
Mathematical Programming (2023) 197:793–812
https://doi.org/10.1007/s10107-021-01749-5

FULL LENGTH PAPER

Series B

A computational status update for exact rational mixed
integer programming

Leon Eifler1 · Ambros Gleixner1,2

Received: 31 May 2021 / Accepted: 24 November 2021 / Published online: 7 January 2022
© The Author(s) 2022

Abstract
The last milestone achievement for the roundoff-error-free solution of general mixed
integer programs over the rational numbers was a hybrid-precision branch-and-bound
algorithm published by Cook, Koch, Steffy, and Wolter in 2013. We describe a sub-
stantial revision and extension of this framework that integrates symbolic presolving,
features an exact repair step for solutions fromprimal heuristics, employs a faster ratio-
nal LP solver based on LP iterative refinement, and is able to produce independently
verifiable certificates of optimality. We study the significantly improved performance
and give insights into the computational behavior of the new algorithmic components.
On the MIPLIB 2017 benchmark set, we observe an average speedup of 10.7x over
the original framework and 2.9 times as many instances solved within a time limit of
two hours.

Keywords Mixed integer programming · Exact computation · Rational arithmetic ·
Symbolic computations · Certificate of correctness

1 Introduction

It is widely accepted that mixed integer programming (MIP) is a powerful tool for
solving a broad variety of challenging optimization problems and that state-of-the-art

The work for this article has been conducted within the Research Campus Modal funded by the German
Federal Ministry of Education and Research (BMBF grant numbers 05M14ZAM, 05M20ZBM). An
extended abstract of this article appeared in the 22nd conference on Integer Programming and
Combinatorial Optimization (IPCO 2021) [18].

B Leon Eifler
eifler@zib.de

Ambros Gleixner
gleixner@zib.de

1 Zuse Institute Berlin, Takustr. 7, 14195 Berlin, Germany

2 HTW Berlin, Treskowallee 8, 10313 Berlin, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10107-021-01749-5&domain=pdf
http://orcid.org/0000-0003-0245-9344
http://orcid.org/0000-0003-0391-5903

794 L. Eifler, A. Gleixner

MIP solvers are sophisticated and complex computer programs. However, virtually all
established solvers today rely on fast floating-point arithmetic. Hence, their theoret-
ical promise of global optimality is compromised by roundoff errors inherent in this
incomplete number system. Though tiny for each single arithmetic operation, these
errors can accumulate and result in incorrect claims of optimality for suboptimal inte-
ger assignments, or even incorrect claims of infeasibility. Due to the nonconvexity of
MIP, even performing an a posteriori analysis of such errors or postprocessing them
becomes difficult.

In several applications, these numerical caveats can become actual limitations. This
holds in particular when the solution of mixed integer programs is used as a tool in
mathematics itself. Examples of recent work that employs MIP to investigate open
mathematical questions include [11,12,19,29,30,33]. Some of these approaches are
forced to rely on floating-point solvers because the availability, the flexibility, andmost
importantly the computational performance of MIP solvers with numerically rigorous
guarantees is currently limited. This makes the results of these research efforts not as
strong as they could be. Examples for industrial applications where the correctness of
results is paramount include hardware verification [1] or compiler optimization [36].

The milestone paper by Cook, Koch, Steffy, and Wolter [16] presents a hybrid-
precision branch-and-bound implementation that can still be considered the state of
the art for solving general mixed integer programs exactly over the rational numbers.
It combines symbolic and numeric computation and applies different dual bounding
methods [20,32,34] based on linear programming (LP) in order to dynamically trade
off their speed against robustness and quality.

However, beyond advanced strategies for branching and bounding, [16] does not
include any of the supplementary techniques that are responsible for the strong per-
formance of floating-point MIP solvers today. In this paper, we make a first step to
address this research gap in two main directions.

First, we incorporate a symbolic presolving phase, which safely reduces the size
and tightens the formulation of the instance to be passed to the branch-and-bound
process. This is motivated by the fact that presolving has been identified by several
authors as one of the components—if not the component—with the largest impact on
the performance of floating-point MIP solvers [2,4]. To the best of our knowledge, this
is the first time that the impact of symbolic preprocessing routines for general MIP is
analyzed in the literature.

Second, we complement the existing dual bounding methods by enabling the use of
primal heuristics. Themotivation for this choice is less to reduce the total solving time,
but rather to improve the usability of the exact MIP code in practical settings where
finding good solutions earliermay bemore relevant than proving optimality eventually.
Similar to the dual bounding methods, we follow a hybrid-precision scheme. Primal
heuristics are exclusively executed on the floating-point approximation of the rational
input data. Whenever they produce a potentially improving solution, this solution
is checked for approximate feasibility in floating-point arithmetic. If successful, the
solution is postprocessed with an exact repair step that involves an exact LP solve.

Moreover, we integrate the exact LP solver SoPlex, which follows the recently
developed scheme of LP iterative refinement [25], we extend the logging of certificates
in the recently developed VIPR format to all available dual bounding methods [13],

123

A computational status update... 795

and produce a thoroughly revised implementation of the original framework [16],
which improves multiple technical details. Our computational study evaluates the
performance of the new algorithmic aspects in detail and indicates a significant overall
speedup compared to the original framework.

Theoverarchinggoal and contribution of this research is to extend the computational
practice ofMIP to the level of rigor that has been achieved in recent years, for example,
in the field of satisfiability solving [35], while at the same time retaining most of the
computational power embedded in floating-point solvers. In MIP, a similar level of
performance and rigor is certainly much more difficult to reach in practice, due to
the numerical operations that are inherently involved in solving general mixed integer
programs. However, we believe that there is no reason why this vision should be
fundamentally out of reach for the rich machinery of MIP techniques developed over
the last decades. The goal of this paper is to demonstrate the viability of this agenda
within a first, small selection of methods. The resulting code is freely available for
research purposes as an extension of SCIP 7.0 [17].

2 Numerically exact mixed integer programming

In the following,we describe relatedwork in numerically exact optimization, including
the main ideas and features of the framework that we build upon.

Before turning to the most general case, we would like to mention that roundoff-
error-free methods are available for several specific classes of pure integer prob-
lems. One example for such a combinatorial optimization problem is the traveling
salesman problem, for which the branch-and-cut solver Concorde applies safe
interval-arithmetic to postprocess LP relaxation solutions and ensures the validity
of domain-specific cutting planes by their combinatorial structure [5].

A broader class of such problems, on binary decision variables, is addressed in
satisfiability solving (SAT) and pseudo-Boolean optimization (PBO) [10]. Solvers for
these problem classes usually do not suffer from numerical errors and often support
solver-independent verification of results [35]. While optimization variants exist, the
development of these methods is to a large extent driven by feasibility problems. The
broader class of solvers for satisfiability modulo theories (SMT), e.g., [31], may also
include real-valued variables, in particular for satisfiability modulo the theory of linear
arithmetic. However, as pointed out also in [21], the target applications of SMT solvers
differ significantly from the motivating use cases in LP and MIP.

Exact optimization over convex polytopes intersected with lattices is also supported
by some software libraries for polyhedral analysis [7,8]. These tools are not particularly
targeted towards solving LPs or MIPs of larger scale and usually follow the naive
approach of simply executing all operations symbolically, in exact rational arithmetic.
This yields numerically exact results and can even be highly efficient as long as the
size of problems or the encoding length of intermediate numbers is limited. However,
as pointed out by [20] and [16], this purely symbolic approach quickly becomes
prohibitively slow in general.

By contrast, the most effective methods in the literature rely on a hybrid approach
and combine exact and numeric computation. For solving pure LPs exactly, the most

123

796 L. Eifler, A. Gleixner

recent methods that follow this paradigm are incremental precision boosting [6] and
LP iterative refinement [25]. In an exact MIP solver, however, it is not always neces-
sary to solve LP relaxations completely, but it often suffices to provide dual bounds
that underestimate the optimal relaxation value safely. This can be achieved by post-
processing approximate LP solutions. Bound-shift [32] is such a method that only
relies on directed rounding and interval arithmetic and is therefore very fast. However,
as the name suggests it requires upper and lower bounds on all variables in order to
be applicable. A more widely applicable bounding method is project-and-shift [34],
which uses an interior point or ray of the dual LP. These need to be computed by
solving an auxiliary LP exactly in advance, though only once per MIP solve. Sub-
sequently, approximate dual LP solutions can be corrected by projecting them to the
feasible region defined by the dual constraints and shifting the result to satisfy sign
constraints on the dual multipliers.

The hybrid branch-and-bound method of [16] combines such safe dual bounding
methods with a state-of-the-art branching heuristic, reliability branching [3]. It main-
tains both the exact problem formulation

min{cT x | Ax ≥ b, x ∈ Qn, xi ∈ Z ∀i ∈ I}

with rational input data A ∈ Qm×n, c ∈ Qn, b ∈ Qm , as well as a floating-point
approximation with data Ā, b̄, c̄, which are defined as the componentwise closest
numbers representable in floating-point arithmetic. The set I ⊆ {1, . . . , n} contains
the indices of integer variables.

During the solve, for all LP relaxations, the floating-point approximation is first
solved in floating-point arithmetic as an approximation and then postprocessed to
generate a valid dual bound. The methods available for this safe bounding step are the
previously described bound-shift [32], project-and-shift [34], and an exact LP solve
with the exact LP solver QSopt_ex based on incremental precision boosting [6].
(Further dual bounding methods were tested, but reported as less important in [16].)
On the primal side, all solutions are checked for feasibility in exact arithmetic before
being accepted.

Finally, this exact MIP framework was recently extended by the possibility to
generate a certificate of correctness [13]. This certificate is a tree-less encoding of
the branch-and-bound search, with a set of dual multipliers to prove the dual bound
at each node or its infeasibility. Its correctness can be verified independently of the
solving process using the checker software VIPR [14].

3 Extending and improving an exact MIP framework

The exact MIP solver presented here extends [16] in four ways: the addition of a
symbolic presolving phase, the execution of primal floating-point heuristics coupled
with an exact repair step, the use of a recently developed exact LP solver based on LP
iterative refinement, and a generally improved integration of the exact solving routines
into the core branch-and-bound algorithm.

123

A computational status update... 797

3.1 Symbolic presolving

The first major extension is the addition of symbolic presolving. To this end, we
integrate the newly available presolving library PaPILO [23] for integer and linear
programming. PaPILO has several benefits for our purposes.

First, its code base is by design fully templatized with respect to the arithmetic type.
This enables us to integrate it with rational numbers as data type for storing the MIP
data and all its computations. Second, it provides a large range of presolving techniques
already implemented. The ones used in our exact framework are coefficient strength-
ening, constraint propagation, implicit integer detection, singleton column detection,
substitution of variables, simplification of inequalities, parallel row detection, sparsifi-
cation, probing, dual fixing, dual inference, singleton stuffing, and dominated column
detection. For a detailed explanation of these methods, we refer to [2]. Third, PaPILO
comes with a sophisticated parallelization scheme that may help to compensate for the
increased overhead introduced by the use of rational arithmetic. For details see [22].

When SCIP enters the presolving stage, we pass a rational copy of the problem to
PaPILO, which executes its presolving routines iteratively until no sufficiently large
reductions are found. Subsequently, we extract the postsolving information provided
by PaPILO to transfer the model reductions to SCIP. These include fixings, aggrega-
tions, and bound changes of variables and strengthening or deletion of constraints, all
of which are performed in rational arithmetic.

3.2 Primal heuristics

The second extension is the safe activation of SCIP’s floating-point heuristics and the
addition of an exact repair heuristic for their approximate solutions. Heuristics are
not known to reduce the overall solving time drastically, but they can be particularly
useful on hard instances that cannot be solved at all, and in order to avoid terminating
without a feasible solution.

In general, activating SCIP’s floating-point heuristics does not interfere with the
exactness of the solving process, although care has to be taken that no changes to
the model are performed, e.g., the creation of a no-good constraint. However, the
chance that these heuristics find a solution that is feasible in the exact sense can be
low, especially if equality constraints are present in the model. Thus, we postprocess
solutions found by floating-point heuristics in the following way. First, we fix all
integer variables to the values found by the floating-point heuristic, rounding slightly
fractional values to their nearest integer. Then an exact LP is solved for the remaining
continuous subproblem. If that LP is feasible, this produces an exactly feasible solution
to the mixed integer program.

Clearly, these calls to the exact LP solver can create a significant overhead com-
pared to executing a floating-point heuristic alone. This holds especially when a large
percentage of the variables is continuous and thus cannot be fixed.

We take three steps to mitigate this overhead. First, we only attempt to repair
solutions whose floating-point objective value is better than the incumbent. Second,
we only process those solutions directly that improve on the imcumbent by more than

123

798 L. Eifler, A. Gleixner

Fig. 1 Schematic of exact repair step with buffering and hashing of previously processed solutions

20%. All other found solutions are buffered and only processed in increasing order of
objective value once the buffer is full.

Third, we noticed that heuristics frequently find solutions that are either identical
or differ only in the continuous solution values, but share the same integer variable
assignments. Therefore, we store all previously prcossed partial integer solutions in a
hash table and discard solutions that were already processed before. This exact repair
algorithm is visualized in Fig. 1.

3.3 LP iterative refinement

Exact linear programming is a crucial part of the exact MIP solving process. Instead
of QSopt_ex, we use SoPlex as the exact linear programming solver. The reason
for this change is that SoPlex uses LP iterative refinement [26] as the strategy to
solve LPs exactly, which compares favorably against incremental precision boosting
for solving pure LPs from scratch [25].

A speedup factor of 5.5 was reported [25] on linear programming instances where
refinement was necessary, i.e., where the unrefined floating-point optimal basis was
not the exact optimal basis. However, it is open how this result translates to the setting
in an exact MIP solver, for several reasons. First, we expect that the final basis of
the initial floating-point solve is already optimal for the majority of LPs encountered
during our MIP solves. Second, most LP relaxations are solved from a near-optimal
starting basis.

123

A computational status update... 799

Furthermore, LP iterative refinement has the disadvantage that it can break down
when the LP is too ill-conditioned to be solved by the underlying floating-point solver.
WhileQSopt_ex can incrementally boost the precision of its simplex routines, even to
a fully rational solve if necessary, the current implementation of LP iterative refinement
in SoPlex relies on double-precision simplex solves. This may affect the performance
of the exactMIP solver on numerically difficult instances.Although this rarely happens
in practice, there exist instances where we observed this effect. It is further discussed
in Sect. 4.3.

3.4 Further enhancements

We improved several algorithmic details in the implementation of the hybrid branch-
and-bound method. We would like to highlight two examples for these changes. First,
we enable the use of an objective limit in the floating-point LP solver, which was not
possible in the original framework. Passing the primal bound as an objective limit to
the floating-point LP solver allows the LP solver to stop early just after its dual bound
exceeds the global primal bound. However, if the overlap is too small, postprocessing
this LP solution with safe bounding methods can easily lead to a dual bound that no
longer exceeds the objective limit. For this reason, before installing the primal bound
as an objective limit in the LP solver, we increase it by the average amount of increase
that was observed in the safe dual bounding step. To avoid problems at the start of the
solve, where this average is not yet well-established, we also set a minimum value of
10−6 for the increase. Only when safe dual bounding fails, the floating-point LP is
solved again without objective limit.

Second, we reduce the time needed for checking exact feasibility of primal solu-
tions by prepending a safe floating-point check. Although checking a single solution
for feasibility is fast, this happens often throughout the solve and doing so repeatedly
in exact arithmetic can become computationally expensive. To implement such a safe
floating-point check, we employ running error analysis [28]. Let x∗ ∈ Qn be a poten-
tial solution and let x̄∗ be the floating-point approximation of x∗. Let a ∈ Qn be a
row of A with floating-point approximation ā, and right hand side b j ∈ Q. Instead of
computing

∑n
i=1 ai x

∗
i symbolically, we instead compute

∑n
i=1 āi x̄

∗
i in floating-point

arithmetic, and alongside compute a bound on the maximal rounding error that may
occur. We adjust the running error analysis described in [28, Alg. 3.2] to also account
for roundoff errors |x̄∗ − x∗| and |ā−a|. The resulting method is shown in Algorithm
1.

After performing this computation, we can check if either s−μ ≥ b j or s+μ ≤ b j .
In the former, the solution x∗ is guaranteed to fulfill

∑n
i=1 ai x

∗
i ≥ b j ; in the latter,

we can safely determine that the inequality is violated; only if neither case occurs, we
recompute the activity in exact arithmetic.

We note that this could alternatively be achieved by directed rounding, whichwould
give tighter error bounds at a slightly increased computational effort. However, empir-
ically we have observed that most equality or inequality constraints are either satisfied
at equality, where an exact arithmetic check cannot be avoided, or they are violated or

123

800 L. Eifler, A. Gleixner

satisfied by a slack larger than the error bound μ, hence the running error analysis is
sufficient to determine feasibility.

Algorithm 1 Running error analysis applied to activity computation
1: procedure ErrorAnalysis(ā, x̄, δ)
2: Input: x̄∗, ā ∈ Qn , maximal unit roundoff δ ∈ R

3: Output s, y ∈ R, with |aT x∗ − s| ≤ μ

4: s = 0
5: for i = 1, . . . , n do
6: s ← s + āi x̄

∗
i

7: μ ← μ + |s| + (3 + δ)|āi x̄∗
i |

8: end for
9: μ ← μδ

10: end procedure

4 Computational study

We conduct a computational analysis to answer four main questions. First, how does
the revised branch-and-bound framework compare to the previous implementation,
and to which components can the changes be attributed? To answer this question, we
compare the original framework [16] against our improved implementation, but with
primal heuristics and exact presolving still disabled. As a first step, we use QSopt_ex
as the exact LP solver for both frameworks. In particular, we analyze the importance
and performance of the different dual boundingmethods. Then, we evaluate the impact
of LP iterative refinement by comparing our new implementation against itself, once
with SoPlex as the exact LP solver and once with QSopt_ex.

Second, what is the impact of the new algorithmic components symbolic presolving
and primal heuristics?To answer this question,we compare their impact on the solving
time and the number of solved instances, as well as present more in-depth statistics,
such as e.g., the primal integral [9] for heuristics or the number of fixings for presolving.
In addition, we compare the effectiveness of performing presolving in rational and in
floating-point arithmetic.

Third, what is the overhead for producing and verifying certificates? Here, we
consider running times for both the solver and the certificate checker, as well as the
overhead in the safe dual bounding methods introduced through enabling certificates.
This provides an update for the analysis in [13], which was limited to the two bounding
methods project-and-shift and exact LP.

Finally, how much is the overall improvement and how does it compare to the
performance of floating-point SCIP? For this final question, we compare the overall
performance of the new framework with all new components enabled against the
original one. We also compare our framework against two versions of floating-point
SCIP: the default, running all available SCIP features, and a reduced version, which
only uses the features currently available for exact SCIP.

123

A computational status update... 801

4.1 Computational setup and test sets

The experiments were performed on a cluster of Intel Xeon Gold 5122 CPUs with
3.6GHz and 96GB main memory. As in [16], we use CPLEX 12.3.0 as floating-
point LP solver for all experiments. For exact LP solving, we use either the same
QSopt_ex version as in [16] or SoPlex 5.0.2. For all symbolic computations, we use
the GNU Multiple Precision Library (GMP) 6.1.4 [27]. For symbolic presolving, we
use PaPILO 1.0.1 [22,23]; all other SCIP presolvers are disabled.

We consider three test sets in total. First, we use the two test sets specifically curated
in [16]: one set with 57 instances that were found to be easy for an inexact floating-
point branch-and-bound solver (fpeasy), and one set of 50 instances thatwere found to
be numerically challenging, e.g., due to poor conditioning or large coefficient ranges
(numdiff). For a detailed description of the selection criteria, we refer to [16]. To
complement these test sets with a set of more ambitious and recent instances, we also
run all tests on the subset of MIPLIB 2017 [24] benchmark instances that could be
solved to optimality by SCIP 7.0.2 within two hours.

All experiments to evaluate the new code are run with three different random seeds,
where we treat each instance-seed combination as a single observation. As this feature
is not available in the original framework, all comparisons with the original framework
were performed with one seed. The time limit was set to 7200 seconds for all exper-
iments. If not stated otherwise all aggregated numbers are shifted geometric means
with a shift of 0.001 seconds or 100 branch-and-bound nodes, respectively.

4.2 The branch-and-bound framework

As a first step, we compare the behavior of the safe branch-and-bound implementation
from [16] with QSopt_ex as the exact LP solver, against its revised implementation,
also with QSopt_ex as exact LP solver. Note that the original implementation is
based on SCIP 3.0 and our revised one is based on SCIP 7.0. However, there are no
significant changes in performance just based on the different SCIP versions. For this
comparison, all new and improved features that make SCIP 7.0 faster are disabled,
and the relevant core of SCIP has remained functionally unchanged between these
two versions.

Theoriginal frameworkuses the “Auto-Ileaved”bounding strategy as recommended
in [16]. It dynamically chooses the dual bounding method, attempting to employ
bound-shift as often as possible. An exact LP is solved whenever a node would be cut

Table 1 Comparison of original and new framework with presolving and primal heuristics disabled

Original framework New framework

Test set Size Solved Time Nodes Dbtime Solved Time Nodes Dbtime

fpeasy 54 46 91.6 8983.9 59.2 53 65.5 6742.1 39.6

numdiff 21 13 197.8 9761.9 136.8 19 204.1 10590.5 128.5

miplib 35 18 2090.1 18089.1 1640.1 33 1220.9 12078.8 722.8

123

802 L. Eifler, A. Gleixner

off within tolerances, but not with the computed exact safe dual bound. In the new
implementation, we use a similar strategy, however, we additionally solve the exact LP
every 4, 8, 16, . . . depth levels of the tree. This change is motivated by the improved
performance in the exact LP solver when switching to SoPlex.

Table 1 reports the results for solving time, number of nodes, and total time spent
in safe dual bounding (“dbtime”), for all instances that could be solved by at least
one solver. The new framework could solve 7 instances more on fpeasy, 6 more on
numdiff, and 15 more on miplib. On fpeasy and miplib we observe a reduction in
solving time (28.5% and 41.6%), while on numdiff solving time increases by 3.2%.
This is consistent with the number of solved nodes. On fpeasy andmiplib the number
decreases by 25%, and 33.2%, respectively, while it increases by 8.5% on numdiff.
This means that our changes led to a significant reduction of the number of nodes,
except on the numerically difficult test set, and a slight reduction in the node processing
time across all test sets. In terms of the time spent in the safe dual bounding methods,
we observe reductions of 33.1% (fpeasy), 6.1% (numdiff), and 56% (miplib).We also
see this significant performance improvement reflected in the performance profiles in
Fig. 2.

We identify a more aggressive use of project-and-shift, as well as more frequent
exact LP solves as the two key factors for this improvement. In the original framework,
project-and-shift is restricted to instances that had fewer than 10000 nonzeros. One

Fig. 2 Performance profiles comparing solving time of original and new framework without presolving and
heuristics for fpeasy (top left), numdiff (top right), miplib (bottom)

123

A computational status update... 803

Table 2 Comparison of safe dual bounding techniques

Original framework New framework

Test set Stats bshift pshift exlp bshift pshift exlp

fpeasy Calls/node 1.00 0.83 0.34 0.66 0.84 0.20

Time/call [s] 0.0016 0.0011 0.0416 0.0072 0.0017 0.0484

Time/solving time 1.7% 68.8% 38.8% 7.3% 44.0% 36.8%

numdiff Calls/node 1.00 0.71 0.48 0.78 0.41 0.25

Time/call [s] 0.0010 0.0028 0.1444 0.0039 0.0036 0.1936

Time/solving time 1.1% 50.0% 60.3% 3.8% 13.9% 60.0%

miplib Calls/node 0.99 0.82 0.70 0.74 0.75 0.16

Time/call [s] 0.0074 0.0029 0.2712 0.0276 0.0053 0.3240

Time/solving time 1.4% 79.4% 70.1% 15.6% 47.4% 33.4%

reason for this limit is that a large auxiliary LP has to be solved by the exact LP solver
to compute the relative interior point in project-and-shift. Our experiments showed
that it was beneficial to remove this restriction, even when using QSopt_ex as the
exact LP solver.1 This benefit only becomes more pronounced with improved exact
LP solving performance. Of the 6 gained instances on numdiff, 4 are subject to this
restriction in the old framework. On miplib, it is the case for 9 instances not solved
by the original framework.

The reason we identify our more frequent exact LP solving as the second key
factor, at least on fpeasy and miplib, is that the improvement in solving time is
mostly consistent with the reduction in the number of nodes. The only change in the
general framework that we expect to systematically decrease the number of nodes is
the interleaving of exact LP solving calls. On the other hand, average node-processing
times do not change much when comparing the two frameworks. It is almost the same
on fpeasy and numdiff, while on miplib the new framework has a slightly lower
average time spent per node (0.101 instead of 0.115). This indicates that our other
changes were effective in reducing the node-processing time.

A more detailed analysis of bounding times is given in Table 2. For a fair com-
parison, we always consider for each bounding method the subset of instances where
both solvers ran the respective bounding method. For calls per node and the fraction
of bounding time per total solving time, which are normalized well, we report the
arithmetic means; for time per call, we report geometric means. Since the only fair
comparison is to look at the subset of instanceswhere both variants ran the samebound-
ing methods, we cannot directly see the impact of more aggressive project-and-shift
use here.We can however observe the impact of the problem in the original framework
observed in footnote 1. Both the higher percentage of solving time spent in project-
and-shift (“pshift”) as well as the lower percentage spent in bound-shift (“bshift”) is
partly due to the unnecessary project-and-shift calls in the original framework.

1 The reason this working limit was introduced may be a performance bug in the original framework that
leads to project-and-shift being called even when bound-shift was successful. A portion of the improvement
in solving time is most likely due to these previously unnecessary bounding calls.

123

804 L. Eifler, A. Gleixner

The increase in bound-shift time per call is due to implementation details, that will
be addressed in future versions of the code, but its fraction of the total solving time is
still relatively low. One reason for the reduction in the number of bound-shift calls per
node is that we now disable bound-shift dynamically if its success rate drops below
20%, while the original framework always ran bound-shift.

In terms of exact LP solving, we observe that the time per call increases slightly
in the new framework, while the number of calls per node is reduced significantly.
Both of these effects can be explained by the more aggressive project-and-shift usage.
In the old framework, the exact LP is run very frequently on large instances where
project-and-shift is disabled. In the new one on the other hand, the exact LP is only
solved from time to time, either when project-and-shift fails or we are at a depth-level
with an interleaving exact LP call. This also explains why the time-per-call is higher
in the new framework: The exact LPs that are solved differ more from each other,
making more iterations necessary to reach optimality. At the same time, disabling
project-and-shift completely on larger instances leads to a large portion of solving
time being spent in exact LP calls in the old framework, especially on miplib, where
larger instances are more frequent.

4.3 LP iterative refinement

In this section, we report on the performance impact of switching from QSopt_ex to
SoPlexwithin the new framework, and therefore from incremental precision boosting
to LP iterative refinement. Table 3 shows the overall performance comparison for
instances that could be solved to optimality by at least one solver. We observe 3
more instances solved on fpeasy, 6 fewer on numdiff, and 18 more on miplib.
It is noteworthy that all the instances solved by QSopt_ex on which the SoPlex-
variant timed out are chip-verification instances [1], where using QSopt_ex leads to
drastically smaller search trees. As pointed out in Sect. 3.3, LP iterative refinement
can fail to solve the exact LP completely in very ill-conditioned cases. This is the case
for some LPs on these instances, forcing the version running SoPlex to branch on
any unfixed integer variable with the highest branching priority. This unsophisticated
choice of both the variable as well as the branching value leads to these large search
trees.

In terms of solving time, we observe a reduction of 59.2% on fpeasy, 37.7% on
numdiff, and of 60.1% on miplib instances. As expected, the vast majority of this

Table 3 Comparison of employing precision boosting (QSopt_ex) versus LP iterative refinement (SoPlex)

QSopt_ex SoPlex

Test set Size Solved Time Nodes Dbtime Solved Time Nodes Dbtime

fpeasy 162 159 65.4 6741.8 39.7 162 26.8 5079.5 11.1

numdiff 66 63 229.7 6000.9 146.6 57 143.1 5826.3 61.8

miplib 132 108 1283.1 10879.2 801.4 126 512.3 9246.9 223.8

123

A computational status update... 805

Table 4 Comparison of exact LP times with different exact LP solvers

QSopt_ex SoPlex

Test set Time/call [s] Time/solving time (%) Time/call [s] Time/solving time (%)

fpeasy 0.0298 39.4 0.0071 20.1

numdiff 0.2593 58.4 0.1021 43.6

miplib 0.3222 33.3 0.1116 21.7

reduction comes from the reduced time spent in safe dual bounding methods, with
the number of solved nodes being reduced only slightly: 24.7% on fpeasy, 3% on
numdiff, and 15% on miplib.

Table 4 shows the percentage of total solving time spent in exact LP solving calls
in arithmetic mean, as well as the geometric mean of time per exact LP solving call on
the subset of instances where both variants solved LPs exactly. The time per exact LP
call is reduced by 76.2% onfpeasy, 60.6% on numdiff, and 65.4% on miplib. This
leads to a reduction of time spent in exact LP solving by 49% on fpeasy, 25.3% on
numdiff, and 34.8% on miplib.

4.4 Symbolic presolving

Before measuring the overall performance impact of exact presolving, we address the
question how effective and how expensive presolving in rational arithmetic is com-
pared to standard floating-point presolving. For both variants, we configured PaPILO
to use the same tolerances for determining whether a reduction found is strong enough
to be accepted. The only difference in the rational version is that all computations are
done in exact arithmetic and the tolerance to compare numbers and the feasibility
tolerance are zero. Note that a priori it is unclear whether rational presolving yields
more or fewer reductions. Dominated column detection may be less successful due
to the stricter comparison of coefficients; the dual inference presolver might be more
successful if it detects earlier that a dual multiplier is strictly bounded away from zero.

Table 5 presents aggregated results for presolving time, the number of presolving
rounds, and the number of found fixings, aggregations, and bound changes. We use a
shift of 1 for the geometric means of rounds, aggregations, fixings, and bound changes
to account for instances where presolving found no such reductions. Remarkably,
both variants yield virtually the same results on fpeasy. On numdiff, there are small
differences, with a slight decrease in the number of fixings and aggregations and a
slight increase in the number of bound changes for exact variant. The time spent
for exact presolving increases by more than an order of magnitude but symbolic
presolving is still not a performance bottleneck. It consumed only 0.7% (fpeasy),
1.3% (numdiff), and 0.6% (miplib) of the total solving time, as seen in Table 6.
Exploiting parallelism in presolving provided no measureable benefit for floating-
point presolving, but reduced symbolic presolving time by 38.9% (fpeasy) to 43.7%
(miplib). However, this benefit can be more pronounced on individual instances, e.g.,
on ex09 (miplib), where parallelization reduces the time for rational presolving by a
factor of 3.6 from 698 to 195 seconds.

123

806 L. Eifler, A. Gleixner

Table 5 Comparison of exact and floating-point presolving

Floating-point presolving Exact presolving

Test set Thrds Time Rnds Fixed Agg Bdchg Time Rnds Fixed Agg Bdchg

fpeasy 1 0.01 3.2 8.8 3.6 10.3 0.18 3.2 8.8 3.6 10.3

8 0.01 3.2 8.8 3.6 10.3 0.11 3.2 8.8 3.6 10.3

numdiff 1 0.01 9.0 46.8 52.2 43.3 0.49 7.6 35.5 40.0 45.4

8 0.03 9.0 46.8 52.2 43.2 0.34 7.6 35.5 40.0 45.4

miplib 1 0.07 4.7 57.7 12.7 16.3 2.24 4.7 56.3 12.1 16.4

8 0.11 4.7 57.7 12.7 16.3 1.26 4.7 56.3 12.1 16.4

Table 6 Comparison of new framework with and without presolving (3 seeds)

Presolving disabled Presolving enabled

Test set Size Solved Time Nodes Solved Time (Presolving) Nodes

fpeasy 168 162 32.7 5594.7 168 21.0 (0.15) 4575.5

numdiff 83 54 331.4 9948.7 78 52.7 (0.66) 2388.5

miplib 145 123 667.7 11675.4 136 384.1 (2.40) 10594.4

To evaluate the impact of exact presolving, we compare the performance of the
basic branch-and-bound algorithm established above against the performance with
presolving enabled. The results for all instances that could be solved to optimality
by at least one setting are presented in Table 6. Enabling presolving solves 6 more
instances on fpeasy, 24more instances on numdiff, and 13more instances onmiplib.
We observe a reduction in solving time of 35.8% (fpeasy), 84.1% (numdiff), and
42.4% (miplib). The stronger impact on numdiff is correlated with the larger number
of reductions observed in Table 5.

4.5 Primal heuristics

To improve primal performance, we enabled all SCIP heuristics that the floating-point
version executes by default. The repair heuristic is disabled on instances with more
than 80%continuous variables since the overhead of the exact LP solves can drastically
worsen the performance on those instances. We also set a limit of 1000 on the number
of consecutive times the repair step is allowed to fail to produce a feasible solution.
This limit is useful on instances that allow solutionswithin tolerances but are infeasible
in exact arithmetic.

First, we evaluate the cost and success of the exact repair heuristic over all instances
where it was called at least once. The results are presented in Table 7. The repair
heuristic is effective at finding feasible solutionswith a success rate of 57.5% (fpeasy),
47.3 (numdiff), and 65.3% (miplib). The lower success rate on numdiff, meaning
that the integer assignments found by the floating-point heuristic can less often be
confirmed feasible, is expected since the test set by design contains instances where

123

A computational status update... 807

Table 7 Statistics of repair heuristic for instances where repair step was called

Time

Test set Size Total solving Repair Fail Success Success rate

fpeasy 110 26.5 0.0174 0.0062 0.0051 57.6%

numdiff 48 375.1 0.2343 0.0898 0.0833 47.3%

miplib 218 2473.3 1.3155 0.4944 0.1691 65.3%

floating-point routines break down more easily. The fraction of the solving time spent
in the repair heuristic is well below 1%. Nevertheless, the strict working limits we
imposed are necessary since there exist outliers for which the repair heuristic takes
more than 5% of the total solving time. Performance on these instances would quickly
deteriorate if the working limits were relaxed.

Table 8 shows the overall performance impact of enabling heuristics over all
instances that could be solved to optimality by at least one variant. Besides the solving
time and the number of solved instances, also the time to find the first solution, as well
as the primal integral [9] are reported as established measures of primal performance.
Enabling heuristics solves 5 more instances on numdiff and 6 more on miplib. On
fpeasy, the number of solved instances is unchanged. On fpeasy and miplib we see
only slight differences in total solving time. On numdiff, solving time decreases by
18.9%when enabling heuristics.On fpeasy, the time tofind thefirst solution decreases
by 79.7% and the primal integral decreases by 27.8%. On numdiff, time-to-first is
reduced by 58.4% and the primal integral by 35.5%. The benefit is greatest on miplib,
with a reduction of 97.2% for time-to-first and of 62.4% in the primal integral.

We have to attribute a portion of the speedup on numdiff to performance variability
since some of the instances where the variant with enabled heuristics is much faster
are two infeasible instances.2 If we exclude those infeasible instances, the reduction
in solving time is only 13%.

In all test sets, the repair heuristic was able to find solutions and improve the solving
process on the primal side,while not imposing any significant overhead in solving time.

4.6 Producing and verifying certificates

The possibility to log certificates as presented in [13] is available in the new framework
and is extended to also work when the dual bounding method bound-shift is active.
Presolving must currently be disabled, since PaPILO does not yet support generation
of certificates.

2 In general, enabling primal heuristics should not improve the solving time on infeasible instances. How-
ever, any change in the algorithm can lead to different paths in the search tree, which in turn can drastically
affect performance. The effect here is actually caused by the instances alu10_1 and alu16_2.We have rerun
the experiment on both instances with 10 random seeds, and while the effect mostly disappears on alu16_2,
the version with heuristics enabled is consistently faster on alu10_1. Unfortunately, such phenomena can
occur since randomization is not perfect: many of the decisions inside the solver are still fully deterministic
and thus not affected by a change in the random seed.

123

808 L. Eifler, A. Gleixner

Table 8 Comparison of new framework with and without primal heuristics (3 seeds, presolving enabled,
instances where repair step was called)

Heuristics disabled Heuristics enabled

Test set Size Solv.time Time-to-first Primal int. Solv.time Time-to-first Primal int.

fpeasy 110 25.7 0.64 173.0 26.5 0.13 125.7

numdiff 48 462.6 23.04 3303.8 375.1 9.58 2129.3

miplib 218 2519.7 96.47 29493.7 2473.3 2.67 11061.7

Table 9 Overhead for producing and verifying certificates on instances solved by both variants

Certificate disabled Certificate enabled

Test set Size Solving time Dbtime Solving time Dbtime Check time Overhead (%)

fpeasy 54 26.8 11.1 41.9 11.4 9.7 92.5

numdiff 17 46.3 14.2 56.5 14.6 4.0 32.8

miplib 39 378.7 155.2 552.3 165.6 75.4 65.8

Besides ensuring correctness of results, certificate generation is valuable to ensure
correctness of the solver. Although it does not check the implementation itself, it
can help identify and eliminate incorrect results that do not directly lead to wrong
results. For example, on instance x_4 from numdiff, the original framework claimed
infeasibility at the root node. While the instance is indeed infeasible, we found the
reasoning for this to be incorrect due to the use of a certificate. The issue was that a
lower bound that exceeded the solvers default infinity value was found, and thus the
root node was claimed to be infeasible.

Table 9 reports the performance overhead experienced when enabling certificates.
Here we only consider instances that were solved to optimality by both versions since
timeouts would bias the results in favor of the certificate. We see an increase in solving
time of 56.3% on fpeasy, 22% on numdiff, and of 46% on miplib. This confirms
the measurements presented in [13]. The increase is explained mostly by the effort
to keep track of the disjunctions created during tree search and print the exact dual
multipliers, and in part by an increase in dual bounding time. The reason for the latter
is that bound-shift by default only provides a safe objective value. The dual multipliers
needed for the certificate must be computed in a postprocessing step, which introduces
the overhead in safe bounding time.

The time spent in the verification of the certificate is on average significantly lower
than the time spent in the solving process. Overall, the overhead from printing and
checking certificates is significant, but it does not drastically change the solvability of
instances - if an instance is solvable without certificate generation then it can also be
solved with certificate generation, since the solving tree remains unchanged.

123

A computational status update... 809

Table 10 Comparison on MIPLIB 2017 benchmark set

Original framework New framework

Test set Size Solved Found Time Gap Solved Found Time Gap

All 239 18 76 6086.1 ∞ 53 170 3536.2 ∞
Onesolved 54 18 30 3249.2 ∞ 53 46 304.2 ∞

4.7 Overall improvements and comparison with floating-point SCIP

As a final experiment, we wanted to gauge our overall performance improvements, as
well as the difference when comparing to a normal version of SCIP, i.e., running with
error tolerances and computingonly infloating-point arithmetic. To evaluate the overall
improvements, we ran both the original framework and the revised framework with
presolving and heuristics enabled on the complete MIPLIB 2017 benchmark set. The
results in Table 10 show that the new framework is able to solve 35 more instances and
that the mean solving time decreases by 90.6% on the subset “onesolved” of instances
that could be solved to optimality by at least one solver. On more than twice as many
instances at least one primal solution is found (170 vs. 76).

This raises the question how far the performance gap to a current floating-point
MIP solver is, and also if we can observe the same price of exactness as Wolter [37]
did when comparing to a reduced floating-point solver. To this end, we compared the
new exact SCIP framework against the floating-point SCIP version that it is based on
(SCIP 7.0.1) over the complete MIPLIB 2017 benchmark test set.

Table 11 shows the results for instances where the exact and inexact versions pro-
duced a consistent result, i.e., instances that are feasible with error tolerances but
infeasible in the exact sense are discarded. The floating-point version is run once with
default settings, and once in a reduced setting with all features disabled that are not yet
present in the current exact SCIP version, i.e., without cutting-planes, propagation,
conflict-analysis, and symmetry handling. For presolving, only the the presolver that
interfaces PaPILO is run in the reduced setting.

We observe that the reduced version solved 61 instances fewer than the default,
while the exact version solved 17 fewer than the reduced. That means in terms of
solvability, the gap between the exact and inexact seems to be mostly due to the
currently still missing solving methods.

In terms of solving time, we observe that on all instances solved to optimality by
all three variants, exact SCIP is slower by a factor of 8.1 compared to default and by
a factor of 3.9 compared to the reduced version. In [37], a factor of 3 was reported
as the price of exactness when comparing with a reduced floating-point solver on a
collection of older MIPLIB instances. This increase in price of exactness measured
in our experiment may be due to testing on a more challenging set of instances. This
hypothesis is supported by the fact that, on the subset of numerically difficult instances,
which are also tested in [37], a factor of 9.16 was reported. The corresponding results
for our framework are shown in Table 12. Here the slowdown on the alloptimal subset
is a factor of 5.1 compared to the reduced version. One explanation for the smaller

123

810 L. Eifler, A. Gleixner

Table 11 Comparison with floating-point SCIP on MIPLIB 2017 benchmark set

SCIP default SCIP reduced SCIP exact

Test set Size Solved Time Solved Time Solved Time

Onesolved 137 133 213.7 62 1595.2 45 3088.4

Alloptimal 42 42 62.2 42 127.8 42 500.8

Table 12 Comparison with floating-point SCIP on numdiff test set

SCIP default SCIP reduced SCIP exact

Test set Size Solved Time Solved Time Solved Time

Onesolved 28 28 5.9 26 13.6 24 84.5

Alloptimal 24 24 3.8 24 7.9 24 40.3

slowdown in our revised framework may be given by the fact that presolving is able
to resolve numerical difficulties on some of the instances.

5 Conclusion

We presented a substantially revised and extended solver for numerically exact mixed
integer optimization that significantly improves upon the state of the art.We integrated
the framework more tightly in the core of SCIP and extended it with numerically exact
presolving and an exact repair heuristic.

We conducted a careful computational analysis of these changes. Overall, our
changes led to a speedup factor of 10.7x compared to the original framework on the
MIPLIB 2017 benchmark test set, with the strongest impact coming from the addition
of symbolic presolving and switching to LP iterative refinement for exact LP solves.

We also observed, however, that the performance gap to floating-point solvers is
still large. As shown by our experiments with a floating-point solver that is reduced
to the same state as our current exact solver, a large portion of that performance gap
can be bridged if crucial techniques such as numerically safe cutting plane separation,
see, e.g., [15], are included. This must be addressed in future research.

Another potential for improvement that was identified in particular for problems
with ill-conditioned LP relaxations is the extension of SoPlex by precision-boosting
if LP iterative refinement on double-precision level fails breaks down. Furthermore,
presolving methods need to be extended to print certificate information that can be
handled by the VIPR format, such that the whole solving process can be verfified from
start to finish.

With the enhancements presented in this manuscript and the easier accessibility and
installation of the new framework, we are hopeful that exact rational mixed integer
programming will find itself into the toolkit of a larger audience of computational
mathematicians and operations researchers.

123

A computational status update... 811

Acknowledgements We wish to thank Dan Steffy for valuable discussions on the revision of the original
branch-and-bound framework, Leona Gottwald for creating PaPILO, and Antonia Chmiela for help with
implementing the primal repair heuristic.

Funding Open Access funding enabled and organized by Projekt DEAL.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Achterberg, T.: Constraint Integer Programming. Ph.D. thesis, Technische Universität Berlin (2007)
2. Achterberg, T., Bixby, R.E., Gu, Z., Rothberg, E., Weninger, D.: Presolve reductions in mixed integer

programming. Inform. J. Comput. 32(2), 473–506 (2020). https://doi.org/10.1287/ijoc.2018.0857
3. Achterberg, T., Koch, T., Martin, A.: Branching rules revisited. Op. Res. Lett. 33(1), 42–54 (2005).

https://doi.org/10.1016/j.orl.2004.04.002
4. Achterberg, T.,Wunderling,R.:Mixed integer programming: analyzing 12years of progress. In: Jünger,

M., Reinelt, G. (eds.) Facets of Combinatorial Optimization. pp. 449–481 (2013). https://doi.org/10.
1007/978-3-642-38189-8_18

5. Applegate, D., Bixby, R., Chvatal, V., Cook, W.: Concorde TSP Solver (2006)
6. Applegate, D., Cook, W., Dash, S., Espinoza, D.G.: Exact solutions to linear programming problems.

Op. Res. Lett. 35(6), 693–699 (2007). https://doi.org/10.1016/j.orl.2006.12.010
7. Assarf, B., Gawrilow, E., Herr, K., Joswig,M., Lorenz, B., Paffenholz, A., Rehn, T.: Computing convex

hulls and counting integer points with polymake. Math. Program. Comput. 9(1), 1–38 (2017). https://
doi.org/10.1007/s12532-016-0104-z

8. Bagnara, R., Hill, P.M., Zaffanella, E.: The parma polyhedra library: toward a complete set of numerical
abstractions for the analysis and verification of hardware and software systems. Sci. Comput. Program.
72(1–2), 3–21 (2008)

9. Berthold, T.: Measuring the impact of primal heuristics. Op. Res. Lett. 41(6), 611–614 (2013). https://
doi.org/10.1016/j.orl.2013.08.007

10. Biere, A., Heule, M., van Maaren, H., Walsh, T.: Handbook of satisfiability: volume 185 frontiers in
artificial intelligence and applications. IOS Press, NLD (2009)

11. Bofill, M., Manyà, F., Vidal, A., Villaret, M.: New complexity results for Łukasiewicz logic. Soft
Comput. 23, 2187–2197 (2019). https://doi.org/10.1007/s00500-018-3365-9

12. Burton, B.A., Ozlen, M.: Computing the crosscap number of a knot using integer programming and
normal surfaces. ACM Trans. Math. Softw. (2012). https://doi.org/10.1145/2382585.2382589

13. Cheung, K.K., Gleixner, A., Steffy, D.E.: Verifying Integer Programming Results. In: International
Conference on Integer Programming and Combinatorial Optimization. pp. 148–160. Springer (2017).
https://doi.org/10.1007/978-3-319-59250-3_13

14. Cheung, K., Gleixner, A., Steffy, D.: VIPR. Verifying Integer Programming Results. https://github.
com/ambros-gleixner/VIPR (accessed May 31, 2021)

15. Cook, W., Dash, S., Fukasawa, R., Goycoolea, M.: Numerically safe gomory mixed-integer cuts.
Inform. J. Comput. 21, 641–649 (2009). https://doi.org/10.1287/ijoc.1090.0324

16. Cook, W., Koch, T., Steffy, D.E., Wolter, K.: A hybrid branch-and-bound approach for exact rational
mixed-integer programming. Math. Program. Comput. 5(3), 305–344 (2013). https://doi.org/10.1007/
s12532-013-0055-6

17. Eifler, L., Gleixner, A.: Exact SCIP - a development version. https://github.com/leoneifler/exact-SCIP
(accessed May 31, 2021)

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1287/ijoc.2018.0857
https://doi.org/10.1016/j.orl.2004.04.002
https://doi.org/10.1007/978-3-642-38189-8_18
https://doi.org/10.1007/978-3-642-38189-8_18
https://doi.org/10.1016/j.orl.2006.12.010
https://doi.org/10.1007/s12532-016-0104-z
https://doi.org/10.1007/s12532-016-0104-z
https://doi.org/10.1016/j.orl.2013.08.007
https://doi.org/10.1016/j.orl.2013.08.007
https://doi.org/10.1007/s00500-018-3365-9
https://doi.org/10.1145/2382585.2382589
https://doi.org/10.1007/978-3-319-59250-3_13
https://github.com/ambros-gleixner/VIPR
https://github.com/ambros-gleixner/VIPR
https://doi.org/10.1287/ijoc.1090.0324
https://doi.org/10.1007/s12532-013-0055-6
https://doi.org/10.1007/s12532-013-0055-6
https://github.com/leoneifler/exact-SCIP

812 L. Eifler, A. Gleixner

18. Eifler, L., Gleixner, A.: A computational status update for exact rational mixed integer programming.
In: Singh, M., Williamson, D.P. (eds.) Integer Programming and Combinatorial Optimization, pp.
163–177. Springer International Publishing, Cham (2021)

19. Eifler, L., Gleixner, A., Pulaj, J.: A safe computational framework for integer programming applied to
Chvátal’s conjecture (2020)

20. Espinoza, D.G.: On Linear Programming, Integer Programming and Cutting Planes. Ph.D. thesis,
Georgia Institute of Technology (2006)

21. Faure, G., Nieuwenhuis, R., Oliveras, A., Rodríguez-Carbonell, E.: SATModulo the Theory of Linear
Arithmetic: Exact, Inexact and Commercial Solvers. In: Kleine Büning, H., Zhao, X. (eds.) Theory
and Applications of Satisfiability Testing - SAT 2008, pp. 77–90. Springer, Berlin Heidelberg, Berlin,
Heidelberg (2008)

22. Gamrath, G., Anderson, D., Bestuzheva, K., Chen, W.K., Eifler, L., Gasse, M., Gemander, P., Gleixner,
A., Gottwald, L., Halbig, K., Hendel, G., Hojny, C., Koch, T., Bodic, P.L., Maher, S.J., Matter, F.,
Miltenberger, M., Mühmer, E., Müller, B., Pfetsch, M., Schlösser, F., Serrano, F., Shinano, Y., Tawfik,
C., Vigerske, S., Wegscheider, F., Weninger, D., Witzig, J.: The SCIP Optimization Suite 7.0. ZIB-
Report 20-10, Zuse Institute Berlin (2020)

23. Gleixner, A., Gottwald, L., Hoen, A.: PaPILO: Parallel Presolve for Integer and Linear Optimization.
https://github.com/scipopt/papilo (accessed May 28, 2021)

24. Gleixner, A., Hendel, G., Gamrath, G., Achterberg, T., Bastubbe, M., Berthold, T., Christophel, P.M.,
Jarck,K.,Koch, T., Linderoth, J., Lübbecke,M.,Mittelmann,H.D.,Ozyurt,D., Ralphs, T.K., Salvagnin,
D., Shinano, Y.: MIPLIB 2017: Data-Driven Compilation of the 6th Mixed-Integer Programming
Library. Mathematical Programming Computation (2020), accepted for publication

25. Gleixner, A., Steffy, D.E.: Linear programming using limited-precision oracles. Math. Program. 183,
525–554 (2020). https://doi.org/10.1007/s10107-019-01444-6

26. Gleixner, A., Steffy, D.E.,Wolter, K.: Iterative refinement for linear programming. Informs. J. Comput.
28(3), 449–464 (2016). https://doi.org/10.1287/ijoc.2016.0692

27. Granlund, T., Team, G.D.: GNU MP 6.0 Multiple Precision Arithmetic Library. Samurai Media Lim-
ited, London, GBR (2015)

28. Higham, N.J.: Accuracy and Stability of Numerical Algorithms. Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA, second edn. (2002). https://doi.org/10.1137/1.9780898718027

29. Kenter, F., Skipper, D.: Integer-programming bounds on pebbling numbers of cartesian-product graphs.
In: Kim, D., Uma, R.N., Zelikovsky, A. (eds.) Combinatorial Optimization and Applications. pp. 681–
695 (2018). https://doi.org/10.1007/978-3-030-04651-4_46

30. Lancia, G., Pippia, E., Rinaldi, F.: Using integer programming to search for counterexamples: A case
study. In: Kononov, A., Khachay, M., Kalyagin, V.A., Pardalos, P. (eds.) Mathematical Optimization
Theory and Operations Research. pp. 69–84 (2020). https://doi.org/10.1007/978-3-030-49988-4

31. deMoura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) Tools
and Algorithms for the Construction and Analysis of Systems. pp. 337–340 (2008). https://doi.org/10.
1007/978-3-540-78800-3_24

32. Neumaier, A., Shcherbina, O.: Safe bounds in linear and mixed-integer programming. Math. Program.
99, 283–296 (2002). https://doi.org/10.1007/s10107-003-0433-3

33. Pulaj, J.: Cutting planes for families implying Frankl’s conjecture. Math. Comput. 89(322), 829–857
(2020). https://doi.org/10.1090/mcom/3461

34. Steffy, D.E., Wolter, K.: Valid linear programming bounds for exact mixed-integer programming.
Inform. J. Comput. 25(2), 271–284 (2013). https://doi.org/10.1287/ijoc.1120.0501

35. Wetzler, N., Heule, M.J.H., Hunt, W.A.: DRAT-trim: Efficient checking and trimming using expressive
clausal proofs. In: Sinz, C., Egly, U. (eds.) Theory and Applications of Satisfiability Testing – SAT
2014. pp. 422–429 (2014). https://doi.org/10.1007/978-3-319-09284-3_31

36. Wilken, K., Liu, J., Heffernan, M.: Optimal instruction scheduling using integer programming. SIG-
PLAN Not. 35(5), 121–133 (2000). https://doi.org/10.1145/358438.349318

37. Wolter, K.: Exact Mixed-Integer Programming. Ph.D. thesis, Technische Universität Berlin (2019)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://github.com/scipopt/papilo
https://doi.org/10.1007/s10107-019-01444-6
https://doi.org/10.1287/ijoc.2016.0692
https://doi.org/10.1137/1.9780898718027
https://doi.org/10.1007/978-3-030-04651-4_46
https://doi.org/10.1007/978-3-030-49988-4
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/s10107-003-0433-3
https://doi.org/10.1090/mcom/3461
https://doi.org/10.1287/ijoc.1120.0501
https://doi.org/10.1007/978-3-319-09284-3_31
https://doi.org/10.1145/358438.349318

	A computational status update for exact rational mixed integer programming
	Abstract
	1 Introduction
	2 Numerically exact mixed integer programming
	3 Extending and improving an exact MIP framework
	3.1 Symbolic presolving
	3.2 Primal heuristics
	3.3 LP iterative refinement
	3.4 Further enhancements

	4 Computational study
	4.1 Computational setup and test sets
	4.2 The branch-and-bound framework
	4.3 LP iterative refinement
	4.4 Symbolic presolving
	4.5 Primal heuristics
	4.6 Producing and verifying certificates
	4.7 Overall improvements and comparison with floating-point SCIP

	5 Conclusion
	Acknowledgements
	References

