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Abstract
Counterexamples to some old-standing optimization problems in the smooth convex
coercive setting are provided. We show that block-coordinate, steepest descent with
exact search or Bregman descent methods do not generally converge. Other failures of
various desirable features are established: directional convergence of Cauchy’s gradi-
ent curves, convergence of Newton’s flow, finite length of Tikhonov path, convergence
of central paths, or smooth Kurdyka–Łojasiewicz inequality. All examples are planar.
These examples are based on general smooth convex interpolation results. Given a
decreasing sequence of positively curved Ck convex compact sets in the plane, we
provide a level set interpolation of a Ck smooth convex function where k ≥ 2 is arbi-
trary. If the intersection is reduced to one point our interpolant has positive definite
Hessian, otherwise it is positive definite out of the solution set. Furthermore, given a
sequence of decreasing polygons we provide an interpolant agreeing with the vertices
and whose gradients coincide with prescribed normals.
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1 Introduction

1.1 Questions andmethod

One of the goals of convex optimization is to provide a solution to a problemwith stable
and fast algorithms. The quality of a method is generally assessed by the convergence
of sequences, rate estimates, complexity bounds, finite length of relevant quantities
and other quantitative or qualitative ways.

Positive results in this direction are numerous and have been the object of intense
research since decades. To name but a few: gradient methods e.g., [16,31,32], proxi-
mal methods e.g., [7], alternating methods e.g., [8,39], path following methods e.g.,
[4,33], Tikhonov regularization e.g. [24], semi-algebraic optimization e.g., [13,15],
decomposition methods e.g., [7,8], augmented Lagrangian methods e.g., [11] and
many others.

Despite this vast literature, some simple questions remain unanswered or just partly
tackled, even for smooth convex coercive functions. Does the alternating minimization
method, aka Gauss–Seidel method, converge? Does the steepest descent method with
exact line search converge? Do mirror descent or Bregman methods converge? Does
Newton’s flow converge? Do central paths converge? Is the gradient flow directionally
stable? Do smooth convex functions have the Kurdyka–Łojasiewicz property?

In this article we provide a negative answer to all these questions.
Our work draws inspiration from early works of de Finetti [22], Fenchel [21], on

convex interpolation, but also fromTorralba’s PhD thesis [36] and themore recent [12],
where some counterexamples on the Tikhonov path and Łojasiewicz inequalities are
provided. The convex interpolation problem, see [22], is as follows: given a monotone

123



Curiosities and counterexamples in smooth convex… 555

sequence of convex sets1 may we find a convex function interpolating each of these
sets, i.e., having these sets as sublevel sets? Answers to these questions for continuous
convex functions were provided by de Finetti, and improved by Fenchel [21], Kannai
[25], and then used in [12,36] for building counterexamples.

We improve this work by providing, for k ≥ 2 arbitrary, a general Ck interpolation
theorem for positively curved convex sets, imposing at the same time the positive
definiteness of its Hessian out of the solution set. An abridged version could be as
follows.

Theorem (Smooth convex interpolation2)Let (Ti )i∈Z bea sequenceof compact convex
subsets of R

2, with positively curved Ck boundary, such that Ti ⊂ int Ti+1 for all i in
Z. Then there exists a Ck convex function f having the Ti as sublevel sets with positive
definite Hessian outside of the set:

argmin f =
⋂

i∈Z
Ti .

We provide several additional tools (derivatives computations) and variants (status
of the solution set, Legendre functions, Lipschitz continuity). Whether our result is
generalizable to general smooth convex sequences, i.e., with vanishing curvature,
seems to be a very delicate question whose answer might well be negative.

Our central theoretical result is complemented by a discrete approximate inter-
polation result “of order one" which is particularly well adapted for building
counterexamples.Given a nested collection of polygons, one can indeed build a smooth
convex function having level sets interpolating its vertices and whose gradients agree
with prescribed normals.

Our results are obtained by blending parametrization techniques, Minkovski sum-
mation, Bernstein approximations and convex analysis.

As sketched below, our results offer the possibility of building counterexamples in
convex optimization by restricting oneself to the construction of countable collections
of nested convex sets satisfying some desirable properties. In all cases failures of good
properties are caused by some curvature oscillations.

1.2 A digest of counterexamples

Counterexamples provided in this article can be classified along three axes: structural
counterexamples,3 counterexamples for convex optimization algorithms and ordinary
differential equations.

In the following, the term “nonconverging” sequence or trajectory means, a
sequence or a trajectory with at least two distinct accumulation points. Unless other-
wise stated, convex functions have full domain.

The following results are proved for Ck convex functions on the plane with k ≥ 2.
Structural counterexamples

1 In the sense of sets inclusion the sequence being indexed on N or Z.
2 See Theorem 2 for the full version.
3 By structural, we include homotopic deformations by mere summation.
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556 J. Bolte, E. Pauwels

(i) Kurdyka–Łojasiewicz: There exists a Ck convex function whose Hessian is
positive definite outside its solution set and which does not satisfy the Kurdyka–
Łojasiewicz inequality. This is an improvement on [12].

(ii) Tikhonov regularization path: There exists a Ck convex function f such that
the regularization path

x(r) = argmin
{
f (y) + r‖y‖2 : y ∈ R

2
}

, r ∈ (0, 1)

has infinite length. This strengthens a theorem by Torralba [36].
(iii) Central path: There exists a continuous Legendre function h : [−1, 1]2 �→ R,

Ck on the interior, and c in R
2 such that the central path

x(r) = argmin {〈c, y〉 + rh(y) : y ∈ D}

does not have a limit as r → 0.

Algorithmic counterexamples:

(iv) Gauss–Seidel method (block coordinate descent): There exists a Ck convex
functionwith positive definiteHessian outside its solution set and an initialization
(u0, v0) in R

2, such that the alternating minimization algorithm

ui+1 = argmin
u∈R

f (u, vi )

vi+1 = argmin
v∈R

f (ui+1, v)

produces a bounded nonconverging sequence ((ui , vi ))i∈N.
(v) Gradient descent with exact line search: There exists a Ck convex function f

with positive definite Hessian outside its solution set and an initialization x0 in
R
2, such that the gradient descent algorithm with exact line search

xi+1 = argmin
t∈R

f (xi + t∇ f (xi ))

produces a bounded nonconvergent sequence.
(vi) Bregman or mirror descent method: There exists a continuous Legendre func-

tion h : [−1, 1]2 �→ R, Ck on the interior, a vector c in R
2 and an initialization

x0 in (−1, 1)2 such that the Bregman recursion

xi+1 = ∇h∗(∇h(xi ) − c)

produces a nonconverging sequence. The couple (h, 〈c, ·〉) satisfies the smooth-
ness properties introduced in [6].

Continuous time ODE counterexamples:
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Fig. 1 Rough sketches of pathological behavior for curves in the plane; for sequences similar figures would
be obtained. Red colors indicate proximity with the solution set. Convergence with infinite length cor-
responds to counterexample (ii), finite length jiggling corresponds to counterexample (viii) (recall that
gradient curves have to be self-contractant as well, see [19]), nonconvergent jiggling corresponds to coun-
terexamples (iii), (vi), (vii), (ix) and nonconvergent spiraling corresponds to counterexamples (iv), (v) and
somehow (i) (color figure online)

(vii) Continuous time Newton method: There exists a Ck convex function with
positive definite Hessian outside its solution set, and an initialization x0 in R

2

such that the continuous time Newton’s system

ẋ(t) = −
[
∇2 f (x(t))

]−1 ∇ f (x(t)), t ≥ 0,

x(0) = x0

has a solution approaching argmin f which does not converge.
(viii) Directional convergence for gradient curves: There exists a Ck convex func-

tion with 0 as a unique minimizer and a positive definite Hessian on R
2\{0},

such that for any non stationary solution to the gradient system

ẋ(t) = −∇ f (x(t))

the direction x(t)/‖x(t)‖ does not converge.
(ix) Hessian Riemannian gradient dynamics: There exists a continuous Legen-

dre function h : [−1, 1]2 �→ R, Ck on the interior, a linear function f and a
nonconvergent solution to the following system

ẋ(t) = −∇H f (x(t)),

where H = ∇2h is the Hessian of h and ∇H f = H−1∇ f is the gradient of f
in the Riemannian metric induced by H on (−1, 1)2.

Pathological sequences and curves Our counterexamples lead to sequences or paths
in R

2 which are related to a function f by a certain property (see examples above)
and have a certain type of pathology. For illustration purposes, we provide sketches
of the pathological behaviors we met in Fig. 1.
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558 J. Bolte, E. Pauwels

2 Preliminaries

Let us set N
∗ = N\{0}. For p in N

∗, the Euclidean scalar product in R
p is denoted by

〈·, ·〉, otherwise stated the norm is denoted by ‖ · ‖. Given subsets S, T in R
p, and x

in R
p, we define

dist(x, S) := inf {‖x − y‖ : y ∈ S} ,

and the Hausdorff distance between S and T ,

dist(S, T ) = max

(
sup
x∈S

dist(x, T ), sup
x∈T

dist(x, S)

)
.

Throughout this note, the assertion “g isCk on D”where D is not an open set is to be
understood as “g isCk on an open neighborhood of D”. Given a map G : X �→ A× B
for some space X , [G]1 : X �→ A denotes the first component of G.

2.1 Continuous convex interpolations

We consider a sequence of compact convex subsets of R
p, (Ti )i∈Z such that Ti+1 ⊂

int Ti . Finding a continuous convex interpolation of (Ti )i∈Z is finding a convex con-
tinuous function which makes the Ti a sequence of level sets. We call this process
continuous convex interpolation. This questioning was present in Fenchel [21] and
dates back to de Finetti [22], let us also mention the work of Crouzeix [18] revolving
around this issue.

Such constructions have been shown to be realizable by Torralba [36], Kannai [25],
using ideas based on Minkowski sum. The validity of this construction can be proved
easily using the result of Crouzeix [18] which was already present under different and
weaker forms in the works of de Finetti and Fenchel.

Theorem 1 (de Finetti–Fenchel–Crouzeix) Let f : R
p → R be a quasiconvex func-

tion. The functions

Fx : λ �→ sup {〈z, x〉 : f (z) ≤ λ}

are concave for all x in R
p, if and only f is convex.

Our goal is to build smooth convex interpolation for sequences of smooth convex
sets. To make such a construction we shall use nonlinear Minkowski interpolation
between level sets.

We shall also rely on Bernstein approximation which we now describe.

2.2 Bernstein approximation

We refer to the monograph [28] by Lorentz.
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Fig. 2 Illustration of Bernstein’s smooth interpolation. We consider at first three points, to which we add
four extra points to control derivatives at the junctions. We then build a concave, piecewise linear function
and make a Bernstein approximation between the first two original points and the last two original points

The main properties of Bernstein polynomials to be used in this paper are the
following:

– Bernstein approximation is linear in its functional argument f and “monotone”
which allows to construct an approximation using only positive combination of a
finite number of function values.

– There are precise formulas for derivatives of Bernstein approximation. They
involve repeated finite differences. So approximating piecewise affine function
with high enough degree leads to an approximation for which corner values of
derivatives are controlled while the remaining derivatives are vanishing (up to a
given order).

– Bernstein approximation is shape preserving, which means in particular that
approximating a concave function preserves concavity.

The main idea to produce a smooth interpolation which preserves level sets is
depicted in Fig. 2 where we use Bernstein approximation to interpolate smoothly
between three points and controlling the successive derivatives at the end points of the
interpolation.

Let us now be specific. Given f defined on the interval [0, 1], the Bernstein poly-
nomial of order d ∈ N

∗ associated to f is given by

Bd(x) = Bd, f (x) =
d∑

k=0

f

(
k

d

)(
d

k

)
xk(1 − x)d−k, for x ∈ [0, 1]. (1)

Derivatives and shape preservation: For any h in (0, 1) and x in [0, 1 − h], we set
�1

h f (x) = f (x+h)− f (x) and recursively for all k inN
∗,�k

h f (x) = �
(
�k−1

h f (x)
)
.
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560 J. Bolte, E. Pauwels

We fix d = 0 in N and for h = 1
d write �k

h = �k . Then for any m ≤ d, we have

Bd(x)
(m) = d(d − 1) . . . (d − m + 1)

d−m∑

k=0

�m f

(
k

d

)(
d − m

k

)
xk(1 − x)d−k−m,

(2)

for any x in [0, 1]. If f is increasing (resp. strictly increasing), then�1 f (x) ≥ 0 (resp.
�1 f (x) > 0) for all x and B ′

d is positive (resp. strictly positive) and Bd is increasing
(resp. strictly increasing). Similarly, if f is concave, then�2 f (x) ≤ 0 for all x so that
B(2)
d ≤ 0 and Bd is concave. From (2), we infer

∣∣∣Bd(x)
(m)
∣∣∣ ≤ d(d − 1) . . . (d − m + 1) sup

k∈{0,...,d−m}

∣∣∣∣�
m f

(
k

d

)∣∣∣∣ (3)

for x in [0, 1].
Approximation of piecewise affine functions: The following lemma will be exten-
sively used throughout the proofs.

Lemma 1 (Smoothing of piecewise lines in R
p) Let q0, q1 ∈ R

p, λ− < λ0 <

λ1 < λ+ and 0 < e1, e0 < 1. Set � = (q0, q1, , λ−, λ0, λ1, λ+, e0, e1) and define
γ� : [0, 1] �→ R

p through

γ�(t)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

q0
(
1 + e0

λ0−λ− (t(λ+ − λ−))
)

if 0 ≤ t ≤ λ0−λ−
λ+−λ−

q0(1 + e0)
(

λ1−λ−−t(λ+−λ−)
λ1−λ0

)
+ q1(1 − e1)

(
λ−−λ0+t(λ+−λ−)

λ1−λ0

)
if λ0−λ−

λ+−λ− ≤ t ≤ λ1−λ−
λ+−λ−

q1
(
1 + (t−1)(λ+−λ−)e1

λ+−λ1

)
if λ1−λ−

λ+−λ− ≤ t ≤ 1.

The curve γ� in R
p+1 is the affine interpolant between the points q0, (1 + e0)q0,

(1 − e1)q1 and q1. For any m in N, we choose d in N
∗ such that

m

d
≤ min

{
λ0 − λ−
λ+ − λ−

, 1 − λ1 − λ−
λ+ − λ−

}
. (4)

We consider a Bernstein-like reparametrization of γ̃� given by

γ̃� : [λ−, λ+] �→ R
p

λ �→
d∑

k=0

γ̃�

(
k

d

)(
d

k

)(
λ − λ−
λ+ − λ−

)k (
1 − λ − λ−

λ+ − λ−

)d−k

.

Then the following holds, for any 2 ≤ l ≤ m, γ̃� is Cm and

γ̃�(λ−) = q0 γ̃�(λ+) = q1
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γ̃ ′
�(λ−) = e0

λ0 − λ−q0 γ̃ ′
�(λ+) = e1

λ+ − λ1
q1

γ̃
(l)
� (λ−) = 0 γ̃

(l)
� (λ+) = 0.

Furthermore, if γ� has monotone coordinates (resp. strictly monotone, resp. concave,
resp. convex), then so has γ̃�.

Proof Note that the dependence of γ̃� in (q0, q1) is linear so that the dependence of
γ̃� in (q0, q1) is also linear. Hence γ̃� is of the form λ �→ a(λ)q0 + b(λ)q1. We can
restrict ourselves to p = 1 since the general case follows from the univariate case
applied coordinatewise.

If p = 1, then γ̃� = B f�,d ◦ A, where A : λ �→ λ−λ−
λ+−λ− . We have γ̃�(0) =

q0, γ̃�(1) = q1 and �1 f�(0) = λ+−λ−
λ0−λ−

e0
d q0, �1 f�

(
1 − 1

d

) = λ+−λ−
λ+−λ1

e1
d q1 and

�(l) f�(0) = �(l) f�
(
1 − l

d

) = 0. The results follow from the expressions in (1) and
(2) and the chain rule for γ̃� = B f�,d ◦ A.

The last property of γ̃� is due to the shape preserving property of Bernstein approx-
imation and the fact that γ̃� = B f�,d ◦ L . ��
Remark 1 (a) [Affine image] Using the notation of Lemma 1, if (λ−, q0), (λ0, (1 +
e0)q0), (λ1, (1− e1)q1) and (λ+, q1) are aligned, then the interpolation is actually an
affine function.
(b) [Degree of the interpolants] Observe that the degree of the Bernstein interpolant
is connected to the slopes of the piecewise path λ by (4).

3 Smooth convex interpolation

Being given a subset S of R
p, we denote by int(S) its interior, S̄ its closure and

bd S = S̄\int(S) its boundary. Let us recall that the support function of S is defined
through

σS(x) = sup {〈y, x〉 : y ∈ S} ∈ R ∪ {+∞}.

3.1 Smooth parametrization of convex rings

A convex ring is a set of the form C1\C2 where C1 ⊂ C2 are convex sets. Providing
adequate parameterizations for such objects is key for interpolating C1 and C2 by
some (regular) convex function.

The following assertion plays a fundamental role.

Assumption 1 Let T−, T+ ⊂ R
2 be convex, compact with Ck boundary (k ≥ 2) and

positive curvature. Assume that, T− ⊂ int(T+) and 0 ∈ int(T−).

The positive curvature assumption ensures that the boundaries can be parametrized by
their normal, that is, for i = −,+, there exists

ci : R/2πZ �→ bd (Ti )
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562 J. Bolte, E. Pauwels

such that the normal to Ti at ci (θ) is the vector n(θ) = (cos(θ), sin(θ))T and ċi (θ) =
ρi (θ)τ (θ) where ρi > 0 and τ(θ) = (− sin(θ), cos(θ)). In this setting, it holds that
ci (θ) = argmaxy∈Ti 〈n(θ), y〉. The map ci is the inverse of the Gauss map and isCk−1

(see [35] Section 2.5).

Lemma 2 (Minkowski sum of convex sets with positive curvature) Let T−, T+ be as
in Assumption 1 with normal parametrizations as above. For a, b ≥ 0 with a + b > 0
set T = aT− + bT+.

Then T has positive curvature and its boundary is given by

bd T = {a c−(θ) + b c+(θ) : θ ∈ R/2πZ},

with the natural parametrization R/2πZ � θ → a c−(θ) + b c+(θ).

Proof We may assume ab > 0 otherwise the result is obvious. Let x be in bd T
and denote by n(θ) the normal vector at x for a well chosen θ , so that x =
argmax {〈y, n(θ)〉} : y ∈ T }. Observe that the definition of the Minkowski sum
yields

max
y∈T 〈y, n(θ)〉 = max

(v,w)∈T−×T+
〈av + bw, n(θ)〉

= a max
v∈T−

〈v, n(θ)〉 + b max
w∈T+

〈w, n(θ)〉

so that

〈x, n(θ)〉 = a〈c−(θ), n(θ)〉 + b〈c+(θ), n(θ)〉
= 〈ac−(θ) + bc+(θ), n(θ)〉

which implies by extremality of x that x = ac−(θ) + bc+(θ). Conversely, for any
such x , n(θ) defines a supporting hyperplane to T and x must be on the boundary of
T . The other results follow immediately. ��

In the following fundamental proposition, we provide a smooth parametrization of
the convex ring T+\int T−. The major difficulty is to control tightly the derivatives
at the boundary so that the parametrizations can be glued afterward to build smooth
interpolants.

Proposition 1 (Ck parametrization of convex rings) Let T−, T+ be as in Assumption 1
with their normal parametrization as above. Fix k ≥ 2, λ− < λ0 < λ1 < λ+ and
0 < e0, e1 < 1. Choose d in N

∗, such that

k

d
≤ min

{
λ0 − λ−
λ+ − λ−

, 1 − λ1 − λ−
λ+ − λ−

}
.

Consider the map

G : [λ−, λ+] × R/2πZ �→ R
2

(λ, θ) �→ γ̃�(λ) (5)
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with � = (c−(θ), c+(θ), λ−, λ0, λ1, λ+, e0, e1) and γ̃ as given by Lemma 1. Assume
further that:

(M)For any θ ∈ R/2πZ, λ �→ 〈G(λ, θ), n(θ)〉 has strictly positive derivative on

[λ−, λ+].

Then the image of G isR := T+\int(T−), G is Ck and satisfies, for any 2 ≤ l ≤ k
and any m in N

∗,

∂mG

∂θm
(λ−, θ) = c(m)

− (θ)
∂mG

∂θm
(λ+, θ) = c(m)

+ (θ)

∂m+1G

∂λ∂θm
(λ−, θ) = c(m)

− (θ)
e0

λ0 − λ−
∂m+1G

∂λ∂θm
(λ+, θ) = c(m)

+ (θ)
e1

λ+ − λ1

∂ l+mG

∂λl∂θm
(λ−, θ) = 0

∂ l+mG

∂λl∂θm
(λ+, θ) = 0.

Besides G is a diffeomorphism from its domain on to its image. Set R � x �→
( f (x), θ(x)) to be the inverse of G. Then f is Ck and in addition, for all x in R,

∇ f (x) = 1
〈
∂G
∂λ

( f (x), θ(x)), n(θ(x))
〉 n(θ(x))

∇θ(x) = 1
〈
∂G
∂θ

( f (x), θ(x)), τ (θ(x))
〉τ(θ(x))

−
〈
∂G
∂λ

( f (x), θ(x)), τ (θ(x))
〉

〈
∂G
∂λ

( f (x), θ(x)), n(θ(x))
〉 〈

∂G
∂θ

( f (x), θ(x)), τ (θ(x))
〉n(θ(x))

∇2 f (x) =
〈
∂G
∂θ

( f (x), θ(x)), τ (θ(x))
〉

〈
∂G
∂λ

( f (x), θ(x)), n(θ(x))
〉∇θ(x)∇θ(x)T

−
〈
∂2G
∂λ2

( f (x), θ(x)), n(θ(x))
〉

〈
∂G
∂λ

( f (x), θ(x)), n(θ(x))
〉 ∇ f (x)∇ f (x)T , (6)

where all denominators are positive.

Remark 2 Note that G is actually well defined and smooth on an open set containing
its domain. As we shall see it is also a diffeomorphism from an open set containing
its domain onto its image.

Proof Note that by construction, we have G(λ, θ) = a(λ)c−(θ) + b(λ)c+(θ) for
some polynomials a and b which are nonnegative on [λ−, λ+]. The formulas for the
derivatives follow easily from this remark, the form of a and b and Lemma 1.

Set, for any λ in [λ−, λ+], Tλ = a(λ)T− + b(λ)T+. The resulting set Tλ is convex
and has a positive curvature by Lemma 2, and for λ fixed G(λ, ·) is the inverse of the
Gauss map of Tλ, which constitutes a parametrization by normals of the boundary.
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Assume that λ < λ′, using the monotonicity assumption (M), we have for any
θ, θ ′,

〈
n(θ ′),G(λ, θ)

〉 ≤ sup
y∈Tλ

〈
n(θ ′), y

〉

= 〈
n(θ ′),G(λ, θ ′)

〉

<
〈
n(θ ′),G(λ′, θ ′)

〉

so that G(λ, θ) = G(λ′, θ ′). Furthermore, we have by definition of G(λ′, θ ′)

G(λ, θ) ∈
⋂

θ ′∈R/2πZ

{
y,
〈
y, n(θ ′)

〉 ≤ 〈
n(θ ′),G(λ′, θ ′)

〉} = Tλ′ ,

where the equality follows from the convexity of Tλ′ . By convexity and compactness,
this entails that Tλ = conv(bd (Tλ)) ⊂ int Tλ′ .

Let us show that the map G is bijective, first consider proving surjectivity. Let f
be defined on T+\int(T−) through

f : x �→ inf {λ : λ ≥ λ−, x ∈ Tλ = a(λ)T− + b(λ)T+} . (7)

Since a(λ+) = 0, b(λ+) = 1 this function is well defined and by compactness and
continuity the infimum is achieved. It must hold that x belongs to bd (T f (x)), indeed,
if f (x) = λ−, then x belongs to bd (T−) and otherwise, if x is in int(Tλ′) for λ′ > λ−,
then f (x) < λ′. We deduce that x is of the form G( f (x), θ) for a certain value of θ ,
so that G is surjective.

As for injectivity, we have already seen a first case, the monotonicity assumption
(M) ensures that λ = λ′ implies G(λ, θ) = G(λ′, θ ′) for any θ, θ ′. Furthermore, we
have the second case, for anyλ in [λ−, λ+] and any θ ,G(λ, θ) = argmaxy∈Tλ

〈y, n(θ)〉
so that θ = θ ′ implies G(λ, θ) = G(λ, θ ′). So in all cases, (λ, θ) = (λ′, θ ′) implies
that G(λ, θ) = G(λ′, θ ′) and G is injective.

Let us now show that themapG is a local diffeomorphismby estimating its Jacobian
map.

Since 0 ∈ int(T−), we have for any λ, θ ,

0 < sup
y∈T−

〈y, n(θ)〉

= 〈G(λ−, θ), n(θ)〉
≤ a(λ) 〈c−(θ), n(θ)〉 + b(λ) 〈c+(θ), n(θ)〉 ,

and both scalar products are positive so that a(λ) + b(λ) > 0. Hence, for any θ in
R/2πZ,

∂G

∂θ
(λ, θ) = (a(λ)ρ−(θ) + b(λ)ρ+(θ))τ (θ), (8)

123



Curiosities and counterexamples in smooth convex… 565

with a(λ)ρ−(θ) + b(λ)ρ+(θ) > 0.
Furthermore by assumption λ → maxy∈Tλ

〈y, n(θ)〉 = 〈G(λ, θ), n(θ)〉 has strictly
positive derivative in λ, whence

〈
∂G

∂λ
(λ, θ), n(θ)

〉
> 0.

Wededuce that for anyfixed θ , in the basis (n(θ), τ (θ)), the Jacobian ofG, denoted JG ,
is triangularwith positive diagonal entries.More precisely fixλ, θ and set x = G(λ, θ)

such that λ = f (x), θ = θ(x). In the basis (n(θ), τ (θ)), we deduce from (8) that the
Jacobian of G is of the form

JG(λ, θ) =
(

α 0
γ β

)
,

where

α =
〈
∂G

∂λ
(λ, θ), n(θ)

〉
> 0

β =
〈
∂G

∂θ
(λ, θ), τ (θ)

〉
= a(λ)ρ−(θ) + b(λ)ρ+(θ) > 0

γ =
〈
∂G

∂λ
(λ, θ), τ (θ)

〉
.

It is thus invertible and we have a local diffeomorphism. We deduce that

JG(λ, θ)−1 =
(

α−1 0
−γ
αβ

β−1

)
.

We have JG(λ, θ)−1 = JG−1(x) so that the first line is ∇ f (x) and second line is
∇θ(x), which proves the claimed expressions for gradients.

We also have dn(θ)/dθ = τ(θ) so that

Jn◦θ (x) = τ(θ(x))∇θ(x)T .

Differentiating the gradient expression, we obtain (∇ denotes gradient with respect to
x):

∇2 f (x)

= ∂

∂x

(
1

〈
∂G
∂λ

( f (x), θ(x)), n(θ(x))
〉 n(θ(x))

)

= 1
〈
∂G
∂λ

( f (x), θ(x)), n(θ(x))
〉 Jn◦θ (x)
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+ n(θ(x))∇
(

1
〈
∂G
∂λ

( f (x), θ(x)), n(θ(x))
〉
)T

= 1
〈
∂G
∂λ

( f (x), θ(x)), n(θ(x))
〉 Jn◦θ (x)

− n(θ(x))∇
(〈

∂G

∂λ
( f (x), θ(x)), n(θ(x))

〉)T 1
〈
∂G
∂λ

( f (x), θ(x)), n(θ(x))
〉2

= 1
〈
∂G
∂λ

( f (x), θ(x)), n(θ(x))
〉
(
τ(θ)∇θ(x)T

−∇ f (x)∇
(〈

∂G

∂λ
( f (x), θ(x)), n(θ(x))

〉)T
)

.

We have

= ∇
(〈

∂G

∂λ
( f (x), θ(x)), n(θ(x))

〉)T

= ∂G

∂λ
( f (x), θ(x))T Jn◦θ (x) + n(θ(x))T J ∂G

∂λ
( f (x), θ(x))JG−1(x)

=
〈
∂G

∂λ
( f (x), θ(x)), τ (θ(x))

〉
∇θ(x)T +

〈
n(θ(x)),

∂2G

∂λ2
(λ, θ)

〉
∇ f (x)T ,

where, for the last identity, we have used the fact that

n(θ(x))T J ∂G
∂λ

( f (x), θ(x)) =
〈
n(θ(x)),

∂2G

∂λ2
(λ, θ)

〉
n(θ(x))T

+
〈
n(θ(x)),

∂2G

∂λ∂θ
(λ, θ)

〉
τ(θ(x))T

=
〈
n(θ(x)),

∂2G

∂λ2
(λ, θ)

〉
n(θ(x))T

n(θ(x))T JG−1(x) = n(θ(x))T JG( f (x), θ(x))−1

= 1
〈
∂G
∂λ

( f (x), θ(x)), n(θ(x))
〉n(θ(x))T = ∇ f (x)T .

We deduce that

∇2 f (x)

= 1
〈
∂G
∂λ

( f (x), θ(x)), n(θ(x))
〉

(
τ(θ(x))∇θ(x)T −

〈
∂G

∂λ
( f (x), θ(x)), τ (θ(x))

〉
∇ f (x)∇θ(x)T
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− ∇ f (x)∇ f (x)T
〈
n(θ(x)),

∂2G

∂λ2
(λ, θ)

〉 )
.

We have

τ(θ(x))∇θ(x)T −
〈
∂G

∂λ
( f (x), θ(x)), τ (θ(x))

〉
∇ f (x)∇θ(x)T

=
(

τ(θ(x)) −
〈
∂G
∂λ

( f (x), θ(x)), τ (θ(x))
〉

〈
∂G
∂λ

( f (x), θ(x)), n(θ(x))
〉n(θ(x))

)
∇θ(x)T

= (a(λ)ρ−(θ) + b(λ)ρ+(θ))∇θ(x)∇θ(x)T

So that we actually get

∇2 f (x)

〈
∂G

∂λ
( f (x), θ(x)), n(θ(x))

〉

= (a(λ)ρ−(θ) + b(λ)ρ+(θ))∇θ(x)∇θ(x)T −
〈
n(θ(x)),

∂2G

∂λ2
(λ, θ)

〉
∇ f (x)∇ f (x)T

=
〈
∂G

∂θ
(λ, θ), τ (θ(x))

〉
∇θ(x)∇θ(x)T −

〈
n(θ(x)),

∂2G

∂λ2
(λ, θ)

〉
∇ f (x)∇ f (x)T .

This concludes the proof. ��

3.2 Smooth convex interpolation of smooth positively curved convex sequences

In this section, we consider an indexing set I with either I = N or I = Z, and
an increasing sequence of compact convex sets (Ti )i∈I such that for any i in I , the
couple T+ := Ti+1, T− := Ti satisfies Assumption 1. In particular, for each i in I ,
Ti is compact, convex with Ck boundary and positive curvature. We denote by ci the
corresponding parametrization by the normal, Ti ⊂ int Ti+1.With no loss of generality
we assume 0 ∈ ∩i∈I Ti .

This is our main theoretical result.

Theorem 2 (Smooth convex interpolation) Let I = N or I = Z and (Ti )i∈I such that
for any i ∈ I , Ti ⊂ R

2 and the couple T+ := Ti+1, T− := Ti satisfies Assumption 1.
Then there exists a Ck convex function

f : T := int

(
⋃

i∈I
Ti

)
�→ R

such that
(i) Ti is a sublevel set of f for all i in I .
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(ii)We have

argmin f =
{⋂

I Ti if I = Z

{0} if I = N.

(iii) ∇2 f is positive definite on T \ argmin f , and if I = N, it is positive definite
throughout T .

Proof Preconditionning. We have that 0 ∈ ∩i∈I int(Ti ). Hence for any i in I and
0 ≤ α < 1, αTi ∈ int(Ti ). Furthermore, for α > 0, small enough, (1 + α)Ti ⊂
(1 − α)int(Ti+1). Set α0 such that (1 + α0)T0 ⊂ (1 − α0)int(T1). By forward (and
backward if I = Z) induction, for all i in I , we obtain αi > 0 such that

(1 + αi )Ti ⊂ (1 − αi )int(Ti+1).

Setting for all i in I , εi+1 = min{αi , αi+1} (ε0 = α0 if I = N), we have for all i in I

(1 + εi )Ti ⊂ (1 + αi )Ti ⊂ (1 − αi )int(Ti+1) ⊂ (1 − εi+1)int(Ti+1).

For all i in I , we introduce

S3i = Ti ,

S3i+1 = (1 + εi )Ti
S3i+2 = (1 − εi+1)Ti+1.

We have a new sequence of strictly increasing compact convex sets (Si )i∈I .

Value assignation. For each i in I , we set

Ki = max‖x‖=1

σSi+1(x) − σSi (x)

σSi (x) − σSi−1(x)
∈ (0,+∞) .

Note that for all i in I , K3i = 1. We choose λ1 = 2, λ0 = 1 and for all i in I ,

λi+1 = λi + Ki (λi − λi−1). (9)

By construction, we have for all i in I and all θ ∈ R/2πZ,

σSi+1(n(θ)) − σSi (n(θ))

λi+1 − λi
≤ σSi (n(θ)) − σSi−1(n(θ))

λi − λi−1
.

If I = Z, this entails

0 < λi − λi−1 ≤ λ1 − λ0

σS1(n(θ)) − σS0(n(θ))
(σSi (n(θ)) − σSi−1(n(θ))),
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and the right-hand side is summable over negative indices i ≤ 0, so that λi → λ ∈ R

as i → −∞. In all cases (λi )i∈I is an increasing sequence bounded from below.

Local interpolation. We fix i in I and consider the function Gi described in Propo-
sition 1 with T+ = S3i+3 = Ti+1, T− = S3i = Ti , λ+ = λ3i+3, λ1 = λ3i+2,
λ0 = λ3i+1, λ− = λ3i , e0 = εi , e1 = εi+1. By linearity, we have for any
(λ, θ) ∈ [λ−, λ+] × R/2πZ,

〈Gi (λ, θ), n(θ)〉 = γ̃�(λ)

where γ̃� is as in Lemma 1 with input data q0 = 〈c3i (θ), n(θ)〉 = σS3i (n(θ)),
q1 = 〈c3i+3(θ), n(θ)〉 = σS3i+3(n(θ)), andλ−, λ0, λ1, λ+, e1, e0 as already described.
This corresponds to the Bernstein approximation of the piecewise affine interpolation
between the points

(
λ3i , σS3i (n(θ))

)
(
λ3i+1, σS3i+1(n(θ))

)
,

(
λ3i+2, σS3i+2(n(θ))

)
,

(λ3i+3, σ3i+3(n(θ))), (10)

By construction of (Ki )i∈I , we have for all θ ,

0 <
σS3i+3(n(θ)) − σS3i+2(n(θ))

λ3i+3 − λ3i+2

≤ σS3i+2(n(θ)) − σS3i+1(n(θ))

λ3i+2 − λ3i+1
≤ σS3i+1(n(θ)) − σS3i (n(θ))

λ3i+1 − λ3i
.

Whence the affine interpolant between points in (10) is strictly increasing and
concave, and by using the shape preserving properties of Bernstein polynomials,
〈Gi (λ, θ), n(θ)〉 has strictly positive derivative. As a consequence Gi is a diffeo-
morphism and its derivatives are as in Proposition 1. Furthermore

λ �→ 〈Gi (λ, θ), n(θ)〉
is a Ck concave function of λ.

Global interpolation. Recall that λ = inf i∈I λi > −∞ and set λ̄ = supi∈I λi ∈
(−∞,+∞]. For any λ ∈ (λ, λ̄), there exists a unique iλ ∈ I such that λ ∈
[λ3iλ , λ3iλ+3). Define

G : (λ, λ̄) × R/2πZ �→ R
2

(λ, θ) �→ Giλ(λ, θ).

Fix i in I . The boundary of Ti+1 is given by Gi+1(λ3i+3, R/2πZ) = Gi (λ3i+3,

R/2πZ) with actually

Gi+1(λ3i+3, θ) = Gi (λ3i+3, θ), for all θ in R/2πZ. (11)
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Since K3i = 1, we have

λ3i+1 − λ3i = λ3i − λ3i−1.

The expressions of the derivatives in Proposition 1 and (11) ensure that the deriva-
tives of Gi+1 and Gi agree on λ3i+3 × R/2πZ up to order k. Hence G is a local
diffeomorphism. Bijectivity of each Gi ensure that G is also bijective and thus G is a
diffeomorphism. Furthermore

λ �→ 〈G(λ, θ), n(θ)〉

is Ck piecewise concave and thus concave.

Extending G. If I = N, we may assume without loss of generality that S0 = B the
Euclidean ball and S1 = 5/3S0, which corresponds to ε0 = 2/3, eventually after
adding a set in the list and rescaling. Let φ denote the function described in Lemma 10
and G−1 be described as in Lemma 11. This allows to extend G for λ ∈ [0, 1], G
is then Ck on (0, λ̄) × R/2πZ by using Lemma 11 and Proposition 1. This does not
affect the differentiability, monotonicity and concavity properties of G.

Defining the interpolant f . We assume without loss of generality that λ = 0.
We set f to be the first component of the inverse of G so that it is defined on
G−1

(
(0, λ̄) × R/2πZ

)
. We extend f as follows:

• f (0) = 0 if I = N,
• f = 0 on ∩i∈I Ti if I = Z.

Since G is Ck and non-singular on (0, λ̄) × R/2πZ, the inverse mapping theorem
ensures that f is Ck on int(T )\ argminT f .

Convexity of f . For any θ in R/2πZ,

(0, λ̄) �→ R+
λ �→ sup

z∈[ f ≤λ]
n(θ)T z

is equal to 〈G(λ, θ), n(θ)〉which is concave. It can be extended at λ = 0 by continuity.
This preserves concavity hence, using Theorem 1, we have proved that f is convex
and Ck on T \ argminT f .

Smoothness around the argmin and Hessian positivity. If I = N, then the interpolant
defined in Lemma 11 ensures that f is proportional to the norm squared around 0.
Hence it is Ck around 0 with positive definite Hessian. We may compose f with the
function g : t �→ √

t2 + 1 + t which is increasing and has positive second derivative.
This ensures that the resulting Hessian is positive definite outside argmin f and thus
everywhere since

∇2g ◦ f = g′∇2 f + g′′∇ f ∇ f T
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is positive definite thanks to the expressions for the Hessian of f in Proposition 1
If I = Z, we let all the derivatives of f vanish around the solution set. The smooth-

ing Lemma 14 applies and provides a function φ with positive derivative on (0,+∞),
such that φ ◦ f is convex, Ck with prescribed sublevel sets. Furthermore, we remark
that

∇2φ ◦ f = φ′∇2 f + φ′′∇ f ∇ f T .

We may compose φ ◦ f with the function g : t �→ √
t2 + 1 + t which is increasing

with positive second derivative, the expressions for the Hessian of f in Proposition 1
ensure that the resulting Hessian is positive definite out of argmin f . ��
Remark 3 (Interpolation of symmetric rings) In view of Remark 1, if we have Ti+1 =
αTi for some 0 < α < 1 and i in Z, then the interpolated level sets between Ti and
Ti+1 are all of the form sTi for α ≤ s ≤ 1.

Remark 4 (Strict convexity) Recall that strict convexity of a differentiable function
amounts to the injectivity of its gradient. In Theorem 2 if there is a unique minimizer,
then the invertibility of the Hessian outside argmin f ensures that our interpolant is
strictly convex (note that this is automatically the case if I = N).

3.3 Considerations on Legendre functions

The following proposition provides some interpolant with additional properties as
global Lipschitz continuity and finiteness properties for the dual function. At this
stage these results appear as merely technical but they happen to be decisive in the
construction of counterexamples involving Legendre functions. The properties of Leg-
endre functions can be found in [37, Chapter 6]. We simply recall here that, given a
convex body C of R

p, a convex function h : C → R is Legendre if it is differentiable
on intC and if ∇h defines a bijection from intC to ∇h(intC) with in addition

lim
x ∈ intC
x → z

‖∇h(x)‖ = +∞,

for all z in bdC . We also assume that epi f := {(x, λ) : f (x) ≤ λ} is closed in R
p+1.

The Legendre conjugate or dual function of h is defined through

h∗(z) = sup {〈z, x〉 − h(x) : x ∈ C} ,

for z in R
p, and its domain is D := {z ∈ R

p : h(z) < +∞} . The function h∗ is
differentiable on the interior of D, and the inverse of ∇h : intC → int D is ∇h∗ :
int D → intC .

We start with a simple technical lemma on the compactness of the domain of a
Legendre function.

123



572 J. Bolte, E. Pauwels

Lemma 3 Let h : R
2 �→ R be a globally Lipschitz continuous Legendre function, and

set D = int(dom(h∗))where h∗ : R
2 �→ R is the conjugate of h. For eachλ ≥ minR2 h

let σλ be the support function associated to the set
{
z ∈ R

2, h(z) ≤ λ
}
. The following

are equivalent

(i) h∗(x) ≤ 0 for all x ∈ D.
(ii) For all y ∈ R

2, σh(y)(∇h(y)) ≤ h(y).

In both cases h∗ has compact domain.

Proof Let us establish beforehand the following formula

h∗(z) = σh(y)(∇h(y)) − h(y), (12)

with y = ∇h∗(z) and y ∈ R
2. Since h∗ is Legendre, we have for all y in D,

h∗(z) = sup
y∈R2

〈z, y〉 − h(y) = 〈
z,∇h∗(z)

〉− h(∇h∗(z)).

We have, setting y = ∇h∗(z)
〈
z,∇h∗(z)

〉 = 〈∇h(y), y〉 = σh(y)(∇h(y))

because ∇h(y) is normal to the sublevel set of h which contains y in its boundary.
Hence we have h∗(z) = σh(y)(∇h(y)) − h(y) with y = ∇h∗(z), that is (12) holds.
Since ∇h∗ : D �→ R

2 is a bijection, the equivalence follows. In this case the domain
of h∗ is closed because h∗ is bounded and lower semicontinuous. The domain is also
bounded by the Lipschitz continuity of h, whence compact. ��
Proposition 2 (On Legendre interpolation) Let (Si )i∈N be such that for any i in I ,
T− = Si , T+ = Si+1 satisfy Assumption 1 and there exists a sequence (εi )i∈N in (0, 1)
such that for all i ≥ 1, (1 − εi )

−1S3i−1 = (1 + εi )
−1S3i+1 = S3i .

Assume in addition that,

inf‖x‖=1
σSi (x) − σSi−1(x) = 1 + O

(
1

i3

)
(non degeneracy), (13)

sup
‖x‖=1

∣∣∣∣
σSi+1(x) − σSi (x)

σSi (x) − σSi−1(x)
− 1

∣∣∣∣ = O

(
1

i3

)
(moderate growth). (14)

Then there exists a convex Ck function h : R
2 �→ R, such that

• For all i in N, S3i is a sublevel set of h,
• h has positive definite Hessian,
• h is globally Lipschitz continuous,
• h∗ has a compact domain D and is Ck and strictly convex on int(D).

Proof The construction of h follows the exact same principle as that of Theorem 2.
This ensures that the first two points are valid. Note that Eq. (13) implies that the sets
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sequence grows by at least a fixed amount in each direction as i grows. Hence we have
T = R

2.

Global Lipschitz continuity of h: The values of h are defined through

λi+1 − λi = Ki (λi − λi−1), ∀i ∈ N
∗

Ki = max‖x‖=1

σSi+1(x) − σSi (x)

σSi (x) − σSi−1(x)
∈ (0,+∞) ,

so that Ki = 1+O(1/i3) thanks to Eq. (14).Note that themoderate growth assumption
entails

sup
i∈N

σSi+1(x) − σSi (x) = O

(
∏

i∈N∗
Ki

)
= O(1). (15)

For i ≥ 1, one has

λi+1 − λi =
∏

1≤ j≤i

K j (λ1 − λ0). (16)

On the other hand using the bounds (14), (13) and the identity (16), there exists a
constant κ > 0 such that for all i ≥ 1, all θ in R/2πZ,

σSi+1(n(θ)) − σSi (n(θ))

λi+1 − λi
=
(
σSi+1(n(θ)) − σSi (n(θ))

)
∏i

j=1 K j (λ1 − λ0)
≥ κ > 0. (17)

By the interpolation properties described in Lemma 1 the function 〈G(λ, θ), n(θ)〉
constructed in Theorem 2 has derivative with respect to λ greater than κ . Recalling
the expression of the gradient as given in Proposition 1 (and the concavity of G with
respect to λ), this shows that

‖∇h(x)‖ ≤ 1

κ

for all x in R
2, and by the mean value theorem, h is globally Lipschitz continuous on

R
2.

Properties of the dual function: h is Legendre, its conjugate h∗ is therefore Legendre.
From the definiteness of ∇2h and the fact that ∇h : R

2 �→ int(D) is a bijection, we
deduce that h∗ is Ck by the inverse mapping theorem. So the only property which we
need to establish is that h∗ has a compact domain, in other words, using Lemma 3, it
is sufficient to show that supx∈intD h∗(x) ≤ 0.

Using the notation of the proof of Theorem 2, we will show that it is possible to
verify that, for all λ, θ in the domain of G

〈n(θ),G(λ, θ)〉
〈
∂G
∂λ

(λ, θ), n(θ)
〉 ≤ λ. (18)
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Equation (18) is indeed the coordinate form of the characterization given in Lemma 3.
Let us observe that

∂

∂λ

(
〈n(θ),G(λ, θ)〉 − λ

〈
∂G

∂λ
(λ, θ), n(θ)

〉)
= −λ

〈
∂2G

∂λ2
(λ, θ), n(θ)

〉
, (19)

and since G is concave, the right hand side is positive.
Assume that we have proved that,

λ �→ sup
θ

−λ

〈
∂2G

∂λ2
(λ, θ), n(θ)

〉
(20)

has finite integral as λ → ∞. Since the function

θ �→ λ

〈
∂2G

∂λ2
(λ, θ), n(θ)

〉
(21)

is continuous on R/2πZ for any λ, Lebesgue dominated convergence theorem would
ensure that

θ �→
∫

λ≥λ0

−λ

〈
∂2G

∂λ2
(λ, θ), n(θ)

〉
dλ

is continuous in θ , so that:

sup
θ

[
lim

λ→∞ 〈n(θ),G(λ, θ)〉 − λ

〈
∂G

∂λ
(λ, θ), n(θ)

〉]
< +∞.

Shifting values if necessary, we could assume that this upper bound is equal to zero to
obtain Eq. (18). The latter being the condition required in Lemma 3, we would have
reached a conclusion.

Let us therefore establish that (19) is integrable overR+. Recall thatG is constructed
using the Bernstein interpolation given in Lemma 1 between successive values of λ. As
a result, for a fixed θ , the function 〈n(θ),G(λ, θ)〉 is the interpolation of the piecewise
affine function interpolating

(
λ3i , σS3i (n(θ))

)
(
λ3i+1, σS3i+1(n(θ))

)
,

(
λ3i+2, σS3i+2(n(θ))

)
,

(λ3i+3, σ3i+3(n(θ))), (22)

as in Eq. (10). This interpolation is concave and increasing.
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Assumption (14) ensures that K j = 1 + O(1/ j3). Then

m∏

j=1

K j = K̄ + O(1/ j2)

where K̄ is the finite, positive limit of the product (we can for example perform integral
series comparison after taking the logarithm).

The recursion on the values writes for all i ≥ 1

λi+1 = λi + Ki (λi − λi−1),

so that

λi+1 − λi = (λ1 − λ0)

i∏

j=1

Ki = (λ1 − λ0)K̄ + O(1/i2).

This means that the gap between consecutive values tends to be constant. Thus by
(4) in Lemma 1, see alsoRemark 1, the degree of theBernstein interpolants is bounded.
Using this bound together with inequality (3), providing bounds for the derivatives of
Bernstein’s polynomial, ensure that, for all λ in [λ3i , λ3i+3):

∣∣∣∣

〈
∂2G

∂λ2
(λ, θ), n(θ)

〉∣∣∣∣

= O

(
max

j=3i+2,3i+1

∣∣∣∣
σS j+1(n(θ)) − σS j (n(θ))

λ j+1 − λ j
− σS j (n(θ)) − σS j−1(n(θ))

λ j − λ j−1

∣∣∣∣

)
.

Now for any j = 3i + 2, 3i + 1,

∣∣∣∣
σS j+1(n(θ)) − σS j (n(θ))

λ j+1 − λ j
− σS j (n(θ)) − σS j−1(n(θ))

λ j − λ j−1

∣∣∣∣

= 1

λ j+1 − λ j

∣∣∣∣(σS j+1(n(θ)) − σS j (n(θ))) − λ j+1 − λ j

λ j − λ j−1
(σS j (n(θ)) − σS j−1(n(θ)))

∣∣∣∣

=
(
1/((λ1 − λ0)K̄ ) + O(1/i2)

)

×
∣∣∣(σS j+1(n(θ)) − σS j (n(θ))) − (1 + O(1/i2))(σS j (n(θ)) − σS j−1(n(θ)))

∣∣∣

=
(
1/((λ1 − λ0)K̄ ) + O(1/i2)

)

× ∣∣(σS j+1(n(θ)) − σS j (n(θ))) − (σS j (n(θ)) − σS j−1(n(θ)))
∣∣
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where the last identity follows from the triangle inequality because using σS j (n(θ))−
σS j−1(n(θ)) = O(1) in (15). Hence

∣∣∣∣

〈
∂2G

∂λ2
(λ, θ), n(θ)

〉∣∣∣∣

=
(
1/((λ1 − λ0)K̄ ) + O(1/i2)

)

× O

(
max

j=3i+2,3i+1

∣∣σS j+1(n(θ)) − σS j (n(θ)) − (σS j (n(θ)) − σS j−1(n(θ)))
∣∣
)

=
(
1/((λ1 − λ0)K̄ ) + O(1/i2)

)

× O

(
max

j=3i+2,3i+1

∣∣σS j (n(θ)) − σS j−1(n(θ))
∣∣×

∣∣∣∣∣
σS j+1(n(θ)) − σS j (n(θ))

σS j (n(θ)) − σS j−1(n(θ))
− 1

∣∣∣∣∣

)

= O(1/i3),

where the last inequality follows from (15) and (14).Nowas i → ∞,λ3i ∼ λ3i+3 ∼ ic
for some constant c > 0 and

sup
λ∈[λ3i ,λ3i+3],θ∈[0,2π ]

−λ

〈
∂2G

∂λ2
(λ, θ), n(θ)

〉
= O(1/i2)

and

sup
θ∈[0,2π ]

−λ

〈
∂2G

∂λ2
(λ, θ), n(θ)

〉

has finite integral as λ → ∞. This implies (20) and it concludes the proofs. ��

4 Smooth convex interpolation for sequences of polygons

Given a sequence of points A1, . . . , An , we denote by A1 . . . An the polygon obtained
by joining successive points ending the loop with the segment [An, A1]. In the sequel
we consider mainly convex polygons, so that the vertices A1, . . . , An are also the
extreme points.

The purpose of this section is first to show that polygons can be approximated
by smooth convex sets with prescribed normals under weak assumptions. Figure 3
illustrates the result we would like to establish: given a target polygon with prescribed
normals at its vertices, we wish to construct a smooth convex set interpolating the
vertices with the desired normals and whose distance to the polygon is small.

Then given a sequence of nested polygons, we provide a smooth convex function
which interpolates the polygons in the sense described just above.
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Fig. 3 Arrows designate the prescribed normals. We construct a strictly convex set with smooth boundary
entirely contained in the auxiliary (blue) polygon. This set interpolates the normals and the distance to the
original (red) polygon can be chosen arbitrarily small. The degree of smoothness of the boundary can be
chosen arbitrarily high (color figure online)

Given a closed nonempty convex subset S of R
p and x in S, we recall that the

normal cone to S at x is

NS(x) = {
z ∈ R

p : 〈z, y − x〉 ≤ 0,∀y ∈ S
}
.

Such vectors will often simply called normals (to S) at x .

4.1 Smooth approximations of polygons

Lemma 4 For any r−, r+ > 0, t− > 0, t+ < 0 and ε > 0, m ∈ N, m ≥ 3, there exists
a strictly concave polynomial function p : [0, 1] �→ [0, ε] such that

p(0) = 0 p(1) = 0

p′(0) = t− p′(1) = t+
p′′(0) = −r− p′′(1) = −r+.

p(q)(0) = 0 q ∈ {3, . . . ,m}.

Proof Let us begin with preliminary remarks. Consider for any a, b in R, the function

f : t �→ a(t − b)2.
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For any t in R, q in N, q > 2, and any c > 0, we have

f (t + c) − f (t) = �1
c f (t) = ac(2(t − b) + c)

f (t + 2c) − 2 f (t + c) + f (t) = �2
c f (t) = ac(2(t + c − b) + c − 2(t − b) − c)

= 2ac2�q
c f (t) = 0 (23)

Choosing the degree d and constructing the polynomial. For any d in N, d ≥ 2m+1,
we set

a−(d) = −dr−
2(d − 1)

< 0 b−(d) = 1

2d

(
1 + 2t−

d − 1

r−

)
> 0

a+(d) = −dr+
2(d − 1)

< 0 b+(d) = 1 + 1

2d

(
−1 + 2t+

d − 1

r+

)
< 1, (24)

and define the functions

fd : s �→
{
a−(d)((s − b−(d))2 − b−(d)2) if s ≤ b−(d)

−a−(d)b−(d)2 if s ≥ b−(d)

gd : t �→
{
a+(d)((s − b+(d))2 − (1 − b+(d))2) if s ≥ b+(d)

−a+(d)(1 − b+(d))2 if s ≤ b+(d).

Furthermore, we set

f : t �→

⎧
⎪⎨

⎪⎩

r−
2

((
t−
r−

)2 −
(
s − t−

r−

)2)
if s ≤ t−

r−
r−
2

(
t−
r−

)2
if s ≥ t−

r−

g : t �→

⎧
⎪⎨

⎪⎩

r+
2

((
t+
r+

)2 −
(
s − 1 − t+

r+

)2)
if s ≥ 1 + t+

r+
r+
2

(
t+
r+

)2
if s ≤ 1 + t+

r+ .

Note that b−(d) → t−/r−, b+(d) → 1 + t+/r+, a−(d) → −r−/2 and a+(d) →
−r+/2 as d → ∞ so that fd → f and gd → g uniformly on [0, 1]. For any d,
fd is concave increasing and gd is concave decreasing and all of them are Lipschitz
continuous on [0, 1] with constants that do not depend on d. Note also that f (0) =
0 < g(0) and g(1) = 0 < f (1). We choose d ≥ 2m + 1 such that

fd
(m
d

)
≤ min

(
ε, gd

(m
d

))

gd
(
1 − m

d

)
≤ min

(
ε, fd

(
1 − m

d

))
. (25)

Such a d always exists because in both cases, the left hand side converges to 0 and
the right hand side converges to a strictly positive term as d tends to ∞. For such a
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Fig. 4 Illustration of the approximation result of Lemma 4 with ε = 0.1, m = 3, t− = 0.7, t+ = −2.2,
r− = 2 and r+ = 0.2. The resulting polynomial is of degree 66. Numerical estimations of the first and
second order derivatives at 0 and 1 match the required values up to 3 precision digits. The polynomial is
strongly concave, however, this is barely visible because the strong concavity constant is extremely small

d, we set h : s �→ min { fd(s), gd(s), ε}. By construction, h is concave, agrees with
fd on

[
0, m

d

] ⊂ [0, 1/2] and with gd on
[
1 − m

d , 1
] ⊂ [1/2, 1]. Using Eq. (23) with

c = 1/d, we deduce that

d(d − 1)�2h(0) = d(d − 1)�2 fd(0) = d(d − 1)
2a−(d)

d2
= −r−

d�h(0) = d� fd(0) = a−(d)

(
1

d
− 2b−(d)

)
= t−

�qh(0) = 0 = �q fd(0) ∀m ≥ q ≥ 3

d(d − 1)�2h

(
1 − 2

d

)
= d(d − 1)�2gd

(
1 − 2

d

)
= d(d − 1)

2a+(d)

d2
= −r+

d�h

(
1 − 1

d

)
= d�gd

(
1 − 1

d

)
= a+(d)

(−1

d
+ 2(1 − b+(d))

)
= t+

�qh
(
1 − m

d

)
= �qgd

(
1 − m

d

)
= 0 ∀m ≥ q ≥ 3.

From the concavity of h and the derivative formula (2), we deduce that the polynomial
Bh,d satisfies the desired properties (Fig. 4). ��

We deduce the following result

Lemma 5 Let a > 0, r > 0, ε > 0, and an integer m ≥ 3. Consider two unit vectors:
v− with strictly positive entries and v+ with first entry strictly positive and second
entry strictly negative. Then there exists a Cm curve γ : [0, M] �→ R

2, such that

1. ‖γ ′‖ = 1.
2. γ (0) = (−a, 0) := A and γ (1) = (0, a) := B.
3. γ ′(0) = v− and γ ′(1) = v+.
4. ‖γ ′′(0)‖ = ‖γ ′′(−1)‖ = r .
5. det(γ ′, γ ′′) < 0 along the curve.
6. γ (q)(0) = γ (q)(1) = 0 for any 3 ≤ q ≤ m.
7. dist(γ ([0, M]), [A, B]) ≤ ε.

Proof Consider the graph of a polynomial as given in Lemma 4 with t− =
v−[2]/v−[1] > 0, t+ = v+[2]/v+[1] < 0 and r− = r

2a (1 + t2−)
3
2 , r+ = r

2a (1 + t2+)
3
2

and ε/2a as an approximation parameter. This graph is parametrized by t . It is possible
to reparametrize it by arclength to obtain a Cm curve γ0 whose tangents at 0 is T−, at
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1 is T+, and whose curvature at 0 and 1 is − r
2a . Furthermore, γ0 has strictly negative

curvature whence item 5. Consider the affine transform: x �→ 2a(x −1/2), y �→ 2ay.
This results in a Cm curve γ , parametrized by arclength which satisfies the desired
assumptions. ��
Lemma 6 (Normal approximations of polygons by smooth convex sets) Let S =
A1...An be a convex polygon. For each i , let Vi be in NS(Ai ) such that the angle
between Vi and each of the two neighboring faces is within

(
π
2 , π

)
. Then for any

ε > 0 and any m ≥ 2, there exists a compact convex set C ⊂ R
2 such that

(i) the boundary of C is Cm with non vanishing curvature,
(ii) S ⊂ C,
(iii) for any i = 1, . . . , n, Ai in bd (C) and the normal cone to C at Ai is given by

Vi ,
(iv) maxy∈C dist(y, S) ≤ ε.

Proof We assume without loss of generality that A1, . . . , An are ordered clockwise.
For i = 1, . . . , n − 1, and each segment [Ai , Ai+1], we may perform a rotation and
a translation to obtain Ai = −(a, 0) and Ai+1 = (a, 0). Working in this coordinate
system, using the angle condition on Vi , we may choose v−

i , v+
i+1 satisfying the

hypotheses of Lemma 5 respectively orthogonal to Vi and Vi+1. Choosing r = 1,
we obtain γi : [0, Mi ] �→ R

2 as given by Lemma 5. Rotation and translations affect
only the direction of the derivatives of curves, not their length. Hence, it is possible to
concatenate curves (γi )

n−1
i=1 and to preserve the Cm properties of the resulting curve.

At end-points, tangents and second order derivatives coincide while higher derivatives
vanish. Furthermore the curvature has constant sign and does not vanish. We obtain
a closed Cm curve which defines a convex set which satisfies all the requirements of
the lemma. ��
Remark 5 (Bissector) Given any polygon, choosing normal vectors as given by the
direction of the bissector of each angles ensure that the above assumptions are satisfied.
Hence all our approximation results hold given polygon without specifying the choice
of outer normals.

4.2 Smooth convex interpolants of polygonal sequences

Definition 1 (Interpolability) For n ≥ 3, let A1 . . . An be a convex polygon S and Vi
be in NS(Vi ) for i = 1, . . . , n. We say that (Ai , Vi )ni=1 is interpolable if for each
i = 1, . . . , n, the angle between Vi and each of the two neighboring faces of the
polygon is in

(
π
2 , π

)
. The collection (Ai , Vi )ni=1 is called a polygon-normal pair.

Let I = Z or I = N. Let (PNi )i∈I be a sequence of interpolable polygon-normal pairs.

Setting for i in I , PNi =
{(

A j,i
)ni
j=1 ,

(
Vj,i

)ni
j=1

}
where n j is in N and denoting by

Ti the polygon A1,i . . . Ani ,i , we say that the sequence (PNi )i∈I is strictly increasing
if for all i in I , Ti ⊂ int(Ti+1).

Let (PNi )i∈I be a strictly increasing sequence of interpolable polygon-normal
pairs. A sequence (εi )i∈I in (0, 1) is said to be admissible if 0 ∈ int(Ti ) for each i in
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I and

γ Ti ⊂ int Ti+1

for all γ ∈ [1 − εi , 1 + εi ]. We have the following corollary of Theorem 2.

Corollary 1 (Smooth convex interpolation of polygon sequences) Let I = Z or I = N.
Let (PNi )i∈I be a strictly increasing sequence of interpolable polygon-normal pairs
and (εi )i∈I be admissible. Set T := int (∪i∈I Ti ) .

Then for any k in N, k ≥ 2 there exists a Ck convex function f : T �→ R, and an
increasing sequence (λi )i∈I , with inf i∈I λi > −∞, such that for each i in I

(i) Ti ⊂ {x, f (x) ≤ λi }.
(ii) dist(Ti , {x, f (x) ≤ λi }) ≤ εi .
(iii) For each i in I , j in {1, . . . , ni }, we have f (Ai, j ) = λi and ∇ f (x) is colinear

to Vi, j .
(iv) ∇2 f is positive definite outside argmin f . When there is a unique minimizer then

∇2 f is positive definite throughout T (this is the case when I = N or when
I = Z and ∩i∈I Ti is a singleton).

We add two remarks which will be useful for directional convergence issues and
the construction of Legendre functions:

(a) If two consecutive elements of the sequence of interpolable polygon-normal pairs
are homothetic with center 0 in the interior of both polytopes, then the restriction
of the resulting convex function to this convex ring can be constructed such that
all the sublevel sets within this ring are homothetic with the same center.

(b) If further conditions are imposed on the elements of a strictly increasing inter-
polable polygon-normal pair, then the resulting function can be constructed to be
Legendre and globally Lipschitz continuous (that is, its Legendre conjugate has
bounded support). This is a consequence of Proposition 2 and will be detailled in
the next section.

4.3 More on Legendre functions and a pathological function with polyhedral
domain

Using intensively polygonal interpolation,we build belowafinite continuousLegendre
function h on an �∞ square with oscillating “mirror lines": t → ∇h∗(∇h(x0) + tc).

We start with the following preparation proposition related to the Legendre inter-
polation of Proposition 2.

Lemma 7 Let (PNi )i∈N∗ be a strictly increasing sequence of interpolable polygon-

normal pairs. Setting for i in N
∗, PNi =

{(
A j,i

)ni
j=1 ,

(
Vj,i

)ni
j=1

}
where n j is in N

∗

and denoting by Ti the polygon A1,i . . . Ani ,i , we assume that

Ti = 3i P, ∀i ∈ N
∗,

where P is a fixed polygon which contains the unit Euclidean disk.
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Then for any l inN, l ≥ 2, there exists a strictly increasing sequence of sets (Si )i∈N, i≥2,
such that for j ≥ 1,

• S3 j interpolates the normals of PN j in the sense of Lemma 6 with dist(S3 j , Tj ) ≤
1/(4(3 j + 2)l)

• S3 j−1 = 3 j−1
3 j

S3 j

• S3 j+1 = 3 j+1
3 j

S3 j

This sequence has the following properties

• there exists c > 0, such that for all j in N, j ≥ 3 and for all unit vector x,

c ≥ σS j+1(x) − σS j (x) ≥ 1 − 1

( j + 1)l
. (26)

• for all unit vector x,

∣∣∣∣∣
σS j+1(x) − σS j (x)

σS j (x) − σS j−1(x)
− 1

∣∣∣∣∣ ≤ 1

j l
, ∀ j ≥ 3. (27)

Proof Set for all j in N
∗, δ j = 1

4(3 j+2)l
and let S3 j be the δ j interpolant of Tj = 3 j P

as given by Lemma 6 so that dist(S3 j , 3 j P) ≤ δ j . Since P contains the unit ball,

3 j P ⊂ S3 j ⊂ (3 j + δ j )P. (28)

Now set

S3 j−1 = 3 j − 1

3 j
S3 j

S3 j+1 = 3 j + 1

3 j
S3 j .

For any j in N
∗, it is clear that S3 j−1 ⊂ int(S3 j ) and S3 j ⊂ int(S3 j+1). Furthermore,

by (28), we have

S3 j+1 ⊂ 3 j + 1

3 j
(3 j + δ j )P ⊂ ((3 j + 1) + 2δ j )P ⊂ int((3 j + 2)P) ⊂ int(S3 j+2)

so that we indeed have a strictly increasing sequence of sets. We obtain from the
construction, for any j in N

∗, and any unit vector x ,

σS3 j (x) − σS3 j−1(x) = σS3 j+1(x) − σS3 j (x)

= 1

3 j
σS3 j (x) ∈

[
σP (x),

(
1 + δ j

3 j

)
σP (x)

]
⊂
[
1,

(
1 + δ j

3 j

)
σP (x)

]

σS3 j+2(x) − σS3 j+1(x) ≤ σP (x)(3 j + 2)

(
1 + δ j+1

3 j + 3

)
− σP (x)(3 j + 1)
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σS3 j+2(x) − σS3 j+1(x) ≥ σP (x)(3 j + 2) − σP (x)(3 j + 1)

(
1 + δ j

3 j

)

= σP (x)

(
1 − δ j

3 j + 1

3 j

)

≥ 1 − δ j
4

3
≥ 1 − 1

(3 j + 2)l
(29)

This proves (26). We deduce that for all j in N
∗,

σS3 j+1(x) − σS3 j (x)

σS3 j (x) − σS3 j−1(x)
= 1, for all nonzero vector x,

max‖x‖=1

σS3 j+2(x) − σS3 j+1(x)

σS3 j+1(x) − σS3 j (x)
≤ (3 j + 2)

(
1 + δ j+1

3 j + 3

)
− (3 j + 1)

= 1 + 3 j + 2

3 j + 3
δ j+1 ≤ 1 + 1

(3 j + 1)l
,

min‖x‖=1

σS3 j+2(x) − σS3 j+1(x)

σS3 j+1(x) − σS3 j (x)
≥
(29)

1 − δ j
3 j+1
3 j(

1 + δ j
3 j

)

≥
(
1 − δ j

3 j + 1

3 j

)(
1 − δ j

3 j

)

≥ 1 − δ j

(
3 j + 1

3 j
+ 1

3 j

)
≥ 1 − δ j

5

3
≥ 1 − 1

(3 j + 1)l
.

Furthermore, using the fact that t �→ 1+t
1−t is increasing on (−∞, 1) and the fact that

δ j+1 ≤ δ j ,

max‖x‖=1

σS3 j+3(x) − σS3 j+2(x)

σS3 j+2(x) − σS3 j+1(x)
≤
(29)

1 + δ j+1
3 j+3

1 − (3 j + 1)
δ j
3 j

≤ 1 + (3 j + 1)
δ j
3 j

1 − (3 j + 1)
δ j
3 j

≤ 1 + δ j
4
3

1 − δ j
4
3

. (30)

Setting s(t) = (1 + t)/(1 − t), we have, for all t ≤ 1/2

s′(t) = 2

(1 − t)2
, s(0) = 1

s′′(t) = 4

(1 − t)3
≤ 24, s′(0) = 2.
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Thus s(t) ≤ 1 + 2t + 12t2 on (−∞, 1/2]. Since 4
3δ j ≤ 4

75 ≤ 1
2 , we deduce from the

previous remark and (30) above:

max‖x‖=1

σS3 j+3(x) − σS3 j+2(x)

σS3 j+2(x) − σS3 j+1(x)
≤ 1 + 8

3
δ j + 64

3
δ2j = 1 + δ j

(
8

3
+ 64

3
δ j

)

≤ 1 + δ j

(
3 + 64

3 × 25

)
≤ 1 + 4δ j = 1 + 1

(3 j + 2)l
.

Finally using (29) again,

min‖x‖=1

σS3 j+3(x) − σS3 j+2(x)

σS3 j+2(x) − σS3 j+1(x)
≥ 1

(3 j + 2)
(
1 + δ j+1

3 j+3

)
− (3 j + 1)

= 1

1 + δ j+1
3 j+2
3 j+3

≥ 1 − δ j+1
3 j + 2

3 j + 3
≥ 1 − δ j+1 ≥ 1 − 1

(3 j + 2)l
.

This proves the desired result. ��
Combining Lemma 7 and Proposition 2, we obtain the following result.

Theorem 3 Let (PNi )i∈N∗ be a strictly increasing sequence of interpolable polygon-

normal pairs. Set for i in N
∗, PNi =

{(
A j,i

)ni
j=1 ,

(
Vj,i

)ni
j=1

}
where ni is in N

∗,
denote by Ti the polygon A1,i . . . Ani ,i , and assume that for all i in N

∗, Ti = 3i P
where P is a fixed polygon which contains the unit disk in its interior.
Then for any k inN, k ≥ 2 and all l ≥ 3, there exists aCk globally Lipschitz continuous
Legendre function, h : R

2 �→ R, and an increasing sequence (λi )i∈N, such that for
each i in N:

• Ti ⊂ {x, h(x) ≤ λi },
• dist(Ti , {x, h(x) ≤ λi }) ≤ 1

4(3i+2)l
,

• For any x with h(x) = λi and ∇h(x) is colinear to Vi for each vertex x of Ti ,
• h has positive definite Hessian and is globally Lipschitz continuous,
• h∗ has compact domain and is Ck on the interior of its domain.

Corollary 2 (Continuity on the domain) The function h∗ constructed in Theorem 3 has
compact polygonal domain and is continuous on this domain.

Proof Since P is a polygon and contains the unit Euclidean disk, the gauge function
of 3P is polyhedral with full domain R

2, call it ω. Denote by P◦ the polar of P . This
is a polytope and since ω is the gauge of P , we actually have ω = σP◦ , the support
function of the polar of P [35, Theorem 1.7.6]. Hence the the convex conjugate of ω

is the indicator of the polytope P◦ [37, Theorem 13.2].
It can be easily seen from the proof of Proposition 2 that λi = αi + ri with

r(i) = O(1) as i → ∞. Without loss of generality, we may suppose that α = 1 (this
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is a simple rescaling) so that there is a positive constant c such that |λi − i | ≤ c for
all i .

Let h be given as in Theorem 3, fix i ≥ 1 and x ∈ R
2 such that λi−1 ≤ h(x) ≤ λi .

We have in R
2

{y : ω(y) ≤ i − 1} ⊂ {y : h(y) ≤ λi−1} ⊂ {y : h(y) ≤ λi } ⊂ {y : ω(y) ≤ i + 1}

and hence

i − 1 ≤ ω(x) ≤ i + 1

and we deduce that

ω(x) − 2 − c ≤ i − 1 − c ≤ λi−1 ≤ h(x) ≤ λi ≤ i + c ≤ ω(x) + c + 1.

Since i was arbitrary, this shows that there exists a constant C > 0 such that |h(x) −
ω(x)| ≤ C for all x ∈ R

2. Recall that z �→ supy∈R2 〈y, z〉 − ω(y) is the indicator
function of P◦, hence,

z ∈ P◦ ⇒ sup
y∈R2

〈y, z〉 − ω(y) = 0 ⇒ sup
y∈R2

〈y, z〉 − h(y) ≤ C < +∞

z /∈ P◦ ⇒ sup
y∈R2

〈y, z〉 − ω(y) = +∞ ⇒ sup
y∈R2

〈y, z〉 − h(y) = +∞

which shows that the domain of h∗ is actually P◦ which is a polytope. Now, h∗ is
convex and lower semicontinuous on P◦, invoking the results of [23], it is also upper
semicontinuous on B∗ and finally it is continuous on B∗. ��
Corollary 3 (A pathological Legendre function) For any θ ∈ (−π

4 , π
4

)
there exists a

Legendre function h : R
2 �→ R whose domain is a closed square, continuous on this

domain and Ck on its interior, such that for all i ∈ N
∗, ∇h∗(i, 0) is proportional to

(cos(θ), (−1)i sin(θ)).

Proof For x = (u, v), set ‖x‖1 = |u| + |v|, and let P = {
x ∈ R

2, ‖x‖1 ≤ 2
}
.

Let us construct a strictly increasing sequence of interpolable polygon-normal pairs
(PNi )i∈N∗ as follows, we fix θ ∈ (−π

4 , π
4

)
and set for all i ∈ N

∗ :

• Ti = 3i P , the polygon associated to the i-th term PNi of the sequence,
• except at the rightmost corner, consider the normals given by the canonical basis
vectors and their opposite,

• at the rightmost corner, (6i, 0), one chooses the normal given by the vector

(cos(θ), (−1)i sin(θ)).

Wenow invokeTheorem3 to obtain aLipschitz continuousLegendre function, denoted
h∗, with full domain having all the Ti as sublevel sets and satisfying the hypotheses
of the corollary. Rescaling by a factor 6 and setting h = h∗∗ gives the result. ��
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5 Counterexamples in continuous optimization

We are now in position to apply our interpolation results to build counterexamples
to classical problems in convex optimization. We worked on situations ranging from
structural questions to qualitative behavior of algorithms and ODEs. Through 9 coun-
terexampleswe tried to cover a large spectrumbut there aremanymorepossibilities that
are left for future research. Some example are constructed from decreasing sequences
of convex sets, they can be interpolated using Theorem 2 with I = Z, indexing
the sequence with negative indices and adding artificially additional sets for posi-
tive indices. Nonetheless we sometimes depart from the notations of the first sections
and index these sequences by N even though they are decreasing for simplification
purposes.

5.1 Kurdyka-Łojasiewicz inequality may not hold

The following result is proved in [12], it was crucial to construct a C2 convex function
which does not satisfy Kurdyka–Łojasiewicz (KL) inequality.

Lemma 8 [12, Lemma 35] There exists a decreasing sequence of compact convex sets
(Ti )i∈N such that for any i in N, T− = Ti+1 and T+ = Ti satisfy Assumption 1 and

+∞∑

i=0

dist(Ti , Ti+1) = +∞

As a corollary, we improve the counterexample in [12] and provide a Ck convex
counterexamples for any k ≥ 2 in N.

Corollary 4 (Smooth convex functions are not KL in general) There exists a Ck convex
function f : R

2 �→ R which does not satisfy KL inequality. More precisely, for any
r > inf f and ϕ : [inf f , r ] �→ R continuous and differentiable on (inf f , r) with
ϕ′ > 0 and ϕ(inf f ) = 0, we have

inf{‖∇(ϕ ◦ f )(x)‖ : x ∈ R
2, inf f < f (x) < r} = 0.

Proof Using [35, Theorem 1.8.13], each Ti can be approximated up to arbitrary pre-
cision by a polygon. Hence we may assume that all Ti are polygonal while preserving
the property of Lemma 8 as well as Assumption 1. Furthermore, using Lemma 6 and
Remark 5 each Ti can in turn be approximated with arbitrary precision by a convex
set with Ck boundary and positive curvature. Hence we may also assume that all Ti
satisfy both the result of Lemma 8 and haveCk boundary with nonvanishing curvature.
Reversing the order of the sets and adding additional sets artificially, we are in the
conditions of application of Theorem 2 with I = Z and the resulting f follows from
the same argument as in [12, Theorem 36]. ��
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Fig. 5 Illustration of the alternating minimization (resp. exact line search) example: on the left, the sublevel
sets in gray and the corresponding alternating minimization (resp. exact line search) sequence in dashed
lines. On the right the interpolating polygons together with their normal vectors as in Lemma 6

5.2 Block coordinate descent may not converge

The following polygonal construction is illustrated in Fig. 5. For any n ≥ 2 inN, we set

An =
(
1

4
+ 1

n
,
1

4
+ 1

n

)

Bn =
(
1

4
+ 1

2(n − 1)
+ 1

2n
,
1

4
+ 1

2n
+ 1

2(n + 1)

)

Cn =
(
1

4
+ 1

n
,−1

4
− 1

n

)

Dn =
(

−1

4
− 1

n
,−1

4
− 1

n

)

En =
(

−1

4
− 1

n
,+1

4
+ 1

n

)
.

This defines a convex polygon. We may choose the normals at An,Cn, Dn, En to
be bisectors of the corresponding corners and the normal at Bn to be horizontal (see
Fig. 5). Rotating by an angle of − nπ

2 and repeating the process indefinitely, we obtain
the sequence of polygons depicted in Fig. 5. It can be checked that the polygons form
a strictly decreasing sequence of sets, as for n > 1, the polygon AnBnCnDnEn is con-
tained in the interior of the square An−1Cn−1Dn−1En−1. This fulfills the requirement
of Corollary 1.

Corollary 5 There exists a Ck convex function f : R
2 �→ R and an initialization

x0 = (u0, v0) such that the recursion, for i ≥ 1

ui+1 ∈ argmin
u

f (u, vi )

vi+1 ∈ argmin
v

f (ui+1, v)

produces a non converging sequence (xi )i∈N = ((ui , vi ))i∈N.
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Proof We apply Corollary 1 to the proposed decreasing sequence and by choosing
(u0, v0) = B2 for example. This requires to shift indices (start with i = 2) and use
Theorem 2 with I = Z. Note that the optimality condition for partial minimization
and the fact that level sets have nonvanishing curvature ensure that the partial minima
are unique. ��

In the nonsmooth convex case cyclic minimization is known to fail to provide the
infimum value, see e.g., [3, p. 94]. Smoothness is sufficient for establishing value
convergence (see e.g. [10,39] and references therein), whether it is enough or not for
obtaining convergence was an open question. Our counterexample closes this question
and shows that cyclic minimization does not yield converging sequences even for Ck

convex functions. This result also closes the question for the more general nonconvex
case for which we are not aware of a nontrivial counterexample for convergence of
alternatingminimization. Let usmention however Powell’s example [34] which shows
that cyclic minimization with three blocks does not converge for smooth functions.

It would also be interesting to understand how our result may impact dual methods
and counterexamples in that field, as for instance the recent three blocks counterex-
ample in [17].

5.3 Gradient descent with exact line searchmay not converge

Gradient descent with exact line search is governed by the recursion:

x+ ∈ argmin { f (y) : y = x − t∇ f (x), t ∈ R} ,

where x is a point in the plane.
Observe that the step coincides with partial minimization when the gradient∇ f (x)

is colinear to one of the axis of the canonical basis. From the previous section, we thus
deduce the following.

Corollary 6 (Failure of gradient descent with exact line search) There exists a Ck con-
vex function f : R

2 �→ R and an initialization z0 in the plane such that the recursion,
for i ≥ 1

xi+1 ∈ argmin { f (y) : y = xi − t∇ f (xi ), t ∈ R}

produces a well defined non converging sequence (xi )i∈N.
Convergence failure for gradient descent with exact line search is new up to our

knowledge. Let us mention that despite non convergence, the constructed sequence
satisfy sublinear convergence rates in function values [10].

5.4 Tikhonov regularization pathmay have infinite length

Following [36], we consider for any r > 0

x(r) = argmin
{
f (x) + r‖x − x̄‖22 : x ∈ R

2
}

(31)
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Fig. 6 Illustration of the Tikhonov regularization example, on the left in gray, polygons used to build the
sublevel sets of the constructed f and the corresponding solutions to (31) for some values of r (solutions
are joined by dotted lines). On the right the normal to be chosen to apply Lemma 6 (for n = 1, see main
text for details). The point P represents x̄ , it sits on the x-axis and is constantly contained in the normal
cone at Bn for any n ≥ 1

where f isCk convex and where x̄ is any anchor point. We would like to show that the
curve r �→ x(r) may have infinite length. Torralba provided a counterexample in his
PhD Thesis for continuous convex functions, see [36]. This work extends his result to
smooth Ck convex functions in R

2.
For any n in N

∗, we set

An =
(
2

n
,
2

n

)

Bn =
(
2

n
+ 1

n2
,−1

n

)

Cn =
(
2

n
,−2

n

)

Dn =
(

−2

n
,−2

n

)

En =
(

−2

n
,
2

n

)
.

This is depicted in Fig. 6. For all n ≥ 1, denote by Mn the point on the x axis above
Bn and Nn , the intersection of the normal cone at Bn and the x axis. We have

MnNn

MnBn
= n × MnNn = A′

n Bn

An A′
n

= 3/n

1/n2
= 3n,

so that for all n ≥ 1, MnNn = 3 and Nn = (3+2/n+1/n2, 0). Choosing P = (7, 0),
since for n ≥ 1, 3 + 2/n + 1/n2 ≤ 6 < 7 , this shows that P constantly belongs
to the interior of the normal cone at Bn for all n ≥ 1. The sequence of level sets
is constructed as in Fig. 6 by considering alternating symmetries with respect to the
x-axis of the sequence of polygons above. It can be checked that the polygons form
a strictly decreasing sequence of sets, as for n > 1, the polygon AnBnCnDnEn is
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contained in the interior of the square An−1Cn−1Dn−1En−1. We choose the normal
at An,Cn, Dn, En to belong to the bisector at the corner and the normal at Bn to be
proportional to the vector Bn P . Applying Corollary 1, we construct f and choose
x̄ = P in (31) to obtain the following:

Corollary 7 (Abounded infinite lengthTikhonovpath)There exists aCk strictly convex
function f : R

2 �→ Rand x̄ ∈ R
2 such that the curve x((0, 1))givenby (31)has infinite

length.

Proof WeapplyCorollary 1with I = Z and revert the indices set tomatch the sequence
that we have described. For any n ≥ 1 there exists a value of λn such that f (Bn) = λn
and ∇ f (Bn) is colinear to the vector Bn P . Set

r = ‖∇ f (Bn)‖
2Bn P

we have ∇ f (Bn) + 2r(Bn − P) = 0 which is the optimality condition in (31) with
x̄ = P . Hence we have shown that there exists a value of r such that Bn is the solution
to (31). Since n was arbitrary this is true for all n and the curve r �→ x(r) has to go
through a sequence of points whose second coordinate is of the form (−1)n/n for all
n ≥ 1. Since this sequence is not absolutely summable, the curve has infinite length.

��
This result is in contrast with the definable case for which we have finite length by

the monotonicity lemma, since the whole trajectory is definable and bounded.

5.5 Secants of gradient curves at infinity may not converge

Thom’s gradient conjecture and Kurdyka–Mostowski–Parusinski’s theorem A
theorem of Łojasiewicz [27] asserts that bounded solutions to the gradient system

ẋ(t) = −∇ f (x(t))

converge when f is a real analytic potential. Thom conjectured in [38] that this con-
vergence should occur in a stronger form: trajectories converging to a given x̄ should
admit a tangent at infinity, that is

x(t) − x̄

‖x(t) − x̄‖ (32)

should have a limit as t → ∞. Lines passing through x̄ and having (32) as a slope
are called secants of x at x̄ . This conjecture was proved to be true in [26]. In the
convex world, it is well known that solutions to the gradient system converge for
general potentials (this is a Féjer monotonicity argument due to Bruck); see also the
original approaches by Manselli and Pucci [30] and Daniilidis et al. [19]. It is then
natural to wonder whether this convergence satisfies higher order rigidity properties
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Fig. 7 A = (−5, 0), B =
(
− 5

3 − 25
16 , 10

3 + 5
4

)
, C =

(−5
2 , 5

)
, D = (0, 5), E = (5, 0), F = (0, −5). All

normals are chosen to be bisectors exceptw which is parallel to the line (DE). The vector v is orthogonal to
the segment [BC]. The point C ′ is obtained by considering the intersection between the line (Bw) (starting
from B with direction w), and the segment [OC]. The points A′, B′, D′, E ′, F ′ are obtained by performing

a scaling of A, B, D, E, F of a factor OC ′
OC . The polygon A′′B′′C ′′D′′E ′′F ′′ is ABCDEF scaled by a

factor OC ′+OC
2OC

as in the analytic case. The answer turns out to be negative in general yielding a quite
mysterious phase portrait.

Absence of tangential convergence for convex potentials
The construction given in this paragraph is more complex than the previous ones, we
start with a technical lemma which will be the basic building block for our counterex-
ample.

Lemma 9 Let S be a convex set with Ck boundary interpolating ABCDEF in Fig. 7
and let g be the gauge function associated to S. The function g is differentiable out-
side the origin. Consider any initialization x0 in [BC] with corresponding trajectory
solution to the equation

ẋ(t) = −∇g(x(t)), t ≥ 0,

x(0) = x0.

Set t̄ = supx(t)∈OBC t, we have t̄ < +∞ and x(t̄) in [CC ′].
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Proof The fact that g is differentiable comes from the fact that its subgradient is
uniquely determined by the normal cone to S (which has dimension one because of
the smoothness of the boundary of S). Since S is interpolating the polygon, we have
g(B) = g(C) = 1. Furthermore, we have for all t ≥ 0, d

dt g(x(t)) = −‖∇g(x(t))‖2 =
−1, thence t̄ ≤ 1 − g(C ′). By homogeneity, for any x = 0 and s > 0, ∇g(sx) =
∇g(x). For any x in [BC], by convexity

0 ≤ 〈C − x,∇g(C) − ∇g(x)〉 = 〈C − B,∇g(C) − ∇g(x)〉 ‖C − x‖
‖C − B‖ ,

and therefore

−〈C − B,∇g(C) ≤ −〈C − B,∇g(x)〉〉 (33)

By homogeneity of g, (33) is true for any x in the triangle OCB (different from 0)
and thus in the triangle C ′CB . Denote by y the solution to the equation

ẏ = −∇g(C)

y(0) = B,

which integrates to y(t) = B−tw for all t . Equation (33) ensures that for any 0 ≤ t ≤ t̄

d

dt
(〈C − B, x(t)〉) ≥ d

dt
(〈C − B, y(t)〉)

Hence, we have for any 0 ≤ t ≤ t̄ , integrating on [0, t]

〈C − B, x(t)〉 ≥ 〈C − B, y(t)〉 + 〈C − B, x0 − B〉
≥ 〈C − B, y(t)〉 . (34)

Furthermore, for all x in [BC], we have

1 = ‖∇g(x)‖2 = 1

‖C − B‖2 〈C − B,∇g(x)〉2 + 〈v,∇g(x)〉2 ,

because v is orthogonal to C − B. The first term is maximal for x = C and thus the
second term is minimal for x = C , we have thus for all x in [BC]

0 < 〈∇g(C), v〉 = 〈−∇g(C),−v〉 ≤ 〈∇g(x), v〉 = 〈−∇g(x),−v〉 ≤ 1. (35)

Equation (35) holds for all x in OCB different from O by homogeneity. We deduce
that for all 0 ≤ t ≤ t̄ , we have

d

dt
(〈−v, x(t)〉) ≥ d

dt
(〈−v, y(t)〉)
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and by integration

〈−v, x(t)〉 ≥ 〈−v, y(t)〉 + 〈−v, x0 − B〉
= 〈−v, y(t)〉 . (36)

Hence, in the coordinate system (C − B,−v), which is orthogonal, for all t in [0, t̄],
x(t) has larger coordinates than y(t).

The trajectory y(t), of equation t �→ B − tw is the line going from B to C ′. From
Eqs. (34) and (36),wemaywrite for all t in [0, t̄], x(t) = y(t)+α(t)(C−B)+β(t)(−v)

where α and β are positive functions. Since y(t) belongs to the line (BC ′), this shows
that x(t) has to be above this line for all t ≥ 0, t ≤ t̄ and actually, x(t̄) in BCC ′. Hence
at time t̄ , we have x(t̄) in [CC ′]. This holds true because x(t̄) is on the boundary of
OCB and on the boundary of BCC ′. Hence either x(t̄) in [CC ′], either x(t̄) in [BC].
Equation (35) ensures that if x(t̄) in [BC] then x(t̄) = C which concludes the proof.

��
Corollary 8 (Secants of gradient curves may all fail to converge) There exists a Ck

strictly convex function on R
2 with a unique minimizer x̄ , such that any nonconstant

solution to the gradient flow equation

ẋ(t) = −∇ f (x(t))

is such that

x(t) − x̄

‖x(t) − x̄‖
does not have a limit as t → ∞.
The function f has a positive definite Hessian everywhere except at 0.

Proof We assume without loss of generality that x̄ = O is the origin. Writting x(t) =
(r(t), θ(t)) in polar coordinate, we will construct a function f such that each solution
to the ODE produces nonconverging trajectories θ(t).

We start with an interpolating set S0 = ABCDE as in Lemma 9 and let S1 =
A′B ′C ′D′E ′ be its scaled version as described in Fig. 7.

Let α be the value of the angle B̂OC and m = ⌈ 2π
α

⌉+ 1. We have

2π

m
< α.

To obtain S2, we rotate S0 by an angle 2π/m, we denote S′
0 the resulting set.We rescale

S′
0 by a factor β in (0, 1) so that βS′

0 lies in the interior of S1. Call the resulting set S2
and S3 is obtained from S2 exactly the same way as S1 is obtained from S0. We repeat
the same process indefinitely to obtain a strictly decreasing sequence of Ck sets. Note
that for any k in N, S2km and S2km+1 are homothetic to S0.

We now invoke Corollary 1 (with I = Z and revert the indices) to obtain a Ck

function f with those prescribed level sets. Using Remark 3 it turns out that the level
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sets of f between S0 and S1 are simple scalings of S0. Hence the gradient curves of
f and those of the gauge function of S are the same between S0 and S1, up to time
reparametrization.

Using Lemma 9 any trajectory crossing [BC] in Fig. 7, must also be crossing [CC ′]
and leave the triangle BOC in finite time. The same statement holds after scaling the
level sets and since for all k in N, S2km and S2km+1 are homothetic to S0, this shows
that no solution stays indefinitely in the triangle BOC .

Lemma 9 still holds after rotations and by our construction, for any triangle T
obtained by rotating BOC by a multiple of 2π/m, no trajectory stays indefinitely
within T . Since 2π/m < α, the union of these triangles U contains O in its interior.

Note first that any gradient curve converges to x̄ . Let us argue by contradiction
and assume that there exists a continuous gradient curve t �→ z(t) distinct from the
stationary solution x̄ , such that

z(t) − x̄

‖z(t) − x̄‖
converges. This exactly means that the angle θ(t) of the curve has a limit in [0, 2π)

as t goes to infinity. There is a rotation of BOC by a multiple of 2π/m whose interior
intersects the half line given by the direction θ , call this triangle T . The directional
convergence entails that there exists t0 ≥ 0 such that z(t) belongs to T for all t ≥ t0.
Hence z can not be a gradient curve. To complete the proof, we may add disks of
increasing size to the list of sets to obtain a full domain function and invoke Theorem 2
with I = Z. ��

5.6 Newton’s flowmay not converge

Given a twice differentiable convex function f , we define the open set� := {x ∈ R
2 :

∇2 f is invertible} and we consider maximal solutions to the differential equation

ẋ(t) = −∇2 f (x(t))−1∇ f (x(t)), (37)

on�. This is the continuous counterpart of Newton’s method, it has been studied in [5]
and [2]. Let x0 be in �, there exists a unique maximal nontrivial interval I containing
0 and a unique solution x to (37) on I with x(0) = x0. Equation (37) may be rewritten
as

d

dt
∇ f (x(t)) = −∇ f (x(t))

and thus for all t in I , we have

∇ f (x(t)) = e−t∇ f (x0). (38)

If we could ensure that I = R and f has oscillating gradients close to its minimum,
then (38) entails that the direction of the gradient is constant along the solution, which
requires oscillations in space to compensate for gradient oscillations.
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Fig. 8 Illustration of the continuous time Newton’s dynamics. On the left, the “skeletons" of the sublevel
sets in gray and a sketch of the corresponding curve. On the right, the normals to be chosen in order to
apply Lemma 6

Corollary 9 (A bounded Newton’s curve that oscillates at infinity) For any k ≥ 2,
there exists a Ck convex coercive function f : R

2 �→ R and an initial condition x0 in
R
2 such that the solution to (37) is bounded, defined on R and has at least two distinct

accumulation points.

The counterexample is sketched inFig. 8, the construction is the same as forCorollary 5
but instead of doing quarter rotations, we use symmetry with respect to the first axis.
We can then call for Corollary 1 to construct the function f and equation (38) ensures
that the solution interval is unbounded.

5.7 Bregman descent (mirror descent) may not converge

The mirror descent algorithm was introduced in [31] as an efficient method to solve
constrained convex problems. In [9], this method is shown to be equivalent to a pro-
jected subgradient method, using non-Euclidean projections. It plays an important
role for some categories of constrained optimization problem; see e.g., [6] for recent
developments and [20] for a surprising example.

Let us recall beforehand some definitions. Given aLegendre function hwith domain
dom h, define the Bregman distance4 associated to h as Dh(u, v) = h(u) − h(v) −
〈∇h(v), u − v〉 where u is in dom h and v is in the interior of dom h.

Given a smooth convex function f that we wish to minimize on dom h, we consider
the Bregman method

xi+1 = argmin
{
〈∇ f (xi ), u − xi 〉 + λDh(u, xi ) : u ∈ R

2
}

,

where x0 is in int dom h and λ > 0 is a step size. When the above iteration is well
defined, e.g. when dom h is bounded, it writes:

xi+1 = ∇h∗ (∇h(xi ) − λ∇ f (xi )) .

4 It is actually not a proper distance.
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In [6] the authors identified a generalized smoothness condition which confers good
minimizing properties to the above method:

Lh − f convex, (39)

λ ∈ (0, L). (40)

The corollary below shows that such an algorithm may not converge, even though
we assume the cost to satisfy (39), the step to satisfy (40), and the Legendre function
to have a compact domain.

Corollary 10 (Bregman or mirror descent may not converge) There exists a Legendre
function h : D �→ R, defined on a closed square D, continuous on D, a vector c in
R
2, and x0 in R

2 such that the Bregman descent recursion

xi+1 = ∇h∗ (∇h(xi ) − c) ,

produces a bounded sequence (xi )i∈N which has at least two distinct accumulation
points.

Proof We fix θ ∈ (−π
4 , π

4

)
, θ = 0, and consider h constructed in Corollary 3 and

choose c = (−1, 0). In this case the Bregman descent recursion writes for all i in N,

∇h(xi+1) − ∇h(xi ) = −c

so that we actually have ∇h(xi ) − ∇h(x0) = ∇h(xi ) = −ic and thus

xi = ∇h∗(−ic) = ∇h∗(i, 0).

By Corollary 3, we have for all i ∈ N that ∇h∗(i, 0) proportional to
(cos(θ), (−1)i sin(θ)). Since the norm of the gradient of h∗ cannot vanish at infinitiy
(no flat direction) and is bounded, this proves that the sequence (xi )i∈N has at least
two accumulation points which is the desired result. ��

5.8 Central paths of Legendre barriers may not converge

Consider the problem

min
x∈D 〈c, x〉 (41)

where D is a subset of R
2 and c. Given a Legendre function h on D, we introduce the

h central path through

x(r) = argmin
{
〈c, x〉 + rh(x) : x ∈ R

2
}

(42)
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where r > 0 is meant to tend to 0. Central paths are one of the essential tools behind
interior point methods, see e.g., [4,33] and references therein.

Note that the accumulation points of x(r) as r → 0, have to be in the the solution
set of (41). It is even tempting to think that the convergence of the path to some
specific minimizer could occur, as it is the case for many barriers, see e.g. [4]. We
have however:

Corollary 11 (Anonconverging central path)There exists aLegendre function h : D �→
R, defined on a closed square D, continuous on D, a vector c in R

2, such that the h
central path r �→ x(r) has two distinct accumulation points.

Proof The optimality condition which characterizes x(r) for any r > 0 writes,

x(r) = ∇h∗ (c
r

)
,

and the construction is the same as in Corollary 10. ��

5.9 Hessian Riemannian gradient dynamics may not converge

The construction of this paragraph is similar to the two previous paragraphs. Consider
a Ck (k ≥ 2) Legendre function h : D �→ R and the continuous time dynamics

ẋ(t) = −∇H f (x(t)), t ≥ 0, (43)

where H = ∇2h is the Hessian of h and ∇H f = H−1∇ f is the gradient of some
differentiable function f in the Riemannian metric induced by H on int D. Such
dynamics were considered in [1,14].

We have the following result:

Corollary 12 (Nonconverging Hessian Riemannian gradient dynamics) There exists a
Legendre function h : D �→ R, defined on a closed square D, continuous on D, a
vector c in R

2, and x0 in R
2 such that the solution to (43) with f = 〈c, ·〉 has two

distinct accumulation points.

Proof Equation (43) may be rewritten

d

dt
∇h(x(t)) = −∇ f (x(t)),

so choosing c = (−1, 0), we have for all t ∈ R,∇h(x(t)) = ∇h(x(0))+(t, 0) = (t, 0)
and the construction is the same as in Corollary 10. ��
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6 Appendix

Lemma 10 (Smooth concave interpolation: in between square root and affine) There
exists a C∞ strictly increasing concave function φ : [0, 1] �→ [0, 1] such that

φ(t) = √
2t/3 ∀t ≤ 1/6

φ(1) = 1

φ′(1) = 2/3

φ(m)(1) = 0, ∀m ≥ 2

Proof Consider aC∞ function g0 : R �→ [0, 1] such that g0 = 1 on (−∞,−1), g0 = 0
on (1,+∞) (for example convoluting the step function with a smooth bump function).
Set g(t) = 1

2 (g0(t) + 1 − g0(−t))we have that g isC∞, g = 1 on (−∞,−1), g = 0
on (1,+∞) and g(t) + g(−t) = 1 for all t . We have

∫ 1

−1
g(s)ds = 1

∫ 1

−1

(∫ t

−1
g(s)ds

)
dt = 1

Set φ0 : [−3, 3] �→ R, such that

φ0(t) =
∫ t

−3

(∫ r

−3
g(s)ds

)
dr .

For all r in [−3, 3], we have

∫ r

−3
g(s)ds =

⎧
⎪⎨

⎪⎩

r + 3 if r ≤ −1

2 + ∫ r
−1 g(s)ds if − 1 ≤ r ≤ 1

3 if r ≥ 1

and thus

φ0(t) =

⎧
⎪⎨

⎪⎩

t2
2 − 9/2 + 3(t + 3) if t ≤ −1

2 + 2(t + 1) + ∫ t
−1

(∫ r
−1 g(s)ds

)
dr if − 1 ≤ t ≤ 1

6 + 3(t − 1) if 1 ≥ t

and in particular φ0(3) = 12 and φ′
0(3) = 3. Set φ1(s) = φ0(6s − 3)/12.

φ1(0) = 0

φ1(t) =
(

(6t − 3)2

2
− 9/2 + 2(3t)

)
/12 = 3t2/2 = if t ≤ 1/3

φ1(1) = 1
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φ′
1(1) = 3/2.

φ1 is stricly increasing, let φ : [0, 1] �→ [0, 1] denote the inverse of φ1, we have

φ(1) = 1

φ′(1) = 2/3

φ(t) = √
2t/3 if t ≤ 1/6.

��
Lemma 11 (Interpolation inside a sublevel set) Consider any strictly increasing Ck

function φ : (0, 2) �→ R such that φ(1) = 1 and φ(m)(1) = 0, m = 2, . . . k. Then the
function

G : (0, 2) × R/2πZ �→ R
2

(s, θ) �→ φ(s)n(θ)

is diffeomorphism which satisfies for any m = 1 . . . , k and l = 2, . . . , k,

∂mG

∂θm
(1, θ) = n(m)(θ)

∂m+1G

∂λ∂θm
(1, θ) = φ′(1)n(m)(θ)

∂ l+mG

∂λl∂θm
(λ−, θ) = 0.

Lemma 12 Combinatorial Arbogast-Faà di Bruno Formula (from [29]) Let g : R �→ R

and f : R
p �→ [0,+∞) be Ck functions. Then we have for any m ≤ k and any indices

i1, . . . , im ∈ {1, . . . , p}.

∂m∏m
l=1 ∂xil

g ◦ f (x) =
∑

π∈P
g(|π |)( f (x))

∏

B∈π

∂ |B| f∏
l∈B ∂xil

(x),

whereP denotes all partitions of {1, . . . ,m}, the product is over subsets of {1, . . . ,m}
given by the partition π and | · | denotes the number of elements of a set. We rewrite
this as follows

∂m∏m
l=1 ∂xil

g ◦ f (x) =
m∑

k=1

∑

π∈Pk

g(k)( f (x))
∏

B∈π

∂ |B| f∏m
l=1 ∂xil

(x),

where Pk denotes all partitions of size k of {1, . . . ,m}.
Lemma 13 From [12, Lemma 45] Let h in C0

(
(0, r0], R

∗+
)
be an increasing function.

Then there exists a function ψ in C∞(R, R+) such that ψ = 0 on, R− and 0 <

ψ(s) ≤ h(s) for any s in (0, r0] and ψ is increasing on R
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Lemma 14 (High-order smoothing near the solution set) Let D ⊂ R
p be a nonempty

compact convex set and f : D �→ R convex, continuous on D and Ck on
D\ argminD f . Assume further that argminD f ⊂ int(D), k ≥ 1, with minD f = 0.
Then there exists φ : R �→ R+, Ck, convex and increasing with positive derivative on
(0,+∞), such that φ ◦ f is convex and Ck on D.

Proof By a simple translation, we may assume that minD f = 0 and maxD f = 1.
Any convex function is locally Lipschitz continuous on the interior of its domain so
that f is globally Lipschitz continuous on D and its gradient is bounded. Hence, f 2

is C1 and convex on D. We now proceed by recursion. For any m = 1, . . . , k, we let
Qm denote the m-order tensor of partial derivatives of order m. Fix m in {1, . . . , k}.
Assume that f is Cm throughout D while it is Cm+1 on D\ argminD f . Note that all
the derivatives up to order m are bounded. We wish to prove that f is globally Cm+1.

Consider the increasing function

h : (0, 1] �→ R
∗+

s �→ s

1 + sups≤ f (x)≤1 ‖Qm+1(x)‖∞

and set ψ as in Lemma 13. Recall that ψ is C∞ and all its derivative vanish at 0 and
ψ ≤ h on (0, 1]. Let φ denote the anti-derivative of ψ such that φ(0) = 0. φ is C∞
and convex increasing on R and, since its derivatives at 0 vanish as well, one has,
for any q in N, φ(q)(z) = o(z). Consider the function φ ◦ f . It is Cm on D and it
has bounded derivatives up to order m. Furthermore, it is Cm+1 on D\ argminD f .
Let ȳ in argminD f . If ȳ in int(argminD f ), then f and φ ◦ f have derivatives of all
order vanishing at ȳ. Assuming that ȳ in argminD f \int(argminD f ). By the induction
assumption and Lemma 12, we have for any indices i1, . . . , im ∈ {1, . . . , p} and any
h in R

p:

∂m∏m
l=1 ∂xil

(φ ◦ f )(ȳ + z) − ∂m∏m
l=1 ∂xil

(φ ◦ f )(ȳ)

= ∂m∏m
l=1 ∂xil

(φ ◦ f )(ȳ + z)

=
m∑

q=1

∑

π∈Pq

φ(q)( f (ȳ + z))
∏

B∈π

∂ |B| f∏m
l=1 ∂xil

(ȳ + z).

All the derivatives of f are of order less or equal to m and thus remain bounded as
z → 0. Further more f is Lipschitz continuous on D so that f (ȳ+ z) = O(‖z‖) near
0, and, for any q in N, φ(q)( f (ȳ + z)) = o(‖z‖). Hence φ ◦ f has derivative of order
m + 1 at ȳ and it is 0.

Since argminD f ⊂ int(D), we may consider any sequence of point (y j ) j∈N in
D\ argminD f converging to ȳ. By Lemma 12, we have for any indices i1, . . . , im+1 ∈
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{1, . . . , p}, and any j in N,

∂(m+1)

∏m+1
l=1 ∂xil

(φ ◦ f )(y j ) = φ′( f (y j ))
∂(m+1) f∏m
l=1 ∂xil

(y j )

+
m+1∑

q=2

∑

π∈�q

φ(q)( f (y j ))
∏

B∈π

∂ |B| f∏m
l=1 ∂xil

(x)

≤ h( f (y j ))
∂(m+1) f∏m
l=1 ∂xil

(y j )

+
m+1∑

q=2

∑

π∈�q

φ(q)( f (y j ))
∏

B∈π

∂ |B| f∏m
l=1 ∂xil

(x)

= f (y j )

∂(m+1) f∏m
l=1 ∂xil

(y j )

1 + sup f (y j )≤ f (x)≤1 ‖Qm+1(x)‖∞
+ O( f (y j ))

= O( f (y j )),

where the inequality follows from the construction of φ. The third step follows using
the definition of h and the fact that, for any q ≥ 2,

1. Each partition of {1, . . . ,m + 1} of size q contains subsets of size at most m. Thus
in the product, the terms ∂ |B| f correspond to bounded derivatives of f by the
induction hypothesis.

2. φ(q)(a) = o(a) as a → 0.

The last step stems from the fact that the ratio has asbolute value less than 1. This
shows that the derivatives of order m + 1 of φ ◦ f are decreasing to 0 as j → ∞ and
φ ◦ f is actually Cm+1 and convex on D. The result follows by induction up tom = k
and by the fact that a composition of increasing convex functions is increasing and
convex. ��
Lemma 15 Let p : R+ �→ R+ be concave increasing and C1 with p′ ≥ c for some
c > 0. Assume that there exists A > 0 such that for all x in R+

p(x) − xp′(x) ≤ A.

Then setting a = A/c, we have for all x ≥ a,

p(x − a) − xp′(x − a) ≤ 0

Proof For all x ≥ a, we have

f (x − a) − (x − a) f ′(x − a) ≤ A,

hence

f (x − a) − x f ′(x − a) ≤ A − a f ′(x − a) ≤ A − ac = 0.
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