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Abstract
The solution of bilevel optimization problems with possibly nondifferentiable upper
objective functions and with smooth and convex lower-level problems is discussed.
A new approximate one-level reformulation for the original problem is introduced.
An algorithm based on this reformulation is developed that is proven to converge
to a solution of the bilevel problem. Each iteration of the algorithm depends on the
solution of a nonsmooth optimization problem and its implementation leverages recent
advances on nonsmooth optimization algorithms, which are fundamental to obtain
a practical method. Experimental work is performed in order to demonstrate some
characteristics of the algorithm in practice.

Keywords Bilevel optimization · Nonsmooth optimization · Nonlinear optimization

Mathematics Subject Classification 90C30 · 90C26 · 65K05

1 Introduction

This work focuses on a special class of minimization problems that are commonly
known as bilevel optimization [3,10,14]. The main feature of these problems is the
hierarchical nature, in which decisions must be taken in two different levels – an upper
and a lower one.Usually, both levels of decision are associatedwith twodistinct agents:
the upper-level one (also known as the leader) having exclusive control over a set of

B Lucas E. A. Simões
simoes.lea@gmail.com

Elias S. Helou
elias@icmc.usp.br

Sandra A. Santos
sandra@ime.unicamp.br

1 University of São Paulo, São Carlos, SP, Brazil

2 University of Campinas, Campinas, SP, Brazil

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10107-021-01764-6&domain=pdf
http://orcid.org/0000-0001-5157-3851
http://orcid.org/0000-0002-6250-0137
http://orcid.org/0000-0002-2305-3565


1382 E. S. Helou et al.

variables x ∈ R
n , and the lower-level agent (the follower) with influence over another

set of variables y ∈ R
m , directly related with the choice taken in the upper level.

Frequently, the agents have conflicting goals, which generate a dynamic interplay
between them that only ceases by reaching an equilibrium point.

Hierarchical optimization problems usually emerge when one is trying to model an
interaction between two or more individuals and, as a consequence, these problems
appear in many real-world applications from a vast range of fields. For instance,
bilevel problems can be seen in the energy sector [4], network design [11], revenue
management [12], game theory [21,32], and even in tomography [27] and image
denoising [30]. Therefore, such problems are not only interesting (and challenging)
from the theoretical perspective, but they also present a strong practical appeal.

The first main contribution of this paper is the proposal of a novel reformulation of
bilevel optimization problems that does not rely on dual variables of the lower-level
optimization. The resulting one-level problem is a nonsmooth optimization problem
with an explicit description of the feasible region – without any implicit value function
constraint. The second contribution is the presentation of a new algorithm for solving
bilevel optimization problems that can be implemented in practice. Finally, our last
main contribution relates to advancing the techniques for solving nonsmooth bilevel
problems. Methods for solving those kind of problems do exist [7,27,28,30,35,37,39,
40], but many of thesemethods are restricted to the case inwhich there is no distinction
between the decision variable of the leader and of the lower-level agent, the so-called
simple bilevel optimization problem. As shown in [39], a general bilevel optimization
problem can be rewritten in the form of a simple bilevel optimization problem and thus
some methods developed for the simple problem might be applicable to the general
problem this way.

One of the most commonly applied strategies for solving bilevel optimization prob-
lems is reformulating them into a one-level problem. Often, this can be done in two
ways: use the so called optimal value reformulation [16,36]; trade the lower-level opti-
mization problem by its respective first-order necessary conditions, which is known as
theKKT reformulation – see, for example, the recent references [2,18]; or evenmaking
a combination of both [43]. Because the former approach leads to a nonsmooth prob-
lem even for simple bilevel optimizations, the latter technique has, in general, been
preferred.However, the difficulties that arisewhen one chooses theKKT reformulation
are far from being negligible either.

The resulting problem that comes from the KKT reformulation is an instance of
a problem known as Mathematical Program with Equilibrium Constraints (MPEC).
Such optimization problems are highly degenerated, in the sense that common Con-
straint Qualifications (CQs) do not hold at their optimal solutions [44]. Because
of its importance, relatively efficient methods have been developed for the MPEC
[22,23,42]. Interestingly, [23] takes an approach that directly tackles the degenerate
geometry of the problem by rewriting the complementarity constraints as a discontin-
uous system of equations and using appropriate methods for the resulting problem.
Besides, even in the scenario that one has successfully solved the reformulated prob-
lem, one is likely not to have reached an optimal point of the original problem. The
original bilevel optimization and itsMPEC reformulation can only be equivalent when
global solutions are analyzed [15] and, sinceMPECs are not convex problems, an opti-
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(a) (b)

Fig. 1 Illustrative representation of a parametric optimization in the lower-level problem. The red color
stands for the points that satisfy the KKT conditions, the green curve stands for the values of the leader’s
objective function, and the blue color represents the considered neighborhood of the solution in the pri-
mal×dual space (plots in the first row), and its respective neighborhood only in the primal counterpart
(plots in the second row). In the plots of column (a), one can see that the notion of locality is compromised,
and consequently, in the degenerated vicinity of y(x∗), the point is wrongly classified as a local minimizer
of the original problem; however, in the plots of column (b), the notion of locality is preserved due to an
enlargement in the considered neighborhood

mal candidate obtained by practical methods for solving MPECs, in general, will not
be a (local) solution for the bilevel problem.

The reason why local solutions of the KKT reformulation are not necessarily local
optimal points for the bilevel problem is that the one-level problem involves the dual
variables of the lower-level optimization, and not only the primal ones. By enlarging
the original space, the sense of locality cannot be carried over. This can be intuitively
understood when one looks at Fig. 1a. In this illustrative example, we suppose that the
lower-level agent defines a parametric optimization problem. Because the considered
vicinity of y(x∗) does not involve all the possible associated Lagrange multipliers, we
can see that the respective neighborhood in the primal space does not have x∗ as an
interior point. Consequently, local solutions for the KKT formulation can be valuable
only if all the Lagrange multipliers associated with a primal point are considered –
see Fig.1b and [15, Theorem 3.2].

Following the strategy of converting a bilevel problem into a one-level optimization,
we propose a new primal nonsmooth reformulation of the lower-level problem. By
avoiding the inclusion of dual variables, we were able to maintain an equivalence to
the original bilevel optimization even when one is interested only in local solutions.
In addition, although our strategy results in a nonsmooth optimization problem, we
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argue that our approach can potentially be more workable than some optimal value
reformulations, specially with some of the most recent advances in the nonsmooth
optimization field. We must notice, however, that recent works, unknown to us when
elaborating the manuscript, bring advances in the theoretical [20] and in the numerical
[45] properties of the optimal value reformulation. Particularly interesting, in [20], the
calmness condition is smartly explored in order to shift the value-function constraint
to the upper-level objective function and the non-differentiability of the optimal value
function is approached by the use of upper estimates of its subdifferential.

For our analysis, we consider a bilevel optimization problem that is convex in the
lower-level variables. The functions that describe the lower-level problem must be
differentiable, whereas for the upper-level part we only suppose that the functions are
locally Lipschitz continuous, i.e., the upper-level problemmay admit nondifferentiable
constraints and a nonsmooth objective function. All results are obtained under mild
assumptions, with the exception perhaps being the assumption of the uniqueness of
the follower’s response to each leader’s choice, i.e. each feasible x determines a single
solution y(x) for the lower-level agent.

The uniqueness of the follower’s responsemay considerably simplify the theoretical
study of bilevel problems, since one can easily convert the bilevel problem into a one-
level problem dependent only on the variable x. However, this simplification in the
theoretical analysis is not extrapolated to the practical realm, since obtaining efficient
algorithms for this special class of bilevel problems is not a simple task. In general,
the computation of the response y(x) may require solving a constrained optimization
problem, which greatly hinders the development of practical methods. For example,
one of the algorithms that explore this implicit definition of y(·) is the descent method
for bilevel problems [38]. Because every evaluation of y(·) in order to verify a sufficient
descent criterion demands a solution of the lower-level problem, if we want descent
methods to be practical, the follower’s problem must be sufficiently simple – e.g. a
strictly convex quadratic minimization [41]. Additionally, it is important to mention
that assumptions to simplify the lower-level problem are usually made in the literature
in order to obtain a practical algorithm – for instance, the full-convexity assumption
is another common request [16,33].

Unlike the descent method (or the optimal value reformulation), our proposed algo-
rithm does not rely on any implicit function, which gives us freedom to cope with
more general convex problems in the lower level. Because of the explicit description
of our reformulation, it has some resemblance with the technique known as double
penalty method [3,29], as we also use a penalty approach to approximate the follower’s
problem. Yet, there are significant differences concerning each formulation and the
respective convergence analysis.

Besides the presentation of a theoretical analysis, this study also contains a small
but elucidative set of numerical experiments showing that the proposed method is able
to practically solve bilevel optimization problems. Moreover, aiming at illustrating
the importance of our main assumptions, optimization instances that violate such
hypotheses are also considered.

ROADMAP In Sect. 2, the assumptions needed to obtain our convergence analysis
are presented, together with some new ideas that appear in our nonsmooth reformu-
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lation. Section 3 is reserved for all the theoretical analyses in the paper, including the
convergence results of the proposed algorithm. In Sect. 4, numerical experiments are
presented. Finally, the last section contains the concluding remarks of this study.

NOTATION Throughout the text, ‖ · ‖ denotes the Euclidean norm, R+ stands for
the nonnegative real numbers, whereas R∗+ refers to the strictly positive real numbers.
The notation v+ is defined as the real number max{v, 0} and, in case of a vector,
this maximum is taken componentwise. Finally, for a function f : Rn × R

m → R

dependent on the variables x ∈ R
n and y ∈ R

m , the notation ∇ y f refers to the
derivative of f solely with respect to y.

2 Preliminaries

Since there are many kinds of bilevel problems – each with its own distinct set of
assumptions – we start by presenting the problem of our interest. Along the entire
study, we refer to minimization problems that can be written as

min
(x, y)∈Rn×Rm

F(x, y)

s.t. C(x) ≤ 0

y ∈ R(x),

(P-bilevel)

where both objective F : Rn × R
m → R and constraint functions C : Rn → R

p are
locally Lipschitz continuous (not necessarily smooth functions) and

R(x) :=argmin y∈Ω(x) f (x, y), Ω(x) :=
{
y ∈ R

m : cin(x, y)≤0, ceq(x, y) = 0
}

,

with f : R
n × R

m → R and the constraint functions cin : R
n × R

m → R
q and

ceq : R
n × R

m → R
s being of class C2. Additionally, we suppose that, for each

x ∈ R
n satisfying C(x) ≤ 0, the set Ω(x) is not empty, i.e., for each feasible leader’s

choice, the follower can always find a feasible response. It should be noticed that
we do not add equality constraints to the upper-level problem in order to simplify
the presentation, but all the results can be easily obtained if equality constraints are
considered as well. However, this simplification cannot be extended to the follower’s
problem and, in order to encompass equality constraints into the model, we have to
explicitly handle these constraints in the proof. The proofs are still valid in case the
problem has no equality constraints.

We ask that the lower-level problem

min
y∈Rm

f (x, y)

s.t. cin(x, y) ≤ 0

ceq(x, y) = 0

(P-lower)

must be a convex parametric optimization, i.e., for each fixed x ∈ R
n satisfying

C(x) ≤ 0, the functions f (x, ·) and cini (x, ·), i ∈ {1, . . . , q}, are convex and the
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functions ceqj (x, ·), j ∈ {1, . . . , s}, are affine-linear. We also assume throughout the
text that (P-bilevel) always has a solution, and that the set

S := {(x, y) ∈ R
n × R

m : C(x) ≤ 0, y ∈ Ω(x)} (1)

is compact. In addition, it is assumed that the rational react map R(·) is upper-
semicontinuous [14, Definition 4.2] for any x ∈ R

n such that C(x) ≤ 0 – as argued
by Dutta and Dempe in [19], this last assumption is not a strong requirement. Finally,
when needed, wewill also suppose thatR(x) is a singleton for every x ∈ R

n satisfying
C(x) ≤ 0, i.e., for each feasible leader’s choice, the follower has a unique optimal
response. This last hypothesis guarantees that the bilevel problem is well-posed [17],
although some KKT and optimal value reformulations do not, in theory, require this.

Recently, in order to approximate a nonsmooth constrained optimization problem
by an unconstrained problem, a new penalization function has been proposed [26]. The
smooth version of such a function will prove helpful in our context. Let us consider,
for any τ ∈ R

∗+ and ρ ∈ R, the function Θτ,ρ : Rn × R
m → R defined by

Θτ,ρ(x, y) := max

{
1 − ‖cin(x, y)+‖2 + ‖ceq(x, y)‖2

τ 2
, 0

}2

[ f (x, y) − ρ]
+ ‖cin(x, y)+‖2 + ‖ceq(x, y)‖2.

(2)

Although the function above becomes very sharp for small values of τ , it should be said
that this feature ofΘτ,ρ can be numerically handled by recent advances on optimization
methods – e.g.,Gradient Sampling [5,6,24,25] andmethods basedonBFGS techniques
[13,34]. Looking carefully at the definition of Θτ,ρ , one can see that, for τ ≈ 0 and ρ

sufficiently large, minimizers for this function in relation to y are good approximations
to points inR(x). Indeed, when ‖cin(x, y)+‖2+‖ceq(x, y)‖2 ≥ τ 2 > 0, the function
Θτ,ρ is strictly positive and indifferent to the value of f , since the expression that
multiplies f is null in that case. However, if ρ is large enough, the term f (x, y) − ρ

is negative at feasible points of (P-lower), implying that minimizers for Θτ,ρ will
prioritize points satisfying ‖cin(x, y)+‖2 + ‖ceq(x, y)‖2 < τ 2 with small values of
f (x, y).
Roughly speaking, and for the sake of providing a preliminarymotivation, we argue

that the following approximation can be established for small values of τ > 0:

R(x) ≈ {(x, y) ∈ R
n × R

m : ∇ yΘτ,ρ(x, y) = 0}.
Therefore, the original bilevel problem admits a one-level reformulation of the type:

min
(x, y)∈Rn×Rm

F(x, y)

s.t. C(x) ≤ 0

∇ yΘτ,ρ(x, y) = 0.

In the next section, we give, in a formal mathematical sense, how well the above
minimization problem approximates the original problem (P-bilevel).
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3 An algorithm and its theoretical analysis

Supported by the discussion in the previous section, we propose a method for solv-
ing (P-bilevel) that we call Nonsmooth Bilevel Optimization Algorithm – NoBOA for
short –, and it is summarized in Algorithm 1. Before going into the details of Algo-
rithm 1, it is important to say that, although in Step 1 we assume that problem (P̃k) is
globally solved, we show in Theorem 3 that this request can be weakened to a local
solution. Moreover, the expected exactness of the solution (xk, yk) given in Step 1
may initially concern the reader regarding the practice of such a method. This matter
will be properly addressed at the end of this section.

Algorithm 1: Nonsmooth Bilevel Optimization Algorithm (NoBOA)
Step 0. Choose ρ1∈[0, +∞), τ1∈(0, +∞), τopt∈(0, τ1], M ∈(0, +∞), θτ ∈ (0, 1).

Set k = 1.
Step 1. Find (xk , yk ) as any solution of the optimization problem

min
(x, y)∈Rn×Rm

F(x, y)

s.t. C(x) ≤ 0

∇ yΘτk ,ρk (x, y) = 0.

(P̃k)

Step 2. If τk ≤ τopt and ρk > f (xk , yk ), then terminate.

Step 3. Set τk+1=
√

τ2k −(1−θτ )2
[
τ2k −

(
‖cin(xk , yk )+‖2+‖ceq(xk , yk )‖2

)]
+.

Step 4. If f (xk , yk ) − ρk ≤ −M , then set ρk+1 = ρk . Otherwise,

ρk+1 = ρk + 2
(
M + [ f (xk , yk ) − ρk ]+

)
.

Step 5. Set k ← k + 1 and go back to Step 1.

Relying on the assumption that (P̃k) approximates well the problem (P-bilevel),
we perform Step 1 in order to obtain an approximation (xk, yk) for a local solution
of the original problem, with Step 2 being a stopping criteria. Moreover, since this
approximation only makes sense when τk ≈ 0, Step 3 performs an update for the
value of τk at each iteration driven by the term ‖cin(xk, yk)+‖2 +‖ceq(xk, yk)‖2. The
parameter τk plays the role of a target value for the infeasibility of the point (xk, yk) in
relation to the feasible set of the lower-level optimization. Therefore, when this target
value is reached (i.e., ‖cin(xk, yk)+‖2 + ‖ceq(xk, yk)‖2 < τ 2), then a reduction on
the parameter can be done – see Fig. 2; otherwise, we set τk+1 = τk . Finally, Step 4
sets an adjustment on the value of ρk+1 in order to predict a sufficiently negative value
for the difference f (xk+1, yk+1) − ρk+1.

The subsequent results aim at proving that the NoBOA method is capable of con-
verging to a local optimal solution of (P-bilevel). First, we need to establish a relation
between the functionΘτ,ρ and problem (P-lower). For that, we need some preliminary
results.
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Fig. 2 An illustration of the update that appears inside Step 3 of Algorithm 1 whenever ‖cin(xk , yk )+‖2 +
‖ceq(xk , yk )‖2 < τ2k

Lemma 1 Under the assumptions that the set S – defined in (1) – is nonempty and
compact, and that, for every x ∈ R

n satisfying C(x) ≤ 0, the set Ω(x) is nonempty,
it follows that

Sα := {(x, y) ∈ R
n × R

m : C(x) ≤ 0, ‖cin(x, y)+‖2 + ‖ceq(x, y)‖2 ≤ α}

is also a nonempty and compact set for any α ∈ R+. In particular, for any chosen
α ∈ R+, it follows that the set

Ωα(x̄) :=
{
y ∈ R

m : ‖cin(x̄, y)+‖2 + ‖ceq(x̄, y)‖2 ≤ α
}

is nonempty and compact for any x̄ ∈ R
n satisfying C(x̄) ≤ 0.

Proof Since S is nonempty, it is straightforward to see that Sα is also a nonempty
set. Moreover, because the functions ceq, cin and C are continuous, it also follows
that Sα is a closed set for any α > 0. Therefore, it remains for us to prove that Sα is
bounded for any arbitrary α ∈ R+. So, by contradiction, let us suppose that Sα is not
bounded for some α ∈ R+. Therefore, there exists a sequence {(xk, yk)} ⊂ Sα such
that ‖(xk, yk)‖ → ∞. Notice however that, because of our hypotheses, it follows that
the set {x ∈ R

n : C(x) ≤ 0} is compact. Therefore, the sequence { yk} ⊂ R
m must be

unbounded. So, without loss of generality, we may suppose that

xk → x̄, yk ∈ Ωα(xk) and ‖ yk‖ ≥ k, for all k ∈ N,

for some x̄ ∈ R
n satisfyingC(x̄) ≤ 0. By hypothesis,Ω(x̄) is nonempty.Additionally,

Ω(x̄) is also compact, otherwise the set S would not be compact. So, there must exist
a sufficiently large k̂ ∈ N and ȳ ∈ Ω(x̄) such that ‖ y − ȳ‖ ≥ k̂ ⇒ y /∈ Ω(x̄). We
then define

λk = k̂

‖ yk − ȳ‖ .

Since ‖ yk‖ → ∞, we must have that λk ∈ [0, 1], for any large k ∈ N. So, without
loss of generality, we assume that λk ∈ [0, 1], for all k ∈ N. Additionally, defining
zk := (1 − λk) ȳ + λk yk , we see that

‖zk − ȳ‖ = λk‖ yk − ȳ‖ = k̂

‖ yk − ȳ‖‖ yk − ȳ‖ = k̂.

Consequently, {zk} is bounded. Hence, we may suppose without loss of generality that
zk → z̄, for some z̄ ∈ R

m . By the definition of k̂, it yields z̄ /∈ Ω(x̄).
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Let us fix i ∈ {1, . . . , q} and j ∈ {1, . . . , s}. Since, for each k ∈ N, the function
cini (xk, ·) is convex, ceqj (xk, ·) is affine-linear, and yk ∈ Ωα(xk), we must have

cini

(
xk, (1 − λk) ȳ + λk yk

)
+ ≤ (1 − λk)c

in
i (xk, ȳ)+ + λkc

in
i (xk, yk)+

≤ (1 − λk)c
in
i (xk, ȳ)+ + λk

√
α, (3)

and
∣∣∣ceqj

(
xk, (1 − λk) ȳ + λk yk

)∣∣∣ ≤ (1 − λk)|ceqj (xk, ȳ)| + λk |ceqj (xk, yk)|
≤ (1 − λk)|ceqj (xk, ȳ)| + λk

√
α.

(4)

Recalling that cini (x̄, ȳ)+ = 0 and |ceqj (x̄, ȳ)| = 0 – because ȳ ∈ Ω(x̄) –, and noticing
that λk → 0, we see, by considering the limit k → ∞ in inequalities (3) and (4), that
cini (x̄, z̄)+ = 0 and |ceqj (x̄, z̄)| = 0. Since i and j are arbitrary, this is a contradiction
with z̄ /∈ Ω(x̄). So, the statement must be true. ��

We proceed with our analysis by proving, under mild assumptions, that a global
minimizer of Θτ,ρ(x, ·) can always be found.

Lemma 2 Let τ be any strictly positive real number and ρ ∈ R. If x̄ ∈ R
n satisfies

C(x̄) ≤ 0, and Ω(x̄) is nonempty and compact, then one can always find a global
minimizer of Θτ,ρ(x̄, ·).
Proof We first show that Θτ,ρ(x̄, ·) is bounded from below. Notice that for any y ∈
R
m satisfying ‖cin(x̄, y)+‖2 + ‖ceq(x̄, y)‖2 ≤ τ 2, there exists L ∈ R such that

L ≤ Θτ,ρ(x̄, y), since, by Lemma 1, the set Ωα(x̄) is compact for any α ∈ R+.
Moreover, for the case that y ∈ R

m satisfies ‖cin(x̄, y)+‖2 + ‖ceq(x̄, y)‖2 > τ 2, we
have

Θτ,ρ(x̄, y) = ‖cin(x̄, y)+‖2 + ‖ceq(x̄, y)‖2 ≥ 0.

So, one can see that

Θτ,ρ(x̄, y) ≥ min{L, 0}, for any y ∈ R
m,

which implies that inf
y∈Rm

Θτ,ρ(x̄, y) exists. Therefore, let { yk} ⊂ R
m be a sequence

such that

N := lim
k→∞ Θτ,ρ(x̄, yk) = inf

y∈Rm
Θτ,ρ(x̄, y).

We now split the proof in two complementary cases:

i) there exists a sufficiently large k̂ ∈ N such that k ≥ k̂ implies the inequality
‖cin(x̄, yk)+‖2 + ‖ceq(x̄, yk)‖2 ≥ τ 2;
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ii) there exists an infinite index set K ⊂ N such that we obtain the strict inequality
‖cin(x̄, yk)+‖2 + ‖ceq(x̄, yk)‖2 < τ 2, for all k ∈ K.

Suppose case i) holds. Then, by the very definition of Θτ,ρ , we get

Θτ,ρ(x̄, yk) = ‖cin(x̄, yk)+‖2 + ‖ceq(x̄, yk)‖2, for all k ≥ k̂.

Therefore, N ≥ τ 2. However, since we assume that Ω(x̄) is not empty, there must
exist ȳ ∈ R

m such that cin(x̄, ȳ) ≤ 0 and ceq(x̄, ȳ) = 0. Now, due to the continuity

of the functions cin and ceq, and because ‖cin(x̄, yk̂)+‖2 + ‖ceq(x̄, yk̂)‖2 ≥ τ 2, it
follows that there must exist ỹ ∈ R

m such that

‖cin(x̄, ỹ)+‖2 + ‖ceq(x̄, ỹ)‖2 = τ 2.

This implies that N = τ 2 and that the infimum is attained at ỹ, which guarantees a
global minimizer for Θτ,ρ(x̄, ·).

If ii) is the case, then, becauseΩα(x̄) is a nonempty and compact set for anyα ∈ R+
(again, see Lemma 1), we see that the sequence { yk}k∈K belongs to a compact set of
R
m . Therefore, there must exist a subsequence of { yk}k∈K converging to some point

ȳ ∈ R
m and attaining the infimum value of Θτ,ρ(x̄, ·). This implies that ȳ is a global

minimizer of Θτ,ρ(x̄, ·), which ends our proof. ��
The result above is of great importance, because it tells us that the feasible set

of problem (P̃k) is never empty, since a global minimizer of Θτ,ρ is, in particular, a
stationary point for the same function. We now exhibit the statement that presents a
relation between Θτk ,ρ and the minimizers of problem (P-lower).

Proposition 1 Let x̄ ∈ R
n be any point satisfying C(x̄) ≤ 0, and suppose that Ω(x̄)

is a nonempty and compact set, and R(x̄) = { ȳ}. Then, given any {τk} ⊂ R
∗+, with

τk → 0, and any ρ > f (x̄, ȳ), there must exist { yk} ⊂ R
m such that yk → ȳ and

∇ yΘτk ,ρ(x̄, yk) = 0, for all k ∈ N.

Proof Let { yk} ⊂ R
m be a sequence such that each element is given by

yk ∈ argmin y∈Rm Θτk ,ρ(x̄, y). (5)

Notice that Lemma 2 guarantees that the sequence above is well defined. As a con-
sequence, we must have Θτk ,ρ(x̄, yk) ≤ Θτk ,ρ(x̄, ȳ) = f (x̄, ȳ) − ρ < 0. But
Θτk ,ρ(x̄, yk) can only be negative if

‖cin(x̄, yk)+‖2 + ‖ceq(x̄, yk)‖2 < τ 2k . (6)

Hence, due to Lemma 1, { yk} must be a bounded sequence.
We claim that yk → ȳ. By contradiction, we assume that this convergence does not

hold. So, theremust exist an infinite index setK ⊂ N and δ > 0 such that ‖ yk− ȳ‖ ≥ δ,
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for all k ∈ K. Because { yk} is bounded, we can suppose without loss of generality
that K was chosen in a way that yk →

k∈K
ŷ, for some ŷ �= ȳ. Also, notice that

0 ≤ μk := max

{
1 − ‖cin(x̄, yk)+‖2 + ‖ceq(x̄, yk)‖2

τ 2k
, 0

}2

≤ 1.

Therefore, onemay also assumewithout loss of generality thatKwas chosen to satisfy
μk →

k∈K
μ̂, for some ˆμ ∈[0, 1]. Then, recalling relation (6) and τk → 0, we see that

ŷ ∈ Ω(x̄). Moreover, since yk solves the problem in (5), the following holds

lim
k∈K

Θτk ,ρ(x̄, yk) ≤ lim
k∈K

Θτk ,ρ(x̄, ȳ) ⇒ ˆμ[ f (x̄, ŷ) − ρ] ≤ f (x̄, ȳ) − ρ.

Because f (x̄, ȳ) − ρ is negative, we see that ˆμ[ f (x̄, ŷ) − ρ] must also be negative.
Additionally, since ˆμ ∈[0, 1], the right-hand side of the last implication above gives
us f (x̄, ŷ) ≤ f (x̄, ȳ). But ŷ ∈ Ω(x̄), and R(x̄) was assumed to be a singleton,
which yields ŷ = ȳ. However, this is a contradiction with the fact that ŷ �= ȳ. Hence,
yk → ȳ and the statement is proven. ��

The next condition shows a relation between the function Θτ,ρ and the Fritz John
optimality conditions associated with the optimization problem that appears inR(x̄).

Lemma 3 Let x̄ be any fixed vector in R
n satisfying C(x̄) ≤ 0, and with Ω(x̄) being

nonempty and compact. Additionally, let ȳ ∈ Ω(x̄). Assume also that {ρk} ⊂ R is
a sequence such that each element satisfies ρk ≥ f (x̄, ȳ) + M, for some M > 0.
If there exist sequences {(xk, yk)} ⊂ R

n × R
m and {τk} ⊂ R

∗+ satisfying τk → 0,
(xk, yk) → (x̄, ȳ) and

‖∇ yΘτk ,ρk (x
k, yk)‖ = o(τk) for all k ∈ N, (7)

then the Fritz John optimality conditions associated with the optimization problem
related toR(x̄) are satisfied at ȳ.

Proof For fixed values τ ∈ R
∗+ and ρ ∈ R, notice that

∇ yΘτ,ρ(x, y) = στ,ρ(x, y)

⎡
⎣

q∑
i=1

[cini (x, y)+]∇ yc
in
i (x, y) +

s∑
j=1

ceqj (x, y)∇ yc
eq
j (x, y)

⎤
⎦

+ ζτ (x, y)∇ y f (x, y),

where

στ,ρ(x, y) := 1 + 2

τ 2
[ρ − f (x, y)]max

{
1 − ‖cin(x, y)+‖2 + ‖ceq(x, y)‖2

τ 2
, 0

}
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and

ζτ (x, y) := max

{
1 − ‖cin(x, y)+‖2 + ‖ceq(x, y)‖2

τ 2
, 0

}2

.

Additionally, we define, for all (x, y) ∈ R
n × R

m ,

βτ,ρ(x, y) := max
1≤i≤q,1≤ j≤s

{
στ,ρ(x, y)cini (x, y)+, στ,ρ(x, y)|ceqj (x, y)|, ζτ (x, y)

}
.

Now, without loss of generality, we can suppose that f (xk, yk) − ρk < 0, for all
k ∈ N, since we have by hypothesis that ρk ≥ f (x̄, ȳ) + M and (xk, yk) → (x̄, ȳ).
Then, βτk ,ρk (x

k, yk) > 0 and, since ‖∇ yΘτk ,ρk (x
k, yk)‖ = o(τk), it follows that

λ
f
k ∇ y f (xk, yk) +

q∑
i=1

λ
cini
k ∇ yc

in
i (xk, yk) +

s∑
j=1

λ
ceqj
k ∇ yc

eq
j (xk, yk) = o(τk)

βτk ,ρk (xk, yk)
,

where

λ
cini
k := στk ,ρk (x

k, yk)cini (xk, yk)+
βτk ,ρk (xk, yk)

, λ
ceqj
k := στk ,ρk (x

k, yk)ceqj (xk, yk)

βτk ,ρk (xk, yk)

and

λ
f
k := ζτk (x

k, yk)
βτk ,ρk (xk, yk)

.

We claim that o(τk)/βτk ,ρk (x
k, yk) → 0. To prove such a statement, we have two

cases:

i) there is an infinite index set K1 ⊂ N such that ζτk (x
k, yk) > 0.52 for all k ∈ K1;

ii) there is an infinite index set K2 ⊂ N such that ζτk (x
k, yk) ≤ 0.52 for all k ∈ K2.

If case i) happens, then by the way βτ,ρ(x, y) was defined, it follows immediately
that o(τk)/βτk ,ρk (x

k, yk) →
k∈K1

0. Moreover, if case ii) holds, then we must have, for

all k ∈ K2,

0.5τ 2k ≤ ‖cin(xk, yk)+‖2 + ‖ceq(xk, yk)‖2. (8)

Recalling the definition of βτ,ρ(x, y), one can see that there exists α > 0 such that
ατk ≤ βτk ,ρk (x

k, yk) for all k ∈ K2, since the inequality (8) guarantees that at least
one constraint must be of order τk . This ensures that o(τk)/βτk ,ρk (x

k, yk) →
k∈K2

0. So,

putting together the cases i) and ii), we obtain o(τk)/βτk ,ρk (x
k, yk) → 0 as desired.
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Therefore, due to (7), it follows that

λ
f
k ∇ y f (xk, yk) +

q∑
i=1

λ
cini
k ∇ yc

in
i (xk, yk) +

s∑
j=1

λ
ceqj
k ∇ yc

eq
j (xk, yk) → 0.

In addition, notice that λ
f
k , λ

cini
k ∈ [0, 1] and λ

ceqj
k ∈ [−1, 1], which yields that there

must exist an infinite index set K ⊂ N and values λ f , λc
in
i ∈ [0, 1] and λ

ceqj ∈ [−1, 1]
such that

λ
f
k →

k∈K
λ f , λ

cini
k →

k∈K
λc

in
i and λ

ceqj
k →

k∈K
λ
ceqj , for all i ∈ {1, . . . , q}, j ∈ {1, . . . , s}.

Consequently, recalling (xk, yk) → (x̄, ȳ) and that the underlying functions of the
lower-level problems are of class C2, we have

λ f ∇ y f (x̄, ȳ) +
q∑

i=1

λc
in
i ∇ yc

in
i (x̄, ȳ) +

s∑
j=1

λ
ceqj ∇ yc

eq
j (x̄, ȳ) = 0.

By the definition of the values λ
f
k , λ

cini
k and λ

ceqj
k , one can see that

max
1≤i≤q,1≤ j≤s

{
λ
f
k , λ

cini
k ,

∣∣∣∣λ
ceqj
k

∣∣∣∣
}

= 1, for all k ∈ N.

This implies that λ f , λc
in
i and λ

ceqj cannot be all simultaneously zero, which completes
the proof. ��

Our analysis proceeds with another technical lemma.

Lemma 4 Let τ ∈ R+, ρ ∈ R and (x̃, ỹ) be any point in R
n × R

m satisfying
C(x̃) ≤ 0 and ∇ yΘτ,ρ(x̃, ỹ) = 0. Additionally, suppose that Ω(x̃) is not empty.
Then, ‖cin(x̃, ỹ)+‖2 + ‖ceq(x̃, ỹ)‖2 ≤ τ 2.

Proof By contradiction, suppose that the statement is false, i.e., ‖cin(x̃, ỹ)+‖2 +
‖ceq(x̃, ỹ)‖2 > τ 2. Therefore, this ensures that

∇ yΘτ,ρ(x̃, ỹ) = ∇ y

(
‖cin(x̃, ỹ)+‖2 + ‖ceq(x̃, ỹ)‖2

)
.

Since cini (x̃, ·) is convex for any i ∈ {1, . . . , q}, ceqj (x̃, ·) is affine-linear for any
j ∈ {1, . . . , s} and ∇ yΘτ,ρ(x̃, ỹ) = 0, it follows that ỹ is a global minimizer
of ‖cin(x̃, ·)+‖2 + ‖ceq(x̃, ·)‖2. But this contradicts our assumption that Ω(x̃) is
nonempty. Therefore, the statement must be true. ��
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In possession of these results, we are now able to make statements regarding the
NoBOA method. For the remaining results, all hypotheses made in Sect. 2 for prob-
lem (P-bilevel) are assumed to hold true. First, we claim that Step 1 of Algorithm 1 is
well defined.

Lemma 5 The procedure in Step 1 of Algorithm 1 is well defined, i.e., a solution of (P̃k)
can always be found for any k ∈ N.

Proof By Lemma 2, we know that the feasible region of (P̃k) is never empty for any
k ∈ N. So, let us show that this feasible region is also compact for any fixed k ∈ N.
Lemma 4 tells us that any feasible point (x̃, ỹ) for (P̃k) at iteration k belongs to the
set

Sτ 2k
= {(x, y) ∈ R

n × R
m : C(x) ≤ 0, ‖cin(x, y)+‖2 + ‖ceq(x, y)‖2 ≤ τ 2k }.

Additionally, Lemma 1 guarantees that Sτ 2k
is a compact set. Therefore, the feasible set

of (P̃k) must be bounded. Moreover, it is straightforward to see that such a set is also
closed, which ensures that the feasible set is compact. Since F(x, y) is a continuous
function, the statement follows. ��

The following lemma guarantees that the value τk will monotonically decrease
to zero, a result that is crucial to ensure that (P̃k) approximates the original bilevel
problem.

Lemma 6 Suppose that τopt = 0, and let {τk} ⊂ R
∗+ be the sequence generated by

Algorithm 1. Then, {τk} is a monotone decreasing sequence converging to zero.

Proof The fact that {τk} is a monotone decreasing sequence follows immediately from
Step 3. Therefore, since τk > 0, for all k ∈ N, it follows that τk → τ̄ , for some τ̄ ∈ R+.
By contradiction, suppose that τ̄ > 0. From Step 3, it follows

τ 2k − τ 2k+1 = (1 − θτk )
2
[
τ 2k −

(
‖cin(xk, yk)+‖2 + ‖ceq(xk, yk)‖2

)]
+ .

Taking the limit of the above equation, one obtains

lim
k→∞

[
τ 2k −

(
‖cin(xk, yk)+‖2 + ‖ceq(xk, yk)‖2

)]
+ = 0.

Therefore, there exists a sequence {δk} ⊂ R+ converging to zero such that

τ 2k −
(
‖cin(xk, yk)+‖2 + ‖ceq(xk, yk)‖2

)
≤ δk,

which implies

1 − ‖cin(xk, yk)+‖2 + ‖ceq(xk, yk)‖2
τ 2k

≤ δk

τ 2k
.
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Now, because we suppose τ̄ > 0, it follows that

max

{
1 − ‖cin(xk, yk)+‖2 + ‖ceq(xk, yk)‖2

τ 2k
, 0

}
→ 0. (9)

Furthermore, notice that the gradient of the function Θτ,ρ(x, ·) can be written as

στ,ρ(x, y)∇ y

(
‖cin(x, y)+‖2 + ‖ceq(x, y)‖2

)
+ ζτ (x, y)∇ y f (x, y), (10)

where

στ,ρ(x, y) := 1 + 2

τ 2
[ρ − f (x, y)]max

{
1 − ‖cin(x, y)+‖2 + ‖ceq(x, y)‖2

τ 2
, 0

}

and

ζτ (x, y) := max

{
1 − ‖cin(x, y)+‖2 + ‖ceq(x, y)‖2

τ 2
, 0

}2

.

Additionally, because of Lemma 4 and from the fact that {τk} is a monotone decreasing
sequence, it follows that the iterates (xk, yk) must all satisfy

‖cin(xk, yk)+‖2 + ‖ceq(xk, yk)‖2 ≤ τ 21 , for all k ∈ N.

By Lemma 1, this yields that {(xk, yk)} is a bounded sequence. Hence, one can find an
infinite index set K ⊂ N such that (xk, yk) →

k∈K
(x̄, ȳ), for some (x̄, ȳ) ∈ R

n × R
m .

So, because (9) and (10) hold and ∇ yΘτk ,ρk (x
k, yk) = 0, for all k ∈ N, we see that

∇ y

(
‖cin(x̄, ȳ)+‖2 + ‖ceq(x̄, ȳ)‖2

)
= 0.

Hence, ȳ is a global minimizer of
∥∥cin (x̄, ·)+

∥∥2 + ‖ceq (x̄, ·)‖2. But since τ̄ > 0, we
have ‖cin(x̄, ȳ)+‖2 + ‖ceq(x̄, ȳ)‖2 > 0, and therefore, Ω(x̄) = ∅. However,

lim
k∈K

C(xk) ≤ 0 ⇒ C(x̄) ≤ 0,

which implies that Ω(x̄) cannot be empty by our initial assumptions on problem (P-
bilevel). This contradiction arose due to our assertion that τ̄ > 0. Therefore, one must
have τ̄ = 0. ��

We are now ready to present a fundamental result related to the convergence of the
NoBOA method. The theorem below together with a suitable constraint qualification
will guarantee the desired convergence to a solution of the original problem.
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Theorem 1 Suppose that τopt = 0 and the lower-level problem has a unique solution
for every upper-level variable x. Then, for any limit point (x∗, y∗) ∈ R

n ×R
m of the

iterate sequence {(xk, yk)} generated by Algorithm 1, the following statements hold:
C(x∗) ≤ 0; the Fritz John optimality conditions associated with the optimization
problem presented inR(x∗) are satisfied at y∗; and

F(x∗, y∗) ≤ F(x, y),

for any (x, y) ∈ R
n ×R

m being a feasible point for the original problem (P-bilevel).
Moreover, there must exist k̂ ∈ N and ρ̄ ∈ R such that ρk = ρ̄, for all k ≥ k̂.

Proof Notice that, since τopt = 0, Algorithm 1 generates an infinite sequence of
iterates. So,we start the proof showing thatC(x∗) ≤ 0. LetK ⊂ Nbe any infinite index
set such that (xk, yk) →

k∈K
(x∗, y∗). Then, since every xk must satisfy C(xk) ≤ 0, we

have

lim
k→∞ C(xk) ≤ 0 ⇒ C(x∗) ≤ 0.

Let us now show that there must exist k̂ ∈ N and ρ̄ ∈ R such that ρk = ρ̄, for
all k ≥ k̂. Indeed, because of Lemmas 1, 4 and 6, one can see that the sequence
{(xk, yk)} is bounded. Therefore, since f is a continuous function, it follows that
{ f (xk, yk)} is also a bounded sequence. Due to such a boundness, Step 3 assures that
eventually ρk ≥ f (xk, yk) + M for all k ∈ N sufficiently large, implying that there
must exist k̂ ∈ N and ρ̄ ∈ R such that ρk = ρ̄, for all k ≥ k̂. Therefore, to simplify
the presentation, we may suppose without loss of generality that ρk remains fixed for
all iterations, as a consequence of f (xk, yk) − ρk < −M < 0, for all k ∈ N.

Now, let us choose any (x, y) ∈ R
n×R

m that is feasible for the original problem (P-
bilevel). Then, Proposition 1 gives us a sequence { ỹk} ⊂ R

m such that (x, ỹk) is always
feasible for (P̃k) and ỹk → y. Therefore, because (xk, yk) solves (P̃k), we obtain

F(xk, yk) ≤ F(x, ỹk) ⇒ lim
k∈K

F(xk, yk) ≤ lim
k∈K

F(x, ỹk) ⇒ F(x∗, y∗) ≤ F(x, y),

where K is any infinite index set such that (xk, yk) →
k∈K

(x∗, y∗). To see that the

Fritz John optimality conditions associated with the optimization problem presented
in R(x∗) are satisfied at y∗, just notice that ∇ yΘτk ,ρk (x

k, yk) = 0 for all k ∈ N, and
τk → 0 – because of Lemma 6 –, which together with Lemma 3, completes the proof.

��
In order to establish a strong connection between the original problem (P-bilevel)

and the one-level approximation (P̃k), we need to assume the following constraint
qualification for the follower’s optimization problem [8, Section 6.3].

Definition 1 (Mangasarian-Fromovitz constraint qualification) For any fixed x̄ ∈ R
n

satisfying C(x̄) ≤ 0, we say that the Mangasarian-Fromovitz constraint qualification
(MFCQ) is satisfied at ȳ ∈ Ω(x̄) for the follower’s optimization problem if, for all i ,
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the gradients ∇ yc
eq
i (x̄, ȳ) are linearly independent, and there exists a vector d ∈ R

m

such that, for Iin := {i : cini (x̄, ȳ) = 0},

∇ yc
in
i (x̄, ȳ)T d < 0 (i ∈ Iin) and ∇ yc

eq
j (x̄, ȳ)T d = 0 ( j ∈ {1, . . . , s}).

The following result is a direct implication of the previous theorem and could be
seen as its corollary, but due to its relevance, we have stated it as a theorem as well.

Theorem 2 Let (x∗, y∗) be a limit point of the sequence {(xk, yk)} ⊂ R
n × R

m

generated by Algorithm 1 with τopt = 0 and assume that the lower-level problem
has a unique solution for every upper-level variable x. If MFCQ is valid at y∗ for the
optimization problem presented in R(x∗), then (x∗, y∗) solves the original problem
(P-bilevel).

Proof Just notice that theMangasarian-Fromovitz constraint qualification assures that
the Fritz John optimality conditions that appear in the conclusion of Theorem 1
can be changed to the Karush-Kuhn-Tucker optimality conditions [8, Section 6.3].
Consequently, since the optimization problem related toR(x∗) is convex, the Karush-
Kuhn-Tucker optimality conditions are sufficient to assure that y∗ ∈ R(x∗). This
information together with Theorem 1 guarantees the result. ��

Although the previous result is strong and assures, in the limit, a correspondence
between the solutions of (P-bilevel) and (P̃k ), we needed to assume that (P̃k ) is globally
solved. The following theorem is much more revealing since it ensures that, under
mild assumptions, a relation between the local minimizers of the problems (P-bilevel)
and (P̃k) can be established.

Theorem 3 Let τopt = 0, assume that the lower-level problem has a unique solution
for every upper-level variable x, and suppose that the iterates (xk, yk) are feasible
for (P̃k) and there exists δ > 0 such that, for all k ∈ N, we have

F(xk, yk)≤F(x, y), for all (x, y) ∈ B
(
(xk, yk), δ

)
that is feasible for (P̃k).

(11)

Additionally, assume that (x∗, y∗) ∈ R
n ×R

m is a limit point for {(xk, yk)}, and that
MFCQ is valid at any y ∈ Ω(x∗) for the optimization problem presented in R(x∗).
Then, (x∗, y∗) is a local solution for the original bilevel problem (P-bilevel).

Proof Using the same reasoning of the beginning of the proof of Theorem 1, one can
see that there exist k̂ ∈ N and ρ̄ ∈ R such that ρk = ρ̄, for all k ≥ k̂, and moreover,
C(x∗) ≤ 0. Similarly, one can also guarantee that y∗ ∈ R(x∗) by recalling that
MFCQ is assumed to be valid at any y ∈ Ω(x∗), and by proceeding in the same
way that was done in the proof of Theorem 1 to see that the Fritz John optimality
conditions associated with the optimization problem presented inR(x∗) are satisfied
at y∗. So, since C(x∗) ≤ 0 and y∗ ∈ R(x∗), we conclude that (x∗, y∗) is a feasible
point for (P-bilevel). Therefore, it is sufficient to show that (x∗, y∗) is also a local
minimizer for the bilevel problem.
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The fact thatR(·) is an upper-semicontinuous function andR(x) is a singleton for
any x ∈ R

n satisfying C(x) ≤ 0 reveals that R(·) is a continuous function at x∗ [1,
Lemma 16.6]. Therefore, there must exist δ̃ ≤ δ/4 – where δ comes from (11) – such
that

‖x − x∗‖ ≤ δ̃ and C(x) ≤ 0 ⇒ ‖R(x) − R(x∗)‖ ≤ δ

4
.

Let (x, y) ∈ R
n ×R

m be any point such that ‖x− x∗‖ ≤ δ̃, C(x) ≤ 0 and y ∈ R(x).
Then, Proposition 1 gives us a sequence { ỹk} ⊂ R

m such that (x, ỹk) is always
feasible for (P̃k) and ỹk → y. Therefore, for any k ∈ N sufficiently large, we have
(x, ỹk) ∈ B (

(xk, yk), δ
)
, which implies F(xk, yk) ≤ F(x, ỹk) – because (xk, yk)

satisfies (11). Hence,

lim
k∈K

F(xk, yk) ≤ lim
k∈K

F(x, ỹk) ⇒ F(x∗, y∗) ≤ F(x, y),

whereK is any infinite index set such that (xk, yk) →
k∈K

(x∗, y∗). Consequently, since

(x, y) ∈ R
n × R

m is any arbitrary point satisfying ‖x − x∗‖ ≤ δ̃, C(x) ≤ 0 and
y ∈ R(x), it follows that F(x∗, y∗) ≤ F(x, y), for any x ∈ B(x∗, δ̃) such that
C(x) ≤ 0 and y ∈ R(x). Since we have already shown that (x∗, y∗) is a feasible
point for (P-bilevel), the statement is proven. ��

With this last theoretical result, we ensure that, in the limit, any local optimal
solution obtained in (P̃k) is, in fact, a local minimizer for the original bilevel problem.
Therefore, in opposition to the KKT formulation, our new one-level optimization
problem does present a correspondence between local solutions. Additionally, this
was done avoiding any kind of implicit description of the follower’s feasible set.

Exactness of solution in Step 1. The only matter that was not addressed yet is the
fact that, at each iteration k ∈ N, we request for the exactness of a solution (xk, yk)
in Step 1. Practical algorithms are not able, in general, to find the exact solution of an
optimization problem, but only a good approximation can be expected. Therefore, if
the errors of those approximations accumulate along the iterations, the convergence
theory developedmaynot hold.We advocate, however, that this should not be a concern
for our proposed algorithm.

It should be noticed that the convergence theory developed here would still hold
if the sequence {τk} did not depend on (xk, yk), but was a priori sequence given at
Step 0 of NoBOA – as long as τk ↓ 0. Moreover, {ρk} could also be given at Step 0
as a constant sequence such that ρk ≡ ρ̄, for a sufficiently large ρ̄ – resembling exact
penalization strategies that, as long as a sufficiently large penalty parameter is given,
the solution for the original constrained optimization problem is recovered. In this
configuration, each iteration of NoBOA would not depend on the previous one, and
therefore, (xk−1, yk−1) would just be a warm start for the optimization problem in
Step 1 at iteration k. On these circumstances, accumulation errors cannot occur.

In its initial version, the NoBOA algorithm was tailored to function exactly as the
description given in the previous paragraph. Although this approach works fine in the
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theoretical realm, the practicality of this preliminarymethod suffers by not considering
the information obtained in the previous iterations to update the parameters τk and ρk .
Hence, the aspects of the method that might be of practical concern were defined by
exactly taking the practicality of the algorithm into consideration.

That said, it should be stressed that even in the present configuration of the NoBOA
algorithm, accumulation errors cannot occur. Indeed, as explained, as long as τk ↓ 0
and ρk is sufficiently large, the convergence theory still holds. So, the dependence of
(xk, yk) on (xk−1, yk−1) does not exist from the theoretical perspective – although,
in practice, this plays an important role. As such, accumulation errors that prevent the
NoBOA method to converge cannot occur – under the assumption that τk ↓ 0 and
ρk is sufficiently large. Now, notice that ρk will be sufficiently large even when one
solves Step 1 inexactly. Indeed, suppose (xk, yk) has a convergent subsequence, then
the reasoning used in the proof of Theorem 1 to ensure that ρk is sufficiently large
would still hold true in the vicinity of the limit point. Hence, the perfect accuracy of
the solution obtained in Step 1 is not crucial to have a proper value for ρk . Finally,
by simply looking at Step 3, one can see that τk will not converge to zero only if the
feasibility of the lower-level problem is not being reached. Although the lower-level
problem is assumed to be convex, it is possible that its feasible region is not attained
due to the consideration of the functions that describe the upper-level problem –which
are not necessarily convex –, i.e., the iterates (xk, yk) might be a stationary point of
the measure of infeasibility associated with the method used to solve Step 1. Hence,
the only possibility in which τk does not converge to zero coincides with the case that
most methods designed for constrained optimization might also have drawbacks. As
a result, we believe the difficulties that emerge from not solving Step 1 with exact
precision are not greater than the difficulties faced by well-established optimization
methods.

4 Numerical results

With the aim of illustrating the performance of the proposed reformulation, Algo-
rithm 1 (NoBOA) has been implemented and used for solving three families of test
problems, namely: (i) two examples of Bard’s book [3]; (ii) three instances of toll-
setting problems from [9]; (ii) three examples of [15] for which some of the required
hypotheses fail to hold. The specific details are described next, together with the
achieved results.All the experimentswere run in aDELLLatitude 7490notebook, Intel
Core i7-8650U processor clocked at 2.11GHz, 16GB RAM (64-bit), using Matlab
R2018a.

The algorithmic parameters were chosen as follows: ρ1 = 500, τ1 = 10,
τopt = 10−4,M = 25, θτ = 0.9. The subproblems of Step 1were solved usingPACNO,
the penalized algorithm for constrained nonsmooth optimization proposed in [26],with
the gradient sampling (GS) algorithm [6] as the inner solver. Hence, to achieve statisti-
cally significant results, for each problem, 100 initial points (x0, y0) ∈ R

n ×R
m were

randomly and uniformly sampled in a box [xlow, xupp]n × [ylow, yupp]m . The specific
values for the bounds are reported together with the problem features.
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Theparameters ofPACNOweredefined adaptively,with a slowpolicyof adjustment,
to provide enough room to progress while avoiding abrupt variations of the iterates:
θξ = 0.9, θε = 0.92, θν = 0.75. Loose tolerances were chosen in the beginning,
to prevent premature stopping, thus at the first call, we set , ξ1 = τ1/2, ε1 = 0.5,
ν1 = 0.5, ξopt = ξ1/2, εopt = ε1/5, νopt = ν1/5. The remanining parameters were
set as ρPACNO

1 = 100, MPACNO = 10 and ω = 0.99. Additionally, for each call of
GS at the j-th iteration of PACNO, the sampling radii were set first as min{1, 10ε j },
with optimality tolerance min{1, 10ν j }, and subsequently, the final sampling radius
was defined as min{1, ε j }, with optimality tolerance min{1, ν j }, allowing a maximum
of 10,000 iterations.

Along the iterations of NoBOA, as the threshold parameter τk decreases, the toler-
ances of PACNO are also diminished accordingly, starting with ξ1 = min{τk/2, τ 1.5k },
ε1 = ν1 = min{10−1, ξ1/2}, and setting the targets as follows

ξopt = max
{
min{τk, ξ1/(k + 1)}, τ 1.1opt

}
,

εopt = max
{
min{τ 1.5k , ε1/(k + 1)1.1}, τ 1.5opt

}
,

νopt = max
{
min{τ 2k , ν1/(k + 1)1.2}, τ 2opt

}
.

In preparation for each call of PACNO, within a continuation philosophy with
respect to the set of constraints ∇ yΘτ,ρ(x, y) = 0, the following strategy has
been adopted to provide a hot start for the lower-level variables. Kepping fixed the
upper-level variables, and taking the current value for the lower-level variables as
the initial point, the smooth unconstrained problem min y Θτk ,ρk (x

k, y) was solved
using the Matlab routine fminunc, with the default choices, except for the option
‘SpecifyObjectiveGradient’, that was activated.

As it happens formany practical implementations of numericalmethods, safeguards
are important for avoiding undesirable behavior. Therefore, specially because we are
dealing with nonsmooth functions, an alternative termination criterion due to lack
of progress (LOP) had to be devised and implemented. Taking into account either
the whole set of variables, or just the upper-level ones, we have tracked the relative
variation

∥∥∥
(
xk, yk

)
−

(
xk−1, yk−1

)∥∥∥ /

∥∥∥
(
xk−1, yk−1

)∥∥∥

or ‖xk − xk−1‖/‖xk−1‖, stopping whenever the corresponding ratio remains below
εLOP = 10−3 along 5 consecutive iterations. Another reason for stopping was due to
failure of PACNO, in case the inner solver exits with an infeasible iterate. Besides
that, NoBOA was allowed to perform at most 2,000 iterations, but such a budget was
never reached in our experiments.
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4.1 Problems from Bard’s book

The double penalty function method [29], which was briefly discussed in the introduc-
tion, was adopted for solving two examples inBard’s book [3, Tables 8.5 and 8.6]. Both
examples possess a constraint in the upper-level problem depending on the lower-level
variable(s), which does not fit into our hypotheses. In each case, such a constraint has
been handled by adding an exact penalty term to the upper-level objective function.

The Example 8.3.1 of [3] is stated next, for the reader’s convenience

min
x,y

x2 + (y(x) − 10)2

s.t. − x + y(x) ≤ 0, 0 ≤ x ≤ 15

y(x) ∈ argminy(x + 2y − 30)2 s.t. x + y ≤ 20, 0 ≤ y ≤ 20. (12)

Geometrical aspects for this problem are depicted in Fig. 3. Its global solution,
x∗ = 10, y(x∗) = 10, has been achieved in 74% of the runs (LOP termination), with
the exact penalty parameter set as γ = 20, and bounds for the random initial points
defined as xlow = 0, xupp = 15, ylow = 0, and yupp = 20. The remaining 26% of the
runs stopped prematurely, with infeasible outputs for PACNO.

Themain features ofExample 8.3.2 of [3] are illustrated inFig. 4, and its formulation
is given by

min
x, y

2x1 + 2x2 − 3y1(x) − 3y2(x) − 60

s.t.x1 + x2 + y1(x) − 2y2(x) ≤ 40, 0 ≤ x1 ≤ 50, 0 ≤ x2 ≤ 50

y(x) ∈ argmin y(y1 − x1 + 20)2 + (y2 − x2 + 20)2

s.t. 2y1 − x1 + 10 ≤ 0, 2y2 − x2 + 10 ≤ 0,

−10 ≤ y1 ≤ 20, −10 ≤ y2 ≤ 20. (13)

Setting the exact penalty parameter as γ = 10, and the bounds for generating
the initial points as xlow = 0, xupp = 50, ylow = −10, and yupp = 20, NoBOA
stopped in 99% of the runs due to LOP, and 1% due to failure of PACNO. The reached
points were A ≈ (25, 30, 5, 10)T for 63% of the runs (the reported minimizer);
B≈(20, 0, 0,−10)T for 21%;C≈(0, 30,−10, 10)T for 13%;D≈(0, 0,−10,−10)T

for 1%, and E ≈ (25, 50, 5, 20)T for 1% of the runs. As can be seen in Fig. 5, the
points B, C and D are local minimizers of the bilevel problem.

4.2 Toll-setting problems

Establishing a toll policy for a transportation network inwhich an authority sets tolls on
a predefined subset of arcs, and the users travel on shortest routes between the origins
and destinations, constitutes a class of models usually formulated as bilevel programs.
The toll-setting instances Toll1, Toll4 and Toll5 from [9] have been considered
here, expressed as the problem (TOP) of [31], a bilevel programwith bilinear objectives
and linear constraints. The features of the three networks are shown in Fig. 6.
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(a) (b)

(c)

Fig. 3 Elements of the first example of Bard’s book, here presented in (12). Parameterized feasible region
(shaded) with optimal value function (red) for the lower-level problem (a); ingredients of upper-level
problem, with optimal solution x∗ = 10 and enhanced feasible region in green (b); graph of the upper-level
cost function plus penalty term z = F(x, y(x)) + γ max{−x + y(x), 0}, with a few different choices for
the penalty parameter γ (c)

For these problems, just the variation of the upper-level variables was considered
for the LOP stopping criterion. Additionally, to conclude the run, a post-processing
was adopted as follows: given the reached values for the tolls, the binary flows along
the arcs were determined using the routinelinprog ofMatlab applied to the lower-
level problem, with a discount of 1% for the toll fare, to favour an optimistic solution,
since toll-setting problems have the feature of allowing multiple optimal solutions for
the follower agent. Hence, although in theory our approach cannot solve these kind of
bilevel instances, these examples show that the proposed algorithm is still useful for
these more general degenerate problems. Nevertheless, it is worth mentioning that the
continuous results achieved by NoBOA for the flows presented the expected patterns,
within the prescribed tolerances.

The bounds for randomly selecting the initial upper-level variables were xlow = 0,
xupp = 10, for problem Toll1, and xlow = −10, xupp = 10, for problems Toll4
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(a) (b)

(c) (d)

Fig. 4 Elements of the second example of Bard’s book, here presented in (13). Level sets (a) and graph (b)
of parameterized lower-level cost, with a plateau in the region [10, 30]×[10, 30]; level sets (c) and graph (d)
of upper-level objective function, computed with the optimal lower-level variables

and Toll5. For the three instances, the initial flows were set to zero, prior to the
hot-start preliminary strategy.

The achieved results for the toll values were as follows. Concerning problem
Toll1, 35% of the runs stopped with LOP around (7, 4, 6)T , 48% finished nearby
(5.9, 3.0, 4.4)T , with y = (0, 0, 1, 1, 0, 1, 0, 0)T , and 17% stopped prematurely.
When it comes to problem Toll4, 93% of the runs stopped with LOP close to
(5,−2)T , whereas the remaining 7% did not manage to stabilize within the prescribed
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Fig. 5 Ingredients of upper-level problem of Example 8.3.2, with highlighted feasible region and level
sets of original objective function with optimal lower- level variables y∗(x) (left); level sets of upper-
level objective function plus penalty term to encompass the constraint that depends on y∗(x), with penalty
parameter γ = 10 (right)

Fig. 6 Transportation networks with (boldfaced) toll arcs, with a unique origin-destination (OD) pair (left)
and two OD pairs (center and right). The costs and variables are indicated separately in each network, with
the corresponding optimal solutions
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tolerance, thus diverging. Regarding problem Toll5, the level of sucess was even
better, with 8% of the runs reaching the global solution (x∗

1 = 5) and 90% achiev-
ing the local solution (x∗

1 = 2). For this instance, 1% stopped prematurely, and 1%
diverged.

4.3 Further instances

This section is devoted to explore further instances for which some of our theoretical
hypotheses are not valid. In the article [15], examples enlight significant aspects of
the theoretical analysis, mainly concerned with the prospective correspondence of
solutions of the KKT reformulation of the lower-level problem with local and global
solutions of the bilevel problem. Each example has a particular appeal, and we have
investigated the performance of NoBOA to compute the solutions of three of them,
namely Examples 2.2, 3.1 and 3.4. Due to the intrinsic difficulties of such instances,
a tighter value for the initial threshold parameter produced better results, so we have
used τ1 = 5, and all the remaining parameters as previously reported.

We start with Example 2.2 of [15], stated as

min
x, y

x

s.t.x ≥ 0, y(x) ∈ argmin y y1 s.t. y21 − y2 ≤ x, y21 + y2 ≤ 0.

Its global solution (x∗ = 0, y∗ = 0) does not satisfy the Slater condition. Nevertheless,
with initial points randomly generated in the box [−5, 5]3, 86% of the runs stopped
close enough to the origin, at (a, b, c)T , with |a| and |c| between 1e−8 and 1e−3, and
|b| between 1e−2 and 1e−1. The remaining 14% stopped due to failure of PACNO. A
general picture of the attained values is shown in Fig. 7.

Our second test problem is Example 3.4 of [15], given next

min
x,y

(x − 1)2 + (y(x) − 1)2

s.t.y(x) ∈ argminy −y s.t. x + y ≤ 1, −x + y ≤ 1.

Even though the feasible set S given in (1) of this problem is not compact, starting
from points randomly generated in the box [−5, 5]2, 100% of the runs of NoBOA
stopped due to LOP, close enough to its global solution, at (0.5, 0.5)T .

Finally, Example 3.1 of [15] is an instance for which not only the MFCQ fails at
the global solution, but also the compacteness assumption of the set S given in (1)
does not hold. Its original formulation is provided below

min
x, y

−y2(x)

s.t.y1(x)y2(x) = 0, x ≥ 0

y(x) ∈ argmin y y
2
1 + (y2 + 1)2

s.t. (y1 − x1)
2 + (y2 − 1 − x1)

2 ≤ 1
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Fig. 7 Values of the variables obtained with NoBOA for Example 2.2 of [15] at the top, and a zoomed view
upon the range at the bottom

(y1 + x2)
2 + (y2 − 1 − x2)

2 ≤ 1,

where one can observe, in the upper-level problem, the presence of an equality con-
straint involving the lower-level variables, which imposes additional difficulties. Such
a constraint was handled by adding the following exact penalty term to the upper-level
objective function:

γ max {min{max{y1,−y1},max{y2,−y2}}, 0} ,

with γ = 100. By sampling initial points in the box with bounds xlow = 0, xupp = 2,
ylow = −1, yupp = 1, 100% of the runs stopped due to LOP, 26% of which nearby
the global solution (1, 1, 0, 2)T , 67% remained close to the origin, and 7% around
(2, 2, 0, 3)T .

4.4 Discussion

The theoretical features of the proposed reformulation have been corroborated with
practical perspectives. In the first set of instances, the possibility of a nondifferen-
tiable upper-level objective was exploited to handle constraints that do not fit within
the expected format by means of an exact penalty approach. The two examples of
Bard’s bookwere successfully solvedwith such a strategy. Three toll-setting problems,
usually addressed in the literature by either enumerative techniques or mixed-integer
programming, were solved by our continuous approach with satisfactory results. Last,
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but not least, three examples for which our theoretical assumptions fail to hold were
analyzed, with not negligible achievements.

As revealed by the reported numerical results, our approach was strenghtened by
recent advances in algorithms for nonconvex, nonsmooth optimization. The obtained
outcomes are fruit of the robust performance of PACNO with the gradient sampling as
the inner solver. It is worthmentioning that preliminary experimentationwithGRANSO
[13] instead of the gradient sampling within PACNO, as well as GRANSO directly
applied to the subproblems of Step 1 of NoBOA, did not produce results as effective
as the aforementioned ones.

Additionally, concerning the subproblems generated by our strategy, since different
nonsmooth optimization algorithms lead to different degrees of success, an extensive
benchmarking was not the focus of our numerical section, as this task would be a
research subject in itself.

5 Final remarks

A new approximate primal reformulation for a large class of bilevel problems was
introduced and an algorithm based on this formulation was presented, mathematically
analysed and numerically tested with synthetic instances. The new reformulation is
straightforward, with an explicit description of the feasible set, and requires no estima-
tion of Lagrange multipliers, but leads to a nonsmooth model to be solved. Under mild
assumptions, including MFCQ upon the lower-level problem, a relationship between
local minimizers of the reformulation and local solutions of the bilevel problem has
been established. As numerical experimentation shows, NoBOA, the proposed algo-
rithm, can be made to be reliable when appropriate methods for one-level nonsmooth
optimization are used to handle the subproblems. The gradient sampling technique
was shown to work well for this application because of its robustness.

To conclude, the idea of approaching the ill-conditioning of bilevel problems from
a nonsmooth perspective may lead to good results in practice, being worth further
investigation. Also, more thorough experimentation with subproblem solvers might
deliver useful insights. TheBOLIB library [46] provides a useful basis of test-problems
for these tasks.
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