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Abstract
The usual integer programming formulation for the maximum clique problem has
several undesirable properties, including a weak LP relaxation, a quadratic number of
constraints and nonzeros when applied to sparse graphs, and poor guarantees on the
number of branch-and-bound nodes needed to solve it. With this as motivation, we
propose new mixed integer programs (MIPs) for the clique problem that have more
desirable worst-case properties, especially for sparse graphs. The smallest MIP that
we propose has just O(n + m) nonzeros for graphs with n vertices and m edges.
Nevertheless, it ensures a root LP bound of at most d +1, where d denotes the graph’s
degeneracy (a measure of density), and is solved in O(2dn) branch-and-bound nodes.
Meanwhile, the strongestMIP that we propose visits fewer nodes, O(1.62dn). Further,
when a best-bound node selection strategy is used, O(2gn) nodes are visited, where
g = (d + 1) − ω is the clique-core gap. Often, g is so small that it can be treated
as a constant in which case O(n) nodes are visited. Experiments are conducted to
understand their performance in practice.
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1 Introduction

The maximum clique problem over graph G = (V , E) can be expressed as the fol-
lowing integer program. Letting n = |V | and m = |E |, it uses n binary variables, as
well as a conflict constraint for each of the

(n
2

) − m edges of the complement graph
Ḡ = (V , Ē).

ω(G) =max
∑

i∈V
xi (1a)

(conflict) xi + x j ≤ 1 ∀{i, j} ∈ Ē (1b)

xi ∈ {0, 1} ∀i ∈ V . (1c)

While this conflict model is simple to state, it can be impractical, especially when
the graph is sparse. One reason is the large number of conflict constraints (1b). For
example, for trees there are

(n
2

) − (n − 1) conflicts, which can make it difficult to
build or solve the root LP relaxation for graphs with thousands of vertices. A second
reason is its poor linear programming (LP) relaxation; the all-half vector ( 12 , . . . ,

1
2 )

is always feasible, meaning that the root LP bound (at least n/2) can be far from the
optimal IP objective ω (which equals 2 for trees). Third, this formulation generally
provides little guarantee on how many branch-and-bound nodes will be needed.

Consequently, many have sought to improve this formulation—or, more gener-
ally, MIPs that have conflict constraints or set packing constraints. For example, one
can generate valid inequalities to strengthen the LP relaxation [3,23,40,63,67]. These
inequalities can be added initially, or on-the-fly as cutting planes. Both approaches
are employed by open-source MIP solvers like CBC [16] and proprietary MIP solvers
like Gurobi [1]. While these procedures significantly impact solve time in practice,
they do not lead to nontrivial worst-case bounds on the number of branch-and-bound
nodes, to our knowledge.

An alternative model proposed by [27,58] is below, cf. stronger versions by [49,60]
and a generalization for k-plex (which permits each vertex to have up to k nonneighbors
in the cluster) [7]. It is obtained by aggregating the conflict constraints, giving the big-
M constraints (2b) where Mi = n − |N (i)| − 1 and N (i) is the subset of vertices that
neighbor vertex i .

ω(G) =max
∑

i∈V
xi (2a)

(dense)
∑

j∈V \N [i]
x j ≤ Mi (1 − xi ) ∀i ∈ V (2b)

xi ∈ {0, 1} ∀i ∈ V . (2c)

We call this the densemodel because it uses approximately n2 − 2m nonzeros, much
like the conflict model. However, the number of nonzeros can be reduced to O(n+m)

with a new variable z = ∑
i∈V xi , giving the sparse model.
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Worst-case analysis of clique MIPs 519

Fig. 1 The lollipop graph L3,p

Table 1 Walteros and Buchanan [71] observe that real-life graphs have small clique number ω, degeneracy
d, and clique-core gap g compared to the number of nodes n

Graph n m ω d g

as-22july06 22,963 48,436 17 25 9

citationCiteseer 268,495 1,156,647 13 15 3

ldoor 952,203 22,785,136 21 34 14

in-2004 1,382,908 13,591,473 489 488 0

cage15 5,154,859 47,022,346 6 25 20

uk-2002 18,520,486 261,787,258 944 943 0

ω(G) =max z (3a)

z =
∑

i∈V
xi (3b)

(sparse) z −
∑

j∈N [i]
x j ≤ Mi (1 − xi ) ∀i ∈ V (3c)

xi ∈ {0, 1} ∀i ∈ V . (3d)

Because this model is small, its LP relaxation is likely easier to solve than that of
the conflict model. However, this comes at the cost of a weaker LP relaxation, which
likely leads to more branch-and-bound nodes being visited.

Contributions for existing MIPs. In Sect. 3, we observe that MIPs like these can
perform quite poorly, evenwhen applied to straightforward instances like co-lollipops,
which are the complements of the lollipop graphs L3,p shown in Fig. 1. Namely, the
co-lollipops are solved in �(ϕn) branch-and-bound nodes when using the conflict
model, where ϕ ≈ 1.61803 is the golden ratio.

In response, we seek alternative MIPs with better worst-case properties. We are
particularly interested in exploiting the characteristics of real-life graphs, such as small
(graph) degeneracy d and small clique-core gap g := (d + 1) − ω. Table 1 illustrates
that the degeneracy and clique-core gap of real-life graphs are much smaller than
the number of nodes. (The notions of degeneracy and clique-core gap are defined in
Sect. 2.2.)

Contributions for newMIPs. In Sect. 4,we conceive of four newMIPs for themaximum
clique problem that take inspiration from the literature on cliques and disjunctive
extended formulations. Each has a root LP objective of at most d+1, which is typically
much smaller than the rootLPof the conflictmodel. InSect. 5,we show that theweakest
of these four MIPs is solved in O(2dn) branch-and-bound nodes. Meanwhile, the
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strongest of the four MIPs is solved in O(ϕdn) nodes, improving on the O(ϕn) bound
obtained by the conflict and sparsemodels; moreover, we show that the analysis is tight
by providing a class of graphs (related to the co-lollipop graphs) for which �(ϕdn)

nodes are visited. Finally, we show that if branch-and-bound follows a best-bound
node selection strategy, then a different (usually better) bound of O(2gn) holds—a
virtue not shared by the conflict model. In Sect. 6, we experiment with the MIPs to
understand their performance in practice. We conclude and offer directions for future
research in Sect. 7.

2 Background and literature review

Below, we review basic terminology from graph theory, the maximum clique problem,
MIP techniques for clique finding, and disjunctive formulations.

2.1 Graph terminology

We consider a simple graph G = (V , E) with vertex set V and edge set E ⊆ (V
2

)
,

where
(V
2

)
denotes the collection of 2-vertex subsets of V . The subgraph of G induced

by a vertex subset S ⊆ V is denoted byG[S] := (S, E∩(S
2

)
). The (open) neighborhood

of vertex v ∈ V is denoted N (v) := {u ∈ V | {u, v} ∈ E}. Meanwhile, the closed
neighborhood N [v] := N (v) ∪ {v} also includes v.

A graph G = (V , E) is complete if it has all possible edges, i.e., if E = (V
2

)
. A

subset of vertices S is a clique if its induced subgraph G[S] is complete. The complete
graph on n vertices is denoted by Kn . A clique ismaximal if no proper superset of it is
also a clique. A clique ismaximum if it has largest size among all cliques. Amaximum
clique is necessarily maximal, but not vice versa. The clique number, denoted ω(G),
is the size of a maximum clique. As an example, S = {−2,−1, 0} is a maximum (and
thus maximal) clique of the lollipop graph L3,p in Fig. 1, implying that ω(L3,p) = 3.
Also, S′ = {0, 1} is a maximal (but not maximum) clique.

The complement of G = (V , E), denoted by Ḡ = (V , Ē), has the same vertex
set as G but has the complementary edge set Ē = (V

2

)\E . An independent set (a.k.a.
stable set) is a subset of vertices S such that G[S] has no edges. Easily, S is a clique in
G if and only if S is an independent set in Ḡ. Accordingly, the independence number
α(G), which is the size of a largest independent set, satisfies ω(G) = α(Ḡ). A vertex
cover is a subset of vertices S that hits every edge, i.e., S ∩ e 
= ∅ for all e ∈ E .
Easily, S is an independent set if and only if V \S is a vertex cover. Accordingly,
the vertex cover number τ(G), which is the size of a smallest vertex cover, satisfies
τ(G) + α(G) = n.

2.2 The clique problem

Cliques were originally introduced to model clusters in networks [53], and many
clique-like structures have been proposed over the years [64]. The maximum clique
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Worst-case analysis of clique MIPs 521

problem, which asks for a clique of largest size, is a well-knownNP-hard problem [13,
24,41]. It is notoriously hard to approximate; namely, getting a n1−ε-approximation
for any constant ε > 0 is NP-hard [37,73], while an n-approximation is trivial to
achieve by picking a single vertex.

With these observations, there is little hope for clique MIPs to have nice worst-case
properties. In fact, even if P=NP, it would still be impossible to always construct small
perfect (or approximate) MIPs for clique [14,15,31,35].

As a compromise, one could ask for a fixed-parameter tractable (FPT) algorithm,
which is one that runs in time f (k)nO(1), where k is the parameter of choice and
f is a computable function that depends only on k. For example, one could seek an
algorithm that determines whether a graph has a clique of size k in time O(2kn2).
However, there are reasons to believe such algorithms do not exist [26, Ch. 13-14].

Fortunately, there is some good news for a different parameter. Eppstein et al. [29]
show that all maximal cliques can be enumerated in time O(dn3d/3), where d denotes
the graph’s degeneracy. Intuitively, graph degeneracy is a measure of density. For
example, forests have d = 1; cycle graphs have d = 2; planar graphs have d ≤ 5; and
complete graphs have d = n− 1. As Table 1 in the introduction shows, many real-life
graphs have small degeneracy, making the algorithm of [29] practical in many cases.
Degeneracy is defined as follows.

Definition 1 (Lick andWhite [50]) A graph G is k-degenerate if each of its subgraphs
G ′ has minimum degree δ(G ′) ≤ k. The degeneracy d of a graph is the smallest k for
which it is k-degenerate.

As observed by [50], if a graph has degeneracy d, then it admits a vertex ordering
(v1, v2, . . . , vn) in which each vertex vi has at most d neighbors to its right. The
converse also holds. Such anordering canbe foundby applying the following algorithm
to G ′ ← G:

1. for i = 1, 2, . . . , n do:

– let vi be a minimum degree vertex of G ′
– remove vi from G ′

2. return (v1, v2, . . . , vn).

This algorithm can be implemented to run in O(m+n) time [56]. Although the original
implementation used linked lists, array-based implementations are faster in practice
[9,71].

A key insight used inmany clique algorithms is as follows. For eachmaximal clique
S of the graph G, there is a (unique) vertex vi for which S is contained in its closed
right-neighborhood, i.e.,

S ⊆ N [vi ] ∩ {vi , vi+1, . . . , vn} =: Vi .

This allows for clique problems to be decomposed into n subproblems1, G[V1],
G[V2], . . . , G[Vn]. Each has at most d + 1 vertices by the degeneracy ordering. This

1 Actually, (n − d) + 1 subproblems suffice: n − d subproblems G[V1], G[V2], . . . , G[Vn−d ], and a final
subproblem G[{vq , vq+1, . . . , vn}] where q = n − d + 1.
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leads to anO(dn3d/3) algorithm for listingmaximal cliques [29] and anO((n−d)2d/4)

algorithm for maximum clique [19,54].
Given that these times are exponential in the degeneracy, these algorithms can be

slow when d exceeds 100. However, Walteros and Buchanan [71] observe that for
many real-life graphs, the clique number ω is quite close to the upper bound d + 1,
differing by just 0, 1, or 2 units on half of their instances. For cases like this where the
clique-core gap g := (d + 1) − ω can be treated as a constant, the maximum clique
problem can be solved in time O(dm) = O(m1.5), as shown by [71]. This algorithm,
which applies FPT vertex cover algorithms to the subproblems, is often fast in practice.

2.3 MIP techniques for clique

The clique problem has a long history in the MIP literature, as do related problems
like independent set and vertex cover [61–63]; see [65] for a more recent survey. This
is partly because many practical problems have set packing constraints that can be
convenientlymodeled in terms of cliques or independent sets; techniques developed for
the stylized problems can then be extended to the real problem. These abstractions have
led to the discovery of valid inequalities like clique inequalities, odd-hole inequalities,
and others that are used inmodern-dayMIP solvers to strengthen the LP relaxation [1].
Notable concepts in this area include conflict generation [67], used to detect implicit
conflicts between variable assignments, and conflict graphs, which are data structures
used to store these conflicts [3,16], cf. implication graphs [2].

Due to the complexity of the clique and independent set problems, these MIP
techniques generally lack desirable worst-case guarantees. Exceptions do arise when
restricted to particular classes of graphs. For example, there are polynomial-sizeperfect
MIPs for independent set in comparability graphs and chordal graphs [72] and in
graphs with small treewidth [10,18,45,47], which are essentially best-possible [30].
By perfect, we mean that their LP relaxation’s feasible region equals (or orthogonally
projects to) the convex hull of feasible solutions. There exist perfect MIPs for vertex
covers of size k that use O(1.47k + kn) inequalities [17], which can be seen as
a polyhedral analogue to FPT algorithms for vertex cover [20,21]. Other MIPs for
clique, such as those given by [55] are not known to provide worst-case guarantees.
Basu et al. [8] show that branch-and-bound algorithms that use variable disjunction
will visit �(3n/3) nodes when applied to the conflict model for independent set in
Moon-Moser/Miller-Muller graphs [57,59] (the disjoint union of triangles).

MIP solvers typically apply branch-and-cut, which is a combination of LP-based
branch-and-bound [46] and the cutting plane method [34,42]. Consequently, the run-
ning time is largely dependent on the number of branch-and-bound nodes visited
during its execution, as well as the time spent to solve the LP relaxations at each node.
Generally speaking, one expects that stronger LP bounds will lead to fewer branch-
and-bound nodes being explored. However, just because the gap is small, this does
not imply a small or polynomial number of branch-and-bound nodes. For example,
consider an instance of clique (G, k) in which we are to determine if graph G has a
clique of size k. From this, one could quickly create an equivalent instance of clique
(G ′, k) in which G ′ = (V ′, E ′) is the disjoint union of G and a complete graph on
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k − 1 vertices (i.e., Kk−1). Now consider the following IP:

zI P =max
∑

i∈V ′
xi (4a)

xi + x j ≤ 1 ∀{i, j} ∈
(
V ′

2

)
\E ′ (4b)

∑

i∈V ′
xi ≤ k (4c)

xi ∈ {0, 1} ∀i ∈ V ′. (4d)

This IP has a feasible solution of size k − 1, since G ′ has Kk−1 as a subgraph.
Moreover, the root LP bound zLP is at most k by constraint (4c). So, k − 1 ≤ zI P ≤
zLP ≤ k, and so the (absolute) integrality gap zLP −zI P is at most one, yet solving this
IP amounts to solving the clique problem over G. Thus, despite the small integrality
gap, we expect this IP to be hard. Moreover, since the k-clique problem is not believed
to be FPT, this IP should not be FPT either (with respect to k). In contrast, the strongest
MIP that we propose has a small integrality gap zLP − zI P ≤ (d + 1) − ω = g and is
solved in O(2gn) branch-and-bound nodes under a best-bound node selection strategy.

2.4 Disjunctive extended formulations

When constructing MIPs, a helpful modeling primitive is the disjunctive constraint
x ∈ ∪k

j=1P
j , where each Pj = {x ∈ R

n | A j x ≤ b j } is a rational polytope. While the
disjunctive constraint itself is not permitted in a MIP, it can be modeled as a MIP with
new variables y j , indicating whether x belongs to P j , and copies of the x variables
w1, w2, . . . , wk , as Proposition 1 shows, see [70]. This is convenient for us, as it
allows us to decompose the clique problem into multiple subproblems and then write
a MIP for the disjunction.

Proposition 1 ([4,6,39,52]) Given k nonempty polytopes2 P j = {x ∈ R
n|A j x ≤ b j },

for j ∈ [k], the disjunctive constraint x ∈ ∪k
j=1P

j can be modeled as the set of all

(w1, w2, . . . , wk, x, y) satisfying

A jw j ≤ b j y j ∀ j ∈ [k] (5a)
k∑

j=1

w j = x (5b)

(Balas)
k∑

j=1

y j = 1 (5c)

w j ∈ R
n ∀ j ∈ [k] (5d)

x ∈ R
n (5e)

2 Something like Proposition 1 holds for unbounded polyhedra, but we will not need this.
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y ∈ {0, 1}k . (5f)

Moreover, the LP feasible region Q of model (5) is perfect, i.e., satisfies projx (Q) =
conv

(
∪k

j=1P
j
)
. Further, every extreme point of Q has binary y.

One drawback of model (5) is the large number of w variables (5d) and nonzeros
in constraints (5b) and (5c). However, in some sense this is unavoidable if we require
the convex hull and full generality [22].

In the special case where the polytopes P j are defined by box constraints, there is
hope. Suppose each polytope P j takes the form

P j = {x ∈ R
n | l ji ≤ xi ≤ u j

i , ∀i ∈ [n]}. (6)

In this case, we can write the MIP:

k∑

j=1

l ji y j ≤ xi ≤
k∑

j=1

u j
i y j ∀i ∈ [n] (7a)

(Jeroslow)
k∑

j=1

y j = 1 (7b)

y ∈ {0, 1}k . (7c)

This model (7) is nice because the w variables are not needed. It is also sharp; its LP
feasible region projects to conv(∪k

j=1P
j ), [38, Section 3.1]. More general forms of

this model hold for polyhedra with the same left-hand-side, A = A j , and have been
studied by [5,11,38] and more recently [70].

This MIP (7) will be helpful for us, because each of the n different clique subprob-
lems is defined by having some variables xi being: fixed to one (l ji = u j

i = 1); fixed

to zero (l ji = u j
i = 0); or unfixed (l ji = 0 and u j

i = 1). Fortunately, model (7) will
have just O(n +m) nonzeros when applied to the clique subproblems, even though it
may appear to have �(n2) nonzeros at first glance.

3 Worst-case analysis for existing cliqueMIPs

To understand the worst-case behavior of the existing clique MIPs, we consider the
simple branch-and-bound algorithm given in Algorithm 1, which directly applies to
the conflict model (1) and the dense model (2). With a small change to account for
the z variable, it applies to the sparse model (3). In its pseudocode, (F0, F1) denotes
a node of the branch-and-bound tree, where F0 and F1 are the sets of variables fixed
to zero and to one at that node, respectively.

In line 1, the root node (∅,∅) is added to the collection of branch-and-bound nodes
B. The incumbent solution x∗ is initialized as null. In line 2, the algorithm continues
as long as some node remains open. Line 3 is node selection in which an open node
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Algorithm 1 Branch and bound
1: initialize B ← {(∅, ∅)} and x∗ ← ∅
2: while B 
= ∅ do
3: select and remove a node (F0, F1) from B
4: solve the LP relaxation LP(F0, F1)
5: if LP(F0, F1) is infeasible then
6: continue
7: let x̄ be an optimal (extreme point) solution to LP(F0, F1), with objective x̄(V )

8: if x̄(V ) ≤ x∗(V ) then
9: continue
10: if x̄ ∈ {0, 1}n then
11: x∗ ← x̄
12: continue
13: pick a variable xi with 0 < x̄i < 1
14: add (F0 ∪ {xi }, F1) and (F0, F1 ∪ {xi }) to B

return x∗

(F0, F1) is explored. The associated linear programming relaxation LP(F0, F1) is
solved. If the LP is infeasible, the node is pruned by infeasibility in line 6. If the LP’s
objective value x̄(V ) = ∑

i∈V x̄i is no better than that of x∗, the node is pruned by
bound in line 9. Next, if the LP solution x̄ is integer, then the incumbent x∗ is updated,
and the node is pruned by integrality in line 12. Finally, a variable xi is selected for
branching. Line 14 creates the left child (F0∪{xi }, F1) and right child (F0, F1∪{xi }).

For the worst-case analysis, recall the following definitions about rooted trees from
[25]. A rooted tree is a tree with a special node called the root. For each node v of the
rooted tree, there is a unique (simple) path from the root r to v; the nodes along this
path (including v) are the ancestors of v. If u is an ancestor of v, then v is a descendant
of u. If u and v are neighbors and u is an ancestor of v, then u is the parent of v and v

is a child of u. If two nodes have the same parent, they are siblings. If a node has zero
descendants besides itself, then it is a leaf. The depth of a node is its distance from the
root.

When branch-and-bound is applied to an integer program, there is a corresponding
rooted tree which we denote by T . The nodes of T are the pairs (F0, F1) of fixed
variables encountered during the algorithm, and the root of T is the node (∅,∅). The
depth of node (F0, F1) is equal to |F0| + |F1|. If a variable xi is branched on at node
(F0, F1), then (F0, F1) has two children (F0 ∪ {xi }, F1) and (F0, F1 ∪ {xi }).

Proposition 2 When branch-and-bound is applied to the conflict, dense, and sparse
models, it visits O(ϕn) nodes, where ϕ < 1.6181 is the golden ratio.

Proof At each branch-and-bound node (F0, F1), the number of “free” variables is
k = n − |F0| − |F1| − |I0(F0, F1)|, where

I0(F0, F1) = {xv | xv /∈ F0 and v has a nonneighbor u with xu ∈ F1} (8)

is the set of variables that are implicitly fixed to zero by F1 and conflict constraints (1b)
or big-M constraints (2b) or (3c). If T (k) denotes the number of its descendants, we
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have the recurrence

T (k) ≤
{
1 + T (k − 2) + T (k − 1) if k ≥ 2
1 if k ≤ 1.

The reason is as follows. Suppose (F0, F1)were not pruned, then it had an LP solution
x̄ and Algorithm 1 chose to branch on some free variable, say xi , that was fractional,
i.e., 0 < x̄i < 1. See that i has a nonneighbor j with x j free, since otherwise x̄i can
be increased to one and still be LP feasible. So, in the left child there is one fewer free
variable (xi ), while in the right child there are at least two fewer free variables (xi and
x j ), so T (k) ≤ 1+T (k−1)+T (k−2). Solving the recurrence gives T (n) = O(ϕn),
see [32, Chapter 2.1]. ��

Below we show that the analysis in Proposition 2 is tight. That is, the conflict
model (which is stronger than the dense and sparse models) sometimes visits �(ϕn)

branch-and-bound nodes. In fact, this occurs on the co-lollipops L̄3,p, which are the
complements of the lollipops L3,p depicted in Fig. 1.

Theorem 1 Whenbranch-and-bound is applied to the conflictmodel, it can visit�(ϕn)

nodes for the co-lollipops L̄3,p.

Proof It suffices to show that Algorithm 1 visits�(ϕn) branch-and-bound nodes when
the lollipops L3,p are solved with the stable set conflict model, whose LP relaxation
is the fractional stable set polytope:

FSTAB(G) = {x ∈ [0, 1]n | xi + x j ≤ 1, ∀{i, j} ∈ E}.

We will suppose that Algorithm 1 makes the following choices:

1. at each node, pick an LP solution with the most fractional coordinates;
2. among the fractional variables, branch on the one xt with largest index t ;
3. for the node-selection strategy, prioritize nodes with fractional solutions.

First, we claim that the all-half vector ( 12 ,
1
2 , . . . ,

1
2 ) is an optimal extreme point

of FSTAB(L3,p). It is extreme because it is feasible and satisfies the n linearly inde-
pendent constraints xi + x j ≤ 1 at equality. Now, when p is even, optimality follows
because any LP-feasible solution x̄ satisfies

x̄(V ) = (x̄−1 + x̄0) + (x̄1 + x̄2) + · · · + (x̄ p−1 + x̄ p)

≤ 1 + 1 + · · · + 1 = 1 + p

2
= n

2
,

and the all-half vector meets this bound. Meanwhile, when p is odd,

x̄(V ) = 1

2
(x̄−1 + x̄0) + 1

2
(x̄−1 + x̄1) + 1

2
(x̄0 + x̄1)

+ (x̄2 + x̄3) + (x̄4 + x̄5) + · · · + (x̄ p−1 + x̄ p)

≤ 1

2
+ 1

2
+ 1

2
+ 1 + · · · + 1 = 1.5 + p − 1

2
= n

2
.
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Fig. 2 The graph Gq when
q = 4

Now, consider the execution of Algorithm 1. First, the root LP is solved, giving the
all-half vector (by choice 1). By choice 2, the algorithm branches on xp. In the right
child, the fixing xp = 1 forces xp−1 = 0; the remaining LP is equivalent to that for
L3,p−2. In the left child, where xp = 0, the remaining LP is equivalent to that for
L3,p−1. In this way, all (nontrivial) LPs that are encountered are over lollipop graphs
with fractional LP solutions. Consider a node (F0, F1) in the branch-and-bound tree
and let k denote the number of variables not (explicitly or implicitly) fixed to a binary
value. If T (k) denotes the number of its descendants, we have the recurrence

T (k) =
{
1 + T (k − 2) + T (k − 1) if k ≥ 3
1 if k ≤ 2.

By choice 3, there is no incumbent with which to prune until all fractional nodes are
processed. Solving the recurrence gives T (p) = �(ϕ p) = �(ϕn). ��

The co-lollipops L̄3,p are quite unlike real-life graphs. For example, they have
clique-core gaps g approximately equal to n/2, much larger than that of the real-life
graphs in Table 1. One may wonder—is branch-and-bound quick when g is small?
Theorem 2 shows this is false. The proof holds for any node selection strategy; even
a best-bound strategy visits �(1.2599n) nodes.

Theorem 2 When branch-and-bound is applied to the conflict model, it can visit expo-
nentially many nodes even when the clique-core gap g is zero.

Proof To prove the claim, consider graphs of the form Gq = (Vq , Eq), where

Vq = {1, 1′, 1′′} ∪ {2, 2′, 2′′} ∪ · · · ∪ {q, q ′, q ′′} (9)

and Eq is such that C = {1, 2, . . . , q} is a clique, and each of its vertices c ∈ C
neighbors all vertices of V except for c′ and c′′. Figure 2 depicts the case q = 4.

The graph Gq has degeneracy d = q − 1; if a
b denotes the concatenation of a
and b, a degeneracy ordering is (1′′, 2′′, . . . , q ′′)
(1′, 2′, . . . , q ′)
(1, 2, . . . , q). The
clique number ω equals q, because C is a clique of size q and because V can be
partitioned into q independent sets of the form {c, c′, c′′}. So, the clique-core gap g
equals zero, as g := (d + 1) − ω = (q − 1 + 1) − q = 0.
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The following claim says that, if only variables xc with c ∈ C have been branched
on, all “free” variables can be set to one-half. In fact, this is optimal and extreme. The
claim uses the notation I0(F0, F1), as defined previously (8).

Claim 1 Suppose branch-and-bound node (F0, F1) has F0 ∪ F1 ⊆ {xc | c ∈ C}. Then,
x∗, defined below, is an optimal extreme point of LP(F0, F1).

x∗
i :=

⎧
⎨

⎩

1 if xi ∈ F1
0 if xi ∈ F0 ∪ I0(F0, F1)
1
2 if otherwise

Proof of Claim By the graph’s structure, any variable xc that is fixed to one forces two
variables xc′ and xc′′ to zero, so |I0(F0, F1)| = 2|F1|. The variables xc that are fixed to
zero have c ∈ C , which is disjoint from I0(F0, F1), implying that |F0 ∪ I0(F0, F1)| =
|F0| + |I0(F0, F1)|. Thus, the point x∗ has objective value

x∗(V ) = 1 · |F1| + 0 · |F0 ∪ I0(F0, F1)| + 1

2
·
(
3q − |F1| − |F0 ∪ I0(F0, F1)|

)

= |F1| + 1

2

(
3q − |F1| − |F0| − 2|F1|

)
= 3

2
q − 1

2
|F0 ∪ F1|,

which is optimal as any x̄ that is feasible for the LP relaxation LP(F0, F1) has:

x̄(V ) =
∑

c∈C
(x̄c + x̄c′ + x̄c′′) (10a)

=
∑

c∈C :xc∈F0
(x̄c′ + x̄c′′) +

∑

c∈C :xc∈F1
1 +

∑

c∈C :xc /∈F0∪F1

(x̄c + x̄c′ + x̄c′′) (10b)

≤ |F0 ∪ F1| +
∑

c∈C :xc /∈F0∪F1

1

2
((x̄c + x̄c′) + (x̄c + x̄c′′) + (x̄c′ + x̄c′′)) (10c)

≤ |F0 ∪ F1| + 3

2
(q − |F0 ∪ F1|) = 3

2
q − 1

2
|F0 ∪ F1| = x∗(V ). (10d)

Meanwhile, x∗ is extreme, because it is the unique point satisfying the following n
constraints from LP(F0, F1) at equality.

xc ≥ 0 ∀xc ∈ F0 (11a)

xc ≤ 1 ∀xc ∈ F1 (11b)

xc + xc′ ≤ 1 ∀c ∈ C : xc /∈ F0 ∪ F1 (11c)

xc′ + x(c+1)′ ≤ 1 ∀c ∈ {1, 2, . . . , q − 1} (11d)

xc′′ + x(c+1)′′ ≤ 1 ∀c ∈ {1, 2, . . . , q − 1} (11e)

x1′ + x1′′ ≤ 1 (11f)

x1′ + x2′′ ≤ 1. (11g)

To see uniqueness, consider x1′′ +x2′′ ≤ 1 from (11e) and inequalities (11f) and (11g),
which together form a triangle of conflicts. For them to hold at equality, we must have
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x1′ = x1′′ = x2′′ = 1/2. Then, the conflicts (11d) and (11e) propagate 1/2 values along
the paths (1′, 2′, . . . , q ′) and (2′′, . . . , q ′′), and then into the “free” vertices from C
via (11c). The 0–1 bounds (11a) and (11b) complete the solution x∗. �

ByClaim 1, the root node’s LP objective is 3
2q. Meanwhile, the optimal IP objective

is far away at q. Finally, we observe that branching on variables xc with c ∈ C leads
to slow, predictable progress in the LP bound. Specifically, by Claim 1, branching on
a variable xc with c ∈ C creates two child nodes, each having an LP objective that is
one-half less than that of its parent: in the left child, the previously “free” xc is added
to F0, while other variables remain unchanged; in the right child, xc is added to F1,
forcing xc′ and xc′′ into I0. In both cases, the LP objective decreases by one-half.

In this way, if Algorithm 1 prioritizes variables xc with c ∈ C for branching, then
no node whose depth |F0 ∪ F1| is less than q will be pruned. This follows since its LP
objective will be greater than q by (10d). So, all 2q+1 − 1 nodes with depth at most q
will be visited, and 2q+1 − 1 > 2q = 2n/3 > 1.2599n . ��

4 New cliqueMIPs

Here, we conceive of four new MIPs for the clique problem. They all rely on a vertex
ordering (v1, v2, . . . , vn), which we take to be a degeneracy ordering, see Sect. 2.2.
The MIPs differ depending on the choice of base model (conflict vs. sparse) and the
choice of extended formulation (Balas vs. Jeroslow). For brevity, we only explicitly
define and analyze the two extremes: the weakest model (sparse-Jeroslow) and the
strongest model (conflict-Balas).

The new MIPs rely on the decomposition given in Lemma 1 which allows us to
break the clique problem into n subproblems. Nicely, if a degeneracy ordering is used,
then each of these subproblems has at most d free variables.

Lemma 1 (clique decomposition, folklore) Suppose the vertices of a graph G =
(V , E) are ordered (v1, v2, . . . , vn). Then, every nonempty clique Q ⊆ V of graph G
satisfies the following inclusions for some (unique) i ∈ [n].

{vi } ⊆ Q ⊆ N [vi ] ∩ {vi , vi+1, . . . , vn}. (12)

Proof Consider a clique Q = {vi1 , vi2 , . . . , viq } indexed so that its vertices follow the
ordering, i.e., i1 < i2 < · · · < iq . Then,

{vi1} ⊆ Q ⊆ N [vi1] ∩ {vi1 , vi1+1, . . . , vn},

as desired. To prove uniqueness, observe that vertices v that do not belong to Q will
not satisfy {v} ⊆ Q, thus violating the first inclusion of (12). Meanwhile, vertices
vi j ∈ Q with j ≥ 2, will not satisfy Q ⊆ N [vi j ] ∩ {vi j , vi j+1, . . . , vn} as vi1 will
belong to the left side but not the right, thus violating the second inclusion of (12). So,
i1 ∈ [n] is the unique index satisfying (12). ��
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4.1 Sparse-Jeroslowmodel

ByLemma1,we can break the clique problem into n subproblems. In each subproblem
j ∈ [n], one vertex is fixed in the clique, some vertices are “free”, and others are fixed
out of the clique. The associated subsets of vertices are:

S+
j := {v j }
S j := N (v j ) ∩ {v j+1, v j+2, . . . , vn}
S−
j := V \(S+

j ∪ S j ).

In the sparse-Jeroslow model, we introduce a binary variable y j for each subproblem
j . These variables indicate which subproblem will select our clique.

max z (13a)

z =
∑

i∈V
xi (13b)

z −
∑

j∈N [i]
x j ≤ Mi (1 − xi ) ∀i ∈ V (13c)

(sparse-Jeroslow)
∑

j : i∈S+
j

y j ≤ xi ∀i ∈ V (13d)

xi ≤
∑

j : i∈S+
j ∪S j

y j ∀i ∈ V (13e)

n∑

j=1

y j ≤ 1 (13f)

(x, y) ∈ {0, 1}n+n . (13g)

This is the same as the sparse model, except for the addition of Jeroslow’s constraints
(13d), (13e), (13f),which come frommodel (7).Notice that the bound constraints (13d)
and (13e) are sparser than in Jeroslow’s model; the reason is that some of the bounds
are zero and can be omitted. Also, notice that the constraint

∑n
j=1 y j = 1 has been

relaxed to
∑n

j=1 y j ≤ 1 to allow for the empty solution (where x = 0 and y = 0).
The sparse-Jeroslow model has 2n + 1 variables and 3n + 2 constraints. It has

�(n+m) nonzeros; the sparse model already had�(n+m) nonzeros, and Jeroslow’s
constraints add �(n + m) nonzeros, in part because

n∑

j=1

|S j | =
n∑

j=1

|N (v j ) ∩ {v j , v j+1, . . . , vn}| = m. (14)

Additionally, the model itself can be constructed in �(n + m) time, including
the degeneracy ordering. Finally, by [38], we know that if constraints (13c) were
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omitted from the sparse-Jeroslowmodel (13), then its LP relaxationwould have integer
extreme points. Of course, the addition of constraints (13c) destroys this integrality.
Nevertheless, the root LP bound is still strong. Proposition 3 shows it is at most
d + 1. Consequently, its (absolute) integrality gap is at most g, by zLP − zI P ≤
(d + 1) − ω = g.

Proposition 3 The LP objective of the sparse-Jeroslow model is at most d + 1.

Proof If (x̄, ȳ, z̄) is LP feasible, then letting rdeg(v j ) = |N (v j ) ∩ {v j+1, . . . , vn}|,

∑

i∈V
x̄i ≤

∑

i∈V

∑

j :i∈S+
j ∪S j

ȳ j =
n∑

j=1

(rdeg(v j ) + 1)ȳ j ≤
n∑

j=1

(d + 1)ȳ j ≤ d + 1,

where the first inequality holds by (13e), the equality by rearrangement, the next
inequality by the degeneracy ordering, and the last by (13f). ��

4.2 Conflict-Balas model

We now turn to the conflict-Balas model, which is obtained by writing the conflict
model for each subproblem j :

P j := {x ∈ R
n | xu + xv ≤ 1, ∀{u, v} ∈ Ē(S j );

xi = 0, ∀i ∈ S−
j ;

xi = 1, ∀i ∈ S+
j ;

0 ≤ xi ≤ 1, ∀i ∈ S j },

and taking their union with Balas’s model (5). It uses new variables w
j
i that equal

one when vertex i ∈ V is picked from subproblem j ∈ [n]. Although there are n2

many w variables, most of them will equal zero by Balas’s constraints, so model (16)
omits these variables, w j

i with i ∈ S−
j . After this reduction, the conflict-Balas model

has �(n + m) variables (recalling (14)), O(nd2) constraints, and O(nd2) nonzeros.
While the x and y variables could be projected out via constraints (16c) and (16d), we
leave them in for analysis.

max
∑

i∈V
xi (16a)

w
j
u + w j

v ≤ y j ∀{u, v} ∈ Ē(S j ), j ∈ [n] (16b)
∑

j : i∈S+
j ∪S j

w
j
i = xi ∀i ∈ V (16c)

(conflict-Balas) w
j
i = y j ∀i ∈ S+

j , j ∈ [n] (16d)

0 ≤ w
j
i ≤ y j ∀i ∈ S j , j ∈ [n] (16e)
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n∑

j=1

y j ≤ 1 (16f)

w, y binary. (16g)

The following remark states that the x variables, although “unrestricted” in the
conflict-Balas model (16), will be binary in any MIP-feasible solution.

Remark 1 If (w̄, x̄, ȳ) is LP feasible for the conflict-Balasmodel (16), then x̄ ∈ [0, 1]n .
Further, if (w̄, x̄, ȳ) is MIP feasible, then x̄ is binary.

Proof If (w̄, x̄, ȳ) is LP feasible, then x̄i = ∑
j : i∈S+

j ∪S j
w̄

j
i by (16c) and

0 ≤
∑

j : i∈S+
j ∪S j

w̄
j
i ≤

∑

j :i∈S+
j ∪S j

ȳ j ≤ 1,

where the middle inequality holds by (16d) and (16e), and the last inequality holds
by (16f) and ȳ ≥ 0. Further, x̄i is integer (and thus binary) since it is written as the
sum of binary values w̄

j
i . ��

We note that the conflict-Balas model is at least as strong as the sparse-Jeroslow
model, as any point (w̄, x̄, ȳ) feasible to the conflict-Balas model immediately gives
the related point (x̄, ȳ, z̄)with z̄ = x̄(V ) that is feasible for the sparse-Jeroslowmodel.
To see this, observe that x̄ is also LP feasible for the conflict model over G, so (x̄, z̄)
is LP feasible for the (weaker) sparse model over G. The sparse model and sparse-
Jeroslow model differ only in constraints (13d), (13e), (13f), which (x̄, ȳ, z̄) satisfies
(through (16c)) by (16d), (16e), and (16f), respectively. Moreover, this inclusion can
be strict. For example, the conflict-Balas model is perfect when applied to the cycle
on vertices {1, 2, 3, 4, 5} as Proposition 4 below guarantees and gives an LP bound of
2, but the sparse-Jeroslow model gives an LP bound of 2.5. Since the conflict-Balas
model is at least as strong as the sparse-Jeroslow model, it also gives an LP bound of
at most d +1 and (absolute) integrality gap at most g, see Proposition 3. Additionally,
Proposition 4 identifies when the conflict-Balas model is perfect.

Proposition 4 The conflict-Balas model is perfect if and only if each subproblem’s S j

can be partitioned into two cliques (i.e., each G[S j ] is co-bipartite).
Proof For arbitrary graphs G ′, the conflict model for ω(G ′) is perfect if and only if
G ′ is co-bipartite [68, Theorem 19.7, p. 319]. So, if each subproblem’s S j induces a
co-bipartite subgraph, then each P j is integral and is thus the convex hull of cliques
from G[S j ]. So, conv(∪ j P j ) is integral and by Lemma 1 is thus the convex hull of all
cliques from G, i.e., conv(∪ j P j ) is the clique polytope of G. Then, by Proposition 1,
the conflict-Balas model (16) projects to conv(∪ j P j ), the clique polytope, and so the
conflict-Balas model is perfect.

Meanwhile, if some subproblem’s S j does not induce a co-bipartite subgraph, then
it contains an odd antihole H ⊆ S j . That is, H has an odd number of vertices and its
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induced subgraph G[H ] is the complement of a cycle graph. Then see that there is a
point (w̄, x̄, ȳ) that belongs to the LP of conflict-Balas model, but x̄ lies outside the
clique polytope because it violates the valid inequality x(H) ≤ �|H |/2�. Specifically,
set w̄

j
i = 1 for i ∈ S+

j , w̄
j
i = 1/2 for i ∈ H , and other w’s to zero; set x̄ and ȳ

by (16c) and (16d). ��
By Proposition 4, the conflict-Balas model (16) is perfect and has linear size O(n)

when the degeneracy is at most two; this includes the class of series-parallel graphs
[12]. For such graphs, each subproblem’s S j can trivially be partitioned into two
cliques, as |S j | ≤ d ≤ 2, so Proposition 4 applies. Since d ≤ 2, there are O(nd2) =
O(n) nonzeros, and thus O(n) variables and constraints.

5 Worst-case analysis for new cliqueMIPs

Now, we analyze the worst-case performance of the sparse-Jeroslow and conflict-
Balas models when solved with simple branch-and-bound algorithms. The algorithms
are essentially the same as Algorithm 1, but with minor and straightforward changes
because of the additional variables w, y, and z. We will also consider the effects of
other changes, like a best-bound node selection strategy.

5.1 Shrunk trees

When conducting our analysis, we use the rooted tree terminology from Sect. 3. For
example, associated with the algorithm’s execution, there is rooted tree T whose
nodes are pairs (F0, F1) of fixed variables. Associated with each clique subproblem
j ∈ {1, 2, . . . , n} there is also a shrunk tree T j which includes the portions of the
(full) branch-and-bound tree that relate to subproblem j . The lowest common ancestor
(LCA) of a subset of nodes is the node that is an ancestor to all of them that has the
largest depth.

Definition 2 The shrunk tree for subproblem j is denoted by T j . Its node set V (T j )

consists of two types of nodes:

(A) nodes from V (T ) whose LP solution has ȳ j = 1, and
(B) (other) nodes from V (T ) that are LCAs of type A node pairs.

Consider two distinct nodes u and v from V (T j ). If the simple path between them in
T crosses no other nodes from V (T j ), then the edge {u, v} belongs to E(T j ). The root
of T j is the LCA of V (T j ) in T .

Figure 3 illustrates the branch-and-bound tree T and shrunk trees T1 and T2
for the conflict-Balas model. Figure 3a depicts graph G with degeneracy ordering
1, 2, 3, . . . , 9. Figure 3d shows the branch-and-bound tree T . At its root, the LP solu-
tion (w̄, x̄, ȳ) has objective 3.5, which is achieved, say, by setting ȳ1 = 1, w̄1

1 = 1
(indicated by black fill), and w̄1

2 = w̄1
4 = w̄1

6 = w̄1
8 = w̄1

9 = 1/2 (gray fill) from the
first subproblem. Down the tree, we see solutions in which some w variables equal
zero (indicated by white fill). Finally, Fig. 3e, f depict the shrunk trees T1 and T2. They
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illustrate some ways in which shrunk trees are different than branch-and-bound trees.
For example, while the nodes of T all have zero or two children, T2 has a node with
one child. Also, the nodes of shrunk trees are not necessarily contiguous in T , as T1
shows. Nevertheless, shrunk trees do have some helpful traits.

Lemma 2 If u and v are nodes of the shrunk tree T j , then their LCA in T also belongs
to the shrunk tree.

Proof This is immediate when u and v are of type A. Generally, observe that every
node of T j has a descendant of type A. So, if u and v are nodes of T j then the type A
descendants of theirs, u′ and v′, have a LCA t ′ that belongs to V (T j ) by definition of
shrunk tree, and t ′ is also the LCA of u and v. ��
Proposition 5 The shrunk tree T j is indeed a tree.

Proof The shrunk tree T j is a forest because it is a minor of the tree T . So, to show it is
a tree, we just need it to be connected. Consider arbitrary nodes u and v from V (T j ).
By Lemma 2, their LCA t also belongs to V (T j ), so it suffices to show that there is a
u, t-path in T j . Consider the path from u to t in T , and let u = i0, i1, i2, . . . , iq = t
be the vertices along this path (in sequence) that belong to V (T j ). By definition of
shrunk tree, each pair {ik, ik+1} of consecutive nodes in this sequence is an edge in
E(T j ), thus giving a path from u to t in T j . ��
Proposition 6 All shrunk tree nodes of the conflict-Balas model have type A.

Proof For contradiction purposes, suppose that t is a type B node from the shrunk tree
T j and that it is the LCA of type A nodes u and v. At node t , the algorithm branched on
a variable. It was not an x variable, as they are defined to be continuous. It was not a y
variable (nor the w equivalent (16d)), because the extreme points of the conflict-Balas
model have binary y, see Proposition 1. So, it must have been a variable of the form
wk
i with i ∈ Sk . In the first case, where k = j , the LP solution (w̄, x̄, ȳ) at node t has

0 < w̄
j
i ≤ ȳ j by (16e) and ȳ j is binary, so t is actually a type A node, a contradiction.

In the other case, where k 
= j , the branch with wk
i = 1 forces yk = 1 by (16e),

contradicting the assumption that LP solutions at u and v have y j = 1. ��

5.2 Analysis for sparse-Jeroslow

For our analysis with the sparse-Jeroslow model, we observe that the nodes visited by
branch-and-bound can be partitioned into three sets:

N1 : nodes (F0, F1) for which LP (F0, F1) is infeasible;
N2 : nodes (F0, F1)whose LP solution(x̄, ȳ, z̄) has fractional ȳ /∈ {0, 1}n;
N3 : nodes (F0, F1)whose LP solution (x̄, ȳ, z̄) has integral ȳ ∈ {0, 1}n .

Denote their sizes by t1 = |N1|, t2 = |N2|, and t3 = |N3|.
In the following lemma, we prioritize the y variables for branching. That is, if the

LP solution (x̄, ȳ, z̄) has fractional ȳ, then one of its variables y j must be selected for
branching. Most MIP solvers allow users to set the branching priority of variables.
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(a)

(b) (c)

(d)

(e) (f)

Fig. 3 Illustration of shrunk trees. The vertices of graph G are round, while the nodes of the “full” tree T
and shrunk tree T j are square. Note that the y j values next to the nodes indicate the LP relaxation solution

(not variable fixings), and the w
j
i values next to the tree edges denote variable fixings
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Lemma 3 If the y variables are prioritized for branching, then all nodes visited for
the sparse-Jeroslow model are LP feasible (i.e., t1 = 0), and the number of nodes with
fractional ȳ is not too big (t2 ≤ 1 + 3t3), so t1 + t2 + t3 ≤ 1 + 4t3.

Proof First we show t1 = 0. The root node is clearly LP feasible, so consider a non-
root node (F0, F1) encountered by the algorithm. Its parent (F ′

0, F
′
1) is LP feasible,

say at (x̄, ȳ, z̄). See that Q := {v ∈ V | x̄v = 1} is a clique. Additionally, Q ∪ {v} is
a clique for each v with x̄v > 0, because otherwise v has a nonneighbor q in Q with
x̄q = 1 giving the contradiction

0 < x̄v ≤
∑

j∈N̄ (q)

x̄ j = z̄ −
∑

j∈N [q]
x̄ j ≤ Mq(1 − x̄q) = 0,

where the last inequality holds by (13c). At parent node (F ′
0, F

′
1), the algorithm

branched on a variable, fixing it to zero or one, giving four cases for the child:

1. some variable xv was fixed to zero, (F0, F1) = (F ′
0 ∪ {xv}, F ′

1);
2. some variable xv was fixed to one, (F0, F1) = (F ′

0, F
′
1 ∪ {xv});

3. some variable yk was fixed to zero, (F0, F1) = (F ′
0 ∪ {yk}, F ′

1);
4. some variable yk was fixed to one, (F0, F1) = (F ′

0, F
′
1 ∪ {yk}).

For each case, we construct a feasible point (x̂, ŷ, ẑ) for LP(F0, F1).
Case 1: xv = 0. Since xv was branched on, ȳ ∈ {0, 1}n holds by the branching priority.
Let ŷ = ȳ, x̂ = xQ be the characteristic vector of clique Q, and ẑ = ∑

i∈V x̂i be
its cardinality. Clearly, (x̂, ŷ, ẑ) satisfies constraints (13b), (13c), (13f), and the 0-1
fixings required by (F0, F1). Now we show constraints (13d) and (13e) hold; recall
that they require each xi variable to lie between two expressions:

∑

j :i∈S+
j

y j ≤ xi ≤
∑

j :i∈S+
j ∪S j

y j .

Observe that each of the sums
∑

j :i∈S+
j
ŷ j and

∑
j :i∈S+

j ∪S j
ŷ j take binary values as

ŷ ∈ {0, 1}n and ∑n
j=1 ŷ j ≤ 1. So, if i ∈ V \Q, then

∑

j :i∈S+
j

ŷ j =
∑

j :i∈S+
j

ȳ j = 0 ≤ 0 = x̂i = 0 ≤
∑

j :i∈S+
j ∪S j

ŷ j .

Note that
∑

j :i∈S+
j
ȳ j = 0, as otherwise 1 = ∑

j :i∈S+
j
ȳ j ≤ x̄i < 1. If i ∈ Q, then

∑

j :i∈S+
j

ŷ j ≤
n∑

j=1

ŷ j ≤ 1 = x̂i = 1 ≤ 1 =
∑

j :i∈S+
j ∪S j

ȳ j =
∑

j :i∈S+
j ∪S j

ŷ j .

Note that 1 = ∑
j :i∈S+

j ∪S j
ȳ j , as otherwise 0 < x̄i ≤ ∑

j :i∈S+
j ∪S j

ȳ j = 0.

Case 2: xv = 1. The proof is the same as Case 1, using Q ∪ {v} instead of Q.
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Case 3: yk = 0. If Q = ∅ then (x̂, ŷ, ẑ) = (0, 0, 0) proves the claim, so suppose
Q 
= ∅. There exists k′ 
= k for which ȳk′ > 0, as otherwise picking any vertex i ∈ Q
gives the contradiction

1 = x̄i ≤
∑

j :i∈S+
j ∪S j

ȳ j ≤
n∑

j=1

ȳ j = ȳk < 1.

Let v be the (only) vertex of S+
k′ . Observe that ȳk′ ≤ x̄v by constraints (13d), so

xv /∈ F ′
0 and also Q ∪ {v} is a clique. Let ŷ be the binary vector that has ŷ j = 1 if

and only if j = k′, x̂ = xQ∪{v} be the characteristic vector of Q ∪ {v}, and ẑ = x̂(V )

be its cardinality. Clearly, (x̂, ŷ, ẑ) satisfies constraints (13b), (13c), (13f), and the 0-1
fixings required by (F0, F1). Now we show that constraints (13d) and (13e) hold for
every vertex i ∈ V . If i ∈ V \(Q ∪ {v}), then i /∈ S+

k′ and

∑

j :i∈S+
j

ŷ j = 0 ≤ 0 = x̂i = 0 ≤
∑

j :i∈S+
j ∪S j

ŷ j .

Observe that every vertex i ∈ Q also belongs to S+
k′ ∪ Sk′ because otherwise

1 = x̄i ≤
∑

j :i∈S+
j ∪S j

ȳ j ≤
n∑

j=1

ȳ j − ȳk′ < 1.

So, every vertex i ∈ Q ∪ {v} belongs to S+
k′ ∪ Sk′ and thus satisfies

∑

j :i∈S+
j

ŷ j ≤ 1 = x̂i = 1 = ŷk′ ≤
∑

j :i∈S+
j ∪S j

ŷ j .

Case 4: yk = 1. Let v be the (only) vertex that belongs to S+
k . Let ŷ be the vector

whose only nonzero entry is ŷk = 1, x̂ = xQ∪{v} be the characteristic vector of
clique Q ∪ {v}, and ẑ = x̂(V ) be its cardinality. Note that Q ∪ {v} is a clique as
0 < ȳk ≤ x̄v . Clearly, (x̂, ŷ, ẑ) satisfies constraints (13b), (13c), (13f), and the 0-1
fixings required by (F0, F1). Now we show constraints (13d) and (13e) hold for every
i ∈ V . If i ∈ V \(Q ∪ {v}), then i /∈ S+

k and

∑

j :i∈S+
j

ŷ j = 0 ≤ 0 = x̂i = 0 ≤
∑

j :i∈S+
j ∪S j

ŷ j .

As in Case 3, every i ∈ Q ∪ {v} belongs to S+
k ∪ Sk . So, if i ∈ Q ∪ {v}, then

∑

j :i∈S+
j

ŷ j ≤ 1 = x̂i = 1 ≤ 1 =
∑

j :i∈S+
j ∪S j

ŷ j .
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Now we show t2 ≤ 1 + 3t3. Let r = (∅,∅) denote the root node. We create a
function f : N2\{r} → N3 that maps non-root nodes from N2 to nodes from N3. Let
v be a node of N2 that is not the root and thus has a parent p. In the first case, where
the algorithm branched on an x variable at p, node p belongs to N3; let f (v) = p.
In the other case, where the algorithm branched on a variable y j at p, v’s sibling s
belongs to N3, since all nodes are LP feasible and its sibling has y j = 1; let f (v) = s.
In this way, a nodew from N3 has preimage f −1(w) consisting of at most three nodes
from N2 (its sibling and its two children), so | f −1(w)| ≤ 3. Thus, we have

t2 = |N2| ≤ 1 + |N2\{r}| ≤ 1 +
∑

w∈N3

| f −1(w)| ≤ 1 + 3|N3| = 1 + 3t3.

��
Theorem 3 When branch-and-bound is applied to the sparse-Jeroslow model, it visits
O(2dn) nodes if the y variables are prioritized for branching.

Proof We bound the total number of branch-and-bound nodes as follows:

t1 + t2 + t3 ≤ 1 + 4t3 ≤ 1 + 4

⎛

⎝1 +
n∑

j=1

|V (T j )|
⎞

⎠ = O(2dn). (17)

The first inequality holds by Lemma 3. The second inequality holds as follows. Con-
sider an arbitrary branch-and-bound node. If its LP solution (x̄, ȳ, z̄) has integer ȳ,
then either ȳ = 0 or ȳ = e j for some j . At most one node can have ȳ = 0 because
ȳ = 0 implies x̄ = 0 and z̄ = 0, and no two nodes can have the same LP solution. In
the latter case, where ȳ = e j for some j , the node belongs to the shrunk tree T j . So,
to prove (17), it remains to show that each shrunk tree has O(2d) nodes.

At each branch-and-bound node (F0, F1) of the shrunk tree T j , the number of “free”
x variables (from subproblem j) is

k = |S j | − |F0 ∩ X j | − |F1 ∩ X j | − |I0(F0, F1) ∩ X j |,

where X j = {xi | i ∈ S j } and I0(F0, F1) is defined as (8). If T (k) denotes the number
of its descendants in T j , we have the recurrence

T (k) ≤
{
1 + 2T (k − 1) if k ≥ 2
1 if k ≤ 1.

The reason is as follows. Suppose node (F0, F1) from T j was not pruned, then it had
an LP solution (x̄, ȳ, z̄)with integer ȳ, and the algorithm chose to branch on some free
x variable, say xs , that was fractional, i.e., 0 < x̄s < 1. So, any left child of (F0, F1)
in T j , if one exists, has at least one fewer free variable (xs). Similarly, any right child
of (F0, F1) in T j , if one exists, has at least one fewer free variable (xs). So, solving
the recurrence gives T (k) = O(2k), and the root of the shrunk tree has k ≤ |S j | ≤ d,
giving |V (T j )| = O(2d), as desired. ��
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Fig. 4 The dessert graph Dp,q := L3,p ∪ Kq+3

Proposition 7 If the clique-core gap is zero, then when branch-and-bound is applied
to the sparse-Jeroslow model it visits at most 2n nodes if a best-bound node selection
strategy is used and the y variables are prioritized for branching.

Proof When the clique-core gap g is zero, there is aMIP solution with objective d+1,
and this is LP optimal by Proposition 3. Suppose the root LP solution (x∗, y∗, z∗)
has binary y∗, say with y∗

k = 1. Then, x∗ is binary as well; in fact, it must be the
characteristic vector of S+

k ∪ Sk as

d + 1 =
∑

i∈V
x∗
i ≤

∑

i∈S+
k ∪Sk

x∗
i + 0 ≤ d + 1,

where the middle inequality holds by (13e). So, the node is pruned by feasibility.
Otherwise, y∗ is fractional, and the algorithm branches on some y j . In the branch
where y j = 1, the LP solution either has objective d + 1 in which case it again has
binary x and is pruned by feasibility, or it has objective less than d + 1 in which case
it produces no children by the best-bound strategy. ��

5.3 Analysis for conflict-Balas

We have seen that the sparse-Jeroslow model (13) visits O(2dn) nodes, provided that
y variables are prioritized for branching. For the conflict-Balas model (16), we are
able to prove a better bound, O(ϕdn), which is achieved. That is, there are classes
of graphs for which �(ϕdn) nodes are visited. They are obtained by modifying the
lollipop graphs.

Specifically, we define the dessert graph Dp,q = L3,p ∪Kq+3 as the disjoint union
of the lollipop L3,p and the complete “cotton candy” graph Kq+3. As shown in Fig. 4,
it has p + q + 6 vertices and is defined for p ≥ 1 and q ≥ 1.

Lemma 4 The dessert complement Dp,q admits the degeneracy ordering

(1′, 2′, . . . , q ′)
(0, 0′)
(2, 4, . . . , pe)

(−1′,−1,−2′,−2)
(1, 3, . . . , po),

where pe and po are the largest even and odd integers, respectively, that do not exceed
p. Its degeneracy d(Dp,q) is p + 3.
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Proof This is a maximum degree ordering of Dp,q , thus a degeneracy ordering of
Dp,q . Vertex 1′ has the largest right-neighborhood, with p + 3 vertices. ��

Without loss of generality, suppose that each subproblem j of Dp,q has S+
j = { j}

and is thus represented by the variable y j . Now, for each subproblem defined by vertex
u ∈ {1′, 2′, . . . , q ′}, we construct a point (w̄, x̄, ȳ) given by

ȳv =
{
1 if v = u
0 if v 
= u; w̄v

i =
⎧
⎨

⎩

1
2 if v = u, i ∈ {−2,−1, 0, 1, 2, . . . , p}
1 if v = u and i = u
0 if otherwise.

and let each vertex i have x̄i = ∑
j : i∈S+

j ∪S j
w̄

j
i .We argue that all such points (w̄, x̄, ȳ)

constructed in this way are LP optimal.

Lemma 5 Assume the degeneracy ordering given in Lemma 4. For each vertex u ∈
{1′, 2′, . . . , q ′}, the point (w̄, x̄, ȳ) defined above is an optimal extreme point of the
LP relaxation of the conflict-Balas model (16).

Proof Observe that (w̄, x̄, ȳ) is LP feasible with objective value (p + 5)/2. First, we
show LP optimality. By Proposition 1, it suffices to show that the objective value over
each conflict model subproblem P j (defined in Sect. 4.2) is at most (p + 5)/2. When
j ∈ {−2′,−1′, 0′, 1′, 2′, . . . , q ′}, the conflict model subproblem is over a universal
vertex j (contributing one to the objective) and a subgraph of the co-lollipop L3,p
(contributing at most (p + 3)/2 as in the proof of Theorem 1), giving LP objective at
most (p+5)/2.When j = 0, the conflictmodel subproblem is over the universal vertex
0, the co-path (2, 3, . . . , p), and the co-triangle on {−2′,−1′, 0′}, giving LP objective
1+�p/2�+(3/2) ≤ (p+5)/2. Finally, for any other j ∈ {−2,−1}∪{1, 2, . . . , p}, the
conflict model subproblem is over a subset of the vertices {−2,−1} ∪ {1, 2, . . . , p} ∪
{−2′,−1′}, giving an LP objective of at most 1 + �p/2� + 1 ≤ (p + 5)/2.

Now, to show (w̄, x̄, ȳ) is extreme, see that it is the unique point satisfying the
following 3n+m constraints from (16) at equality, where n andm refer to the number
of vertices and edges of Dp,q , respectively. The number of inequalities is reported in
the left-most column in parentheses.

(n − 1) y j ≥ 0 ∀ j 
= u (18a)

(1)
∑

j

y j ≤ 1 (18b)

(m − (p + 3)) w
j
i ≥ 0 ∀i ∈ S j , ∀ j 
= u (18c)

(n − 1) w
j
i = y j ∀i ∈ S+

j , ∀ j 
= u (18d)

(1) w
j
i = y j ∀i ∈ S+

j , ∀ j = u (18e)

(p + 3) wu
r + wu

s ≤ y j ∀{r , s} ∈ Ē(Su) (18f)

(n)
∑

j : i∈S+
j ∪S j

w
j
i = xi ∀i . (18g)
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For uniqueness, see that if constraints (18a) and (18b) hold at equality then y is binary
with one nonzero yu = 1. Constraints (18c) and (18d) then force the associated w

j
i

variables to zero, and wu
i = 1 by (18e). The conflict constraints (18f) associated

with the triangle from the lollipop then force wu
r = 1/2 for triangle nodes r ; the

other conflicts from the lollipop propagate the 1/2 values down the path (1, 2, . . . , p).
Constraints (18g) uniquely determine x . ��
Theorem 4 When branch-and-bound is applied to the conflict-Balas model, it can visit
�(ϕdn) nodes.

Proof We show that branch-and-bound visits �(nϕd) nodes when applied to the
conflict-Balas model, for co-dessert graphs Dp,q under the degeneracy ordering from
Lemma 4. Namely, we exhibit a branch-and-bound tree with q ′ subtrees, each with
�(ϕd−2) nodes.

The degeneracy of Dp,q is d = p+ 3, as shown in Lemma 4. The root LP solution
can be taken as (w̄, x̄, ȳ) for u = 1′, per Lemma 5. This solution has ȳ1′ = 1 and w̄1′

p =
1/2. Suppose we branch on w1′

p . In the right child, where w1′
p = 1, constraints (16b)

force y1′ = 1, so themodel reduces to the conflict model for L3,p−2; so, by Theorem 1,
this subtree consisting of the right child and its descendants has�(ϕ p+1) = �(ϕd−2)

nodes. Meanwhile, in the left child of the root, where w1′
p = 0, we can take the LP

solution to be (w̄, x̄, ȳ) for u = 2′, which is LP optimal and extreme by Lemma 5;
similar to before, this solution has ȳ2′ = 1 and w̄2′

p = 1/2, and branching onw2′
p leads

to a right subtree with �(ϕd−2) nodes. Repeating this scheme for u = {3′, 4′, . . . , q ′}
down the left side of the tree gives q subtrees, each with �(ϕd−2) nodes. This shows
that the whole branch-and-bound tree has�(qϕd−2) nodes, which is�(nϕd) over the
class of co-desserts {Dq,q | q ∈ Z+}. ��

For further analysis with the conflict-Balas model, we again observe that the nodes
visited by branch-and-bound can be partitioned into three sets:

N1 : nodes (F0, F1) for which LP (F0, F1) is infeasible;
N2 : nodes (F0, F1)whose LP solution(w̄, x̄, ȳ) has fractional ȳ /∈ {0, 1}n;
N3 : nodes (F0, F1)whose LP solution (w̄, x̄, ȳ) has integral ȳ ∈ {0, 1}n .

As before, let t1 = |N1|, t2 = |N2|, and t3 = |N3| denote their sizes.
Lemma 6 When the conflict-Balas model is solved with branch-and-bound, all visited
nodes are LP feasible (i.e., t1 = 0) and have binary ȳ (i.e., t2 = 0).

Proof By Proposition 1, all extreme points (w̄, x̄, ȳ) of the conflict-Balas LP have
binary ȳ. Consequently, the same holds for faces of the conflict-Balas LP. This includes
the LPs encountered at branch-and-bound nodes, as they are induced by valid inequal-
ities of the form w

j
i ≥ 0 and w

j
i ≤ 1. Thus, t2 = 0.

The root node is clearly LP feasible, so consider a non-root node (F0, F1) encoun-
tered by the algorithm. Its parent (F ′

0, F
′
1) is LP feasible, say at (w̄, x̄, ȳ). As we know,

ȳ is binary, say, with ȳ j = 1. See that Q := {v ∈ V | w̄ j
v = 1} is a clique. Additionally,
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Q ∪ {v} is a clique for each v with w̄
j
v > 0, because otherwise v has a nonneighbor q

in Q with w̄
j
q = 1 giving the contradiction

0 < w̄ j
v ≤ ȳ j − w̄

j
q = 1 − 1 = 0,

where the second inequality holds by (16b). At parent node (F ′
0, F

′
1), the algorithm

branched on a variable, fixing it to zero or one. This branching variable must take
the form w

j
v with v ∈ S j , as x is defined continuous, ȳ is binary, and w̄

j
i = ȳ j

for i ∈ S+
j by (16d). This gives two cases for the child; in both we construct a

feasible point (ŵ, x̂, ŷ) for LP(F0, F1). In the first case, w
j
v was fixed to zero, i.e.,

(F0, F1) = (F ′
0 ∪ {w j

v }, F ′
1). Let ŷ = ȳ ∈ {0, 1}n and let ŵ j represent clique Q. Set

other ŵ’s to zero and x̂i := ∑
j : i∈S+

j ∪S j
ŵ

j
i for all i ∈ [n]. Clearly, (ŵ, x̂, ŷ) satisfies

all constraints in model (16) and the 0-1 fixings required by (F0, F1). In the other case,
w

j
v was fixed to one, i.e., (F0, F1) = (F ′

0, F
′
1 ∪ {w j

v }). The construction follows the
previous case, but using Q ∪ {v} instead of Q. ��
Theorem 5 When branch-and-bound is applied to the conflict-Balas model, it visits
O(ϕdn) nodes.

Proof We bound the total number of branch-and-bound nodes as follows:

t1 + t2 + t3 = t3 ≤ 1 +
n∑

j=1

|V (T j )| = O(ϕdn). (19)

The first equality holds by Lemma 6. The second inequality holds because if the node’s
LP solution (w̄, x̄, ȳ) has integer ȳ, then either ȳ = 0 or ȳ = e j for some j . At most
one node can have ȳ = 0 because ȳ = 0 implies w̄ = 0 and x̄ = 0, and no two nodes
can have the same LP solution. In the latter case, where ȳ = e j for some j , the node
belongs to the shrunk tree T j . So, to prove (19), it remains to show that each shrunk
tree has O(ϕd) nodes.

At each node (F0, F1) of the shrunk tree T j , the number of “free” w variables from
subproblem j is

k = |S j | − |F0 ∩ Wj | − |F1 ∩ Wj | − |I j0 (F0, F1) ∩ Wj |, (20)

whereWj := {w j
i | i ∈ S j } is the set ofw variables from subproblem j , and I j0 (F0, F1)

is the set of w variables from subproblem j that are implicitly fixed to zero by the
extended conflict constraints (16b):

I j0 (F0, F1) :=
{
w j

v ∈ Wj\F0 | v has a nonneighbor u with w
j
u ∈ F1

}
. (21)

Now, if T (k) is the number of its descendants in T j , we have the recurrence

T (k) ≤
{
1 + T (k − 2) + T (k − 1) if k ≥ 2
1 if k ≤ 1.
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The reason is as follows. Suppose (F0, F1) from T j were not pruned, then it had
an LP solution (w̄, x̄, ȳ) with integer ȳ, and the algorithm chose to branch on some
free w variable, say w

j
s , that was fractional, i.e., 0 < w̄

j
s < 1. See that s has a

nonneighbor t from S j with w
j
t free since otherwise w̄

j
s can be increased to one and

still be LP feasible. So, any left child of (F0, F1) in T j , if one exists, has one fewer

free variable (w j
s added to F0). Meanwhile, any right child of (F0, F1) in T j , if one

exists, has at least two fewer free variables (w j
s added to F1, and w

j
t added to I j0 ), so

T (k) ≤ 1 + T (k − 1) + T (k − 2). So, solving the recurrence gives T (k) = O(ϕk),
and the root of the shrunk tree has k ≤ |S j | ≤ d, giving |V (T j )| = O(ϕd), as desired.

��
Recall that the number of branch-and-bound nodes visited by the sparse-Jeroslow

model was O(2dn) back in Theorem 3, but for the conflict-Balas model we have a
stronger bound of O(ϕdn). The reason for the different base of the exponent is that
when a variable w

j
s is branched on in the conflict-Balas model, s has a nonneighbor t

that also belongs to S j ; in the branch where w
j
s = 1, the conflict constraint will force

w
j
t = 0. Meanwhile, if a variable xs from the sparse-Jeroslow model is branched

upon, there exists a nonneighbor of s that is “free” but it may lie outside the particular
subproblem S j .

Theorem 6 When branch-and-bound is applied to the conflict-Balas model, it visits
O(2gn) nodes if a best-bound node selection strategy is used.

Proof By the proof of Theorem 5 it suffices to show that |V (T j )| = O(2g). First,

recall the notations Wj and I j0 (F0, F1) used for Theorem 5. At each node (F0, F1) of
the shrunk tree, the number of w variables from subproblem j that are explicitly or
implicitly fixed to zero is |F0 ∩Wj | + |I j0 (F0, F1) ∩Wj |. So, the LP at node (F0, F1)
exceeds (“beats”) the IP objective ω by at most

b = (|S j | + 1) − |F0 ∩ Wj | − |I j0 (F0, F1) ∩ Wj | − ω.

Crucially, if b < 0, then (F0, F1) produces no children by the best-bound node selec-
tion strategy. Now, if T (b) is the number of its descendants in T j , we have

T (b) ≤
{
1 + T (b − 1) + T (b − 1) if b ≥ 0
1 if b < 0.

The reason is as follows. Suppose (F0, F1) from T j were not pruned, then it had an LP
solution (w̄, x̄, ȳ)with integer ȳ, and the algorithm branched on some freew variable,
sayw

j
s , that was fractional. As in Theorem 5’s proof, s must have a nonneighbor t from

S j with w
j
t free. So, any left child of (F0, F1) in T j , if one exists, has another variable

explicitly fixed to zero (w j
s added to F0). Meanwhile, any right child of (F0, F1) in

T j , if one exists, has another variable implicitly fixed to zero (w j
t added to I j0 ), so

T (b) ≤ 1 + T (b − 1) + T (b − 1). Solving the recurrence gives T (b) = O(2b),
and the root of the shrunk tree has b ≤ (|S j | + 1) − ω ≤ (d + 1) − ω = g, giving
|V (T j )| = O(2g), as desired. ��
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6 Experiments

To better understand the practical performance of the clique MIPs, we conduct some
experiments. Our aim is shed light on two broad questions:

1. How does the practical performance compare to the worst-case analysis? Howwell
do the parameterizations based on d and g match the actual number of branch-and-
bound nodes visited?

2. In light of size/strength tradeoffs, which clique MIPs perform best in practice? Do
the new clique MIPs outperform existing MIPs on the sparse, real-life instances
that motivated them? What size graphs are within reach?

For our experiments, we consider instances from the 10th DIMACS Implementa-
tion Challenge on Graph Partitioning and Graph Clustering [28], as well as from the
Stanford Large Network Dataset Collection [48, SNAP]. These repositories include
real-life graphs from various applications (e.g., social networks, citation networks,
web graphs, road networks, biological networks), and are used for benchmarking
graph algorithms, including maximum clique algorithms [29,69,71]. Like [44] and
[33], we select a subset of instances that are not too easy, not too hard, and come from
diverse applications. We select instances with diverse values of degeneracy d and
clique-core gap g to illustrate their relationship with MIP solve time. For comparison
purposes, we also consider three hamming graphs from the 2nd DIMACS Implemen-
tation Challenge relating to coding theory. These graphs are dense and structurally
different.

Our computer is a Dell Precision Tower 7000 Series (7810) machine running Win-
dows 10 enterprise, x64, with Intel Xeon Processor E52630 v4 and 32 GB memory.
The MIPs are implemented in Python 3.9.0 for Gurobi 9.1.1 [36]. To mimic the sim-
plicity of Algorithm 1 (branch and bound), we turn off presolve, heuristics, and cuts,
yielding a bare-bones Gurobi MIP solver. For the sparse-Jeroslow model, y variables
are prioritized for branching. We impose a time limit of 3600 s. The code, data, and
results are available at https://github.com/MohNaderi/Worst-case-analysis-of-clique-
MIPs.

In Table 2, we report results obtained from applying bare-bones Gurobi to the
conflict (c), sparse (s), conflict-Balas (cB), and sparse-Jeroslow (sJ) models. The first
several columns report the graph name, the number of vertices and edges (n and m),
the clique number (ω), the degeneracy (d), and the clique-core gap (g). The graphs
vary in size from small (e.g., polbooks with 105 vertices) to large (e.g., belgium
with over a million vertices). As [71] observe, the clique-core gaps of the DIMACS10
and SNAP graphs are often very small–much smaller than that of the hamming graphs
from DIMACS2.

The next two portions of the table report the number of branch-and-bound nodes
and the time required to solve the MIPs. For the conflict, sparse, and sparse-Jeroslow
models, we can easily calculate the number of nonzeros before building them. If the
number of nonzeros exceeds 10,000,000, the instance is skipped to avoid a memory
crash, and we report did not attempt (DNA). If the MIP is not built within 3600 s, we
report did not finish building (DNFB). If the MIP was built but not solved within the
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Fig. 5 The LP relaxation of the conflict-Balasmodel on Cit-HepTh gives an integral solution even though
g = 15. Depicted is the complement subgraph G[S j ] for the chosen subproblem j . Only the top row of
vertices were selected

3600-s time-limit, we report the time as time limit reached (TLR). If the instance was
attempted but not solved, we report the number of nodes so far (≥ bbnodes).

First see that the conflict model is typically too large to be built, as expected. There
are also several cases where the sparse and sparse-Jeroslow models cannot be built.
Perhaps surprisingly, the conflict-Balas model can be built for all DIMACS10 and
SNAP instances, despite providing a worst-case size bound O(nd2) that is seemingly
no better than that of the sparse and spare-Jeroslowmodels, O(n+m). An explanation
is that the subgraphs G[S j ] are typically dense and have few extended conflict con-
straints (16b) compared to the worst-case bound

(d
2

)
, and other constraints contribute

O(n + m) nonzeros.
To our astonishment, the conflict-Balasmodel solves all but a fewof theDIMACS10

and SNAP instances at the root node! While we expected that some of the instances
with g = 0 would solve at the root given that they guarantee an integrality gap of zero,
by zLP − zI P ≤ (d + 1) − ω = g = 0, we did not expect this phenomenon to be
so widespread. In fact, even the instance Cit-HepTh is solved at the root, despite
having a clique-core gap of 15. At first, we suspected this to be an error, but a deeper
analysis confirms the result; the root LP solution is indeed integral. Figure 5 shows the
(complement) subgraph G[S j ] associated with the subproblem j that the LP selects.
The top row of vertices, which form a clique in G[S j ], are selected by the LP, and the
bottom vertices are not. Depicted in the figure are vertical edges that form a matching
between the head (bottom row) and the crown (top row). The conflict constraints
associated with this matching show that the crown is optimal for the subproblem’s LP.
For more, we refer the reader to the influential paper [62] and the textbook [26] for
more on crown decomposition.

Inspecting the MIP solve times, we see that the conflict-Balas model is the clear
winner on the DIMACS10 and SNAP instances. It is followed by the sparse-Jeroslow
model in (a distant) second place, the sparse model in third, and the conflict model
in (a distant) fourth place. Meanwhile, on the DIMACS2 instances, the situation is
much different, almost the reverse, with the conflict model in first place, and the
conflict-Balas model in last place. To explain this behavior, recall that the clique
MIPs developed in this paper are designed to exploit sparsity, but the hamming graphs
are quite dense. They have lost their size advantage and with little gain in terms of
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Fig. 6 Constraint matrices for the conflict, sparse, conflict-Balas, and sparse-Jeroslowmodels on the graphs
email (top row) and hamming8-4 (bottom)

strength. Figure 6 illustrates the models’ constraint matrices when applied to email
and hamming8-4.

Finally, we observe that even though the new clique MIPs outperform previously
existing MIPs, they cannot compete with combinatorial algorithms for the maximum
clique problem like those of [66,69,71]. For example, Walteros and Buchanan [71]
report solving the instanceweb-NotreDame in 0.07 s.Meanwhile, the conflict-Balas
model takes 201.28 s to solve, and the conflict, sparse, and sparse-Jeroslow models
cannot even be built in the one-hour time limit. The MIP overhead is too costly.

7 Conclusion and future research

In this paper, we observe that the usual conflict-based IP formulation for the maximum
clique problem has several undesirable properties. Specifically, when it is applied to
sparse, real-life graphs, it has a weak LP relaxation, it involves a large number of
constraints, and it can take �(ϕn) branch-and-bound nodes to solve, where ϕ ≈
1.618 denotes the golden ratio. Even on easy instances with zero clique-core gap
g := (d + 1) − ω, it can visit �(1.2599n) nodes, regardless of the node-selection
strategy. An alternative sparse formulation, which aggregates the conflict constraints
into big-M constraints, is shown to be smaller,�(n+m), but still lacks other desirable
worst-case properties.

In response, we conceive of four new MIPs for the clique problem that take inspi-
ration from the literature on disjunctive extended formulations and clique finding. Of
these four MIPs, two are detailed and analyzed. The sparse-Jeroslow model, which
is the smallest and weakest of the four, requires �(n + m) nonzeros. It achieves an
LP bound of at most d + 1, implying that its (absolute) integrality gap is at most the
clique-core gap. With a simple branch-and-bound algorithm, it is solved in O(2dn)

nodes. Further, when the clique-core gap is zero, it is solved in at most 2n nodes. The
conflict-Balas model is the strongest and (possibly) largest of the four new MIPs. We
prove that the simplest of branch-and-bound algorithms solves it in O(ϕdn) nodes,
and also exhibit a class of instances for which �(ϕdn) nodes are visited. Moreover,
when it is solved with a best-bound node selection strategy, we show that it visits
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O(2gn) nodes. Walteros and Buchanan [71] observed that on sparse, real-life graphs,
the clique-core gap g can often be treated as a (small) constant—over half of their
instances have g ∈ {0, 1, 2}. In this case, the conflict-Balas model visits just O(n)

nodes. Experiments on real-life instances show that the conflict-Balas model indeed
visits very few nodes in practice; in fact, the LP solution is integral in most cases.

Nevertheless, the clique MIPs proposed here cannot compete with purely com-
binatorial methods, largely due to the overhead required for the LP relaxations. An
alternative approach to ours would be to construct and solve n different MIPs, one
for each of the (small) subproblems identified in Lemma 1, and report the best solu-
tion found. By Proposition 2, this would visit a combined O(ϕdn) branch-and-bound
nodes if using the conflict, dense, or sparse models. One practical disadvantage to
such an approach is that it is not known up front which subproblem will contain the
best solution. In an unlucky scenario, one may spend considerable effort on the first
subproblem, only to find out the princess is in another castle; meanwhile, the princess
is waiting unguarded in the n-th castle to be visited. To avoid such a scenario, one may
want to go back-and-forth between the subproblems, working a little on whichever
one is currently most promising. This is the idea behind the best-bound node selection
strategy that leads to a O(2gn) bound for the conflict-Balas model. Such a back-and-
forth strategy would be nontrivial to implement if using the MIP solver as a black box.
However, we are able to mimic this with the conflict-Balas model in one black-box
call to the MIP solver.

The new clique MIPs may also be practically relevant for variants and extensions
that are not puremaximum clique problems, but still have clique-like sub-structures. In
analogous examples, the shortest path problem and minimum spanning tree problem
can be solved very quicklywith specialized combinatorial algorithms, but the ability to
express them via an integer program is nevertheless useful. When other constraints are
added to them, a general-purpose MIP solver can still be used without much trouble.

In futurework, it would be interesting to seewhether known classes of valid inequal-
ities that are useful in practice for the clique problem lead to nontrivial bounds on the
number of branch-and-bound nodes. Additionally, what guarantees, if any, come from
a branch-and-bound algorithmwhere the Lovász theta semidefinite program is used as
the boundingmechanism instead of an LP relaxation? This would be particularly inter-
esting, as this relaxation “includes” all maximal independent set inequalities [43,51].
Similar questions would be interesting for other problems besides clique. For a given
problem, what is the best-performing formulation in practice? Does it come with
worst-case branch-and-bound guarantees? If the associated worst-case guarantees are
inadequate, can an alternative formulation be developed that performs better in theory?
Is it more practical than existing MIPs?
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