
Mathematical Programming (2023) 198:561–593
https://doi.org/10.1007/s10107-022-01783-x

FULL LENGTH PAPER

Series A

On the optimality of pseudo-polynomial algorithms
for integer programming

Fedor V. Fomin 1 · Fahad Panolan2 ·M. S. Ramanujan3 · Saket Saurabh4

Received: 2 January 2020 / Accepted: 25 January 2022 / Published online: 14 February 2022
© Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2022

Abstract
In the classic Integer ProgrammingFeasibility (IPF) problem, the objective is to decide
whether, for a given m × n matrix A and an m-vector b = (b1, . . . , bm), there is a
non-negative integer n-vector x such that Ax = b. Solving (IPF) is an important step
in numerous algorithms and it is important to obtain an understanding of the precise
complexity of this problem as a function of natural parameters of the input. The classic
pseudo-polynomial time algorithm of Papadimitriou [J. ACM 1981] for instances of
(IPF) with a constant number of constraints was only recently improved upon by
Eisenbrand and Weismantel [SODA 2018] and Jansen and Rohwedder [ITCS 2019].
Jansen and Rohwedder designed an algorithm for (IPF) with running time O(mΔ)m

log(Δ) log(Δ + ‖b‖∞) + O(mn). Here, Δ is an upper bound on the absolute values
of the entries of A. We continue this line of work and show that under the Exponential
Time Hypothesis (ETH), the algorithm of Jansen and Rohwedder is nearly optimal,

by proving a lower bound of no(
m

logm) · ‖b‖o(m)∞ . We also prove that assuming ETH,

(IPF) cannot be solved in time f (m) · (n · ‖b‖∞)
o(m

logm) for any computable function

A preliminary version of the paper appeared in the proceedings of 26th Annual European Symposium on
Algorithms (ESA) 2018. This work is supported by the European Research Council (ERC) via grant
LOPPRE, reference 819416, and the Norwegian Research Council via project MULTIVAL.

B Fahad Panolan
fahad@cse.iith.ac.in

Fedor V. Fomin
fomin@ii.uib.no

M. S. Ramanujan
R.Maadapuzhi-Sridharan@warwick.ac.uk

Saket Saurabh
saket@imsc.res.in

1 Department of Informatics, University of Bergen, Bergen, Norway

2 Department of Computer Science and Engineering, IIT Hyderabad, Sangareddy, India

3 University of Warwick, Coventry, United Kingdom

4 The Institute of Mathematical Sciences, HBNI, Chennai, India

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10107-022-01783-x&domain=pdf
http://orcid.org/0000-0001-6213-8687

562 F. V. Fomin et al.

f . This motivates us to pick up the line of research initiated by Cunningham and
Geelen [IPCO 2007] who studied the complexity of solving (IPF) with non-negative
matrices in which the number of constraints may be unbounded, but the branch-width
of the column-matroid corresponding to the constraint matrix is a constant.We prove a
lower bound on the complexity of solving (IPF) for such instances and obtain optimal
results with respect to a closely related parameter, path-width. Specifically, we prove
matching upper and lower bounds for (IPF) when the path-width of the corresponding
column-matroid is a constant .

Keywords Integer programming · Algorithms and data structures

Mathematics Subject Classification 68W01General topics in the theory of algorithms ·
68Q25 Analysis of algorithms and problem complexity

1 Introduction

In the classic Integer Programming problem, the input is an m × n integer matrix A,
and anm-vector b = (b1, . . . , bm). We consider the feasibility version of the problem,
where the objective is to find a non-negative integer n-vector x (if one exists) such that
Ax = b. Solving this problem, denoted by (IPF), is a fundamental step in numerous
algorithms and it is important to obtain an understanding of the precise complexity of
this problem as a function of natural parameters of the input .

(IPF) is known to be NP-hard [1]. However, there are two classic algorithms due to
Lenstra [16] andPapadimitriou [20] solving (IPF) in polynomial or pseudo-polynomial
time for two important cases when the number of variables and the number of con-
straints are bounded. These algorithms in some sense complement each other.

The algorithm of Lenstra shows that (IPF) is solvable in polynomial time when the
number of variables is bounded. Actually, the result of Lenstra is even stronger: (IPF)
is fixed-parameter tractable parameterized by the number of variables. However, the
running time of Lenstra’s algorithm is doubly exponential in n. Later, Kannan [14]
provided an algorithm for (IPF) running in time nO(n). Deciding whether the running
time nO(n) can be improved to 2O(n) is a long-standing open question.

Our work is motivated by the complexity analysis of the complementary case when
the number of constraints is bounded. (IPF) is NP-hard already form = 1 (the Knap-
sack problem) but solvable in pseudo-polynomial time. In 1981, Papadimitriou [20]
extended this result by showing that (IPF) is solvable in pseudo-polynomial time
on instances for which the number of constraints m is a constant. The algorithm of
Papadimitriou consists of two steps. The first step is combinatorial, showing that if
the entries of A and b are from {0,±1, . . . ,±d}, and (IPF) has a solution, then there
is also a solution which is in {0, 1, . . . , n(md)2m+1}n . The second, algorithmic step
shows that if (IPF) has a solution with the maximum entry at most B, then the prob-
lem is solvable in time O((nB)m+1). Thus the total running time of Papadimitriou’s
algorithm isO(n2m+2 · (md)(m+1)(2m+1)), where d is an upper bound on the absolute
values of the entries of A and b. There was no algorithmic progress on this problem

123

On the optimality of pseudo-polynomial algorithms... 563

until the very recent breakthrough of Eisenbrand andWeismantel [6]. They proved the
following result.

Proposition 1 (Theorem 2.2,Eisenbrand andWeismantel [6]) (IPF) with m×n matrix
A is solvable in time (m · Δ)O(m) · ‖b‖2∞, where Δ is an upper bound on the absolute
values of the entries of A.

Then, Jansen and Rohwedder improved Proposition 1 and gave a matching lower
bound very recently [12].

Proposition 2 (Jansen and Rohwedder [12]) (IPF) with m × n matrix A is solvable in
time O(mΔ)m log(Δ) log(Δ + ‖b‖∞) + O(mn), where Δ is an upper bound on the
absolute values of the entries of A. Assuming the Strong Exponential Time Hypothesis
(SETH), there is no algorithm for (IPF) running in time n f (m)· O(m(Δ+‖b‖∞))m−δ

for any δ > 0, and any computable function f .

Notice that the exponent in the running time of the algorithm in Proposition 2 is
improved to m from O(m) in Proposition 1.

SETH is the hypothesis that CNF-SAT cannot be solved in time (2− ε)nmO(1) on
n-variable m-clause formulas for any constant ε. ETH is the hypothesis that 3-SAT
cannot be solved in time 2o(n) on n-variable formulas. Both ETH and SETH were first
introduced in the work of Impagliazzo and Paturi [10], which built upon earlier work
of Impagliazzo, Paturi and Zane [11].

Notice that it is safe to remove duplicate columns in the input matrix of (IPF). Thus
we can easily get an upper bound of n ≤ (2Δ + 1)m . By using the proximity theorem
of Eisenbrand andWeismantel [6], one can show that given an instance (A, b) of (IPF),
one can construct an equivalent instance (A, b′) of (IPF) in polynomial time such that
||b′||∞ ≤ mΔ · (2mΔ + 1)m . In this work we consider the case of (IPF) when both n
and ‖b‖∞ are much smaller than the above mentioned upper bounds.

One of the natural question that arises fromProposition 2 is whether the exponential
dependence of ‖b‖∞ can be improved significantly at the cost of super polynomial
dependence on n. Our first theorem provides a conditional lower bound indicating that
any significant improvements are unlikely.

Theorem 1 Unless the Exponential Time Hypothesis (ETH) fails, (IPF) with m × n

matrix A cannot be solved in time no(
m

logm) · ‖b‖o(m)∞ even when the constraint matrix
A is non-negative and each entry in any feasible solution is at most 2.

Let us note that since the bound in Theorem 1 holds for a non-negative matrix
A, we can always reduce (in polynomial time) the original instance of the problem
to an equivalent instance where the maximum value Δ in the constraint matrix A
does not exceed ‖b‖∞. Thus Theorem 1 also implies the conditional lower bound

no(
m

logm) · (Δ · ‖b‖∞)o(m). When m = O(n), our bound also implies the lower bound

(n · m)
o(m

logm) · (Δ · ‖b‖∞)o(m). We complement Theorem 1 by turning our focus to
the dependence of algorithms solving (IPF) on m alone, and obtaining the following
theorem.

123

564 F. V. Fomin et al.

Theorem 2 Unless the Exponential Time Hypothesis (ETH) fails, (IPF) with m × n

matrix A cannot be solved in time f (m)·(n ·‖b‖∞)
o(m

logm) for any computable function
f . The result holds even when the constraint matrix A is non-negative and each entry
in any feasible solution is at most 1.

The difference between our first two theorems is the following.AlthoughTheorem1
provides a better dependence on ‖b‖∞, Theorem 2 provides much more information
on how the complexity of the problem depends on m. Since several parameters are
involved in this running time estimation, a natural objective is to study the possible
tradeoffs between them. For instance, consider the

O(mΔ)m log(Δ) log(Δ + ‖b‖∞) time algorithm (Proposition 2) for (IPF). A nat-
ural follow up question is the following. Could it be that by allowing a significantly
worse dependence (a superpolynomial dependence) on n and ‖b‖∞ and an arbitrary
dependence on m, one might be able to improve the dependence on Δ alone? Theo-
rem 2 provides a strong argument against such an eventuality. Indeed, since the lower
bound of Theorem 2 holds even for non-negative matrices, it rules out algorithms with

running time f (m) · Δo(m
logm) · (n · ‖b‖∞)

o(m
logm). Therefore, obtaining a subexponen-

tial dependence of Δ on m even at the cost of a superpolynomial dependence of n
and ‖b‖∞ on m, and an arbitrarily bad dependence on m is as hard as obtaining a
subexponential algorithm for 3-SAT.

We nowmotivate our remaining results. We refer the reader to Fig. 1 for a summary
of our main results. It is straightforward to see that when the matrix A happens to be

Fig. 1 A summary of our lower bound results in comparison with the relevant known upper bound results.
Here, n and m are the number of variables and constraints respectively, pw and bw denote the path-width
and branch-width of the column matroid of A and ‖b‖∞ denotes a bound on the largest absolute value in
b while Δ denotes a bound on the largest absolute value in A

123

On the optimality of pseudo-polynomial algorithms... 565

non-negative, the algorithm of Papadimitriou [20] runs in timeO((n ·‖b‖∞)m+1). Due
to Theorems 1 and 2, the dynamic programming step of the algorithmof Papadimitriou
for (IPF) when the maximum entry in a solution as well as in the constraint matrix is
bounded, is already close to optimal. Consequently, any quest for “faster” algorithms
for (IPF)must be built around the use of additional structural properties of thematrix A.
Cunningham and Geelen [1] introduced such an approach by considering the branch
decomposition of the matrix A. They were motivated by the fact that the result of
Papadimitriou can be interpreted as a result for matrices of constant rank and branch-
width is a parameter which is upper bounded by rank plus one. For a matrix A, the
column-matroid of A denotes the matroid whose elements are the columns of A and
whose independent sets are precisely the linearly independent sets of columns of A.
We postpone the formal definitions of branch decomposition and branch-width till
the next section. For (IPF) with a non-negative matrix A, Cunningham and Geelen
showed that when the branch-width of the column-matroid of A is constant, (IPF) is
solvable in pseudo-polynomial time [1, 18].

Proposition 3 (Cunningham and Geelen [1]) (IPF) with a non-negative m × n matrix
A given together with a branch decomposition of its column matroid of width k, is
solvable in time O((‖b‖∞ + 1)2kmn + m2n).

We analyze the complexity of (IPF) parameterized by the branch-width of A by
making use of SETH

and obtain the following lower bounds.

Theorem 3 Unless SETH fails, (IPF) with a non-negative m × n constraint matrix A
cannot be solved in time f (bw)(‖b‖∞ + 1)(1−ε)bw(mn)O(1) or f (‖b‖∞)(‖b‖∞ +
1)(1−ε)bw(mn)O(1), for any computable function f . Here bw is the branchwidth of
the column matroid of A.

In recent years, SETH has been used to obtain several tight conditional bounds on
the running time of algorithms for various optimization problems on graphs of bounded
treewidth [17]. However, in order to be able to use SETH to prove lower bounds for
(IPF) in combinationwith the branch-width ofmatroids, we have to develop new ideas.

In fact, Theorem 3 follows from stronger lower bounds we prove using the path-
width of A as our parameter of interest instead of the branch-width.

The parameter path-width is closely related to the notion of trellis-width of a linear
code, which is a parameter commonly used in coding theory [9]. For a matrix A ∈
R
m×n , computing thepath-width of the columnmatroid of A is equivalent to computing

the trellis-width of the linear code generated by A. Roughly speaking, the path-width
of the column matroid of A is at most k, if there is a permutation of the columns of
A such that in the matrix A′ obtained from A by applying this column-permutation,
for every 1 ≤ i ≤ n − 1, the dimension of the subspace of Rm obtained by taking the
intersection of the subspace of Rm spanned by the first i columns with the subspace
of Rm spanned by the remaining columns, is at most k − 1.

The value of the parameter path-width is always at least the value of branch-width
and thus Theorem 3 follows from the following theorems.

123

566 F. V. Fomin et al.

Theorem 4 Unless SETH fails, (IPF) with even a non-negativem×n constraint matrix
A cannot be solved in time f (k)(‖b‖∞+1)(1−ε)k(mn)O(1) for any computable function
f and ε > 0, where k is the path-width of the column matroid of A.

Theorem 5 Unless SETH fails, (IPF) with even a non-negativem×n constraint matrix
A cannot be solved in time f (‖b‖∞)(‖b‖∞ + 1)(1−ε)k(mn)O(1) for any computable
function f and ε > 0, where k is the path-width of the column matroid of A.

Although the proofs of both lower bounds have a similar structure, we believe that
there are sufficiently many differences in the proofs to warrant stating and proving
them separately.

Note that although there is still a gap between the upper bound of Cunningham
and Geelen from Proposition 3 and the lower bound provided by Theorem 3, the
lower bounds given in Theorems 5 and 4 are asymptotically tight in the following
sense. The proof of Cunningham and Geelen in [1] actually implies the upper bound
stated in Theorem 6. We provide a self-contained proof in this paper for the reader’s
convenience.

Theorem 6 (IPF) with non-negative m×n matrix A given together with a path decom-
position of its column matroid of width k is solvable in time O((‖b‖∞ + 1)k+1mn +
m2n).

Then by Theorem 4, we cannot relax the (‖b‖∞ + 1)k factor in Theorem 6 even if
we allow in the running time an arbitrary function depending on k, while Theorem 5
shows a similar lower bound in terms of ‖b‖∞ instead of k. Put together the results
imply that no matter howmuch one is allowed to compromise on either the path-width
or the bound on ‖b‖∞, it is unlikely that the algorithm of Theorem 6 can be improved.

The path-width of matrix A does not exceed its rank and thus the number of con-
straints in (IPF). Hence, similar to Proposition 3, Theorem 6 generalizes the result
of Papadimitriou when restricted to non-negative matrices. Also we note that the
assumption of non-negativity is unavoidable (without any further assumptions such as
a bounded domain for the variables) in this setting because (IPF) is NP-hard when the
constraint matrix A is allowed to have negative values (in fact even when restricted
to {−1, 0, 1}) and the branchwidth of the column matroid of A is at most 3. A close
inspection of the instances constructed by Cunningham and Geelen [1] in their NP-
hardness reduction shows that the columnmatroids of the resulting constraint matrices
are in fact direct sums of circuits, implying that even their path-width is bounded by
3.

1.1 Other related works and future research directions

In the conference version of the paper we asked whether the lower bound in Theorem 1
can be improved and this is answered by Knop et al. [15]. They prove that unless the
Exponential Time Hypothesis (ETH) fails, (IPF) with m × n matrix A ∈ {0, 1}m×n

cannot be solved in time 2o(m logm) · (n + ‖b‖∞)o(m). We also note that Ganian et
al. [8] studied the parameterized complexity of (IPF) when parameterized by various
combinations of tw and ‖b‖∞, where tw is the incident treewidth of the input matrix

123

On the optimality of pseudo-polynomial algorithms... 567

A. They gave a complete characterization of parameterized complexity results for
(IPF) with non-negative constraint matrix when parameterized by all combinations
of tw and ‖b‖∞. In particular, they showed that (IPF) with non-negative constraint
matrix is FPT when parameterized by tw and ‖b‖∞.

While our SETH-based lower bounds for (IPF) with non-negative constraint matrix
are tight for the path-width parameterization, there is a “(‖b‖∞+1)k to (‖b‖∞+1)2k”
gap between lower and upper bounds for branch-width parameterization. Closing this
gap is the first natural question.

The proof of Theorem 3 given by Cunningham and Geelen consists of two parts.
The first part bounds the number of potential partial solutions corresponding to any
edge of the branch decomposition tree by (‖b‖∞+1)k . The second part is the dynamic
programming over the branch decomposition using the fact that the number of potential
partial solutions is bounded. The bottleneck in the algorithm of Cunningham and
Geelen is the following subproblem. We are given two vector sets A and B of partial
solutions, each set of size at most (‖b‖∞ + 1)k . We need to construct a new vector set
C of partial solutions, where the set C will have size at most (‖b‖∞ + 1)k and each
vector from C is the sum of a vector from A and a vector from B.

Thus to construct the new set of vectors, one has to go through all possible pairs of
vectors from both sets A and B, which takes time roughly (‖b‖∞ + 1)2k .

A tempting approach towards improving the running time of this particular step
could be the use of fast subset convolution ormatrix multiplication tricks, which work
very well for “join” operations in dynamic programming algorithms over tree and
branch decompositions of graphs [4, 5, 22], see also [3, Chapter 11]. Unfortunately,
we have reason to suspect that these tricks may not help for matrices: solving the
above subproblem in time (‖b‖∞ + 1)(1−ε)2knO(1) for any ε > 0 would imply that
3-SUM is solvable in time n2−ε , which is believed to be unlikely1. Indeed, consider
an equivalent version of 3-SUM, named 3-SUM′, which is defined as follows. Given 3
sets of integers A, B andC each of cardinality n, and the objective is to check whether
there exist a ∈ A, b ∈ B and c ∈ C such that a + b = c. Then, 3-SUM is solvable
in time n2−ε if and only if 3-SUM′ is as well (see Theorem 3.1 in [7]). However, the
problem 3-SUM′ is equivalent to the most time consuming step in the algorithm of
Theorem 3, where the integers in the input of 3-SUM′ can be thought of as length-one
vectors. While this observation does not rule out the existence of an algorithm solving
(IPF) with constraint matrices of branch-width k in time (‖b‖∞ + 1)(1−ε)2knO(1),
it indicates that any interesting improvement in the running time would require a
completely different approach.

1.2 Organization of the paper

The rest of the paper is organized as follows. There are two main technical parts to this
paper. The first part (Sect. 3) is devoted to proving Theorem 1 and Theorem 2 (our ETH
based lower bounds) while the second part (Sect. 4) is devoted to proving Theorem 4
and Theorem 5 (our SETH based lower bounds), and consequently, Theorem 3. For all

1 The 3-SUM problem asks whether a given set of n integers contains three elements that sum to zero.

123

568 F. V. Fomin et al.

our reductions, we begin by giving an overview in order to help the reader (especially
in the SETH based reductions) navigate the technical details in the reductions. We
then prove Theorem 5 in Sect. 4.3 and Theorem 6 in Sect. 5 (completing the results
for constant path-width).

2 Preliminaries

Weassume that the reader is familiarwith basic definitions from linear algebra,matroid
theory and graph theory.

2.1 Notations

We use Z≥0 and R to denote the sets of non negative integers and real numbers,
respectively. For a positive integern and anon-negative integerm,weuse [n] and [m, n]
to denote the sets {1, . . . , n} and {m,m+1, . . . , n}, respectively. For convenience, we
say that [0] = ∅. For any two vectors b, b′ ∈ R

m and i ∈ [m], we use b[i] to denote
the i th coordinate of b and we write b′ ≤ b, if b′[i] ≤ b[i] for all i ∈ [m]. We often
use 0 to denote the zero-vector whose length will be clear from the context. For a
matrix A ∈ R

m×n , I ⊆ [m] and J ⊆ [n], A[I , J] denote the submatrix of A obtained
by the restriction of A to the rows indexed by I and columns indexed by J . For an
m × n matrix A and n-vector v, we can write Av = ∑n

i=1 Aiv[i], where Ai is the i th

column of A. Here we say that v[i] is a multiplier of column Ai . For convenience, in
this paper, we consider 0 as an even number .

2.2 Branch-width of matroids

The notion of the branch-width of graphs, and implicitly of matroids, was introduced
by Robertson and Seymour in [21]. Let M = (U ,F) be a matroid with universe set
U and family F of independent sets overU . We use rM to denote the rank function of
M . That is, for any S ⊆ U , rM (S) = maxS′⊆S,S′∈F |S′|. For X ⊆ U , the connectivity
function of M is defined as

λM (X) = rM (X) + rM (U \ X) − rM (U) + 1

For a matrix A ∈ R
m×n , we use M(A) to denote the column-matroid of A. In

this case the connectivity function λM(A) has the following interpretation. For E =
{1, . . . , n} and X ⊆ E , we define

S(A, X) = span(A|X) ∩ span(A|E \ X),

where A|X is the set of columns of A restricted to X and span(A|X) is the subspace
of Rm spanned by the columns A|X . It is easy to see that the dimension of S(A, X) is
equal to λM(A)(X) − 1.

123

On the optimality of pseudo-polynomial algorithms... 569

A tree is cubic if its internal vertices all have degree 3. A branch decomposition
of a matroid M with universe set U is a cubic tree T and a mapping μ which maps
elements of U to leaves of T . Let e be an edge of T . Then the forest T − e consists
of two connected components T1 and T2. Thus every edge e of T corresponds to the
partitioning of U into two sets Xe and U \ Xe such that μ(Xe) are the leaves of T1
and μ(U \ Xe) are the leaves of T2. The width of an edge e is λM (Xe) and the width
of a branch decomposition (T , μ) is the maximum edge width, where the maximum
is taken over all edges of T . Finally, the branch-width of M is the minimum width
taken over all possible branch decompositions of M .

The path-width of a matroid is defined as follows. Recall that a caterpillar is a
tree which is obtained from a path by attaching leaves to some vertices of the path.
Then the path-width of a matroid is the minimum width of a branch decomposition
(T , μ), where T is a cubic caterpillar. Let us note that every mapping of elements
of a matroid to the leaves of a cubic caterpillar corresponds to an ordering of these
elements. Jeong, Kim, and Oum [13] gave a constructive fixed-parameter tractable
algorithm to construct a path decomposition of width at most k for a column matroid
of a given matrix.

2.3 ETH and SETH

For q ≥ 3, let δq be the infimum of the set of constants c for which there exists
an algorithm solving q-SAT with n variables and m clauses in time 2cn · mO(1).
The Exponential-Time Hypothesis (ETH) and Strong Exponential-Time Hypothesis
(SETH) are then formally defined as follows. ETH conjectures that δ3 > 0 and SETH
that limq→∞ δq = 1.

3 ETH lower bounds on pseudopolynomial solvability of (IPF)

In this section we prove Theorems 1 and 2.

3.1 Proof of Theorem 1

Theorem 1 Unless the Exponential Time Hypothesis (ETH) fails, (IPF)with m × n

matrix A cannot be solved in time no(
m

logm) · ‖b‖o(m)∞ even when the constraint matrix
A is non-negative and each entry in any feasible solution is at most 2.

Our proof is by a reduction from3- CNF SAT to (IPF). There are exactly 2 variables
in the (IPF) instance for each variable (one for each literal) and clause. For each
clause we define two constraints. For each variable in the 3-CNF formula, we have a
constraint, which is a selection gadget.

We now proceed to the formal description of the reduction. From a 3- CNF formula
ψ on n variables andm clauses we create an equivalent (IPF) instance Aψ x = bψ, x ≥
0, where Aψ is a non-negative integer (2m + n) × 2(m + n) matrix and the largest
entry in bψ is 3. Our reduction can be easily seen to be a polynomial time reduction

123

570 F. V. Fomin et al.

and we do not give an explicit analysis. Let ψ be the input of 3- CNF SAT. Let
X = {x1, . . . , xn} be the set of variables in ψ and C = {C1, . . . ,Cm} be the set of
clauses in ψ . First we define the set of variables in the in the (IPF) instance. For each
xi ∈ X , we have two variables xi and xi in the (IPF) instance Aψ x = bψ, x ≥ 0. For
each Ci ∈ C, we have two variables Yi and Zi .

Nowwe define the set of constraints of Aψ x = bψ, x ≥ 0. For eachCi = x∨ y∨ z,
we define two constraints

x + y + z + Yi = 3 and (1)

Yi + Zi = 2. (2)

For each i ∈ [n], xi + xi = 1 (3)

This completes the construction of (IPF) instance Aψ x = bψ, x ≥ 0. See Fig. 2 for
an illustration. We now argue that this reduction correctly maps satisfiable 3-CNF
formulas to feasible instances of (IPF) and vice versa.

Lemma 1 The formula ψ is satisfiable if and only if Aψ x = bψ, x ≥ 0 is feasible.

Proof Suppose that the formula ψ is satisfiable and let φ be a satisfying assignment
of ψ . We set values for the variables {xi , xi : i ∈ [n]} ∪ {Yi , Zi : i ∈ [m]} and prove
that Aψ x = bψ . For any i ∈ [n], if φ(xi) = 1 we set xi = 1 and xi = 0. Otherwise,
we set xi = 0 and xi = 1.

For every i ∈ [m], we define

Yi =
⎧
⎨

⎩

0 if the number of literals set to 1 in Ci by φ is 3,
1 if the number of literals set to 1 in Ci by φ is 2,
2 otherwise,

(4)

and

Zi = 2 − Yi =
⎧
⎨

⎩

2 if the number of literals set to 1 in Ci by φ is 3,
1 if the number of literals set to 1 in Ci by φ is 2,
0 otherwise.

(5)

Fig. 2 An illustration of the matrix Aψ corresponding to the 3-CNF formula ψ = (x1 ∨ x2 ∨ x3) ∧ (x̄1 ∨
x̄2 ∨ x3) ∧ (x̄4 ∨ x̄2 ∨ x̄3). The unfilled cells have 0 as the entry

123

On the optimality of pseudo-polynomial algorithms... 571

Wenow proceed to prove that the above substitution of values to the variables is indeed
a feasible solution. Towards this, we need to show that (1), (2), and (3) are satisfied.
First consider (1). Let Ci = x ∨ y ∨ z. Since φ is a satisfying assignment, we have
that 1 ≤ x + y + z ≤ 3. Thus, by (4), we conclude that x + y + z + Yi = 3. Because
of (4),

(2) is satisfied. Since the values for {xi , xi : i ∈ [n]} is derived from an assignment
φ, (3) is satisfied.

For the converse direction of the statement of the lemma, suppose that there exists
non-negative values for the set of variables {xi , xi : i ∈ [n]} ∪ {Yi , Zi : i ∈ [m]}, such
that (1), (2), and (3) are satisfied. Now we need to show that ψ is satisfiable. Because
of (3), we know that exactly one of xi and xi is set to one and other is set to zero.
Next, we define an assignment φ and prove that φ is a satisfying assignment for ψ .
For i ∈ [n] we define

φ(xi) =
{
1 if xi = 1,
0 if xi = 1.

We claim that φ satisfies all the clauses. Consider a clause C j = x ∨ y ∨ z where
j ∈ [m]. Since Y j + Z j = 2 (by (2)), we have that Yi ∈ {0, 1, 2}. Since Yi ∈ {0, 1, 2},
by (1), at least one of x, y or z is set to one. This implies that φ satisfies C j . This
completes the proof of the lemma. ��

By (2) and (3), for any satisfying assignment φ, any variable w ∈ {xi , xi : i ∈ [n]},
and any variable W ∈ {Yi , Zi : i ∈ [m]}, we have that φ(w) ≤ 1 and W ≤ 2. The
following lemma completes the proof of the theorem.

Lemma 2 If there is an algorithm for (IPF) running in time no(
m

logm)‖b‖o(m)∞ , then ETH
fails.

Proof By the Sparsification Lemma [11], we know that 3- CNF SAT on n′ variables
and cn′ clauses, where c is a constant, cannot be solved in time 2o(n

′) time. Suppose

there is an algorithm ALG for (IPF) running in time no(
m

logm)‖b‖o(m)∞ . Then for a 3-CNF
formula ψ with n′ variables and m′ = cn clauses we create an instance Aψ x = bψ,

x ≥ 0 of (IPF) as discussed in this section, in polynomial time, where Aψ is a matrix
of dimension (2cn′ + n′) × (2(n′ + cn′)) and the largest entry in bψ is 3. Then by
Lemma 1, we can run ALG to test whether ψ is satisfiable or not. This takes time

(2(cn′ + n′))o(
2cn′+n′)

log(2cn′+n′)) · 3o(2cn′+n′) = 2o(n
′),

hence refuting ETH. ��

3.2 Proof of Theorem 2

In this section we prove the following theorem.
Theorem 2 Unless the Exponential Time Hypothesis (ETH) fails, (IPF)with m × n

matrix A cannot be solved in time f (m)·(n ·‖b‖∞)
o(m

logm) for any computable function

123

572 F. V. Fomin et al.

Fig. 3 An illustration of an instance of Partitioned Subgraph Isomorphism

f . The result holds even when the constraint matrix A is non-negative and each entry
in any feasible solution is at most 1.

Towards proving Theorem 2 we use the ETH based lower bound result of Marx
[19] for Partitioned Subgraph Isomorphism. For two graphs G and H , a map
φ : V (G) �→ V (H) is called a subgraph isomorphism from G to H , if φ is injective
and for any {u, v} ∈ E(G), {φ(u), φ(v)} ∈ E(H) (see Fig. 3 for an illustration).

Partitioned Subgraph Isomorphism

Input: Two graphs G, H , a bijection cG : V (G) �→ [�] and a function
cH : V (H) �→ [�], where � = |V (G)|.
Question: Is there a subgraph isomorphism φ from G to H such that for any
v ∈ V (G), cG(v) = cH (φ(v))?

Lemma 3 (Corollary 6.3 [19]) If Partitioned Subgraph Isomorphism can be

solved in time f (G)no(
k

log k), where f is an arbitrary function, n = |V (H)| and k
is the number of edges of the smaller graph G, then ETH fails.

To prove Theorem 2 we give a polynomial time reduction from Partitioned

Subgraph Isomorphism to (IPF) such that for every instance (G, H , cG , cH) of
Partitioned Subgraph Isomorphism the reduction outputs an instance of (IPF)
where the constraint matrix has dimension O(|E(G)|) × O(|E(H)|) and the largest
value in the target vector is max{|E(H)|, |V (H)|}.

Let (G, H , cG , cH) be an instance of Partitioned Subgraph Isomorphism.
Let k = |E(G)| and n = |V (H)|. We construct an instance Ax = b of (IPF) from
(G, H , cG , cH) in polynomial time. Without loss of generality we assume that [n] =
V (H) and that there are no isolated vertices in G. Hence, the number of vertices in
G is at most 2k. Let m = |E(H)|. For each e ∈ E(H) we assign a unique integer
from [m]. Let α : E(H) �→ [m] be the bijection which represents the assignment
mentioned above. For any i, j ∈ [�], we use EH (i, j) as a shorthand for the set
of edges of H between c−1

H (i) and c−1
H (j). Finally, for ease of presentation we let

{v1, . . . , v�} = V (G) and cG(vi) = i for all i ∈ [�], where � = |V (G)|.

123

On the optimality of pseudo-polynomial algorithms... 573

For illustrative purposes, before proceeding to the formal construction, we give
an informal description of the (IPF) instance we obtain from a specific instance of
Partitioned Subgraph Isomorphism. Let H and G be the graphs in Fig. 3 and
consider the graph Ĥ obtained from H as depicted in Fig. 4.

For every color i ∈ [�] we have a column in Ĥ and for every pair of distinct colors
i, j ∈ [�] such that {vi , v j } ∈ E(G), we have a copy of c−1

H (i) in Column i and Row
i and a copy of c−1

H (i) in Column i and Row j . Thus, Column i comprises at most �
copies of the vertices of H whose image under cH is i and Row i comprises a copy
of c−1

H (i) and additionally, a copy of every vertex u of H such that vcH (u) is adjacent
to vi in G. That is, the color of u is “adjacent” to the color i in G.

For a vertex u ∈ V (H), we refer to the unique copy of u in the i th row as the i th

copy of u in Ĥ . For every edge e = {a, b} ∈ E(H) where cH (a) = i , cH (b) = j ,
and {vi , v j } ∈ E(G), we have two copies of e in Ĥ . The first copy of e has as its
endpoints, the i th copy of a and the i th copy of b and the second copy of e has as its
endpoints, the j th copy of a and the j th copy of b. We now rephrase the Partitioned
Subgraph Isomorphism problem (informally) as a problem of finding a certain type
of subgraph in Ĥ , which in turn will point us in the direction of our (IPF) instance in a
natural way. The rephrased problem statement is the following. Given G, H , cH , cG ,
and the resulting auxiliary graph Ĥ , find a set of 2|E(H)| edges in Ĥ such that the
following properties hold.

– (Selection) For every {vi , v j } ∈ E(G), we pick a unique edge in Ĥ with one
endpoint in (Row i , Column i) and the other endpoint in (Row i , Column j) and
we pick a unique edge with one endpoint in (Row j , Column j) and the other
endpoint in (Row j , Column i).

– (Consistency 1) All the edges we pick from Row i of Ĥ share a common endpoint
at the position (Row i , Column i).

– (Consistency 2) For any edge e = {a, b} ∈ E(H) such that cH (a) = i , cH (b) = j ,
if the copy of e in Row i is selected in our solution then our solution contains the
copy of e in Row j as well.

It is straightforward to see that a set of edges of Ĥ which satisfy the stated properties
imply a solution to ourPartitioned Subgraph Isomorphism instance in an obvious
way. In order to obtain our (IPF) instance, we create a variable for every edge in Ĥ
(or 2 for every edge in E(H)) and encode the properties stated above in the form of
constraints. We now formally define the (IPF) instance output by our reduction.

The set of variables x of the (IPF) instance is

{x({a, b}, cH (a), cH (b)) : {a, b} ∈ E(H)} .

Notice that for any edge {a, b} ∈ E(H), there exist an associated pair of variables,
namely x({a, b}, cH (a), cH (b)) and x({a, b}, cH (b), cH (a)). Thus the dimension of x
is upper bounded by 2|E(H)| = 2m. Recall that {v1, . . . , v�} = V (G) and cG(vi) = i
for all i ∈ [�], where � = |V (G)|. For each vi ∈ V (G) we define 2dG(vi) − 1 many
constraints as explained below. Let r = dG(vi) and NG(vi) = {v j1, . . . , v jr }. The

123

574 F. V. Fomin et al.

Fig. 4 An illustration of the auxiliary graph Ĥ capturing the representation of the vertices and some edges
of H

constraints for vi ∈ V (G) are the following. For all q ∈ [r],
∑

e∈EH (i, jq)

x(e, i, jq) = 1

(6)

The constraints of the form above enforce the (Selection) property described in our
informal summary.

For all q ∈ [r − 1],
∑

{a,b}∈EH (i, jq)

a∈c−1
H (i)

a · x({a, b}, i, jq) +
∑

{a,b′}∈EH (i, jq+1)

a∈c−1
H (i)

(n − a) · x({a, b′}, i, jq+1) = n

(7)

The constraints of the form above together enforce the (Consistency 1) property
described in our informal summary.

For each {vi , v j } ∈ E(G) with i < j , we define the following constraint in the
(IPF) instance.

∑

{a,b}∈EH (i, j)
a∈c−1

H (i)

α({a, b}) · x({a, b}, i, j) +
∑

{a,b}∈EH (i, j)
b∈c−1

H (j)

(m − α({a, b}))

· x({a, b}, j, i) = m

(8)

The constraints of the form above together enforce the (Consistency 2) property
described in our informal summary.

123

On the optimality of pseudo-polynomial algorithms... 575

This completes the construction of the (IPF) instance Ax = b, x ≥ 0. Notice that
the construction of instance Ax = b, x ≥ 0 can be done in polynomial time. Clearly,
the number of rows in A is |E(G)| + ∑

v∈V (G) 2dG(v) − 1 ≤ 5k and number of
columns in A is 2m. Now we prove the correctness of the reduction.

Lemma 4 (G, H , cG , cH) is a Yes instance of Partitioned Subgraph Isomor-

phism if and only if Ax = b, x ≥ 0 is feasible. Moreover, if Ax = b, x ≥ 0 is feasible,
then for any solution x∗, each entry of x∗ belongs to {0, 1}.
Proof Suppose (G, H , cG , cH) is a Yes instance of Partitioned Subgraph Iso-

morphism. Let φ : V (G) �→ V (H) be a solution to (G, H , cG , cH). Now we define a
solution x∗ ∈ {0, 1}2m to the instance Ax = b, x ≥ 0 of (IPF). We know that for each
edge {vi , v j } ∈ E(G), {φ(vi), φ(v j)} ∈ E(H). For each edge {vi , v j } ∈ E(G), we
set x∗({φ(vi), φ(v j)}, i, j) = x∗({φ(vi), φ(v j)}, j, i) = 1. For every other variable,
we set its value to 0. Now we prove that Ax∗ = b.

Towards that first consider (6). Fix a vertex vi ∈ V (G) and v jq ∈ NG(vi). Since
{vi , v jq } ∈ E(G), x∗({φ(vi), φ(v jq)}, i, jq) = 1.Moreover, sinceG is a simple graph,
for any edge e ∈ EH (i, jq) \ {{φ(vi), φ(v jq)}}, x∗(e, i, jq) = 0. This implies that
(6) is satisfied by x∗. Next we consider (7). Fix a vertex vi ∈ V (G). Let NG(vi) =
{v j1, . . . , v jr }. Also, fix q ∈ [r − 1]. We know that {vi , v jq }, {vi , v jq+1} ∈ E(G). By
the definition of x∗, we have that x∗(e, i, jq) = 1 if and only if e = {φ(vi), φ(v jq)}
and x∗(e′, i, jq+1) = 1 if and only if e′ = {φ(vi), φ(v jq+1)}. Thus we have that

∑

{a,b}∈EH (i, jq)

a∈c−1
H (i)

a · x({a, b}, i, jq) +
∑

{a,b′}∈EH (i, jq+1)

a∈c−1
H (i)

(n − a) · x({a, b′}, i, jq+1)

= φ(vi) + (n − φ(vi)) = n

That is, x∗ satisfies (7). Now we consider (8). Fix an edge {vi , v j } ∈ E(G) where
i < j . Again by the definition of x∗, we have that x∗(e, i, j) = 1 if and only if
e = {φ(vi), φ(v j)} and x∗(e, j, i) = 1 if and only if e = {φ(vi), φ(v j)}. This implies
that (8) is satisfied by x∗. Therefore Ax = b, x ≥ 0 is feasible.

Now we prove the converse direction of the lemma. Suppose that Ax = b, x ≥ 0
is feasible and let x ′ ∈ Z

2m≥0 be a solution.

Claim Let i, j ∈ [�] such that i �= j and {vi , v j } ∈ E(G). Then there exists exactly
one edge e ∈ EH (i, j) such that x ′(e, i, j) = x ′(e, j, i) = 1. Moreover, for any
e′ ∈ EH (i, j) \ {e}, x ′(e′, i, j) = x ′(e′, j, i) = 0.

Proof By (6), we have that there exists exactly one edge e1 ∈ EH (i, j) such that
x ′(e1, i, j) = 1 and for all other edges h ∈ EH (i, j) \ {e1}, x ′(h, i, j) = 0. Again by
(6), we have that there exists exactly one edge e2 ∈ EH (i, j) such that x ′(e2, j, i) = 1
and for all other edges h ∈ EH (i, j) \ {e2}, x ′(h, j, i) = 0. By (8), we have that
e1 = e2. This completes the proof of the claim. ��

Now we define an injection φ : V (G) �→ V (H) and prove that indeed φ is a
subgraph isomorphism fromG to H . For any i, j ∈ [�]with i �= j and {vi , v j } ∈ E(G)

123

576 F. V. Fomin et al.

consider the edge e = {a, b} ∈ EH (i, j) such that x ′({a, b}, i, j) = x ′({a, b}, j, i) =
1 (by Claim 3.2, there exists exactly one such edge in EH (i, j)). Let a ∈ c−1

H (i) and
b ∈ c−1

H (j). Now we set φ(vi) = a and φ(v j) = b. We claim that φ is well defined.
Fix a vertex vi ∈ V (G). Let r = dG(vi) and NG(vi) = {v j1, . . . , v jr }. By Claim 3.2,
we know that for any q ∈ [r], there exists exactly one edge {aq , bq} ∈ EH (i, j) such
that x ′({aq , bq}, i, jq) = x ′({aq , bq}, jq , i) = 1. Here, aq ∈ c−1

H (i) and bq ∈ c−1
H (jq).

To prove that φ is well defined, it is enough to prove that a1 = a2 = . . . = ar = φ(vi).
By (7), we have that for any q ∈ [r − 1], aq = aq+1. Also since x ′({aq , bq}, i, jq) =
x ′({aq , bq}, jq , i) = 1 for all q ∈ [r], we have that a1 = a2 = . . . = ar = φ(vi).
From the construction of φ, we have that for any i, j ∈ [�], i �= j , φ(vi) ∈ c−1

H (i) and
φ(v j) ∈ c−1

H (j). Moreover, c−1
H (i) ∩ c−1

H (j) = ∅. This implies that φ is an injective
map.

Now we prove that φ is an isomorphism from G to H . Since φ(vi) ∈ c−1
H (i) for

all i ∈ [�], to prove that φ is an isomorphism, it is enough to prove that for any edge
{vi , v j } ∈ V (G), {φ(vi), φ(v j)} ∈ E(H). Fix an edge {vi , v j } ∈ V (G)with i < j . By
Claim 3.2, there exists exactly one edge {a, b} ∈ EH (i, j) such that x ′({a, b}, i, j) =
x ′({a, b}, j, i) = 1, where a ∈ c−1

H (i) and b ∈ c−1
H (j). From the definition of φ, we

have that φ(vi) = a and φ(v j) = b. That is, {φ(vi), φ(v j)} = {a, b} ∈ E(H).
By Claim 3.2, we conclude that if Ax = b, x ≥ 0 is feasible, then for any solution

x∗, each entry of x∗ belongs to {0, 1}. This completes the proof of the lemma. ��

Proof of Theorem 2 Let (G, H , cG , cH) be an instance of Partitioned Subgraph

Isomorphism. Let Ax = b, x ≥ 0 be the instance of (IPF) constructed from
(G, H , cG , cH) as mentioned above. We know that the construction of Ax = b, x ≥ 0
takes time polynomial in n, where n = |V (H)|. Also, we know that the number of rows
and columns in A is ≤ 5|E(G)| and 2|E(H)|, respectively. Moreover, the maximum
entry in b is max{|V (H)|, |E(H)|}.

Suppose there is an algorithmA for (IPF), running in time f (m′)(n′ ·d ′)o
(

m′
logm′

)

on
instances where the constraint matrix is non-negative and is of dimensionm′ ×n′, and
the maximum entry in the target vector is d ′. Then, by running A on Ax = b, x ≥ 0
and applying Lemma 4, we solve Partitioned Subgraph Isomorphism in time

f (G)n
o
(

k
log k

)

. Thus by Lemma 3, ETH fails. This completes the proof of the theorem.
��

4 Path-width parameterization: SETH bounds

In this section we prove Theorems 4 and 5.

4.1 Overview of our reductions

We prove Theorems 4 and 5 by giving reductions from CNF- SAT. At this point, one
might be tempted to start the reduction from k- CNF SAT as seen in [2]. However, the
fact that in our casewe also need to control the path-width of the reduced instance poses

123

On the optimality of pseudo-polynomial algorithms... 577

serious technical difficulties if onewere to take this route. Therefore,we take a different
route and reduce from CNF- SAT which allows us to construct appropriate gadgets
for propagation of consistency in our instance while simultaneously controlling the
path-width. Moreover, the parameters in the reduced instances are required to obey
certain strict conditions. For example, the reduction we give to prove Theorem 4 must
output an instance of (IPF), where the path-width of the column matroid M(A) of the
constraint matrix A is a constant. Similarly, in the reduction used to prove Theorem 5,
we need to construct an instance of (IPF) where the largest entry in the target vector is
upper bounded by a constant. These stringent requirements on the parametersmake the
SETH-based reductions quite challenging. However, reductions under SETH can take
super polynomial time—they can even take 2(1−ε)n time for some ε > 0, where n is the
number of variables in the instance of CNF- SAT. This freedom to avail exponential
time in SETH-based reductions is used crucially in the proofs of Theorems 4 and 5.

Now we give an overview of the reduction used to prove Theorem 4. Let ψ be an
instance of CNF- SAT with n variables and m clauses. Given ψ and a fixed constant
c ≥ 2, we construct an instance A(ψ,c)x = b(ψ,c), x ≥ 0 of (IPF) satisfying certain
properties. Since for every c ≥ 2, we have a different A(ψ,c) and b(ψ,c), this can be
viewed as a family of instances of (IPF). In particular our main technical lemma is the
following.

Lemma 5 Let ψ be an instance of CNF- SAT with n variables and m clauses. Let
c ≥ 2 be a fixed integer. Then, in time O(m22

n
c), we can construct an instance

A(ψ,c)x = b(ψ,c), x ≥ 0, of (IPF) with the following properties.

(a.) ψ is satisfiable if and only if A(ψ,c)x = b(ψ,c), x ≥ 0 is feasible.

(b.) The matrix A(ψ,c) is non-negative and has dimension O(m) × O(m2
n
c).

(c.) The path-width of the column matroid of A(ψ,c) is at most c + 4.
(d.) The largest entry in b(ψ,c) is at most 2� n

c � − 1.

Once we have Lemma 5, the proof of Theorem 4 follows from the following obser-
vation: if we have an algorithmA solving (IPF) in time f (k)(‖b‖∞ + 1)(1−ε)k(mn)a

for some ε, a > 0, then we can use this algorithm to refute SETH, where k is the
path-width of the column matroid of the input matrix. In particular, given an instance
ψ of CNF- SAT, we choose an appropriate c depending only on ε and a, construct an
instance A(ψ,c)x = b(ψ,c), x ≥ 0, of (IPF), and runA on it. Our careful choice of cwill
imply a faster algorithm for CNF- SAT, refuting SETH. More formally, we choose c
to be an integer such that (1− ε)+ 4(1−ε)

c + a
c < 1. Then the total running time to test

whether ψ is satisfiable, is the time require to construct A(ψ,c)x = b(ψ,c), x ≥ 0 plus
the time required by A to solve the constructed instance of (IPF). That is, the time
required to test whether ψ is satisfiable is

O(m22
n
c) + f (c + 4)2

n
c (1−ε)(c+4)2

a·n
c mO(1) = 2

(
(1−ε)+ 4(1−ε)

c + a
c

)
n
mO(1)

= 2ε′nmO(1),

where ε′ < 1 is a constant depending on the choice of c. It is important to note that
the utility of the reduction described in Lemma 5 is extremely sensitive to the value of

123

578 F. V. Fomin et al.

(a)
(b)

Fig. 5 Comparison of A(ψ,c) with a low path-width matrix

the numerical parameters involved. In particular, even when the path-width blows up
slightly, say up to δc, or when the largest entry in b(ψ,c) blows up slightly, say up to
2δ n

c , for some δ > 1, then the calculation above will not give us the desired refutation
of SETH. Thus, the challenging part of the reduction described in Lemma 5 is making
it work under these strict restrictions on the relevant parameters.

As stated in Lemma 5, in our reduction, we need to obtain a constraint matrix with
small path-width. An important first step towards this is understanding what a matrix
of small path-width looks like. We first give an intuitive description of the structure
of such matrices. Let A be a m × n matrix of small path-width and let M(A) be the
column matroid of A. For any i ∈ {1, . . . , n − 1}, recall that A|{1, . . . i} is the set of
columns (or vectors) in A whose index is at most i (that is, the first i columns) and
A|{i + 1, . . . n} is the set of columns with index strictly greater than i . The path-width
of M(A) is at most

max
i

dim〈span(A|{1, . . . , i}) ∩ span(A|{i + 1, . . . , n})〉 + 1.

Hence, in order to obtain a bound on the pathwidth, it is sufficient to bound
dim〈span(A|{1, . . . , i}) ∩ span(A|{i + 1, . . . , n})〉 for every i ∈ [n]. Consider for
example, the matrix B given in Fig. 5a. The path-width of M(B) is clearly at most
1. In our reduced instance, the constructed constraint matrix A(ψ,c) will be an appro-
priate extension of B. That is A(ψ,c) will have the “same form” as B but with each 1
replaced by a submatrix of order O(c) × n′ for some n′. See Fig. 5b for a pictorial
representation of A(ψ,c).

The construction used in Lemma 5 takes as input an instance ψ of CNF- SAT with
n variables and a fixed integer c ≥ 2, and outputs an instance A(ψ,c)x = b(ψ,c), x ≥
0, of (IPF), that satisfies all four properties of the lemma. Let X denote the set of
variables in the input CNF-formula ψ = C1 ∧ C2 ∧ . . . ∧ Cm . For the purposes of
the present discussion we assume that c divides n. We partition the variable set X
into c blocks X0, . . . , Xc−1, each of size n

c . Let Xi , i ∈ {0, . . . , c − 1}, denote the
set of assignments of variables corresponding to Xi . Set � = n

c and L = 2�. Clearly,

123

On the optimality of pseudo-polynomial algorithms... 579

the size of Xi is upper bounded by 2
n
c = 2� = L . We denote the assignments in Xi

by φ0(Xi), φ1(Xi), . . . , φL−1(Xi). To construct the matrix A(ψ,c), we view each of
these assignments as a different assignment for each clause. In other words we have
separate sets of variables in the constraints corresponding to different pairs (Cr , Xi),
where Cr is a clause and Xi is a block in the partition of X . That is for each clause
Cr and block Xi , we have variables {yCr ,i,a a ∈ [0, 2L − 1] }. In other words for
each Cr and assignment φa(Xi), a ∈ [0, L − 1], we have two variables yCr ,i,2a and
yCr ,i,2a+1. For any clause Cr , i ∈ [0, c− 1] and a ∈ [0, 2L − 1], assigning value 1 to
yC,i,a corresponds to choosing an assignment φ� a

2 �(Xi) for Xi . In our reduction we
will create the following set of constraints.

∑

i∈[c],a∈[0,2L−1] such that
a is even and

φ� a2 �(Xi) satisfies C

yC,i,a = 1 for all C ∈ C (9)

∑

a∈[0,2L−1]
yC,i,a = 1 for all C ∈ C and i ∈ [0, c − 1] (10)

Equation (9) takes care of satisfiability of clauses, while Eq. (10) allows us to pick
only one assignment from {φ0(Xi), φ1(Xi), . . . , φL−1(Xi)} per clause C and block
Xi . Note that this implies that we will choose an assignment in Xi for each clause
Cr . That way we might choose m assignments from Xi corresponding to m different
clauses. However, for the backward direction of the proof, it is important that we
choose the same assignment from Xi for each clause. This will ensure that we have
selected an assignment to the variables in Xi . Towards this we will have a third set of
constraints as follows. For all r ∈ [m − 1] and i ∈ [0, c − 1]

∑

a∈[0,2L−1]

(
�a
2
� · yCr ,i,a

)
+

(
(L − 1 − �a

2
�)yCr+1,i,a

)
= L − 1 (11)

Eq. (11) enforce consistencies of assignments of blocks across clauses in a sequen-
tial manner. That is, for any block Xi , we make sure that the two variables set to 1
corresponding to (Cr , Xi) and (Cr+1, Xi) are consistent for any r ∈ {1, . . . ,m−1}, as
opposed to checking the consistency for every pair (Cr , Xi) and (Cr ′ , Xi) for r �= r ′.
Thus in some sense these consistencies propagate. Furthermore, the idea of making
consistency in a sequential manner also allows us to bound the path-width of column
matroid of A(ψ,c) by c + 4.

The proof technique for Theorem 5 is similar to that for Theorem 4. This is achieved
by modifying the matrix A(ψ,c) constructed in the reduction described for Lemma 5.
The largest entry in A(ψ,c) is 2

n
c − 1 (see Eq. (11)). So each of these values can be

represented by a binary string of length at most � = n
c . We remove each row, say row

indexed by γ , with entries greater than 1 and replace it with n
c rows, γ1, . . . , γ�.Where,

for any j , if the value A(ψ,c)[γ, j] = W then A(ψ,c)[γk, j] = ηk , where ηk is the kth

bit in the �-sized binary representation of W . This modification reduces the largest
entry in A(ψ,c) to 1 and increases the path-width from constant to approximately n.

123

580 F. V. Fomin et al.

Finally, we set all the entries in b(ψ,c) to be 1. This concludes the overview of our
reductions and we now proceed to a detailed exposition.

4.2 Proof of Theorem 4

In this section we provide a Proof of Theorem 4, which states that unless SETH
fails, (IPF) with non-negative matrix A cannot be solved in time f (k)(‖b‖∞ +
1)(1−ε)k(mn)O(1) for any function f and ε > 0, where d = max{b[1], . . . , b[m]}
and k is the path-width of the column matroid of A.

Towards the proof of Theorem 4, we first present the proof of our main technical
lemma (Lemma 5), which we restate here for the sake of completeness.
Lemma 5 Let ψ be an instance of CNF- SAT with n variables and m clauses. Let
c ≥ 2 be a fixed integer. Then, in time O(m22

n
c), we can construct an instance

A(ψ,c)x = b(ψ,c), x ≥ 0, of (IPF) with the following properties.

(a.) ψ is satisfiable if and only if A(ψ,c)x = b(ψ,c), x ≥ 0 is feasible.
(b.) The matrix A(ψ,c) is non-negative and has dimension O(m) × O(m2

n
c).

(c.) The path-widthof the column matroid of A(ψ,c) is at most c + 4.
(d.) The largest entry in b(ψ,c) is at most 2� n

c � − 1.

Let ψ = C1 ∧ C2 ∧ . . . ∧ Cm be an instance of CNF- SAT with variable set
X = {x1, x2, . . . , xn} and let c ≥ 2 be a fixed constant given in the statement of
Lemma 5. We construct the instance A(ψ,c)x = b(ψ,c), x ≥ 0 of (IPF) as follows.
Construction. Let C = {C1, . . . ,Cm}. Without loss of generality, we assume that
n is divisible by c, otherwise we add at most c dummy variables to X such that
|X | is divisible by c. We divide X into c blocks X0, X1, . . . , Xc−1. That is Xi =
{x i ·n

c +1, x i ·n
c +2, . . . , x (i+1)·n

c
} for each i ∈ [0, c − 1]. Let � = n

c and L = 2�. For

each block Xi , there are exactly 2� assignments. We denote these assignments by
φ0(Xi), φ1(Xi), . . . , φL−1(Xi).

Now, we create m · c · 2�+1 variables; they are named yC,i,a , where C ∈ C, i ∈
[0, c− 1] and a ∈ [0, 2L − 1] = [0, 2�+1 − 1]. In other words, for a clause C , a block
Xi and an assignment φa(Xi), we create two variables; they are yC,i,2a and yC,i,2a+1.
Then, we create the (IPF) constraints given by Eqs. (9), (10), and (11).

This completes the construction of (IPF) instance. Let A(ψ,c)y = b(ψ,c) be the
(IPF) instance defined using Eq. (9), (10), and (11). The purpose of Eq. (9) is to ensure
satisfiability of all the clauses. Because of Eq. (10), for each clause C and for each
block Xi , we select only one assignment. Notice, that, so far it is allowed to choose
many assignments from a block Xi , for different clauses. To ensure the consistency of
assignments in each block across clauses, we added a system of constraints (Eq. (11)).
Equation (11) ensures the consistency of assignments in the adjacent clauses (in the
order C1, . . . ,Cm). Thus, the consistency of assignments propagates in a sequential
manner. Notice that number constraints defined by Eqs. (9), (10), and (11) arem,m · c
and (m − 1) · c, respectively. The number of variables is m · c · 2�+1. Also notice
that all the coefficients in Eqs. (9), (10) and (11) are non-negative. This implies that
A(ψ,c) is non-negative and has dimension O(m) × O(m2

n
c). Thus, the property (b.)

of Lemma 5 is satisfied. The largest entry in b(ψ,c) is L − 1 = 2� n
c � − 1 (see Eq. (11))

123

On the optimality of pseudo-polynomial algorithms... 581

and hence the property (d.) of Lemma 5 is satisfied. Now we prove property (a.) of
Lemma 5.

“From here on, we use A instead of A(ψ,c) and b instead of b(ψ,c) for clarity.”

Lemma 6 Formula ψ is satisfiable if and only if there exists y∗ ∈ Z
n′
≥0 such that

Ay∗ = b, where n′ = m · c · 2�+1 is the number of columns in A.

Proof Let Y = {yC,i,a | C ∈ C, i ∈ [0, c − 1], a ∈ [0, 2L − 1]}. Suppose ψ is
satisfiable. We need to show that there is an assignment of non-negative integer values
to the variables in Y such that Eqs. (9), (10) and (11) are satisfied. Let φ be a satisfying
assignment of ψ . Then, there exist a0, a1, . . . , ac−1 ∈ [0, L − 1] such that φ is the
union of φa0(X0), φa1(X1), . . . , φac−1(Xc−1). Any clause C ∈ C is satisfied by at
least one of the assignments φa0(X0), φa1(X1), . . . , φac−1(Xc−1). For each C , we fix
an arbitrary i ∈ [0, c−1] such that the assignment φai (Xi) satisfies clauseC . Let α be
a function which fixes these assignments for each clause. That is, α : C → [0, c − 1]
such that the assignment φaα(C)

(Xα(C)) satisfies the clause C for every C ∈ C. Now
we assign values to Y and prove that these assignment satisfy Eqs. (9), (10) and (11).

yC,i,a =
⎧
⎨

⎩

1, if α(C) = i and a is even and � a
2 � = ai

1, if α(C) �= i and a is odd and � a
2 � = ai

0, otherwise.
(12)

Notice that, by Eq. (12), for any fixed C ∈ C, exactly c variables from {yC,i,a | i ∈
[0, c − 1], a ∈ [2�+1]} are set to 1. They are yC,α(C),2aα(C)

and the variables in the set
YC = {yC,i,2ai+1 | i �= α(C)}. This implies that in Eq. (9), only yC,α(C),2aα(C)

is set
to 1, and hence Eq. (9) is satisfied. Now consider Eq. (10) for any fixed C ∈ C and
i ∈ [0, c − 1]. By Eq. (12), exactly one variable from {yC,i,a | a ∈ [0, 2L − 1]} is
set to 1, and hence Eq. (10) is satisfied. Now consider Eq. (11) for fixed r ∈ [m − 1]
and i ∈ [0, c − 1]. By Eq. (12), exactly one variable from each set {yCr ,i,a | a ∈
[0, 2L − 1]} and {yCr+1,i,a | a ∈ [0, 2L − 1]} are set to 1; they are one variable each
from {yCr ,i,2ai , yCr ,i,2ai+1} and {yCr+1,i,2ai , yCr+1,i,2ai+1}. So we get the following
when we substitute values for Y in Eq. (11).

∑

a∈[0,2L−1]

(
�a
2
� · yCr ,i,a

)
+

(
(L − 1 − �a

2
�) · yCr+1,i,a

)
= ai + L − 1 − ai = L − 1

Hence, Eq. (11) is satisfied by the assignments given in Eq. (12).
Now we need to prove the converse direction. Suppose there are non-negative

integer assignments to Y such that Eqs. (9), (10) and (11) are satisfied. Now we need
to show that ψ is satisfiable. Because of Eq. (10) all the variables in Y are set to 0 or
1. We will extract a satisfying assignment from the values assigned to variables in Y .
Towards that, first we prove the following claim.

Claim Let yC1,i,a = 1 for some i ∈ [0, c − 1] and a ∈ [0, 2L − 1]. Then, for any
C ′ ∈ C, exactly one among {yC ′,i,2� a

2 �, yC ′,i,2� a
2 �+1} is set to 1.

123

582 F. V. Fomin et al.

Proof Towards the proof, we first show that if yCr ,i,a = 1 for some r ∈ [m − 1], then
exactly one among {yCr+1,i,2� a

2 �, yCr+1,i,2� a
2 �+1} is set to 1. By Eq. (10) and the fact

that yCr ,i,a = 1, we get that

∑

a′∈[0,2L−1]

(

�a
′

2
� · yCr ,i,a′

)

= �a
2
�. (13)

Eqs. (11) and (13) imply that

∑

a′∈[0,2L−1]

(

(L − 1 − �a
′

2
�) · yCr+1,i,a′

)

= L − 1 − �a
2
�. (14)

By Eqs. (10) and (14), we get that exactly one among {yCr+1,i,2� a
2 �,

yCr+1,i,2� a
2 �+1} is set to 1. Thus, by applying the above arguments for i = 1, 2, . . . ,m−

1, we get that for any C ′ ∈ C \ {C1}, exactly one among {yC ′,i,2� a
2 �, yC ′,i,2� a

2 �+1} is
set to 1.

Suppose C ′ = C1. Then, by Eq. (10) and the assumption that yC1,i,a = 1, exactly
one among {yC1,i,2� a

2 �, yC1,i,2� a
2 �+1} is set to 1. ��

Now we define a satisfying assignment for ψ . Towards that we give assignments to
all blocks X0, . . . , Xc−1, such that the union of these assignments satisfies ψ . Fix
any block Xi . By Eq. (10), exactly one among {yC1,i,a | a ∈ [0, 2L − 1]} is set
to 1. Let ai ∈ [0, 2L − 1] such that yC1,i,ai = 1. Then we choose the assignment
φ� ai

2 �(Xi) for Xi . Let φ be the assignment of X which is the union of ψ� a1
2 �(X1),

ψ� a2
2 �(X2),…,ψ� ac−1

2 �(Xc−1). By Eq. (9) and Claim 4.2, φ satisfies all the clauses in

C and hence ψ is satisfiable. ��
Now we need to prove property (c.) of Lemma 5. That is the path-width of A is

at most c + 4. Towards that we need to understand the structure of matrix A. We
decompose the matrix A into m disjoint submatrices B1, . . . Bm which cover all the
non-zero entries in the matrix A. First we define some notation and fix the column
indices of A corresponding to the variables in the constraints. Let Y denote the set
{yC,i,a | C ∈ C, i ∈ [0, c− 1], a ∈ [0, 2L − 1]} of variables in the constraints defined
by Eqs. (9), (10) and (11). These variables can be partitioned into

⊎
C∈C YC , where

YC = {yC,i,a | i ∈ [0, c − 1], a ∈ [0, 2L − 1]}. Further for each C ∈ C, YC can be
partitioned into

⋃
i∈[0,c−1] YC,i , where YC,i = {yC,i,a | a ∈ [0, 2L − 1]}. The set of

columns indexed by [r · c2̇�+1] \ [(r − 1) · c · 2�+1], for any r ∈ [m], corresponds to
the set of variables in YCr . Among the set of columns corresponding to YC , the first
2�+1 columns corresponds to the variables in YC,1, second 2�+1 columns corresponds
to the variables in YC,2, and so on. Among the set of columns corresponds to YC,i for
any C ∈ C and i ∈ [0, c − 1], the first two columns corresponds to the variable yC,i,0
and yC,i,1, and second two columns corresponds to the variables yC,i,2 and yC,i,3, and
so on.

Now we move to the description of Bj , j ∈ [m]. The matrix Bj will cover the
coefficients of YC j in Eqs. (9), (10) and (11). In other words Bj covers the non-zero
entries in the columns corresponding to YC j , i.e, in the columns of A indexed by

123

On the optimality of pseudo-polynomial algorithms... 583

Fig. 6 Parts of Br

[j · c · 2�+1] \ [(j − 1) · c · 2�+1]. Now we explain these submatrices. Each matrix Bj

has c · 2�+1 columns; each of them corresponds to a variable in YC j . Each row in A
corresponds to a constraint in the system of Eqs. defined by Eqs. (9), (10) and (11). So
we use notations f̂ (C1), . . . f̂ (Cm) to represents the constraints defined by Eq. (9).
Similarly we use notations {s(C, i) | C ∈ C, i ∈ [0, c− 1]} and {t(C, i) | C ∈ C, i ∈
[0, c − 1]} to represents the constraints defined by Eqs. (10) and (11), respectively.
Matrix B1. The matrix B1 is of dimension (2c + 1) × (c · 2�+1). In the first row of
B1, we have coefficients of YC1 from f̂ (C1). For j ∈ [c], the rows indexed by j + 1
and c + j + 1 are defined as follows. In the (j + 1)st row of B1, we have coefficients
of YC1 from s(C1, j) while in the (c + j + 1)st row of B1, we have coefficients of
YC1 from t(C1, j). That is the entries of B1 are as follows, where i ∈ [0, c − 1] and
a ∈ [0, L − 1].

B1[1, i · 2�+1 + 2a + 1] =
{
1 if φa(Xi) satisfies C1,

0 otherwise.
(15)

B1[1, i · 2�+1 + 2a + 2] = 0, and (16)

B1[2 + i, i · 2�+1 + 2a + 1] = B1[2 + i, i · 2�+1 + 2a + 2] = 1, (17)

B1[c + 2 + i, i · 2�+1 + 2a + 1] = B1[c + 2 + i, i · 2�+1 + 2a + 2] = a,

(18)

Here, Eqs. (15) and (16), follow from Eq. (9). Eqs. (17) and (18) follow from
Eqs. (10) and (11), respectively. All other entries in B1 are zeros. That is, for all
i, i ′ ∈ [0, c − 1] and g ∈ [2�+1] such that i �= i ′,

B1[2 + i, i ′ · 2�+1 + g] = B1[c + 2 + i, i ′ · 2�+1 + g] = 0, (19)

This completes the definition of B1. By its role in the reduction, the matrix B1 is
partitioned into three parts. The first row is called the evaluation part of B1. The part
composed of rows indexed by 2, 3, . . . , c + 1 is called the selection part and the part
composed of the last c rows is called the successor matching part (See Fig. 6c).

Matrices Br for 1 < r < m. The matrix Br is of dimension (3c+ 1) × (c · 2�+1). The
first c rows are defined by Eq. (11). For j ∈ [c], in i th row, we have coefficients of YCr

from t(Cr−1, i). In the (c + 1)st row of Br , we have coefficients of YCr from f̂ (Cr).
For i ∈ [c], the rows indexed by c + 1 + i and 2c + 1 + i are defined as follows. In

123

584 F. V. Fomin et al.

the (c + 1 + i)th row of Br , we have coefficients of YCr from s(Cr , i) while in the
(2c + 1 + i)th row of Br , we have coefficients of YCr from t(Cr , i). This completes
the definition of Br . By its role in the reduction, the matrix Br is partitioned in to four
parts. The part composed of the first c rows is called the predecessor matching part.
The part composed of the row indexed by c+1 is called the evaluation part of B1. The
part composed of rows indexed by c+ 2, c+ 3, . . . , 2c+ 1 is called the selection part
and the part composed of the last c rows is called the successor matching part (For
illustration see Fig. 6b). That is the entries of B1 are as follows, where i ∈ [0, c − 1]
and a ∈ [0, L − 1].

The predecessor matching part is defined by

Br [i + 1, i · 2�+1 + 2a + 1] = Br [i + 1, i · 2�+1 + 2a + 2] = L − 1 − a. (20)

The evaluation part is defined by

Br [c + 1, i · 2�+1 + 2a + 2] = 0, (21)

and

Br [c + 1, i · 2�+1 + 2a + 1] =
{
1, if φa(Xi) satisfies Cr ,

0, otherwise.
(22)

The selection part for Br is defined as

Br [c + 2 + i, i · 2�+1 + 2a + 1] = Br [c + 2 + i, i · 2�+1 + 2a + 2] = 1,

(23)

The successor matching part for Br is defined as

Br [2c + 2 + i, i · 2�+1 + 2a + 1] = Br [2c + 2 + i, i · 2�+1 + 2a + 2] = j,

(24)

All other entries in Br , which are not listed above, are zero. That is, for all i, i ′ ∈
[0, c − 1] and g ∈ [2�+1] such that i �= i ′,

Br [i + 1, i ′ · 2�+1 + g] = 0, (25)

Br [c + 2 + i, i ′ · 2�+1 + g] = 0, and (26)

Br [2c + 2 + i, i ′ · 2�+1 + g] = 0. (27)

For an example, see Fig. 7.

Matrices Bm . The matrix Bm is of dimension (2c + 1) × (c · 2�+1). For j ∈ [c], in
i the row, we have coefficients of YCm from t(Cm−1, i). In the (c + 1)st row of Br ,
we have coefficients of YCm from f̂ (Cm). In the (c + 1 + i)th row of Bm , we have
coefficients of Yr from s(Cm, i). That is, Bm is obtained by deleting the successor

123

On the optimality of pseudo-polynomial algorithms... 585

Fig. 7 Let n = 4, c = 2, � = 2 and Cr = x1 ∨ x2 ∨ x4. The assignments are φ0(X0) = {x1 = x2 =
0}, φ1(X0) = {x1 = 0, x2 = 1}, φ2(X0) = {x1 = 1, x2 = 0}, φ3(X0) = {x1 = x2 = 1}, φ0(X1) =
{x3 = x4 = 0}, φ1(X1) = {x3 = 0, x4 = 1}, φ2(X1) = {x3 = 1, x4 = 0}, φ3(X1) = {x3 = x4 = 1}. The
entries defined according to φ1(X0) and φ3(X1) are colored red and blue respectively. If 1 < r < m, then
the matrix on the left represents Br and if r = 1, then Br can be obtained by deleting the yellow colored
portion from the top matrix. The matrix on the right represents Bm

matching part from the construction of Br above. The entries of Bm are as follows,
where i ∈ [0, c − 1] and a ∈ [0, L − 1].

Bm[i + 1, i · 2�+1 + 2a + 1] = Bm[i + 1, i · 2�+1 + 2a + 2] = L − 1 − a,

Bm[c + 1, i · 2�+1 + 2a + 2] = 0, and

Bm[c + 1, i · 2�+1 + 2a + 2] =
{
1, if φa(Xi) satisfies Cm,

0, otherwise.

Bm[c + 2 + i, i · 2�+1 + 2a + 1] = Bm[c + 2 + i, i · 2�+1 + 2a + 2] = 1,

(28)

All other entries in Bm are zeros. That is, for all i, i ′ ∈ [0, c − 1] and g ∈ [2�+1]
such that i �= i ′,

Bm[1 + i, i ′ · 2�+1 + g] = 0 (29)

Bm[c + 2 + i, i ′ · 2�+1 + g] = 0, (30)

Bm[2c + 2 + i, i ′ · 2�+1 + g] = 0. (31)

Matrix A.Nowwe explain how thematrix A is formed from B1, . . . , Bm . The matrices
B1, . . . , Bm are disjoint submatrices of A and they cover all non zero entries of A.
Informally, the submatrices B1, . . . , Bm form a chain such that the rows corresponding
to the successor matching part of Br will be the same as the rows in the predecessor
matching part of Br+1 (because of Eq. (11). A pictorial representation of A can be
found in Fig. 5b. Formally, let I1 = [2c + 1] and Im = [(m − 1)(2c + 1) + (c + 1)] \
[(m−1)(2c+1)−c]. For every 1 < r < m, let Ir = [r(2c+1)]\[(r−1)(2c+1)−c],
and for r ∈ [m], let Jr = [r · c · 2�+1] \ [(r − 1) · c · 2�+1]. Now for each r ∈ [m], the
matrix A[Ir , Jr] := Br . All other entries of A not belonging to any of the submatrices
A[Ir , Jr] are zero.

Towards upper bounding the path-width of A, we start with some notation. We
partition the set of columns of A into m parts J1, . . . , Jm (we have already defined
these sets) with one part per clause. For each r ∈ [m], Jr is the set of columns
associated with YCr . We further divide Jr into c equal parts, one per variable set YCr ,i .

123

586 F. V. Fomin et al.

These parts are

Pr ,i = {(r − 1)c · 2�+1 + i · 2�+1 + 1, . . . , (r − 1)c · 2�+1

+(i + 1) · 2�+1}, i ∈ [0, c − 1].

In other words, Pr ,i is the set of columns corresponding to YCr ,i and |Pr ,i | = 2�+1.
We also put n′ = m · c · 2�+1 to be the number of columns in A.

Lemma 7 The path-width of the column matroid of A is at most c + 4

Proof Recall that n′ = m ·c ·2�+1 is the number of columns in A andm′ be the number
of rows in A. To prove that the path-width of A is at most c+4, it is sufficient to show
that for all j ∈ [n′ − 1],

dim〈span(A|{1, . . . , j}) ∩ span(A|{ j + 1, . . . , n′})〉 ≤ c + 3. (32)

The idea for proving Eq. (32) is based on the following observation. For V ′ =
A|{1, . . . , j} and V ′′ = A|{ j + 1, . . . , n′}, let

I = {q ∈ [m′] | there exists v′ ∈ V ′ and v′′ ∈ V ′′ such that v′[q] �= v′′[q] �= 0}.

Then the dimension of span(V ′) ∩ span(V ′′) is at most |I |. Thus to prove (32), for
each j ∈ [n′ − 1], we construct the corresponding set I and show that its cardinality
is at most c + 3.

We proceed with the details. Let v1, v2, . . . , vn′ be the column vectors of A. Let
j ∈ [n′ − 1]. Let V1 = {v1, . . . , v j } and V2 = {v j+1, . . . , vn′ }. We need to show that
dim〈span(V1) ∩ span(V2)〉 ≤ c + 3. Let

I ′ = {q ∈ [m′] | there exists v ∈ V1 and v′ ∈ V2 such that v[q] �= 0 �= v′[q]}.

We know that [n′] is partitioned into parts Pr ′,i ′ , r ′ ∈ [m], i ′ ∈ [0, c − 1].
Fix r ∈ [m] and i ∈ [0, c − 1] such that j ∈ Pr ,i .

Let j = (r − 1)c · 2�+1 + i · 2�+1 + g, where g ∈ [2�+1]. Let q1 = max{0, (r −
1)(2c + 1) − c}, q2 = r(2c + 1), j1 = (r − 1) · c · 2�+1, and j2 = r · c · 2�+1 Then
[q2] \ [q1] = Ir and [j2] \ [j1] = Jr (recall the definition of sets Ir and Jr).

By the decomposition of matrix A, for every q > q2 and for every vector v ∈ V1,
we have v[q] = 0. Also, for every q ≤ q1 and for any v ∈ V2, we have that v[q] = 0.
This implies that I ′ ⊆ [q2] \ [q1] = Ir . Now we partition Ir into 4 parts: R1, R, S,
and R2, These parts are defined as follows.

R1 =
{∅, if r = 1,

{(r − 2)(2c + 1) + i ′ | i ′ ∈ [0, c − 1]}, otherwise,
R = {(r − 1)(2c + 1) + 1},
S = {(r − 1)(2c + 1) + 2 + i ′ | i ′ ∈ [0, c − 1]]}

123

On the optimality of pseudo-polynomial algorithms... 587

R2 =
{∅, if r = m,

{(r − 1)(2c + 1) + c + 2 + i ′ | i ′ ∈ [0, c − 1]}, otherwise (33)

Claim For each r ′ ∈ [m], q /∈ Ir ′ and j ′′ ∈ Jr ′ , v j ′′ [q] = 0.

Proof The non-zero entries in A are covered by the disjoint sub-matrices A[Ir ′ , Jr ′] =
Br ′ , r ′ ∈ [m]. Hence the claim follows. ��
Claim |I ′ ∩ R1| ≤ c − (i − 1).

Proof When r = 1, R1 = ∅ and the claim trivially follows. Let r > 1, and let q ∈ R1
be such that q < (r − 2)(2c + 1) + i . Then q = (r − 2)(2c + 1) + 1 + i ′ for some
0 ≤ i ′ < i . Notice that q /∈ Ir ′ for every r ′ > r . By Claim 4.2, for every v ∈ ⋃

r ′>r Jr ′ ,
v[q] = 0. Now consider the vector v j ′′ ∈ V2 \ (

⋃
r ′>r J

′
r). Notice that j ′′ > j and

j ′′ ∈ Jr . Let j ′′ = j+a = (r−1)c ·2�+1+ i ·2�+1+g+a for some a ∈ [rc2�+1− j].
From the decomposition of A, v j ′′ [q] = Br [i ′ + 1, i · 2�+1 + g + a] = 0, by (25).
Thus for every q ∈ R, q < (r − 2)(2c + 1) + i and v ∈ V2, v[q] = 0.

This implies that

|I ′ ∩ R1| ≤ |{q ≥ (r − 2)(2c + 1) + i} ∩ R1| ≤ c − (i − 1).

��
Claim |I ′ ∩ R2| ≤ i .

Proof When r = m, R2 = ∅ and the claim trivially holds. So, now let r < m and
consider any q ∈ R2 ∩ {q ′ > (r − 1)(2c + 1) + c + 2 + i}. Let i ′ > i such that q =
(r−1)(2c+1)+c+2+ i ′. Notice that q /∈ Ir ′ for any r ′ < r . Hence, by Claim 4.2, for
any v ∈ ⋃

r ′<r Jr ′ , v[q] = 0. Now consider any vector v j ′′ ∈ V1 \ (
⋃

r ′<r J
′
r). Notice

that j ′′ ≤ j and j ′′ ∈ Jr . Let j ′′ = (r−1)c·2�+1+i ′′ ·2�+1+a for some a ∈ [2�+1] and
i ′′ ≤ i < i ′. From the decomposition of A, v j ′′ [q] = Br [2c+2+ i ′, i ′′ ·2�+1+a] = 0,
by (27). Hence we have shown that for any q ∈ R, q > (r − 2)(2c + 1) + c + 2 + i
and v ∈ V1, v[q] = 0. This implies that

|I ′ ∩ R2| ≤ |{q ≤ (r − 1)(2c + 1) + c + 2 + i} ∩ R1| ≤ i .

��
Claim |I ′ ∩ S| ≤ 1.

Proof Consider any q ∈ S. Let i ′ ∈ [0, c− 1] such that q = (r − 1)(2c+ 1) + 2+ i ′.
Notice that q /∈ Ir ′ for any r ′ < r , and hence, by Claim 4.2, for any v ∈ ⋃

r ′<r Jr ′ ,
v[q] = 0. Also notice that q /∈ Ir ′ for any r ′ > r , and hence, by Claim 4.2, for any
v ∈ ⋃

r ′>r+1 Jr ′ , v[q] = 0. So the only potential j ′′ for which v j ′′ [q] �= 0, are from
Jr .

We claim that if q ∈ I ′∩S, then q = (r−1)(2c+1)+2+i . Suppose q ∈ I ′∩S and
q < (r−1)(2c+1)+2+i . Letq = (r−1)(2c+1)+2+i ′,where 0 ≤ i ′ < i . Thenby the
decomposition of A, for any j ′′ > j , v j ′′ [q] = Br [c + 2 + i ′, j ′′ − (r − 1)c2�+1] =

123

588 F. V. Fomin et al.

Br [c + 2 + i ′, i12�+1 + a], where c − 1 ≥ i1 ≥ i and a ∈ [2�+1]. Thus by (26),
v j ′′ [q] = Br [c + 2 + i ′, i12�+1 + a] = 0. This contradicts the assumption that
q ∈ I ′ ∩ S.

Suppose q ∈ I ′ ∩ S and q > (r − 1)(2c + 1) + c + 2 + i . Let q = (r − 1)(2c +
1) + c + 2 + i ′, where i < i ′ < c. Then by the decomposition of A, for any j ′′ ≤ j ,
v j ′′ [q] = Br [c + 2 + i ′, j ′′ − (r − 1)c2�+1] = Br [c + 2 + i ′, i12�+1 + a], where
0 ≤ i1 ≤ i , a ∈ [2�+1]. Thus by (26), v j ′′ [q] = Br [c + 2 + i ′, i12�+1 + a] = 0.
This contradicts the assumption that i ∈ I ′ ∩ S. This implies that |I ′ ∩ S| ≤ 1. This
completes the proof of the claim. ��
Therefore, we have

|I ′| = |I ′ ∩ Ir | (Because I ′ ⊆ Ir)

= |I ′ ∩ R1| + |I ′ ∩ R| + |I ′ ∩ S| + |I ′ ∩ R2| (By (33))

≤ c − (i − 1) + 1 + 1 + i (By Claims 4.2, 4.2 and 4.2)

= c + 3

This completes the proof of the lemma. ��
Proof of Theorem 4. We prove the theorem by assuming a fast algorithm for (IPF) and
use it to give a fast algorithm for CNF- SAT, refuting SETH. Let ψ be an instance of
CNF- SATwith n1 variables andm1 clauses. We choose a sufficiently large constant c
such that (1−ε)+ 4(1−ε)

c + a
c < 1 holds. We use the reduction mentioned in Lemma 5

and construct an instance A(ψ,c)x = b(ψ,c), x ≥ 0, of (IPF) which has a solution if

and only if ψ is satisfiable. The reduction takes time O(m2
12

n1
c). Let � = � n1

c �. The
constraint matrix A(ψ,c) has dimension ((m1−1)(2c+1)+1+c)×(m1 ·c ·2�+1) and
the largest entry in vector b(ψ,c) does not exceed 2� − 1. The path-width of M(A(ψ,c))

is at most c + 4.
Assuming that any instance of (IPF) with a non-negative constraint matrix of path-

width k is solvable in time f (k)(‖b‖∞ + 1)(1−ε)k(mn)a , where d is the maximum
value in an entry of b and ε, a > 0 are constants, we have that A(ψ,c)x = b(ψ,c), x ≥ 0,
is solvable in time

f (c + 4) · 2�·(1−ε)(c+4) · 2�·a · mO(1)
1 = 2

n1
c (1−ε)(c+4) · 2 n1 ·a

c · mO(1)
1

= 2
n1

(
(1−ε)+ 4(1−ε)

c + a
c

)

· mO(1)
1 .

Here the constant f (c + 4) is subsumed by the term mO(1)
1 . Hence the total running

time for testing whether ψ is satisfiable or not, is,

O(m2
12

n1
c) + 2

n1
(
(1−ε)+ 4(1−ε)

c + a
c

)

mO(1)
1 = 2

n1
(
(1−ε)+ 4(1−ε)

c + a
c

)

mO(1)
1 = 2ε′·n1mO(1)

1 ,

where ε′ = (1 − ε) + 4(1−ε)
c + a

c < 1. This completes the proof of Theorem 4. ��

123

On the optimality of pseudo-polynomial algorithms... 589

4.3 Proof of Theorem 5

In this section we prove Theorem 5: (IPF) with non-negative matrix A cannot be
solved in time f (‖b‖∞)(‖b‖∞ + 1)(1−ε)k(mn)O(1) for any function f and ε > 0,
unless SETH fails, where k is the path-width of the column matroid of A. Here, we
do not give a complete proof, but we give an adaptation of the proof of Theorem 4.

In Sect. 3.2,we gave a reduction fromCNF- SAT to (IPF).However in this reduction
the values in the constraint matrix A(ψ,c) and target vector b(ψ,c) can be as large as
2� n

c � −1, where n is the number of variables in theCNF-formulaψ and c is a constant.
Let m be the number of clauses in ψ . In this section we briefly explain how to get rid
of these large values, at the cost of making large, but still bounded path-width. From
a CNF-formula ψ , we construct a matrix A = A(ψ,c) as described in Sect. 3.2. The
only rows in A which contain values strictly greater than 1 (values other than 0 or 1)
are the ones corresponding to the constraints defined by Eq. (11).

In other words, the values greater than 1 are in the rows in yellow/green colored
portion in Fig. 5b. Recall that � = � n

c � and the largest value in A is 2�−1. Any number
less than or equal to 2� −1 can be represented by a binary string of length � = n

c . Now
we rewrite the Eq. (11), by � new Equation. For each j ∈ [�] and N ∈ N, let b j (N)

represent the j th bit in the �-bit binary representation of N . Then for all r ∈ [m − 1],
i ∈ [0, c − 1] and j ∈ [�], we have a system of constraints

∑

a∈[0,2L−1]

(
b j

(
�a
2
�
)

· yCr ,i,a

)
+

(
b j (L − 1 − �a

2
�) · yCr+1,i,a

)
= 1 (34)

In other words, let P = {(r−1)(2c+1)+c+1+i | r ∈ [m−2], i ∈ [0, c−1]}. The
rows of A containing values larger than one are indexed by P . Nowwe construct a new
matrix A′ from A by replacing each row of A whose index is in the set P with � rows
and for any value A[i, j], i ∈ P we write its �-bit binary representation in the column
corresponding to j and the newly added � rows of A′. That is, for any γ ∈ P , we
replace the row γ with � rows, γ1, . . . , γ�. Where, for any j , if the value A[γ, j] = W
then A′[γk, j] = ηk , where ηk is the kth bit in the �-sized binary representation of W .

Letm′ be the number of rows in A′. Now the target vector b′ is defined as b′[i] = 1
for all i ∈ [m′]. This completes the construction of the reduced (IPF) instance A′x =
b′. The correctness proof of this reduction is using arguments similar to those used for
the correctness of Lemma 6.

Lemma 8 The path-width of the column matroid of A′ is at most (c + 1) nc + 3.

Proof We sketch the proof, which is similar to the proof of Lemma 7. We define I ′
r

and J ′
r for any r ∈ [m] like Ir and Jr in Sect. 3.2. In fact, the rows in I ′

r are the rows
obtained from Ir in the process explained above to construct A′ from A. We need to
show that dim〈span(A′|{1, . . . , j})∩ span(A′|{ j +1, . . . , n′})〉 ≤ (c+1) nc +2 for all
j ∈ [n′−1], where n′ is the number of columns in A′. The proof proceeds by bounding
the number of indices I such that for any q ∈ I there exist vectors v ∈ A′|{1, . . . , j}
and u ∈ A′|{ j + 1, . . . , n′} with v[q] �= 0 �= u[q]. By arguments similar to the
ones used in the proof of Lemma 7, we can show that for any j ∈ [n′ − 1], the

123

590 F. V. Fomin et al.

corresponding set I ′ of indices is a subset of I ′
r for some r ∈ [m]. Recall the partition

of Ir into R1, R, S and R2 in Lemma 7. We partition I ′
r into parts Q1,W ,U and Q2.

Notice that R1, R2 ⊆ P , where P is the set of rows which covers all values strictly
greater than 1. The set Q1 and Q2 are obtained from R1 and R2, respectively, by the
process mentioned above to construct A′ from A. That is, each row in Ri , i ∈ {1, 2} is
replaced by � rows in Qi . Rows in W corresponds to rows in R andU corresponds to
the rows in W . This allows us to bound the following terms for some i ∈ [0, c − 1]:

|I ′ ∩ Q1| ≤ (c − (i − 1))� = (c − (i − 1))�,

|I ′ ∩ Q2| ≤ i · �,

|I ′ ∩U | ≤ 1, and

|I ′ ∩ W | ≤ 1.

By using the fact that I ′ ⊆ I ′
r and the above system of inequalities, we can show that

dim〈span(A′|{1, . . . , j}) ∩ span(A′|{ j + 1, . . . , n′})〉 ≤ (c + 1)�n
c
� + 2.

This completes the proof sketch of the lemma. ��
Now the proof of the theorem follows from Lemma 8 and the correctness of the
reduction (it is similar to the arguments in the proof of Theorem 4).

5 Proof of Theorem 6

In this section, we sketch how the proof of Cunningham and Geelen [1] of Theorem 3,
can be adapted to prove Theorem 6. Recall that a path decomposition of width k
can be obtained in f (k) · nO(1) time for some function f by making use of the
algorithm by Jeong et al. [13]. However, we do not know if such a path decomposition
can be constructed in time O((‖b‖∞ + 1)k+1)nO(1), so the assumption that a path
decomposition is given is essential.

Roughly speaking, the only difference in the proof is that when parameterized by
the branch-width, the most time-consuming operation is the “merge” operation, when
we have to construct a new set of partial solutions with at most (‖b‖∞ + 1)k vectors
from two already computed sets of sizes (‖b‖∞ + 1)k each. Thus to construct a new
set of vectors, one has to go through all possible pairs of vectors from both sets,
which takes time roughly (‖b‖∞ + 1)2k . For path-width parameterization, the new
partial solution set is constructed from two sets, but this time one set contains at most
(‖b‖∞ +1)k vectors while the second contains at most ‖b‖∞ +1 vectors. This allows
us to construct the new set in time roughly (‖b‖∞ + 1)k+1.

Recall that for X ⊆ [n], we define S(A, X) = span(A|X)∩ span(A|E \ X), where
E = [n]. The key lemma in the proof of Theorem 3 is the following.

Lemma 9 ([1]) Let A ∈ {0, 1, . . . , ‖b‖∞}m×n and X ⊆ [n] such that λM(A)(X) = k.
Then the number of vectors in S(A, X) ∩ {0, . . . , ‖b‖∞}m is at most (‖b‖∞ + 1)k−1.

123

On the optimality of pseudo-polynomial algorithms... 591

To prove Theorem 6, without loss of generality, we assume that the columns of A
are ordered in such a way that for every j ∈ [n − 1],

dim〈span(A|{1, . . . , i}) ∩ span(A|{i + 1, . . . , n})〉 ≤ k − 1.

Let A′ = [A, b]. That is A′ is obtained by appending the column-vector b to the
end of A. Then for each i ∈ [n],

dim〈span(A′|{1, . . . , i}) ∩ span(A′|{i + 1, . . . , n + 1})〉 ≤ k. (35)

Now we use dynamic programming to check whether the following conditions are
satisfied. For X ⊆ [n + 1], let B(X) be the set of all vectors b′ ∈ Z

m
≥0 such that

(1) 0 ≤ b′ ≤ b,
(2) there exists z ∈ Z

|X |
≥0 such that (A′|X)z = b′, and

(3) b′ ∈ S(A′, X).

Then (IPF) has a solution if and only if b ∈ B([n]). Initially the algorithm computes
for all i ∈ [n], B({i}) and by Lemma 9, we have that |B({i})| ≤ ‖b‖∞ + 1. In fact
B({i}) ⊆ {a · v | v is the i th column vector of A′ and a ∈ [‖b‖∞ + 1]}. Then for each
j ∈ {2, . . . , n} the algorithm computes B([j]) in increasing order of j and outputs
Yes if and only if b ∈ B([n]). That is, B([j]) is computed from the already computed
sets B([j − 1]) and B({ j}). Notice that b′ ∈ B([j]) if and only if

(a) there exist b1 ∈ B({1, . . . , j − 1}) and b2 ∈ B({ j}) such that b′ = b1 + b2,
(b) b′ ≤ b and
(c) b′ ∈ S(A′, [j]).
So the algorithm enumerates vectors b′ satisfying condition (a), and each such vector
b′ is included inB([j]), if b′ satisfy conditions (b) and (c). Since by (35) and Lemma 9,
|B([j−1])| ≤ (‖b‖∞+1)k and |B({ j})| ≤ ‖b‖∞+1, the number of vectors satisfying
condition (a) is (‖b‖∞ +1)k , and hence the exponential factor of the required running
time follows. This provides the bound on the claimed exponential dependence in the
running time of the algorithm. The bound on the polynomial component of the running
time follows from exactly the same arguments as in [1].

6 Conclusion

We would like to mention that our proofs of Theorems 4 and 5 imply lowerbounds in
terms of the dual path-width of the constraint matrix A. The dual graph G of a matrix
A is defined as follows. For each row i of A there is a vertex vi in G. There is an edge
between vi and v j if and only if the corresponding rows overlap (i.e., there is an index
r such that A[i, r] �= 0 and A[j, r] �= 0). The dual pathwidth of A is the path-width
of the graph G. We observe that the proofs of Theorems 4 and 5 imply the following
results.

– Unless SETH fails, (IPF) with even a non-negative m × n constraint matrix A
cannot be solved in time f (k)(‖b‖∞ + 1)(1−ε)k(mn)O(1) or f (‖b‖∞)(‖b‖∞ +

123

592 F. V. Fomin et al.

1)(1−ε)k(mn)O(1) for any computable function f and ε > 0, where k is the dual
path-width of A.

Towards the proof of the above result we observe that the dual path-width of the
matrix A constructed in the proof of Lemma 5 is at most c+ 2. That is, we construct a
path-decompositionof the dual graphof A as follows.Notice that the rows1, . . . , 2c+1
of A cover all the non-zero entries of the submatrix B1. Let σ1 be the sequence
S1,1, . . . , S1,c of subsets of {1, . . . , 2c+1}, where S1,1, . . . , S1,c are defined as follows.
For each j ∈ [c],

S1, j = {1} ∪ {1 + j} ∪ {{c + 2, . . . , c + 1 + j}

For each 1 < r < m, let pr be the number such that the rows pr+1, pr+2, . . . , pr+
3c+1 of A cover all the non-zero entries of the sub-matrix Br . Let σr be the sequence
Sr ,1, . . . , Sr ,c of subsets of {pr +1, . . . , pr +3c+1}, where Sr ,1, . . . , Sr ,c are defined
as follows. For each j ∈ [c],

Sr , j = {pr + j, . . . , pr + c} ∪ {pr + c + 1} ∪ {pr + c + 1 + j}
∪{{pr + 2c + 2, . . . , pr + 2c + 1 + j}

Let pm be the number such that the rows pm+1, pm+2, . . . , pm+2c+1 of A cover
all the non-zero entries of the sub-matrix Bm . Let σm be the sequence Sm,1, . . . , Sm,c

of subsets of {pm +1, . . . , pm +2c+1}, where Sm,1, . . . , Sm,c are defined as follows.
For each j ∈ [c],

Sm, j = {pm + j, . . . , pm + c} ∪ {pm + c + 1} ∪ {pm + c + 1 + j}

Then, σ1, σ2, . . . , σm is a path-decompostion of the dual graph of Awhere each subset
is of size at most c+ 3. Therefore, the dual path-width of A is at most c+ 2. Similarly
one can prove that the dual path-width of the matrix A′ constructed in Sect. 4.3 is at
most (c+1) nc +1. Then by following arguments similar to that of proofs of Theorems 4
and 5, one can prove the required result.

References

1. Cunningham, W. H., and Geelen, J.: On integer programming and the branch-width of the constraint
matrix, in Proceedings of the 12th InternationalConference on Integer Programming andCombinatorial
Optimization (IPCO), vol. 4513 of Lecture Notes in Comput. Sci., Springer, 2007, pp. 158–166

2. Cygan, M., Dell, H., Lokshtanov, D., Marx, D., Nederlof, J., Okamoto, Y., Paturi, R., Saurabh, S., and
Wahlström, M.: On problems as hard as CNF-SAT, in Proceedings of the 27th IEEE Conference on
Computational Complexity (CCC), IEEE, 2012, pp. 74–84

3. Cygan, M., Fomin, F. V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., and
Saurabh, S.: Parameterized Algorithms, Springer, 2015

4. Cygan, M., Nederlof, J., Pilipczuk, M., Pilipczuk, M., van Rooij, J. M. M., and Wojtaszczyk, J. O.:
Solving connectivity problems parameterized by treewidth in single exponential time, in Proceedings of
the 52nd Annual Symposium on Foundations of Computer Science (FOCS), IEEE, 2011, pp. 150–159

123

On the optimality of pseudo-polynomial algorithms... 593

5. Dorn, F.: Dynamic programming and fast matrix multiplication, in Proceedings of the 14th Annual
European Symposium on Algorithms (ESA), vol. 4168 of Lecture Notes in Comput. Sci., Springer,
Berlin, 2006, pp. 280–291

6. Eisenbrand, F., and Weismantel, R.: Proximity results and faster algorithms for integer programming
using the steinitz lemma, in Proceedings of the 29th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), SIAM, 2018, pp. 808–816

7. Gajentaan, A., Overmars, M.H.: On a class of o(n2) problems in computational geometry. Comput.
Geom. 5, 165–185 (1995)

8. Ganian, R., Ordyniak, S., and Ramanujan, M. S.: Going beyond primal treewidth for (M)ILP, in
Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, February 4-9, 2017, San
Francisco, California, USA, S. P. Singh and S. Markovitch, eds., AAAI Press, 2017, pp. 815–821

9. Horn, G.B., Kschischang, F.R.: On the intractability of permuting a block code to minimize trellis
complexity. IEEE Trans. Inf. Theory 42, 2042–2048 (1996)

10. Impagliazzo, R., Paturi, R.: On the complexity of k-SAT. J. Computer Syst. Sci. 62, 367–375 (2001)
11. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity. J. Com-

puter Syst. Sci. 63, 512–530 (2001)
12. Jansen, K., and Rohwedder, L.: On integer programming and convolution, in 10th Innovations in

Theoretical Computer Science Conference, ITCS 2019, January 10-12, 2019, San Diego, California,
USA, vol. 124 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2019, pp. 43:1–43:17

13. Jeong, J., Kim, E. J., and Oum, S.: Constructive algorithm for path-width of matroids, in Proceedings
of the 26th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), SIAM, 2016, pp. 1695–
1704

14. Kannan, R.:Minkowski’s convex body theorem and integer programming.Math. Op. Res. 12, 415–440
(1987)

15. Knop, D., Pilipczuk, M., and Wrochna, M.: Tight complexity lower bounds for integer linear pro-
gramming with few constraints, in 36th International Symposium on Theoretical Aspects of Computer
Science, STACS 2019, March 13-16, 2019, Berlin, Germany, vol. 126 of LIPIcs, Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2019, pp. 44:1–44:15

16. Lenstra, H.W., Jr.: Integer programming with a fixed number of variables. Math. Op. Res. 8, 538–548
(1983)

17. Lokshtanov, D., Marx, D., and Saurabh, S.: Known algorithms on graphs on bounded treewidth are
probably optimal, in Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), SIAM, 2011, pp. 777–789

18. Margulies, S.,Ma, J., Hicks, I.V.: TheCunningham-Geelenmethod in practice: Branch-decompositions
and integer programming. INFORMS J. Comput. 25, 599–610 (2013)

19. Marx, D.: Can you beat treewidth?, Theory of. Computing 6, 85–112 (2010)
20. Papadimitriou, C.H.: On the complexity of integer programming. J. ACM 28, 765–768 (1981)
21. Robertson, N., Seymour, P.D.: Graph minors. X. obstructions to tree-decomposition. J. Combinatorial

Theory Ser. B 52, 153–190 (1991)
22. van Rooij, J. M. M., Bodlaender, H. L., and Rossmanith, P.: Dynamic programming on tree decom-

positions using generalised fast subset convolution, in Proceedings of the 17th Annual European
SymposiumonAlgorithms (ESA), vol. 5757 of LectureNotes inComput. Sci., Springer, 2009, pp. 566–
577

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

	On the optimality of pseudo-polynomial algorithms for integer programming
	Abstract
	1 Introduction
	1.1 Other related works and future research directions
	1.2 Organization of the paper

	2 Preliminaries
	2.1 Notations
	2.2 Branch-width of matroids
	2.3 ETH and SETH

	3 ETH lower bounds on pseudopolynomial solvability of (IPF)
	3.1 Proof of Theorem 1
	3.2 Proof of Theorem 2

	4 Path-width parameterization: SETH bounds
	4.1 Overview of our reductions
	4.2 Proof of Theorem 4
	4.3 Proof of Theorem 5

	5 Proof of Theorem 6
	6 Conclusion
	References

