∈N respectively, where t denotes a

realization of T .

4.1 Zeroth-order convergence

Recall Remark 2.12 and denote by S k
X = {X�

feas : X�
feas �= x0inf, � ≤ k} the set of

all random ε-feasible incumbents generated by Algorithm 2 until the beginning of
iteration k. Consider the random time T defined by

T := inf{k ≥ 0 : S k
X �= ∅}. (18)

Then, T ≥ 1 and for all k ≥ 1, the occurrence of the event {T ≤ k} is determined by
observing the random quantities generated by Algorithm 2 until the iteration k − 1,
which means that T is a stopping time [32] for the stochastic process generated by
Algorithm 2. For a given ω ∈ �, t = T (ω) is the number of iterations required by
Algorithm 2 to find a first point which is ε-feasible in the sense ofDefinition 2.6. Just as
a BBO method in a deterministic framework is not always guaranteed to find feasible
points even though the feasible region D is nonempty, the algorithmic framework
proposed in the present manuscript does not guarantee that t will always be finite for
every realization of the stochastic process generated by Algorithm 2 even when D is
nonempty. Thus, T could either be finite almost surely depending on the optimization
problem or satisfy P (T < +∞) ≤ 1 − ζ for some ζ ∈ (0, 1]. In the latter case, the
algorithm will fail to generate ε-feasible incumbents with a probability of at least ζ ,
in which case an almost sure convergence result related to such incumbents cannot be
derived. The following is therefore assumed for the remainder of the analysis.

Assumption 4 The stopping time T associated to the stochastic process generated by
Algorithm 2 is either almost surely finite or almost surely infinite.

The next result implies that the sequence {�k
p}k∈N of random frame size parameters

converges to zero with probability one and will be useful for the Clarke stationarity
results of Sects. 4.2 and 4.3. It holds under the assumption below.
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Assumption 5 Theobjective function f is bounded frombelow, i.e., there existsκ f
min ∈

R such that −∞ < κ
f
min ≤ f (x), for all x ∈ R

n .

Theorem 4.2 Let Assumptions 1, 2, 4 and 5 be satisfied. Let γ > 2 and τ ∈ (0, 1)∩Q.
Let ν ∈ (0, 1) be chosen such that

ν

1 − ν
≥ 2(τ−2 − 1)

γ − 2
. (19)

Assume further that Assumption 3 holds for α and β chosen such that

αβ ≥ 4ν

(1 − ν)(1 − τ 2)

[
(1 − α)1/2 + 2(1 − β)1/2

]
. (20)

Then, the sequence {�k
p}k∈N of frame size parameters generated by Algorithm 2 sat-

isfies

+∞∑

k=0

(�k
p)

2 < +∞ almost surely. (21)

The following result is an immediate consequence of Theorem 4.2. It shows that
the sequences {�k

m}k∈N and {�k
p}k∈N converge to zero almost surely respectively.

Corollary 4.3 The following hold under all the assumptions made in Theorem 4.2

lim
k→+∞�k

m = 0 almost surely and lim
k→+∞�k

p = 0 almost surely.

The next result shows that, with probability one, the differences between the esti-
mates and their corresponding true function values converge to zero. This means that
Algorithm 2 behaves like an exact deterministic method asymptotically. This result
will also be useful in Sect. 4.3 for the proof of Theorem 4.13.

Corollary 4.4 Let all assumptions that were made in Theorem 4.2 hold. Then,

lim
k→+∞

∣
∣
∣Hk

0 − h(Xk)
∣
∣
∣ = 0 almost surely and lim

k→+∞
∣
∣
∣Fk

0 − f (Xk)
∣
∣
∣ = 0 almost surely.

(22)

Likewise,
∣∣Hk

s − h(Xk + Sk)
∣∣ and

∣∣Fk
s − f (Xk + Sk)

∣∣ respectively.

Definition 4.5 A convergent subsequence {xk}k∈K of Algorithm 2 incumbents, for
some subset of indices K, is called a refining subsequence if and only if the cor-
responding subsequence {δkm}k∈K converges to zero. The limit x̂ is called a refined
point.
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Corollary 4.3, along with the compactness hypothesis of Assumption 2 was shown
in the proof of Theorem 2 in [11] to be enough to ensure the existence of refining sub-
sequences. Indeed, conditioned on the event E0 = {

ω ∈ � : limk→+∞ �k
m(ω) = 0

}

which is almost sure due to Corollary 4.3, the aforementioned proof applies to the
next theorem.

Theorem 4.6 Let the assumptions that were made in Corollary 4.3 hold. Then there
almost surely exists at least one refining subsequence {Xk}k∈K (where K is a sequence
of random variables) that converges to a refined point X̂ .

4.2 Nonsmooth optimality conditions: Results for h

This subsection aims to show that there almost surely exists a refining subsequence
{Xk

inf}k∈K generated by StoMADS-PB that converges to a refined point X̂ inf which
satisfies a necessary optimality condition via the Clarke generalized derivative of h
with probability one.As in [11], this optimality result strongly relies on the requirement
that the polling directions dk ∈ D

k
p(x

k
inf) of Algorithm 2 are such that δkp

∥∥dk
∥∥∞ never

approaches zero for all k. The way such a requirement can be met is discussed in [11].
Indeed, by choosing the columns of the matrix D used in the definition of the mesh
Mk to be the 2n positive and negative coordinate directions, δ0p = 1 and τ = 1/2, the
directions δkpd

k were shown in [11] to satisfy δkp

∥∥dk
∥∥∞ ≥ 1wheneverdk is constructed

by means of Algorithm 1. The latter key result which holds under conditions that can
also be found in Theorem 8.5 of [12], is in fact proved in [11], inspired by the proof of
the latter theorem, making use of the �∞ norm ‖·‖∞, for the polling directions. This
motivates in particular the use of an �∞ norm in the analysis of StoMADS-PB and later
in Definition 4.8 of refining directions unlike [9] where an �2 norm (i.e., the euclidean
norm) was used for the analysis ofMADSwith PB. The following assumption is made
for the remainder of the analysis.

Assumption 6 Let dk ∈ D
k
p be any polling direction used by Algorithm 2 at iteration

k. Then there exists a constant dmin > 0 such that δkp
∥
∥dk

∥
∥∞ ≥ dmin for all k ≥ 0.

The main result of this subsection relies on the properties of the random function
�h

k introduced next, similar to the one used in [11].

Lemma 4.7 Let the same assumptions that weremade in Theorem 4.2 hold and assume
in addition to (20) that αβ ∈ (1/2, 1). Consider the random function �h

k with real-
izations ψh

k defined by

ψh
k := h(xkinf) − h(xkinf + δkmd

k)

δkp
for all k ≥ 0,

where dk ∈ D
k
p(x

k
inf). Then,

lim inf
k→+∞ �h

k ≤ 0 almost surely. (23)
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The following definition of refining directions [8, 12] will be useful in the analysis.

Definition 4.8 Let x̂ be the refined point associated with a convergent refining subse-
quence {xk}k∈K. A direction v is said to be a refining direction for x̂ if and only if
there exists an infinite subset L ⊆ K with polling directions dk ∈ D

k
p(x

k) such that

v = lim
k∈L

dk‖dk‖∞
.

The analysis in this subsection also relies on the following definitions [9]. The
Clarke generalized derivative h◦(x̂; v) of h at x̂ ∈ X in the direction v ∈ R

n is defined
by

h◦(x̂; v) := lim sup
y→x̂, y∈X

t↘0, y+tv∈X

h(y + tv) − h(y)

t
. (24)

As highlighted in [9], this definition from [36] is a generalization of the original one
by Clarke [25] to the case where the constraint violation function h is not defined
outside X .

The analysis involves a specific cone T H
X (x̂inf) called the hypertangent cone [50]

to X at x̂inf . The hypertangent cone to a subset O ⊆ X at x̂ is defined by

T H
O (x̂) := {v ∈ R

n : ∃ε̄ > 0 such that y + tw ∈ O ∀y ∈ O ∩ Bε̄ (x̂), w ∈ Bε̄ (v)

and 0 < t < ε̄}.

The next lemma from elementary analysis [9] will be useful in the present analysis.

Lemma 4.9 If {ak} is a bounded real sequence and {bk} is a convergent real sequence,
then

lim sup
k

(ak + bk) = lim sup
k

ak + lim
k

bk .

The next result which is a stochastic variant of Theorem 3.5 in [9] presents a nec-
essary optimality condition (see e.g. Theorem 6.10 of [12]) based on the hypertangent
cone definition. It states that almost surely, the refined point X̂ inf of a convergent ε-
infeasible refining subsequence {Xk

inf}k∈K is a hypertangent stationary point of h over
X . Since the inequality h(xkinf + δkmd

k) − h(xkinf) ≥ 0, on which relies the proof of
Theorem 3.5 in [9] does not hold in the present stochastic setting, the proof of this
novel result uses the random function �h

k and the result of Lemma 4.7.

Theorem 4.10 Let Assumptions 1, 6 and all the assumptions made in Theorem 4.2 and
Lemma 4.7 hold. Then there almost surely exists a convergent ε-infeasible refining
subsequence {Xk

inf}k∈K generated by Algorithm 2, for some sequence K ⊆ K ′ of
random variables satisfying limK ′ �h

k ≤ 0 almost surely, such that if x̂inf ∈ X is a
refined point for a realization {xkinf}k∈K of {Xk

inf}k∈K for which the events �k
p → 0
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and limK ′ �h
k ≤ 0 both occur, and if v ∈ T H

X (x̂inf) is a refining direction for x̂inf , then
h◦(x̂inf ; v) ≥ 0. In particular, this means that

P

({
ω ∈ � : ∃K (ω) ⊆ N and ∃X̂ inf (ω) = lim

k∈K (ω)
Xk
inf(ω), X̂ inf (ω) ∈ X , such that

∀V (ω) ∈ T H
X (X̂ inf (ω)), h◦(X̂ inf (ω); V (ω)) ≥ 0

})
= 1.

(25)

Next is stated a stochastic variant of a result in [9], showing that Clarke stationarity
is guaranteed with probability one when the set of refining directions is dense in a
nonempty hypertangent cone to X .

Corollary 4.11 Let all assumptions thatweremade inTheorem4.10hold. Let {Xk
inf}k∈K

be the ε-infeasible refining subsequence of Theorem 4.10 for some sequence K ⊆ K ′
satisfying limK ′ �h

k ≤ 0 almost surely. If x̂inf ∈ X is a refined point for a realization
{xkinf}k∈K of {Xk

inf}k∈K for which the events �k
p → 0 and limK ′ �h

k ≤ 0 both occur,

and if the set of refining directions for x̂inf is dense in T H
X (x̂inf) �= ∅, then x̂inf is a

Clarke stationary point for the problem min
x∈X

h(x).

4.3 Nonsmooth optimality conditions: Results for f

The analysis presented in this subsection assumes that Algorithm 2 generates infinitely
many ε-feasible points. It aims to show that there almost surely exists a refining
subsequence {Xk

feas}k∈K generated by StoMADS-PB that converges to a refined point
X̂feas which satisfies a necessary optimality condition via the Clarke derivative of f
with probability one. The following lemma will be useful in the analysis.

Lemma 4.12 Let the same assumptions that were made in Theorem 4.2 hold and
assume in addition to (20) that αβ ∈ (1/2, 1). Assume that the random time T with
realizations t is finite almost surely. Consider the random function �

f ,T
k with realiza-

tions ψ
f ,t
k defined by

ψ
f ,t
k := f (xk∨tfeas) − f (xk∨tfeas + δkmd

k)

δkp
for all k ≥ 0,

where k ∨ t := max{k, t} and dk ∈ D
k
p(x

k∨t
feas) denotes any polling direction at itera-

tion k. Then,

lim inf
k→+∞ �

f ,T
k ≤ 0 almost surely. (26)

The next theorem shows that the almost sure limit X̂feas of any convergent
refining subsequence of ε-feasible incumbents which drives the random estimated

violations Hk
0 (Xk

feas) to zero almost surely, satisfies P

(
X̂feas ∈ D

)
= 1. First,

the existence of such a refining subsequence can be assumed. Indeed, it is known

123



698 K. J. Dzahini et al.

from Theorem 3.6 that true iterations occur infinitely often provided the esti-
mates and bounds are sufficiently accurate. In addition, every ε-feasible point xkfeas
accepted by Algorithm 2 satisfies uk0(x

k
feas) = 0 ≤ hk0(x

k
feas) + mε(δkp)

2, which

implies �k0(x
k
feas) = 0 ≥ hk0(x

k
feas) − mε(δkp)

2 (see e.g. (8) and (9)), and consequently

−mε(δkp)
2 ≤ hk0(x

k
feas) ≤ mε(δkp)

2, thus leading to the overall conclusion that

lim inf
k→+∞ Hk

0 (Xk
feas) = 0 almost surely, which is implicitly assumed in the next the-

orem.

Theorem 4.13 Let all the assumptions of Lemma 4.12 hold. Let X̂feas be the almost
sure limit of a convergent ε-feasible refining subsequence {Xk∨T

feas }k∈K , for which
lim
k∈KH

k
0 (Xk∨T

feas ) = 0 almost surely. Then

P

(
X̂feas ∈ D

)
= 1. (27)

The following result which is a stochastic variant of Theorem 3.3 in [9] presents
a necessary optimality condition based on the hypertangent cone definition. It states
that the limit X̂feas of an almost surely convergent ε-feasible refining subsequence
{Xk

feas}k∈K is a hypertangent stationary point of f over the feasible region D, with
probability one.

Theorem 4.14 Let Assumptions 1, 6 and all assumptions that were made in The-
orem 4.2 and Lemma 4.12 hold. Let {Xk∨T

feas }k∈K be an almost surely convergent
ε-feasible refining subsequence, for some sequence K of random variables satis-
fying limK �

f ,T
k ≤ 0 and limK Hk

0 (Xk∨T
feas ) = 0 almost surely. If x̂feas ∈ D is a

refined point for a realization {xk∨tfeas}k∈K of {Xk∨T
feas }k∈K for which the events �k

p → 0,

limK �
f ,T
k ≤ 0 and limK Hk

0 (Xk∨T
feas ) = 0 occur, and if v ∈ T H

D (x̂feas) is a refining
direction for x̂feas, then f ◦(x̂feas; v) ≥ 0. In particular, this means that

P

({
ω ∈ � : ∃K (ω) ⊆ N and ∃X̂feas(ω) = lim

k∈K (ω)
Xk∨T
feas (ω), X̂feas(ω) ∈ D, such that

∀V (ω) ∈ T H
D (X̂feas(ω)), f ◦(X̂feas(ω); V (ω)) ≥ 0

})
= 1.

(28)

Next is stated a stochastic variant of a result in [9] showing that Clarke stationarity
is guaranteed with probability one when the set of refining directions is dense in a
nonempty hypertangent cone to D.

Corollary 4.15 Let all assumptions that were made in Theorem 4.14 hold. Let
{Xk∨T

feas }k∈K be the ε-feasible refining subsequence of Theorem 4.14 where K is the

sequence of random variables satisfying limK �
f ,T
k ≤ 0 and limK Hk

0 (Xk∨T
feas ) = 0

almost surely. If x̂feas ∈ D is a refined point for a realization {xk∨tfeas}k∈K of {Xk∨T
feas }k∈K

for which the events �k
p → 0, limK �

f ,T
k ≤ 0 and limK Hk

0 (Xk∨T
feas ) = 0 occur, and if

the set of refining directions for x̂feas is dense in T H
D (x̂feas) �= ∅, then x̂feas is a Clarke

stationary point for (1).
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5 Estimates computation and computational experiments

Section 5.1 discusses approaches for computing ε-accurate random estimates and
ε-reliable bounds satisfying Assumption 3 in a simple random noise framework, and
hence how corresponding deterministic estimates can be obtained using evaluations of
the stochastic blackbox. These approaches strongly rely on the computation of α1/m-
probabilistically ε-accurate estimates {Ck

j,0,C
k
j,s}, using techniques derived in [23].

Computational experiments comparing StoMADS-PB to MADS with PB are then
presented in Sect. 5.2.

5.1 Computation of probabilistically accurate estimates and reliable bounds

Consider the following typical noise assumption often made in the stochastic opti-
mization literature:

E�0

[
f�0(x)

] = f (x) and V�0

[
f�0 (x)

] ≤ V0 < +∞ for all x ∈ X
E� j

[
c� j (x)

] = c j (x) and V� j

[
c� j (x)

] ≤ Vj < +∞ for all x ∈ X and for all j ∈ J ,

where Vi > 0 is a constant for all i = 0, 1, . . . ,m. Let V = max{V0, V1, . . . , Vm}.
For somefixed j ∈ J , let�0

j and�s
j be two independent randomvariables following

the same distribution as � j . Let �0
j,�, � = 1, 2, . . . , pkj and �s

j,�, � = 1, 2, . . . , pkj
be independent random samples of�0

j and�s
j respectively, where p

k
j ≥ 1 is an integer

denoting the sample size. In order to satisfy Assumption 3-(i i i), define Ck
j,0 and C

k
j,s

respectively by

Ck
j,0 = 1

pkj

pkj∑

�=1

c�0
j,�

(xk) and Ck
j,s = 1

pkj

pkj∑

�=1

c�s
j,�

(xk + sk). (29)

Since E

(
Ck

j,0

)
= c j (xk) and that V

(
Ck

j,0

)
≤ V

pkj
for all j , it follows from the

Chebyshev inequality that

P

(∣∣∣Ck
j,0 − c j (x

k)

∣∣∣ > ε(δkp)
2
)

= P

(∣∣∣Ck
j,0 − E

(
Ck

j,0

)∣∣∣ > ε(δkp)
2
)

≤ V

pkjε
2(δkp)

4
.

(30)

Thus, choosing pkj such that

pkj ≥ V

ε2
(
1 − α1/2m

)
(δkp)

4
(31)
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ensures that V
pkj ε

2(δkp)
4 ≤ 1 − α1/2m . Then, combining (30) and (31) yields, for all

j ∈ J ,

P

(∣∣∣Ck
j,0 − c j (x

k)

∣
∣∣ ≤ ε(δkp)

2
)

≥ α1/2m (32)

and similarly, P
(∣∣∣Ck

j,s − c j (xk + sk)
∣∣∣ ≤ ε(δkp)

2
)

≥ α1/2m . It follows from the inde-

pendence of the random variables �0
j and �s

j and both previous inequalities that

P

({∣∣∣Ck
j,0 − c j (x

k)

∣∣∣ ≤ ε(δkp)
2
}

∩
{∣∣∣Ck

j,s − c j (x
k + sk)

∣∣∣ ≤ ε(δkp)
2
})

≥ α1/m,

(33)

which means that Assumption 3-(iii) holds. Estimates ckj,0 = Ck
j,0(ω) and ckj,s =

Ck
j,s(ω), obtained by averaging pkj realizations of c� j resulting from the evaluations

of the stochastic blackbox, respectively at xk and xk + sk , are obviously α1/m-
probabilistically ε-accurate.

In order to satisfy Assumption 3-(v), notice that the independence of the random
variables � j , j ∈ J combined with (32) implies

P

⎛

⎝
m⋂

j=1

{∣∣∣Ck
j,0 − c j (x

k)

∣∣∣ ≤ ε(δkp)
2
}
⎞

⎠ =
m∏

j=1

P

(∣∣∣Ck
j,0 − c j (x

k)

∣∣∣ ≤ ε(δkp)
2
)

≥ α1/2

(34)

and similarly, P

⎛

⎝
m⋂

j=1

{∣∣∣Ck
j,s − c j (x

k + sk)
∣∣∣ ≤ ε(δkp)

2
}
⎞

⎠ ≥ α1/2. (35)

Define the random bounds Lk
0(x

k), Lk
s (x

k + sk), Uk
0 (xk) and Uk

s (xk + sk), respec-
tively by

Lk
0(x

k) =
m∑

j=1

max
{
Ck

j,0 − ε(δkp)
2, 0

}
,

Uk
0 (xk) =

m∑

j=1

max
{
Ck

j,0 + ε(δkp)
2, 0

}
,

Lk
s (x

k + sk) =
m∑

j=1

max
{
Ck

j,s − ε(δkp)
2, 0

}

and Uk
s (xk + sk) =

m∑

j=1

max
{
Ck

j,s + ε(δkp)
2, 0

}
.
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Define the events Ek
0 and Ek

s respectively by

Ek
0 =

{
Lk
0(x

k) ≤ h(xk) ≤ Uk
0 (xk)

}
and

Ek
s =

{
Lk
s (x

k + sk) ≤ h(xk + sk) ≤ Uk
s (xk + sk)

}
. (36)

Because

m⋂

j=1

{∣∣∣Ck
j,0 − c j (x

k)

∣
∣∣ ≤ ε(δkp)

2
}

=
m⋂

j=1

{
Ck

j,0 − ε(δkp)
2 ≤ c j (x

k) ≤ Ck
j,0 + ε(δkp)

2
}

⊆ Ek
0 (37)

and

m⋂

j=1

{∣∣∣Ck
j,s − c j (x

k + sk)
∣∣∣ ≤ ε(δkp)

2
}

⊆ Ek
s , (38)

combining respectively (34) and (37), and (35) and (38), lead to

P

(
Ek
0

)
≥ P

⎛

⎝
m⋂

j=1

{∣∣∣Ck
j,0 − c j (x

k)

∣∣∣ ≤ ε(δkp)
2
}
⎞

⎠ ≥ α1/2 (39)

and P

(
Ek
s

)
≥ P

⎛

⎝
m⋂

j=1

{∣∣∣Ck
j,s − c j (x

k + sk)
∣∣∣ ≤ ε(δkp)

2
}
⎞

⎠ ≥ α1/2. (40)

It follows from the independence of the random variables �0
j,� and �s

j,�, for all j ∈ J

and for all � = 1, 2, . . . , pkj , that the events E
k
0 and Ek

s are also independent. Hence,
inequalities (39) and (40) imply that

α ≤ P

⎛

⎝
m⋂

j=1

{∣∣∣Ck
j,0 − c j (x

k)

∣∣∣ ≤ ε(δkp)
2
}
⎞

⎠

×P

⎛

⎝
m⋂

j=1

{∣∣∣Ck
j,s − c j (x

k + sk)
∣∣∣ ≤ ε(δkp)

2
}
⎞

⎠

≤ P

(
Ek
0

)
× P

(
Ek
s

)
= P

(
Ek
0 ∩ Ek

s

)
,

which shows that Assumption 3-(v) holds.
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In order to show that Assumption 3-(iv) holds, notice that E
(
Ck

j,0 − c j (xk)
)

= 0

for all j ∈ J , which implies that for all j ∈ J ,

E

(∣∣∣Ck
j,0 − c j (x

k)

∣∣∣
2
)

= V

(
Ck

j,0 − c j (x
k)
)

≤ V

pkj
≤ ε2

(
1 − α1/2m

)
(δkp)

4,

(41)

where the last inequality in (41) follows from (31). Similarly, since
(
Ck

j,s −
c j (xk + sk)

)
= 0 for all j ∈ J , then

E

(∣∣∣Ck
j,s − c j (x

k + sk)
∣∣∣
2
)

≤ ε2
(
1 − α1/2m

)
(δkp)

4, (42)

which shows that Assumption 3-(iv) holds.
Finally, in order to compute estimates Fk

0 and Fk
s that satisfy Assumption 3-(i) and

(ii), let �0
0 and �s

0 be two independent random variables following the same distribu-
tion as �0. Let �0

0,�, � = 1, 2, . . . , pk0 and �s
0,�, � = 1, 2, . . . , pk0 be independent

random samples of �0
0 and �s

0 respectively, where pk0 ≥ 1 denotes the sample size.
Define Fk

0 and Fk
s respectively by

Fk
0 = 1

pk0

pk0∑

�=1

f�0
0,�

(xk) and Fk
s = 1

pk0

pk0∑

�=1

f�s
0,�

(xk + sk). (43)

Then E
(
Fk
0

) = f (xk), which implies thatV
(
Fk
0

) ≤ V
pk0
. Thus, it is easy to notice that

the proof of Assumption 3-(i) follows that of Assumption 3-(iii). More precisely, the
following inequality holds:

P

({∣∣∣Fk
0 − f (xk)

∣∣∣ ≤ ε(δkp)
2
}

∩
{∣∣∣Fk

s − f (xk + sk)
∣∣∣ ≤ ε(δkp)

2
})

≥ β, (44)

provided that

pk0 ≥ V

ε2
(
1 − √

β
)
(δkp)

4
(45)

Estimates f k0 = Fk
0 (ω) and f ks = Fk

s (ω), obtained by averaging pk0 realizations of
f�0 , respectively at x

k and xk + sk , are obviously β-probabilistically ε-accurate. The
proof of Assumption 3-(ii) follows that of Assumption 3-(iv). Specifically,

E

(∣
∣∣Fk

0 − f (xk)
∣
∣∣
2
)

≤ ε2(1 − √
β)(δkp)

4 and E

(∣
∣∣Fk

s − f (xk + sk)
∣
∣∣
2
)

≤ ε2(1 − √
β)(δkp)

4,

provided pk0 is chosen according to (45).
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5.2 Computational experiments

This section illustrates the performance and the efficiency of StoMADS-PB using
noisy variants of 42 continuous constrained problems from the optimization literature.
The sources and characteristics of these problems are summarized in Table 1. The
number of variables ranges from n = 2 to n = 20, where every problem has at
least one constraint (m > 0) other than bound constraints. In order to show the
capability of StoMADS-PB to cope with noisy constrained problems compared to
MADS with PB [9], referred to as MADS-PB, two variants of the latter algorithm are
compared to several variants of StoMADS-PB. For all computational investigations
of both algorithms, only the POLL step is used, i.e., no SEARCH step is involved.
Based on the result of Proposition 2.13, the ε-feasible incumbent solution is always
chosen as the StoMADS-PB primary frame center unless the estimates f k0 (xkfeas) and
f k0 (xkinf) satisfy the sufficient decrease condition in (11), in which case the choice
of the infeasible incumbent solution as primary frame center is preferred. As in [9],
StoMADS-PB places less effort in polling around the secondary frame center than the
primary one. Specifically, as default strategy, a maximal positive basis [12] is used for
the primary frame center while only two directions, with one being the negative of the
first, are used for the secondary frame center. The OrthoMADS-2n directions [1] are
used for the POLL which is ordered by means of an opportunistic strategy [12], i.e.,
trial points around the primary frame center are evaluated first. Then, all the points
around a given frame center are sorted relatively to the successful direction from the
last h-Dominating iteration in StoMADS-PB, while in MADS-PB, they are sorted
relatively to the last successful direction both in the noisy objective and constraint
violation functions. MADS-PB and all the proposed variants of StoMADS-PB are
implemented in MATLAB.

The stochastic variants of the 42 deterministic constrained optimization problems
are solved using three different infeasible initial points for a total of 126 problem
instances. Inspired by [11], the stochastic variants are constructed by additively per-
turbing the objective f by a random variable �0 and by additively perturbing each
constraint c j , j = 1, 2, . . . ,m by a random variable � j . That is,

f�0(x) = f (x) + �0 and c� j (x) = c j (x) + � j , for all j ∈ J , (46)

where �0 is uniformly generated in the interval I (σ, x0, f ) =[−σ
∣
∣ f (x0) − f ∗∣∣ , σ

∣
∣ f (x0) − f ∗∣∣] and� j is uniformly generated in I (σ, x0, c j ) =[−σ

∣∣c j (x0)
∣∣ , σ

∣∣c j (x0)
∣∣]. The scalar σ > 0 is used to define different noise levels, x0

denotes an initial point and f ∗ is the best known feasible minimum value of f . Thus,
the test set used during the experiments is representative of real-world applications,
since consisting of a collection of more than 20 stochastically noisy test problems (see
e.g. [12], appendix A.1.) The bounds of I (σ, x0, f ) and I (σ, x0, c j ) are respectively
expressed in terms of

∣∣ f (x0) − f ∗∣∣ and
∣∣c j (x0)

∣∣ in order to take into account the
effort of a given algorithm when reducing the value of the objective function from
f (x0) to f ∗, and when reducing the values of the constraints from c j (x0) to zero
(whenever c j (x0) > 0), for a given problem. The random variables �0,�1, . . . , �m
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are independent. For the remainder of the study, the process which returns the vector[
f�0(x), c�1(x), c�2(x), . . . , c�m (x)

]
when provided the input x will be referred to

as the noisy blackbox.
The MADS-PB algorithm [9], of which StoMADS-PB is a stochastic variant, and

to which the latter is compared is an iterative direct-search method originally devel-
oped for deterministic constrained blackbox optimization. In MADS-PB, feasibility
is sought by progressively decreasing a threshold imposed on a constraint violation
function into which all the constraint violations are aggregated. Any trial point with a
constraint violation value greater than that threshold is rejected. A full description of
MADS-PB iterations and its behavior can also be found in [12].

The relative performance and efficiency of algorithms are assessed by performance
profiles [31, 46] and data profiles [46], which require the definition of a convergence
test for a given problem instance. For each of the 126 problem instances (defined
by the 42 functions f , minimized using three different initial points), denote by xN

the best feasible point found after N evaluations of the noisy blackbox and let x∗
be the best feasible point of f obtained by the six compared algorithms (described
later) on the three stochastic problem instances involving f . This means that for a
given objective function f , the value of x∗ is the best among eighteen, which can be
considered significant and representative in an expensive-to-evaluate BBO framework.
The convergence test from [14] used for the experiments is defined as

f (xN ) ≤ f (x∗) + τ( f̄feas − f (x∗)), (47)

where τ ∈ [0, 1] is the convergence tolerance and f̄feas is a reference value obtained
by taking the average of the available first feasible f values over all instances of a
given problem over all algorithms. If no feasible point is found, then the convergence
test fails. Otherwise, a problem is said to be successfully solved within the tolerance
τ if (47) holds. As highlighted in [14], f̄feas = f (x0) for unconstrained problems,
where x0 denotes the initial point.

Inspired by [31], the number of noisy objective function evaluations is chosen as
performance measure. The horizontal axis of the performance profiles shows a ratio
of the performance on a given problem by a given algorithm to the best performance
by any algorithm on that problem, while the fraction of problems solved within the
convergence tolerance τ is shown on the vertical axis. On the horizontal axis of the
data profiles is shown the number of function calls to the noisy blackbox divided
by (n + 1)1 while the vertical axis shows the proportion of problems solved by all
instances of a given algorithm within a tolerance τ . As emphasized in [12], perfor-
mance profiles show information concerning speed of convergence (i.e., the quality
of a given algorithm’s output in terms of the number of objective function evalua-
tions) and robustness (i.e., the fraction of problems solved) in a compact graphical
format, while data profiles also examine the robustness and efficiency from a different
perspective.

Recall that in StoMADS-PB, according to Sect. 5.1, specifically (29) and (43), the
noisy blackbox needs to be evaluated many times at a given point in order to compute

1 n + 1 is the number of evaluations required to construct a linear interpolant or a simplex gradient [12] in
R
n [14, 46].
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706 K. J. Dzahini et al.

Fig. 2 Data profiles for convergence tolerances τ = 10−1 and τ = 10−3, and noise level σ = 0.01 on 126
analytical constrained test problems additively perturbed in the intervals I (σ, x0, f ) and I (σ, x0, c j )

function estimates unlike the MADS-PB method, in which it is evaluated only once
at each point. Thus, the limited budget of 1000(n + 1) noisy blackbox evaluations
allocated to all the algorithms during the computational experiments should not be
exhausted too quickly by doing replications at a given current point when computing
estimates for StoMADS-PB. However, given that such estimates are required to be
sufficiently accurate in order for the solutions to be satisfactory, a procedure inspired
by [11] aimed at improving the estimates accuracy bymaking use of available samples
at a given current point is proposed. The following computation scheme is described
only for f k0 (xk) but is the same for f ks (xk + sk), ckj,0(x

k) and ckj,s(x
k + sk), for all

123



Constrained stochastic blackbox optimization using… 707

Fig. 3 Performance profiles for convergence tolerances τ = 10−1 and τ = 10−3, and noise level σ = 0.01
on 126 analytical constrained test problems additively perturbed in the intervals I (σ, x0, f ) and I (σ, x0, c j )

j ∈ J . During the optimization, all trial points xk used by StoMADS-PB and all
corresponding values f�0(x

k) are stored in a cache. When constructing an estimate
of f (xk) at the iteration k ≥ 1, denote by ak(xk)2 the number of sample values
of f�0(x

k) available in the cache from previous blackbox evaluations until iteration
k − 1. Since all the values of the noisy objective function f�0 are always computed
independently of each other, the aforementioned sample values can be considered as
independent realizations fθ0,1(x

k), fθ0,2(x
k), . . . , fθ0,ak (xk )

(xk) of f�0(x
k), where for

2 It is implicitly assumed without any loss of generality that ak (xk ) ≥ 1.
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Fig. 4 Data profiles for convergence tolerances τ = 10−1 and τ = 10−3, and noise level σ = 0.03 on 126
analytical constrained test problems additively perturbed in the intervals I (σ, x0, f ) and I (σ, x0, c j )

all � = 1, 2, . . . , ak(xk), θ0,� is a realization of the random variable �0,� following
the same distribution as �0. Now let nk ≥ 1 be the number of blackbox evaluations at
xk and consider the independent realizations θ0,ak (xk )+1, θ0,ak (xk )+2, . . . , θ0,ak (xk )+nk

of �0. Then using (43), an estimate f k0 (xk) of f (xk) is computed according to

f k0 (xk) = 1

pk

pk∑

�=1

fθ0,� (x
k), (48)
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Fig. 5 Performance profiles for convergence tolerances τ = 10−1 and τ = 10−3, and noise level σ = 0.03
on 126 analytical constrained test problems additively perturbed in the intervals I (σ, x0, f ) and I (σ, x0, c j )

where pk = nk + ak(xk) is the sample size. Note that this computation procedure is
very efficient in practice as highlighted in [11] even though it is inherently biased.

The same values are used to initializemost of the commonparameters to StoMADS-
PB and MADS-PB. Specifically, the mesh refining parameter τ = 1/2, the frame
center trigger ρ = 0.1 and δ0m = δ0p = 1 are common to both methods. However, in
MADS-PB, the initial barrier threshold is set equal its default value, i.e., h0max=+∞ [9]
while in StoMADS-PB it equals u00(x

0
inf), with u

k
0(x

k) defined in (4) for all k ∈ N. The
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Fig. 6 Data profiles for convergence tolerances τ = 10−1 and τ = 10−3, and noise level σ = 0.05 on 126
analytical constrained test problems additively perturbed in the intervals I (σ, x0, f ) and I (σ, x0, c j )

default values of Algorithm 2 parameters γ > 2 and ε > 03 are borrowed from [11],
that is, γ = 17 and ε = 0.01.

Four variants of StoMADS-PB corresponding to nk ∈ {1, 2, 3, 4} are compared to
two variants of MADS-PB : a variant referred to as �1-MADS-PB using an �1-norm
(as in StoMADS-PB) for the definition of the barrier function h, and a second one,
�2-MADS-PB, which uses the euclidean norm as in [9]. The data and performance
profiles used for the comparisons are depicted in Figs. 2, 4 and 6 and Figs. 3, 5 and 7.
Three levels of noise are used during the experiments, which correspond to σ = 0.01,

3 The use of ε f instead of ε is favored in [11].
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Fig. 7 Performance profiles for convergence tolerances τ = 10−1 and τ = 10−3, and noise level σ = 0.05
on 126 analytical constrained test problems additively perturbed in the intervals I (σ, x0, f ) and I (σ, x0, c j )

σ = 0.03 and σ = 0.05. For each of the three levels of noise, since each of the
six compared algorithms were applied to the stochastic variants of the 126 problem
instances, a total of 3 × 6 × 126 = 2268 algorithm runs were necessary to obtain
the data and performance profiles. For a given algorithm, the percentage of problems
solved after 1000(n + 1) noisy blackbox evaluations for each noise level within a
convergence tolerance τ are reported in Table 2.

The data and performance profiles show that when given sufficient budget,
StoMADS-PB generally outperforms MADS-PB. They also show that MADS-PB
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Table 2 Percentage of problems solved for each noise level σ within a convergence tolerance τ

Algorithm τ = 10−1 τ = 10−3

σ = 0.01 σ = 0.03 σ = 0.05 σ = 0.01 σ = 0.03 σ = 0.05

StoMADS-PB nk = 1 73.81% 76.98% 73.81% 37.30% 36.51% 37.30%

StoMADS-PB nk = 2 73.81% 75.40% 76.19% 43.65% 42.86% 44.44%

StoMADS-PB nk = 3 76.19% 62.70% 66.67% 45.24% 38.89% 33.33%

StoMADS-PB nk = 4 75.40% 74.60% 73.81% 45.24% 45.24% 38.89%

�1-MADS-PB 61.90% 59.52% 49.21% 29.37% 33.33% 26.19%

�2-MADS-PB 65.87% 59.52% 51.59% 37.30% 29.37% 24.60%

is very efficient for moderate values of the noise level σ , but its performance degrades
quickly as σ increases. As expected, �2-MADS-PB outperforms �1-MADS-PB since
the latter should introduce some nondifferentiability in the deterministic minimization
problem as discussed in [12].Moreover as in [11], varying the value of the convergence
tolerance τ in the data profiles does not significantly alter the conclusions drawn from
the performance profiles. Indeed, as expected, it can be easily observed from Table 2
that the higher the tolerance parameter τ , the larger the percentage of problems solved
by all algorithms for a fixed noise level σ . Notice that while for a given τ , the fraction
of problems solved by each variant of MADS-PB has a decreasing tendency when the
noise level increases from σ = 0.01 to σ = 0.05, this seems not to be the case for
StoMADS-PB variants. Before giving an insight as to why, recall that in the present
constrained framework, the success or failure of the convergence test (47) depends
not only on the values of the objective function f but also on whether a feasible point
is found or not, unlike the framework of [11] where no constraints are involved. In
fact, as highlighted in [11] from which the scheme (48) was inspired, even though
the robustness and efficiency of each StoMADS-PB variant depends on the number
nk of noisy blackbox evaluations which is constant for all k, the quality of the solu-
tions is influenced by the sample size pk = nk + ak(xk), which is not constant. On
one hand, this is the reason why for nk = 1, StoMADS-PB does not have the same
behavior as �1-MADS-PB. On the other hand, (48) naturally favors StoMADS-PB by
improving the accuracy of the estimates of the constraint functions, thus allowing it to
find a higher amount of feasible solutions compared to MADS-PB and consequently
possibly solve a larger fraction of problems when the noise level increases for a fixed
tolerance parameter τ .

Based on Table 2, observe that for a given convergence tolerance τ , varying σ seems
not to have a significant influence on the fraction of problems solved by the StoMADS-
PB variants corresponding to nk = 1, nk = 2 and nk = 4. Moreover, even though for
the lowest noise level studied, σ = 0.01, StoMADS-PB with nk = 3 solved the
most problems, the corresponding percentage is not significantly larger than those of
StoMADS-PB with nk = 2 and nk = 4. For all these reasons, the variant with nk = 2
seems preferable for constrained stochastic blackbox optimization problems with lim-
ited budget while the variant nk = 4 should be preferred for stochastic blackbox
optimization problems with higher evaluations budgets. Finally, recall that �2-MADS-
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PB outperforms �1-MADS-PB in the present stochastic framework. Thus, given that
even in a deterministic BBO context, squared violations were shown in [7] to perform
better (thus motivating the use of an �2 barrier function h in [9]), one could expect
a StoMADS-PB variant using an �2 barrier function to outperform the one analyzed
in the present manuscript even though the convergence of this �2 variant is not yet
demonstrated.

Concluding remarks

The StoMADS-PB algorithm introduced in the present work is developed for con-
strained stochastic blackbox optimization. The proposed method, which uses an
algorithmic framework similar to that of MADS, considers the optimization of
objective and constraint functions whose values can only be accessed through a
stochastically noisy blackbox. It treats constraints using a progressive barrier approach,
by aggregating their violations into a single function. It does not use any model or
approximate gradient information to find descent directions or improve feasibility
unlike prior works. Instead, StoMADS-PB uses function estimates and introduces
probabilistic bounds on which sufficient decrease conditions are imposed. By requir-
ing the accuracy of such estimates and bounds to hold with sufficiently high, but fixed,
probabilities, convergence results for StoMADS-PB are derived, most of which are
stochastic variants of those of MADS.

Computational experiments conducted on several variants of StoMADS-PB on a
collection of constrained stochastically noisy problems showed the proposed method
eventually outperforms MADS, and show some of its variants to be almost robust to
random noise despite the use of very inaccurate estimates.

This research is, to the best of our knowledge, the first to propose a stochastic direc-
tional direct-search algorithm for BBO, developed to cope with both a stochastically
noisy objective and constraints.

Future research could focus on improving the proposedmethod to handle large-scale
machine learning problems,making use, for example, of parallel space decomposition.

Acknowledgements The authors are grateful to Charles Audet from Polytechnique Montréal for valuable
discussions and constructive suggestions. This work is supported by the NSERC CRD RDCPJ 490744-15
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fellowship.

Appendix

This appendix presents the proofs of a series of results stated in Sect. 4.

Proof of Theorem 4.2

Proof This theorem is proved using ideas from [11, 21, 23, 33, 40, 48] and condi-
tioning on the disjoint events {T = +∞} and {T < +∞} that are almost sure due to
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Assumption 4. The proof considers two different parts. Part 1 considers two separate
cases conditioned on the event {T = +∞} (i.e., no ε-feasible point is found by Algo-
rithm 2): “good bounds” and “bad bounds”, each of which is separated into whether
an iteration is h-Dominating, Improving or Unsuccessful. Part 2 considers three sepa-
rates cases conditioned on the event {T < +∞}: “good estimates and good bounds”,
“bad estimates and good bounds” and “bad bounds”, each of which is separated into
whether an iteration is f -Dominating, h-Dominating, Improving or Unsuccessful.

In order to show (21), the goal of Part 1 is to show that there exists a constant η > 0
such that conditioned on the almost sure event {T = +∞}, the following holds for all
k ∈ N:

E

(
�k+1 − �k |FC ·F

k−1

)
≤ −η(�k

p)
2, (49)

where �k is the random function defined by

�k := ν

mε
h(Xk

inf) + (1 − ν)(�k
p)

2, for all k ∈ N. (50)

Indeed, assume that (49) holds. Since �k > 0 for all k ∈ N, then summing (49) over
k ∈ N and taking expectations on both sides lead to

E

[+∞∑

k=0

(�k
p)

2

]

≤ E (�0)

η
= �0

η
, (51)

That is, (21) holds. Then, Part 2 aims to show that for the same previous constant η,
conditioned on the almost sure event {T < +∞} and making use of the following
random function

�T
k := ν

ε
( f (Xk∨T

feas ) − κ
f
min) + ν

mε
h(Xk

inf) + (1 − ν)(�k
p)

2, for all k ∈ N, (52)

where k ∨ T := max{k, T }, the following holds for all k ∈ N:

E

(
�T

k+1 − �T
k |FC ·F

k−1

)
≤ −η(�k

p)
2. (53)

Indeed, assume that (53) holds. Since �T
k > 0 for all k ≥ 0, then summing (53) over
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k ∈ N and taking expectations on both sides, yields

E

[+∞∑

k=0

(�k
p)

2

]

≤ E
(
�T

0

)

η
= 1

η

[ν

ε

(
E

[
f (XT

feas)
]

− κ
f
min

)
+ ν

mε
h(x0inf) + (1 − ν)(δ0p)

2
]

≤ 1

η

[ν

ε

(
κ f
max − κ

f
min

)
+ ν

mε
h(x0inf) + (1 − ν)(δ0p)

2
]

=: μ,

(54)

where the last inequality in (54) follows from the inequality f (Xk
feas) ≤ κ

f
max for all

k ≥ 0, due to Proposition 3.5, and the fact that T is finite almost surely.
The remainder of the proof is devoted to showing that (49) and (53) hold. The

following events are introduced for the sake of clarity in the analysis.

D f := {The iteration is f -Dominating}, Dh := {The iteration is h-Dominating},
I := {The iteration is Improving}, U := {The iteration is Unsuccessful}.

Part 1 (T = +∞ almost surely). The random function �k defined in (50) will be
shown to satisfy (49) with η = 1

2αβ(1 − ν)(1 − τ 2), regardless of the change in
the objective function f on the ε-infeasible incumbents encountered by Algorithm 2.
Moreover, since T is infinite almost surely, then no iteration of Algorithm 2 can be f -
Dominating. Two separate cases are distinguished and all that follows is conditioned
on the almost sure event {T = +∞}.
Case 1 (Good bounds, 1Ik = 1). No matter the type of iteration which occurs, the
random function �k will be shown to decrease and the smallest decrease is shown to
happen on Unsuccessful iterations, thus yielding

E

[
1Ik (�k+1 − �k)|FC ·F

k−1

]
≤ −α(1 − ν)(1 − τ 2)(�k

p)
2. (55)

(i) The iteration is h-Dominating (1Dh = 1). The iteration is h-Dominating and the
bounds are good, so a decrease occurs in h according to (6), i.e.,

1Ik1Dh

ν

mε
(h(Xk+1

inf ) − h(Xk
inf)) ≤ −1Ik1Dhν(γ − 2)(�k

p)
2. (56)

The frame size parameter is updated according to �k+1
p = min{τ−1�k

p, δmax},
which implies that

1Ik1Dh (1 − ν)[(�k+1
p )2 − (�k

p)
2] ≤ 1Ik1Dh (1 − ν)(τ−2 − 1)(�k

p)
2. (57)

Then, by choosing ν according to (19), the right-hand side of (56) dominates that
of (57). That is,

− ν(γ − 2)(�k
p)

2 + (1 − ν)(τ−2 − 1)(�k
p)

2 ≤ −1

2
ν(γ − 2)(�k

p)
2. (58)
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Combining (56), (57) and (58) leads to

1Ik1Dh (�k+1 − �k) ≤ −1Ik1Dh

1

2
ν(γ − 2)(�k

p)
2. (59)

(ii) The iteration is Improving (1I = 1). The iteration is Improving and the bounds
are good, so again, a decrease occurs in h according to (6). Moreover, �k

p is
updated as in h-Dominating iterations. Thus, the change in �k follows from (59)
by replacing 1Dh by 1I . Specifically,

1Ik1I(�k+1 − �k) ≤ −1Ik1I
1

2
ν(γ − 2)(�k

p)
2. (60)

(iii) The iteration is Unsuccessful (1U = 1). The value of h is unchanged while the
frame size parameter is decreased. Consequently,

1Ik1U (�k+1 − �k) = −1Ik1U (1 − ν)(1 − τ 2)(�k
p)

2 (61)

Because ν satisfies (19) and because 1− τ 2 < τ−2 − 1, Unsuccessful iterations,
vis a vis (61), provide the worst case decrease when compared to (59) and (60).
That is,

− 1

2
ν(γ − 2)(�k

p)
2 ≤ −(1 − ν)(1 − τ 2)(�k

p)
2. (62)

Thus, it follows from (59), (60), (61) and (62) that the change in �k is bounded
like

1Ik (�k+1 − �k) = 1Ik (1Dh + 1I + 1U )(�k+1 − �k)

≤ −1Ik (1 − ν)(1 − τ 2)(�k
p)

2. (63)

Since Assumption 3 holds, taking conditional expectations with respect to FC ·F
k−1 on

both sides of the inequality in (63) leads to (55).
Case 2 (Bad bounds, 1 Īk

= 1). Since the bounds are bad, Algorithm 2 can accept a

step which leads to an increase in h and �k
p, and hence in �k . Such an increase in

�k is controlled by making use of (15). Then, the probability of Īk is chosen to be
sufficiently small so that�k can be reduced sufficiently in expectation.More precisely,
the next result will be proved

E

[
1 Īk

(�k+1 − �k)|FC ·F
k−1

]
≤ 2ν(1 − α)1/2(�k

p)
2. (64)

(i) The iteration is h-Dominating (1Dh = 1). The change in h is bounded like

1 Īk
1Dh

ν

mε
(h(Xk+1

inf ) − h(Xk
inf))
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≤ 1 Īk
1Dh

ν

mε

[
(Hk

s − Hk
0 ) +

∣
∣
∣h(Xk+1

inf ) − Hk
s

∣
∣
∣ +

∣
∣
∣h(Xk

inf) − Hk
0

∣
∣
∣
]

≤ 1 Īk
1Dhν

[
−γ (�k

p)
2 + 1

mε

(∣∣
∣h(Xk+1

inf ) − Hk
s

∣
∣
∣ +

∣
∣
∣h(Xk

inf) − Hk
0

∣
∣
∣
)]

, (65)

where (65) follows from Hk
s − Hk

0 ≤ −γmε(�k
p)

2 which is satisfied in every
h-Dominating iteration. Moreover, the change in �k

p can be obtained simply by
replacing 1Ik by 1 Īk

in (57). That is,

1 Īk
1Dh (1 − ν)[(�k+1

p )2 − (�k
p)

2] ≤ 1 Īk
1Dh (1 − ν)(τ−2 − 1)(�k

p)
2. (66)

Because ν satisfies (19),−νγ (�k
p)

2+(1−ν)(τ−2−1)(�k
p)

2 ≤ 0. Combining (65)
and (66),

1 Īk
1Dh (�k+1 − �k) ≤ 1 Īk

1Dh

ν

mε

(∣∣
∣h(Xk+1

inf ) − Hk
s

∣∣
∣ +

∣∣
∣h(Xk

inf) − Hk
0

∣∣
∣
)

.

(67)

(ii) The iteration is Improving (1I = 1).�k
p is updated as in h-Dominating iterations.

The increase in h is bounded as in (65). Thus, the bound on the change in �k can
be obtained by replacing 1Dh by 1I in (67). That is,

1 Īk
1I(�k+1 − �k) ≤ 1 Īk

1I
ν

mε

(∣∣∣h(Xk+1
inf ) − Hk

s

∣∣∣ +
∣∣∣h(Xk

inf) − Hk
0

∣∣∣
)

.

(68)

(iii) The iteration is Unsuccessful (1U = 1). The value of h is unchanged and �k
p is

decreased. Thus, the change in �k follows from (61) by replacing 1Ik by 1 Īk
and

is trivially bounded like

1 Īk
1U (�k+1 − �k) ≤ 1 Īk

1U
ν

mε

(∣∣∣h(Xk+1
inf ) − Hk

s

∣∣∣ +
∣∣∣h(Xk

inf) − Hk
0

∣∣∣
)

.

(69)

It follows from (67), (68), (69) and the inequality 1 Īk
≤ 1, that

1 Īk
(�k+1 − �k) ≤ ν

mε

(∣∣∣h(Xk+1
inf ) − Hk

s

∣∣∣ +
∣∣∣h(Xk

inf) − Hk
0

∣∣∣
)

. (70)

Taking conditional expectations with respect to FC ·F
k−1 on both sides of (70) and

using the inequalities (15) of Lemma 3.7, leads to (64).

Combining (55) and (64) yields,

E

(
�k+1 − �k |FC ·F

k−1

)
= E

[
(1Ik + 1 Īk

)(�k+1 − �k)|FC ·F
k−1

]

≤
[
−α(1 − ν)(1 − τ 2) + 2ν(1 − α)1/2

]
(�k

p)
2. (71)
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718 K. J. Dzahini et al.

Choosing α according to (20) implies that α ≥ 4ν(1 − α)1/2

(1 − ν)(1 − τ 2)
, which ensures

− α(1 − ν)(1 − τ 2) + 2ν(1 − α)1/2 ≤ −1

2
α(1 − ν)(1 − τ 2)

≤ −1

2
αβ(1 − ν)(1 − τ 2). (72)

Thus, (49) follows from (71) and (72) with η = 1
2αβ(1 − ν)(1 − τ 2).

Part 2 (T < +∞ almost surely). In order to show that the random function �T
k

defined by

�T
k = ν

ε
( f (Xk∨T

feas ) − κ
f
min) + ν

mε
h(Xk

inf) + (1 − ν)(�k
p)

2

satisfies (53) with the same constant η derived in Part 1, notice that whenever the event
{T > k} occurs, then f (X (k+1)∨T

feas ) − f (Xk∨T
feas ) = 0 since max{k, T } := k ∨ T =

(k + 1) ∨ T = T . Thus, on the event {T > k}, the random function �k used in Part 1
has the same increment as �T

k . Specifically,

1{T<+∞}1{T>k}(�T
k+1 − �T

k ) = 1{T<+∞}1{T>k}(�k+1 − �k).

Moreover, it follows from the definition of the stopping time T that no iteration can be
f -Dominating when the event {T > k} occurs. Consequently, it easily follows from
the analysis in Part 1 and the fact that the random variable 1{T>k} isFC ·F

k−1 -measurable
that,

1{T>k}E
(
�T

k+1 − �T
k |FC ·F

k−1

)
≤ −η(�k

p)
21{T>k}. (73)

The remainder of the proof is devoted to showing that

1{T≤k}E
(
�T

k+1 − �T
k |FC ·F

k−1

)
≤ −η(�k

p)
21{T≤k}, (74)

since combining (73) and (74) leads to (53), which is the overall goal. In all that
follows, it is assumed that the event {T ≤ k} occurs.
Case 1 (Good estimates and good bounds, 1Ik1Jk = 1). Regardless of the iteration
type, the smallest decrease in�T

k will be shown to happen on Unsuccessful iterations,
and it will be shown that

1{T≤k}E
[
1Ik1Jk (�

T
k+1 − �T

k )|FC ·F
k−1

]
≤ −αβ(1 − ν)(1 − τ 2)(�k

p)
21{T≤k}.

(75)
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(i) The iteration is f -Dominating (1D f = 1). The iteration is f -Dominating and
the estimates are good, so a decrease occurs in f according to (10). That is,

1{T≤k}1Ik1Jk1D f

ν

ε
( f (X (k+1)∨T

feas ) − f (Xk∨T
feas ))

≤ −1{T≤k}1Ik1Jk1D f ν(γ − 2)(�k
p)

2. (76)

Since the ε-infeasible incumbent is not updated, The value of h is unchanged.
The frame size parameter is updated according to �k+1

p = min{τ−1�k
p, δmax},

thus implying that

1{T≤k}1Ik1Jk1D f (1 − ν)[(�k+1
p )2 − (�k

p)
2]

≤ 1{T≤k}1Ik1Jk1D f (1 − ν)(τ−2 − 1)(�k
p)

2. (77)

Because ν satisfies (19), (58) holds, which implies that the right-hand side of (76)
dominates that of (77), leading to the inequality

1{T≤k}1Ik1Jk1D f (�
T
k+1 − �T

k ) ≤ −1{T≤k}1Ik1Jk1D f

1

2
ν(γ − 2)(�k

p)
2.

(78)

(ii) The iteration is h-Dominating (1Dh = 1). The value of f is unchanged since Xk
feas

is not updated. Thus, the bound on the change in �T
k follows from multiplying

both sides of (59) by 1{T≤k}1Jk , and replacing �k by �T
k . That is,

1{T≤k}1Ik1Jk1Dh (�
T
k+1 − �T

k ) ≤ −1{T≤k}1Ik1Jk1Dh

1

2
ν(γ − 2)(�k

p)
2.

(79)

(iii) The iteration is Improving (1I = 1). Again, the value of f is unchanged. Thus,
the bound on the change in �T

k follows from multiplying both sides of (60) by
1{T≤k}1Jk , and replacing �k by �T

k . That is,

1{T≤k}1Ik1Jk1I(�T
k+1 − �T

k ) ≤ −1{T≤k}1Ik1Jk1I
1

2
ν(γ − 2)(�k

p)
2.

(80)

(iv) The iteration is Unsuccessful (1U = 1). The value of f and h is unchanged since
no incumbent is updated, while �k

p is decreased. Consequently, the bound on

the change in �T
k follows from multiplying both sides of (61) by 1{T≤k}1Jk , and

replacing �k by �T
k . That is,

1{T≤k}1Ik1Jk1U (�T
k+1 − �T

k ) = −1{T≤k}1Ik1Jk1U (1 − ν)(1 − τ 2)(�k
p)

2.

(81)
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Combining (78), (79), (80), (81) and (62) yields

1{T≤k}1Ik1Jk (�
T
k+1 − �T

k ) ≤ −1{T≤k}1Ik1Jk (1 − ν)(1 − τ 2)(�k
p)

2. (82)

The followingholds underAssumption3:E
(
1Ik1Jk |FC ·F

k−1

) ≥ αβ. Then, taking expec-
tations with respect to FC ·F

k−1 on both sides of (82) and using the FC ·F
k−1 -measurability

of the random variables 1{T≤k} and �k
p leads to (75).

Case 2 (Bad estimates and good bounds, 1Ik1 J̄k
= 1). An increase in the difference

of �T
k may occur since good bounds might not provide enough decrease to cancel

the increase which occurs in f whenever Algorithm 2 wrongly accepts an incumbent
due to bad estimates. Specifically, the f -Dominating case dominates the worst-case
increase in the change of �T

k , leading to

1{T≤k}E
[
1Ik1 J̄k

(�T
k+1 − �T

k )|FC ·F
k−1

]
≤ 2ν(1 − β)1/2(�k

p)
21{T≤k}. (83)

(i) The iteration is f -Dominating (1D f = 1). Whenever bad estimates occur and
the iteration is f -Dominating, the change in f is bounded like

1{T≤k}1Ik1 J̄k
1D f

ν

ε
( f (X (k+1)∨T

feas ) − f (Xk∨T
feas ))

≤ 1{T≤k}1Ik1 J̄k
1D f

ν

ε

[
(Fk

s − Fk
0 ) +

∣
∣
∣ f (Xk+1

feas ) − Fk
s

∣
∣
∣ +

∣
∣
∣ f (Xk

feas) − Fk
0

∣
∣
∣
]

≤ 1{T≤k}1Ik1 J̄k
1D f

ν

[
−γ (�k

p)
2 + 1

ε

(∣∣
∣ f (Xk+1

feas ) − Fk
s

∣
∣
∣ +

∣
∣
∣ f (Xk

feas) − Fk
0

∣
∣
∣
)]

(84)

where the last inequality in (84) follows from Fk
s −Fk

0 ≤ −γ ε(�k
p)

2 which is sat-
isfied for every f -Dominating iteration. While the value of h remains unchanged
since Xk

inf is not updated, the change in�k
p follows (77) by replacing 1Jk by 1 J̄k

.
That is,

1{T≤k}1Ik1 J̄k
1D f

(1 − ν)[(�k+1
p )2 − (�k

p)
2] ≤ 1{T≤k}1Ik1 J̄k

1D f
(1 − ν)(τ−2 − 1)(�k

p)
2.

(85)

Then, (84), (85), (19) and the inequality−νγ (�k
p)

2+(1−ν)(τ−2−1)(�k
p)

2 ≤ 0
yield

1{T≤k}1Ik1 J̄k
1D f (�

T
k+1 − �T

k )

≤ 1{T≤k}1Ik1 J̄k
1D f

ν

ε

(∣∣∣ f (Xk+1
feas ) − Fk

s

∣∣∣ +
∣∣∣ f (Xk

feas) − Fk
0

∣∣∣
)

.
(86)
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(ii) The iteration is h-Dominating (1Dh = 1). The bound on the change in�T
k , which

can be obtained by replacing 1Jk by 1 J̄k
in (79), is trivially bounded like

1{T≤k}1Ik1 J̄k
1Dh (�T

k+1 − �T
k )

≤ 1{T≤k}1Ik1 J̄k
1Dh

ν

ε

(∣∣∣ f (Xk+1
feas ) − Fk

s

∣∣∣ +
∣∣∣ f (Xk

feas) − Fk
0

∣∣∣
)

. (87)

(iii) The iteration is Improving (1I = 1). Again, the change in �T
k which can be

obtained by replacing 1Jk by 1 J̄k
in (80), is trivially bounded like

1{T≤k}1Ik1 J̄k
1I (�T

k+1 − �T
k )

≤ 1{T≤k}1Ik1 J̄k
1I

ν

ε

(∣∣∣ f (Xk+1
feas ) − Fk

s

∣∣∣ +
∣∣∣ f (Xk

feas) − Fk
0

∣∣∣
)

. (88)

(iv) The iteration is Unsuccessful (1U = 1). Because of the decrease of the frame
size parameter and hence the decrease in �T

k , the bound on the change in �T
k

follows

1{T≤k}1Ik1 J̄k
1U (�T

k+1 − �T
k )

≤ 1{T≤k}1Ik1 J̄k
1U

ν

ε

(∣∣∣ f (Xk+1
feas ) − Fk

s

∣∣∣ +
∣∣∣ f (Xk

feas) − Fk
0

∣∣∣
)

.
(89)

Then, combining (86), (87), (88) and 1Ik1 J̄k
≤ 1, yields

1{T≤k}1Ik1 J̄k
(�T

k+1 − �T
k )

≤ 1{T≤k}
ν

ε

(∣∣∣ f (Xk+1
feas ) − Fk

s

∣∣∣ +
∣∣∣ f (Xk

feas) − Fk
0

∣∣∣
)

. (90)

Since Assumption 3 holds, it follows from the conditional Cauchy-Schwarz
inequality [20] that

E

(∣∣∣ f (Xk
feas) − Fk

0

∣∣∣ |FC ·F
k−1

)
≤ E

(
1|FC ·F

k−1

)1/2 [
E

(∣∣∣ f (Xk
feas) − Fk

0

∣∣∣
2 |FC ·F

k−1

)]1/2

≤ ε(1 − β)1/2(�k
p)

2, (91)

where (91) follows from (12) and the fact that E
(
1|FC ·F

k−1

) = 1. Similarly,

E

(∣∣∣ f (Xk+1
feas ) − Fk

s

∣∣∣ |FC ·F
k−1

)
≤ ε(1 − β)1/2(�k

p)
2. (92)

Taking expectationswith respect toFC ·F
k−1 on both sides of (90) and then using (91), (92)

and the FC ·F
k−1 -measurability of the random variables 1{T≤k} and �k

p, leads to (83).

Case 3 (Bad bounds, 1 Īk
= 1). The difference in�T

k may increase since even though
good estimates of f values occur, they might not provide enough decrease to cancel

123



722 K. J. Dzahini et al.

the increase in h whenever Algorithm 2 wrongly accepts an incumbent due to bad
bounds. It will be shown that

1{T≤k}E
[
1 Īk

(�T
k+1 − �T

k )|FC ·F
k−1

]
≤ 2ν

[
(1 − α)1/2 + (1 − β)1/2

]
(�k

p)
21{T≤k}.

(93)

(i) The iteration is f -Dominating (1D f = 1). The change in �T
k is bounded, taking

into account the possible increase in f . Since the value of h is unchanged, the
bound on the change in �T

k can be derived from (86) by replacing 1Ik1 J̄k
by 1 Īk

.
That is,

1{T≤k}1 Īk
1D f (�

T
k+1 − �T

k )

≤ 1{T≤k}1 Īk
1D f

ν

ε

(∣∣∣ f (Xk+1
feas ) − Fk

s

∣∣∣ +
∣∣∣ f (Xk

feas) − Fk
0

∣∣∣
)

.
(94)

(ii) The iteration is h-Dominating (1Dh = 1). Since the value of f is unchanged,
the bound on the change in �T

k is obtained by multiplying both sides of (67) by
1{T≤k} and replacing �k by �T

k . That is,

1{T≤k}1 Īk
1Dh (�k+1−�k)≤1{T≤k}1 Īk

1Dh

ν

mε

(∣∣
∣h(Xk+1

inf )−Hk
s

∣
∣
∣+

∣
∣
∣h(Xk

inf)−Hk
0

∣
∣
∣
)

.

(95)

(iii) The iteration is Improving (1I = 1). The frame size parameter is updated as in
h-Dominating iterations and the value of f is unchanged. Thus, the bound on the
change in �T

k follows from (95) by replacing 1Dh by 1I . That is, follows

1{T≤k}1 Īk
1I(�k+1 − �k) ≤ 1{T≤k}1 Īk

1I
ν

mε

(∣∣
∣h(Xk+1

inf ) − Hk
s

∣∣
∣+

∣∣
∣h(Xk

inf)−Hk
0

∣∣
∣
)

.

(96)

(iv) The iteration is Unsuccessful (1U = 1). Because of the decrease of the frame
size parameter and hence the decrease in �T

k , the bound on the change in �T
k is

1{T≤k}1 Īk
1U (�T

k+1 − �T
k )

≤ 1{T≤k}1 Īk
1Uν

[
1

ε

(∣∣∣ f (Xk+1
feas ) − Fk

s

∣∣∣ +
∣∣∣ f (Xk

feas) − Fk
0

∣∣∣
)

+ 1

mε

(∣∣∣h(Xk+1
inf ) − Hk

s

∣
∣∣ +

∣
∣∣h(Xk

inf) − Hk
0

∣
∣∣
)]

(97)
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Since (97) dominates (94), (95) and (96), combining all four cases leads to

1{T≤k}1 Īk
(�T

k+1 − �T
k )

≤ 1{T≤k}1 Īk
ν

[
1

ε

(∣∣
∣ f (Xk+1

feas ) − Fk
s

∣∣
∣ +

∣∣
∣ f (Xk

feas) − Fk
0

∣∣
∣
)

+ 1

mε

(∣∣∣h(Xk+1
inf ) − Hk

s

∣∣∣ +
∣∣∣h(Xk

inf) − Hk
0

∣∣∣
)]

(98)

Taking expectations with respect to FC ·F
k−1 on both sides of (98) and using (15), (91)

and (92) lead to (93). Combining the main results of Case 1, Case 2 and Case 3 of
Part 2, specifically (75), (83) and (93),

1{T≤k}E
[
�T

k+1 − �T
k |FC ·F

k−1

]
≤

[
−αβ(1 − ν)(1 − τ 2) + 2ν(1 − α)1/2

+4ν(1 − β)1/2
]
(�k

p)
21{T≤k}.

(99)

Choosing α and β according to (20) ensures that

−αβ(1 − ν)(1 − τ 2) + 2ν(1 − α)1/2 + 4ν(1 − β)1/2

≤ −1

2
αβ(1 − ν)(1 − τ 2), (100)

and (74) follows from (99) and (100) with the same constant η = 1
2αβ(1−ν)(1− τ 2)

as Part 1, which completes the proof. 
�

Proof of Corollary 4.4

Proof Only (22) is proved but the proof also applies for
∣∣Hk

s − h(Xk + Sk)
∣∣ and∣∣Fk

s − f (Xk + Sk)
∣∣. According to Assumption 3(vi), E

(∣∣Hk
0 − h(Xk)

∣∣ | FC ·F
k−1

) ≤
mε(1 − α)1/2(�k

p)
2, which implies that

E

(∣∣∣Hk
0 − h(Xk)

∣∣∣
)

≤ mε(1 − α)1/2E
[
(�k

p)
2
]
. (101)

By summing each side of (101) over k from 0 to N , and observing that

0 ≤ ShN :=
N∑

k=0

∣
∣∣Hk

0 − h(Xk)

∣
∣∣ ↗

+∞∑

k=0

∣
∣∣Hk

0 − h(Xk)

∣
∣∣ , and 0 ≤ S�

N :=
N∑

k=0

(�k
p)

2 ↗
+∞∑

k=0

(�k
p)

2,
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it follows from the monotone convergence theorem (see e.g. Theorem 1.6.6 in [32])
that

E

⎛

⎝
+∞∑

k=0

∣
∣
∣Hk

0 − h(Xk)
∣
∣
∣

⎞

⎠ = E

(
lim

N→+∞ ShN

)
= lim

N→+∞E

(
ShN

)
=

+∞∑

k=0

E

(∣∣
∣Hk

0 − h(Xk)
∣
∣
∣
)

≤ mε(1 − α)1/2
+∞∑

k=0

E

[
(�k

p)
2
]

= mε(1 − α)1/2 lim
N→+∞E

(
S�
N

)

= mε(1 − α)1/2E

(
lim

N→+∞ S�
N

)
= mε(1 − α)1/2E

⎡

⎣
+∞∑

k=0

(�k
p)

2

⎤

⎦

≤ μ × mε(1 − α)1/2 < +∞,

whereμ is from (54). This means that
+∞∑

k=0

∣∣
∣Hk

0 − h(Xk)

∣∣
∣ < +∞ almost surely, which

implies the first result of (22). The proof for
∣∣Fk

0 − f (Xk)
∣∣ is similar by observing

that (see (91))

E

(∣∣
∣Fk

0 − f (Xk)

∣∣
∣ |FC ·F

k−1

)
≤ ε(1 − β)1/2(�k

p)
2.


�

Proof of Lemma 4.7

Proof The proof uses ideas from [11, 23]. The result is proved by contradiction con-
ditioned on the almost sure event E1 = {�k

p → 0}. All that follows is conditioned
on the event E1. Assume that with nonzero probability, there exists a random variable
E ′ > 0 such that

�h
k ≥ E ′, for all k ∈ N, (102)

that is,

P

({
ω ∈ � : ∃E ′(ω) > 0 such that ∀k ∈ N, �h

k (ω) ≥ E ′(ω)
})

> 0. (103)

Let {xkinf}k∈N, {sk}k∈N, {δkp}k∈N and ε′ > 0 be realizations of {Xk
inf}k∈N, {Sk}k∈N,

{�k
p}k∈N and E ′, respectively for which ψh

k ≥ ε′, for all k ∈ N. Let ẑ be the parameter

ofAlgorithm2 satisfying δkp ≤ τ−ẑ for all k ≥ 0. Since δkp → 0 due to the conditioning
on E1, there exists k0 ∈ N such that

δkp < λ := min

{
ε′

mε(γ + 2)
, τ 1−ẑ

}
, for all k ≥ k0. (104)
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Consequently and since τ < 1, the random variable Rk with realizations rk :=
− logτ

(
δkp
λ

)
satisfies rk < 0 for all k ≥ k0. The main idea of the proof is to show

that such realizations occur only with probability zero, thus leading to a contradiction.
First {Rk}k∈N is shown to be a submartingale. Let k ≥ k0 be an iteration for which the
events Ik and Jk both occur, which happens with probability at least αβ > 1/2. Then,
it follows from the definition of the event Ik (see Definition 3.3) that

h(xkinf) ≤ uk0(x
k
inf) ≤

m∑

j=1

max
{
ckj,0(x

k
inf), 0

}
+ mε(δkp)

2

= hk0(x
k
inf) + mε(δkp)

2, (105)

and h(xkinf + sk) ≥ �ks (x
k
inf + sk) ≥ hks (x

k
inf + sk) − mε(δkp)

2. (106)

Hence, hks (x
k
inf + sk) − hk0(x

k
inf) = [h(xkinf + sk) − h(xkinf)] + [h(xkinf) − hk0(x

k
inf)]

+ [hks (xkinf + sk) − h(xkinf + sk)]
≤ 2mε(δkp)

2 − ε′δkp ≤ 2mε(δkp)
2 − mε(γ + 2)(δkp)

2

= −γmε(δkp)
2

(107)

where the first inequality in (107) follows from (102), (105) and (106) while the last
inequality follows from (104). Consequently, iteration k of Algorithm 2 cannot be
Unsuccessful. Thus, the frame size parameter is updated according to δk+1

p = τ−1δkp

since δkp < τ 1−ẑ . Hence, rk+1 = rk + 1.

Let F I ·J
k−1 = σ(I0, I1, . . . , Ik−1) ∩ σ(J0, J1, . . . , Jk−1). For all other outcomes of

Ik and Jk , which will occur with a total probability of at most 1 − αβ, the inequality
δk+1
p ≥ τδkp always holds, thus implying that rk+1 ≥ rk − 1. Hence,

E

(
1Ik∩Jk (Rk+1 − Rk)|F I ·J

k−1

)
= P

(
Ik ∩ Jk |F I ·J

k−1

)
≥ αβ

and E

(
1Ik∩Jk

(Rk+1 − Rk)|F I ·J
k−1

)
≥ −P

(
Ik ∩ Jk |F I ·J

k−1

)
≥ αβ − 1.

Thus, E
(
Rk+1 − Rk |F I ·J

k−1

) ≥ 2αβ − 1 > 0, implying that {Rk} is a submartingale.
The remainder of the proof is almost identical to that of the proof of the lim inf-type
first-order result in [23].

Next is constructed a randomwalkWk with realizationswk on the same probability
space as Rk , which will serve as a lower bound on Rk . Define Wk as in (14) by

Wk =
k∑

i=0

(2 · 1Ii1Ji − 1), (108)

where the indicator random variables 1Ii and 1Ji are such that 1Ii = 1 if Ii occurs,
1Ii = 0 otherwise, and similarly, 1Ji = 1 if Ji occurs while 1Ji = 0 otherwise. Then
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following the proof of Theorem 3.6, observe that {Wk} is a F I ·J
k−1-submartingale with

bounded (nonzero) increments (and, as such, cannot converge to any finite value;
see also [23] for the same result), thus leading to the conclusion that the event{
lim sup
k→+∞

Wk = +∞
}
occurs almost surely. Since by construction

rk − rk0 = −logτ

(
δkp

δ
k0
p

)

= k − k0 ≥ wk − wk0 ,

then with probability one, Rk is positive infinitely often. Thus, the sequence of real-
izations rk such that rk < 0 for all k ≥ k0 occurs with probability zero. Thus, the
assumption that (103) holds is false. This implies that

P

({
ω ∈ � : ∀E ′(ω) > 0, ∃k ∈ N such that �h

k (ω) < E ′(ω)
})

= 1,

which means that (23) holds. 
�

Proof of Theorem 4.10

Proof The theorem is proved using ideas from [9, 11]. Define the events E1 and E2
by

E1 =
{
ω ∈ � : �k

p(ω) → 0
}

and

E2 =
{
ω ∈ � : ∃K ′(ω) ⊂ N such that limK ′(ω)�

h
k (ω) ≤ 0

}
.

Then E1 and E2 are almost sure due to Corollary 4.3 and (23) respectively. Let ω ∈
E1∩E2 be an arbitrary outcome and note that the event E1∩E2 is also almost sure as a
countable intersectionof almost sure events. Then limK ′(ω) �k

p(ω) = 0. It follows from
the compactness hypothesis ofAssumption2 that there exists K (ω) ⊆ K ′(ω) forwhich
the subsequence {Xk

inf(ω)}k∈K (ω) converges to a limit X̂ inf(ω). Specifically, X̂ inf(ω)

is a refined point for the refining subsequence {Xk
inf(ω)}k∈K (ω). Let v ∈ T H

X (X̂ inf(ω))

be a refining direction for X̂ inf(ω). Denote by V the random vector with realizations
v, i.e., v = V (ω), and let x̂inf = X̂ inf(ω), xkinf = Xk

inf(ω), δkp = �k
p(ω), δkm = �k

m(ω),

ψh
k = �h

k (ω) and K = K (ω). Since v is a refining direction, there exists L ⊆ K and

polling directions dk ∈ D
k
p(x

k
inf) such that v = lim

k∈L
dk‖dk‖∞

. For each k ∈ L, define

tk = δkm

∥∥∥dk
∥∥∥∞ → 0, yk = xkinf + tk

(
dk

∥∥dk
∥∥∞

− v

)

→ x̂inf ,

ak = h(yk + tkv) − h(xkinf)

tk
and bk = h(xkinf) − h(yk)

tk
,
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where the fact that tk → 0 follows from Definition 2.11, specifically the inequality
δkm

∥∥dk
∥∥∞ ≤ δkpb. Since h is λh–locally Lipschitz,

|ak | ≤ λh

tk

∥∥∥(yk + tkv) − xkinf

∥∥∥∞ = λh and

|bk | ≤ λh

tk

∥∥∥xkinf − yk
∥∥∥∞ = λh

∥
∥∥∥∥

dk
∥∥dk

∥∥∞
− v

∥
∥∥∥∥∞

→ 0,

which shows that Lemma 4.9 applies to both subsequences {ak}k∈L and {bk}k∈L.
Moreover, combining the inequality limL ψh

k ≤ 0 and Assumption 6 (the fact that
δkp

∥∥dk
∥∥∞ ≥ dmin > 0), yields

lim
k∈L

(
−ψh

k

δkp

∥∥dk
∥∥∞

)

= lim
k∈L

h(xkinf + δkmd
k) − h(xkinf)

(δkp)
2
∥∥dk

∥∥∞

= lim
k∈L

h(xkinf + δkmd
k) − h(xkinf)

tk
≥ −d−1

min limk∈L
ψh
k ≥ 0,

(109)

where the equality in (109) follows from δkm = (δkp)
2 for sufficiently large k. Thus,

by adding and subtracting h(xkinf) to the numerator of the definition of the Clarke
derivative, and using the fact that xkinf + δkmd

k ∈ X for sufficiently large k ∈ L since
v is a hypertangent direction,

h◦(x̂inf ; v) ≥ lim sup
k∈L

h(yk + tkv) − h(xkinf) + h(xkinf) − h(yk)

tk
= lim sup

k∈L
(ak + bk)

= lim sup
k∈L

ak + lim
k∈L

bk = lim sup
k∈L

h(xkinf + δkmd
k) − h(xkinf)

tk
≥ 0,

where the last inequality follows from (109). Every outcome ω arbitrarily chosen in
E1 ∩ E2 therefore belongs to the event

E3 :=
{
ω ∈ � : ∃K (ω) ⊆ N and ∃X̂ inf (ω) = lim

k∈K (ω)
Xk
inf(ω), X̂ inf (ω) ∈ X , such that

∀V (ω) ∈ T H
X (X̂ inf (ω)), h◦(X̂ inf (ω); V (ω)) ≥ 0

}
,

thus implying that E1 ∩ E2 ⊆ E3. Then the proof is complete since P (E1 ∩ E2) = 1.

�

Proof of Corollary 4.11

Proof The proof is almost identical to the proof of a similar result (Corollary 3.6) in [9].
Recall the sequence K ′ of random variables and the almost sure event E1 ∩ E2 in the
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proof of Theorem 4.10 and let ω ∈ E1 ∩ E2. Following the latter proof, there exists
K (ω) ⊆ K ′(ω) such that limK (ω) Xk

inf(ω) = X̂ inf(ω) = x̂inf . Moreover, it follows
from Theorem 4.10 that h◦(x̂inf ; v) = h◦(X̂ inf(ω); V (ω)) ≥ 0 for a set of refining
directions v which is dense in the closure cl

(
T H
X (x̂inf)

)
of T H

X (x̂inf). Then the proof
is complete by noticing that cl

(
T H
X (x̂inf)

) = TCl
X (x̂inf) wherever T H

X (x̂inf) �= ∅ [50],
with TCl

X (x̂inf) denoting the Clarke tangent cone to X at x̂inf . 
�

Proof of Lemma 4.12

Proof The proof is almost identical to those of Lemma 4.7 and a similar result in [11].
Hence, full details are not provided here again. Unless otherwise stated, all the
sequences, events and constants considered are defined as in the proof of Lemma 4.7.
The result is proved by contradiction and all that follows is conditioned on the almost
sure event E1 ∩ {T < +∞}. Assume that with nonzero probability there exists a
random variable E ′′ > 0 such that

�
f ,T
k ≥ E ′′, for all k ≥ 0. (110)

Let t, {xk∨tfeas}k∈N, {sk}k∈N, {δkp}k∈N and ε′′ > 0 be realizations of T , {Xk∨T
feas }k∈N,

{Sk}k∈N, {�k
p}k∈N and E ′′, respectively for which ψ

f ,t
k ≥ ε′′ for all k ≥ 0. Let

k̄0 ∈ N
∗ be such that

δkp < λ := min

{
ε′′

ε(γ + 2)
, τ 1−ẑ

}
for all k ≥ k̄0. (111)

The key element of the proof is to show that an iteration k ≥ k0 := max{k̄0, t} for
which the events Ik and Jk both occur cannot be Unsuccessful, and hence {Rk} is a
submartingale.

It follows from (110) and (111) that

f (xkfeas + sk) − f (xkfeas) ≤ −ε′′δkp ≤ −(γ + 2)ε(δkp)
2, for all k ≥ k0.

Since Jk occurs,

f ks (xkfeas + sk) − f k0 (xkfeas)

= [ f (xkfeas + sk) − f (xkfeas)] + [ f (xkfeas) − f k0 (xkfeas)]
+[ f ks (xkfeas + sk) − f (xkfeas + sk)]

≤ −(γ + 2)ε(δkp)
2 + 2ε(δkp)

2 = −γ ε(δkp)
2,

which implies that the iteration k ≥ k0 of Algorithm 2 cannot be Unsuccessful. The
rest of the proof follows that of Lemma 4.7. 
�
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Proof of Theorem 4.13

Proof The proof follows from Corollary 4.4 and the assumption limk∈K Hk
0 (Xk∨T

feas ) =
0 almost surely, by observing that for any outcome ω in the almost sure event

E4 :=
{
ω ∈ � : ∀K (ω) ⊆ N, lim

k∈K (ω)

∣∣∣Hk
0 (Xk∨T

feas )(ω) −h(Xk∨T
feas (ω))

∣∣∣ = 0 and

lim
k∈K (ω)

Hk
0 (Xk∨T

feas )(ω) = 0

}
∩ {T < +∞},

the inequalities

h(Xk∨T
feas (ω)) −

∣∣
∣Hk

0 (Xk∨T
feas )(ω)

∣∣
∣ ≤

∣∣
∣h(Xk∨T

feas (ω)) −
∣∣
∣Hk

0 (Xk∨T
feas )(ω)

∣∣
∣
∣∣
∣

≤
∣
∣∣h(Xk∨T

feas (ω)) − Hk
0 (Xk∨T

feas )(ω)

∣
∣∣

and the continuity of y �→ |y|, yield

lim
k∈K (ω)

h(Xk∨T
feas (ω)) ≤ lim

k∈K (ω)

(∣∣
∣h(Xk∨T

feas (ω)) − Hk
0 (Xk∨T

feas )(ω)

∣∣
∣ +

∣∣
∣Hk

0 (Xk∨T
feas )(ω)

∣∣
∣
)

= lim
k∈K (ω)

∣
∣
∣h(Xk∨T

feas (ω))−Hk
0 (Xk∨T

feas )(ω)

∣
∣
∣+

∣
∣
∣∣ lim
k∈K (ω)

Hk
0 (Xk∨T

feas )(ω)

∣
∣
∣∣=0.

This means that

h(X̂feas(ω)) = lim
k∈K (ω)

h(Xk∨T
feas (ω)) = 0 (112)

since h is nonnegative, where the first equality in (112) follows from the continuity of
h in X . Consequently,

P

(
h(X̂feas) = 0

)
= P

(
X̂feas ∈ D

)
= 1.


�

Proof of Theorem 4.14

Proof First, P
(
X̂feas ∈ D

)
= 1 follows from Theorem 4.13. The proof follows from

that of Theorem 4.10, by replacing h by f , x̂inf = X̂ inf(ω) by x̂feas = X̂feas(ω),
xkinf = Xk

inf(ω) by xk∨tfeas = Xk∨T
feas (ω),ψh

k = �h
k (ω) byψ

f ,t
k = �

f ,T
k (ω)with t = T (ω)

and T H
X (·) by T H

D (·), for ω fixed and arbitrarily chosen in the almost sure event
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E1 ∩ E5 ∩ {T < +∞}, where

E5 =
{
ω ∈ � : ∃K (ω) ⊆ N such that X̂feas(ω) = lim

k∈K (ω)
Xk∨T
feas (ω), X̂feas(ω) ∈ D,

lim
k∈K (ω)

�
f ,T
k (ω) ≤ 0 and lim

k∈K (ω)
Hk
0 (Xk∨T

feas )(ω) = 0

}
.


�

Proof of Corollary 4.15

Proof The proof is almost identical to the proof of a similar result (Corollary 3.4) in [9].
Let ω be arbitrarily chosen in the almost sure event E1 ∩ E5 ∩ {T < +∞}. It follows
from Theorem 4.14 that f ◦(x̂feas; v) = f ◦(X̂feas(ω); V (ω)) ≥ 0 for a set of refining
directions v which is dense in the closure of T H

D (x̂feas). Then the proof is complete by
noticing that the closure of the hypertangent cone coincides with the Clarke tangent
cone wherever the hypertangent cone is nonempty [9, 50]. 
�
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