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Let C be a clutter over ground set V . C is ideal if the polyhedron Q(C) :={
x ∈ R

V+ : ∑
v∈C xv ≥ 1 ∀C ∈ C}

is integral. Given an integer k ≥ 2, C is k-wise
intersecting if every subset of at most k members have a common element, yet no
element belongs to all members. In the paper, we studied the following conjecture.

Conjecture 3 There exists an integer k ≥ 4 such that every k-wise intersecting clutter
is non-ideal.

Let n ≥ 1 be an integer, and let S ⊆ {0, 1}n . Let conv(S) denote the convex hull
of S. An inequality of the form

∑
i∈I xi + ∑

j∈J (1 − x j ) ≥ 1, for some disjoint
I , J ⊆ [n], is called a generalized set covering inequality. The set S is cube-ideal if
every facet of conv(S) is defined by xi ≥ 0, xi ≤ 1, or a generalized set covering
inequality.

Published in Mathematical Programming, 2020 [3].

The original article can be found online at https://doi.org/10.1007/s10107-020-01587-x.
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Conjecture 16 There exists an integer k ≥ 4 such that for every cube-ideal set S,
either all the points in S agree on a coordinate, or there is a subset of S of at most k
points that do not agree on a coordinate.

At the beginning of §4 of the paper, we showed that Conjecture 3 for k implies
Conjecture 16 for the same k. Then, in §4.2, we proved that the two conjectures are
equivalent. While the statement is true, our proof is flawed; we address the source of
the flaw shortly. For now, let us provide a shorter, correct proof of this fact.

Theorem 23 Conjecture 16 for k is equivalent to Conjecture 3 for the same k.

Revised proof Wealready showed (⇐). It remains to prove (⇒). SupposeConjecture 3
is false for some k ≥ 4. That is, there is an ideal k-wise intersecting clutter C over
ground set {1, 2, . . . , n}. Let

S := {χC : C ⊆ [n] contains a member of C}.

Observe that S is an up-monotone subset of {0, 1}n . By Theorem 4.3 of [2], since
C is an ideal clutter, S is a cube-ideal set. Moreover, since C is k-wise intersecting,
the points in S do not agree on a coordinate but every subset of S of ≤ k points do.
Therefore, S refutes Conjecture 16 for k, as required. 	

The culprit. The previous proof of Theorem 23 relied on Theorem 22, but there is an
oversight in the proof of that theorem. More specifically, the last two sentences of the
proof of Claim 3, starting with “Thus, to finish the proof,” and ending with “We leave
this as an easy exercise for the reader.” are incorrect. As a result, we retract the second
claim of Theorem 22, as follows.

Theorem 22 Let C be an ideal tangled clutter. Then core(C) is a duplication of a
cuboid.

In particular, we do not prove that every ideal tangled clutter has an ideal core
(though this has been proved using more advanced machinery recently [1]). The only
result in the paper that relies on Theorem 22 is Theorem 23, which remains correct.
Fixing Theorem 22. The proof of Theorem 22 can be expanded to show something
different. Moving forward, we use terminology and results from our paper without
recalling them.

Theorem 22a Let C be an ideal tangled clutter over ground set V , let G = (V , E) be
the bipartite graph over vertex set V whose edges correspond to the minimum covers
of C, and let {U1, V1}, . . . , {Ur , Vr } be the bipartitions of the connected components
of G. Then the following statements hold:

1. core(C) is a tangled clutter.
2. For each i ∈ [r ], pick ui ∈ Ui and vi ∈ Vi . Let C′ be the clutter over

ground set {u1, v1, . . . , ur , vr } obtained from core(C) after contracting V −
{u1, v1, . . . , ur , vr }. Then conv({χC : C ∈ C′}) can be described by z ≥ 0,
zui + zvi = 1, i ∈ [r ], and

∑

B∩Ui 
=∅
|B ∩Ui |zui +

∑

B∩Vj 
=∅
|B ∩ Vj |zv j ≥ 1

123



Idealness of k-wise intersecting families 53

for every minimal cover B of C such that for each i ∈ [r ], B∩(Ui ∪Vi ) ⊆ Ui or Vi .
3. C′ is the cuboid of some subset S ⊆ {0, 1}r , where conv(S) is defined by 0 ≤ x ≤ 1,

and

∑

B∩Ui 
=∅
|B ∩Ui |xi +

∑

B∩Vj 
=∅
|B ∩ Vj |(1 − x j ) ≥ 1

for every minimal cover B of C such that for each i ∈ [r ], B∩(Ui ∪Vi ) ⊆ Ui or Vi .

Proof By Proposition 20 (3), for each i ∈ [r ], the elements in Ui are duplicates in
core(C), the elements in Vi are duplicates in core(C), and |{u, v} ∩ C | = 1 for all
u ∈ Ui , v ∈ Vi and C ∈ core(C). That is, each C ∈ core(C) is determined by r binary
choices; in each connected component of G, C must contain exactly one of the two
parts of the bipartition. This allows a more concise representation of the core. For each
C ∈ core(C), define pC ∈ {0, 1}r such that

(pC )i =
{
0 if C ∩ (Ui ∪ Vi ) = Vi
1 if C ∩ (Ui ∪ Vi ) = Ui

Let S := {pC : C ∈ core(C)} ⊆ {0, 1}r . Then core(C) is a duplication of cuboid(S).

Claim 1 core(C) is a tangled clutter, so (1) holds.

Proof of Claim. As a subset of C, core(C) has covering number at most two, and every
element of it appears in a cover of cardinality two. Thus, to prove the claim, it suffices
to show that core(C) has covering number at least two. Let y be a fractional packing
of C of value two. Then support(y) ⊆ core(C) by Proposition 20 (1), so y is also
a fractional packing of core(C). Subsequently, core(C) has covering number at least
two, as required. ♦

We know that

{χC : C ∈ core(C)} = {χC : C ∈ C} ∩ {
x : xu + xv = 1, {u, v} ∈ E

}
. (�)

Claim 2 conv{χC : C ∈ core(C)} = Q
(
b(C)

) ∩ {
x : xu + xv = 1, {u, v} ∈ E

}
.

Proof of Claim. (⊆) follows immediately from (�). (⊇) Pick a point x� in the set on
the right-hand side. Clearly, x� ∈ Q

(
b(C)

)
. Since C is ideal, so is b(C), implying that

for some λ ∈ R
C+ with

∑
C∈C λC = 1, we have that

x� ≥
∑

C∈C
λCχC .

Since for all {u, v} ∈ E , we have that x�
u+x�

v = 1 and {u, v} ∈ b(C), equalitymust hold
above and by (�), if λC > 0 then C ∈ core(C). Hence, x� ∈ conv{χC : C ∈ core(C)},
as required. ♦
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For each i ∈ [r ], pick ui ∈ Ui and vi ∈ Vi , and let C′ be the clutter over ground set
{u1, v1, . . . , ur , vr } obtained from core(C) after contracting V −{u1, v1, . . . , ur , vr }.
Notice that |{ui , vi } ∩ C | = 1 for all i ∈ [r ] and C ∈ C′. Observe that C′ is nothing
but cuboid(S).1

Claim 3 conv({χC : C ∈ C′}) can be described by z ≥ 0, zui + zvi = 1, i ∈ [r ], and
∑

B∩Ui 
=∅
|B ∩Ui |zui +

∑

B∩Vj 
=∅
|B ∩ Vj |zv j ≥ 1

for every B ∈ b(C) such that for each i ∈ [r ], B ∩ (Ui ∪ Vi ) ⊆ Ui or Vi . Thus, (2)
holds.

Proof of Claim. Observe that conv{χC : C ∈ C′} is the projection of conv{χC : C ∈
core(C)} onto the coordinates {ui , vi : i ∈ [r ]}. Thus, to give a description for
conv{χC : C ∈ C′}, we may apply Fourier–Motzkin Elimination to the description of
conv{χC : C ∈ core(C)} given by Claim 2, thereby giving us the claimed description.

♦

Claim 4 conv(S) is defined by 0 ≤ x ≤ 1, and

∑

B∩Ui 
=∅
|B ∩Ui |xi +

∑

B∩Vj 
=∅
|B ∩ Vj |(1 − x j ) ≥ 1

for every minimal cover B of C such that for each i ∈ [r ], B ∩ (Ui ∪ Vi ) ⊆ Ui or Vi .
Thus, (3) holds.

Proof of Claim. This follows from Claim 3 by another application of Fourier–Motzkin
Elimination. ♦

Claim 4 finishes the proof. 	
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