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Abstract
A particularly important substructure in modeling joint linear chance-constrained pro-
grams with random right-hand sides and finite sample space is the intersection of
mixing sets with common binary variables (and possibly a knapsack constraint). In
this paper, we first revisit basic mixing sets by establishing a strong and previously
unrecognized connection to submodularity. In particular, we show thatmixing inequal-
ities with binary variables are nothing but the polymatroid inequalities associated with
a specific submodular function. This submodularity viewpoint enables us to unify and
extend existing results on valid inequalities and convex hulls of the intersection ofmul-
tiple mixing sets with common binary variables. Then, we study such intersections
under an additional linking constraint lower bounding a linear function of the continu-
ous variables. This is motivated from the desire to exploit the information encoded in
the knapsack constraint arising in joint linear CCPs via the quantile cuts. We propose
a new class of valid inequalities and characterize when this new class along with the
mixing inequalities are sufficient to describe the convex hull.

Mathematics Subject Classification 90-08 · 90-10 · 90C10 · 90C11 · 90C15 · 90C27 ·
90C57

B Dabeen Lee
dabeenl@ibs.re.kr

Fatma Kılınç-Karzan
fkilinc@andrew.cmu.edu

Simge Küçükyavuz
simge@northwestern.edu

1 Tepper School of Business, Carnegie Mellon University, Pittsburgh, PA 15213, USA

2 Department of Industrial Engineering and Management Sciences, Northwestern University,
Evanston, IL 60208, USA

3 Discrete Mathematics Group, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10107-021-01688-1&domain=pdf
http://orcid.org/0000-0002-3802-1371


284 F. Kılınç-Karzan et al.

1 Introduction

Given integers n, k ≥ 1, a matrix W = {
wi, j

} ∈ Rn×k+ , a vector � ∈ Rk+ and a
nonnegative number ε ≥ 0, we consider the mixed-integer set defined by

y j + wi, j zi ≥ wi, j , ∀i ∈ [n], ∀ j ∈ [k], (1a)

y j ≥ � j , ∀ j ∈ [k], (1b)

y1 + · · · + yk ≥ ε +
∑

j∈[k]
� j , (1c)

y ∈ Rk, z ∈ {0, 1}n . (1d)

We denote this set by M(W , �, ε). When W ∈ Rn×k+ , constraints (1a) are often
called big-M constraints, and constraints (1b) impose lower bounds on the continuous
variables y. Notice that (1c) is a constraint linking all continuous variables, but it
is non-redundant only if ε is strictly positive. We will refer to (1c) as the linking
constraint. When k = 1, � = 0, and ε = 0, the set M(W , �, ε) is nothing but what
is commonly referred to as the mixing set (with binary variables) in the literature
[1,16,20,24,41]. Sets of the formM(W , 0, 0) for general k > 1 were first considered
by Atamtürk et al. [5]; we will call the set M(W , 0, 0) a joint mixing set in order to
emphasize that k can be taken to be strictly greater than 1. We will refer to a set of the
formM(W , �, ε) for general �, ε as a joint mixing set with lower bounds. Finally, we
will refer to a set of the form M(W , 0, ε) for general ε as a joint mixing set with a
linking constraint.

Our motivation for studying the structure of M(W , �, ε) comes from joint lin-
ear chance-constrained programs (CCPs) with right-hand side uncertainty: given a
probability space (�,F ,P), a joint linear CCP with right-hand side uncertainty is an
optimization problem of the following form:

min h�x (2a)

s.t. P
[
Ax ≥ b(ξ)

] ≥ 1 − ε (2b)

x ∈ X ⊆ Rm, (2c)

whereX ⊆ Rm is a domain for the decision variables x, ε ∈ (0, 1) is a risk level, b(ξ) ∈
Rk is the random right-hand side vector that depends on the random variable ξ ∈ �,
and A, h are matrices of appropriate dimension. For k = 1 (resp., k > 1), inequality
(2b) is referred to as an individual (resp., joint) chance constraint. Here, we seek to
find a solution x ∈ X satisfying the chance constraint (2b), enforcing that Ax ≥ b(ξ)

holds with probability at least the given confidence level 1 − ε, while minimizing
the objective (2a). Joint chance constraints are used to model risk-averse decision-
making problems in various applications, such as supply chain logistics [17,18,26,38],
chemical processes [14,15], water quality management [32], and energy [33] (see [28]
for further background and an extensive list of applications).

Problems with joint chance constraints are known to be notoriously challenging
because the resulting feasible region is nonconvex even if all other constraints x ∈ X
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and the restrictions inside the chance constraints are convex. Moreover, the sample
space � is typically continuous in practice, and the probability distribution P quan-
tifying the uncertainty is often unavailable to the decision-maker. Consequently, the
classical solution method is to use the Sample Average Approximation (SAA). The
basic idea of SAA is to approximate � via a set of sample scenarios ξ1, . . . , ξn and
reduce the problem to the case with a finite-sample distribution; we refer the interested
reader to [7,8,23] for further details of SAA for CCPs.

Inspired by this, joint linear CCPs with the finite sample space assumption have
been extensively studied in the literature [1,16,20,24,41]. That is to assume that � =
{
ξ1, . . . , ξn

}
for some integer n ≥ 1 and that P

[
ξ = ξ i

]
= pi for i ∈ [n] for some

p1, . . . , pn ≥ 0 with
∑

i∈[n] pi = 1, where for any positive integer n, we define [n] to
be the set {1, . . . , n}. Under this setting, Luedtke et al. [24], Ruszczyński [30] observed
that the joint linear CCP, defined by (2), can be reformulated as a mixed-integer linear
program as follows:

min h�x (3a)

s.t. x ∈ X ⊆ Rm, Ax = b + y, (3b)

y j ≥ wi, j (1 − zi ), ∀i ∈ [n], ∀ j ∈ [k], (3c)
∑

i∈[n]
pi zi ≤ ε, (3d)

y ∈ Rk+, z ∈ {0, 1}n, (3e)

where b ∈ Rk is some vector satisfying b(ξ i ) ≥ b for all i andwi = (wi,1, . . . , wi,k)
�

denotes b(ξ i ) − b. Note that by definition of b, it follows that the data vector wi is
nonnegative for all i ∈ [n]. Observe that Ax ≥ b are implicit inequalities, due to the
chance constraint (2b) with 1 − ε > 0. Here, zi is introduced as an indicator variable
to model the event Ax ≥ b(ξ i ). More precisely, when zi = 0, the constraints (3c)
enforce that y ≥ wi holds and thus Ax ≥ b(ξ i ) is satisfied. On the other hand, when
zi = 1, it follows that y ≥ 0 and Ax ≥ b, which is satisfied by default. Therefore,
constraints (3c) are referred to as big-M constraints. Finally, (3d) enforces that the
probability of Ax ≥ b(ξ i ) being violated is at most ε.

The size of the deterministic equivalent formulation of the joint CCP given by (3)
grows linearlywith the number of scenarios.Unfortunately, such a reformulation based
on big-M constraints comes with the disadvantage that the corresponding relaxations
obtained by relaxing the binary variables into continuous are weak. Thus, in order
to achieve effectiveness in practical implementation, these reformulations must be
strengthened with additional valid inequalities.

A particularly important and widely applicable class of valid inequalities that
strengthen the big-M reformulations of CCPs rely on a critical specific substructure in
the formulation (3), called a mixing set with binary variables; see e.g., Luedtke et al.
[24] and Küçükyavuz [16]. Formally, given nonnegative coefficients w1, j , . . . , wn, j ,
a mixing set with binary variables is defined as follows:

MIX j := {
(y j , z) ∈ R+ × {0, 1}n : y j + wi, j zi ≥ wi, j , ∀i ∈ [n]} ;
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286 F. Kılınç-Karzan et al.

hence the set defined by (3c) and (3e), i.e.,

{
( y, z) ∈ Rk+ × {0, 1}n : y j + wi, j zi ≥ wi, j , ∀i ∈ [n], ∀ j ∈ [k]

}
,

is nothing but a jointmixing set that shares commonbinary variables z, but independent
continuous variables y j , j ∈ [k]. Here, note that the set defined by (3c) and (3e) is
precisely M(W , �, ε) when � = 0 and ε = 0. Also, it is worthwhile to note that
the constraint (3d) is a knapsack constraint. Therefore, the formulation (3) can be
strengthened by the inclusion of valid inequalities originating from the set defined by
(3c)–(3e).

The term mixing set is originally coined by Günlük and Pochet [13] for the sets of
the form

GMIX := {
(y, z) ∈ R+ × Zn : y + uzi ≥ qi , ∀i ∈ [n]} ,

where the parameters are u ∈ R+ and q = (q1, . . . , qn)� ∈ Rn . Such sets GMIX
with general integer variables have applications in lot sizing and capacitated facility
location problems; see e.g., [10,11,13,25,40] (see also [34] for a survey of the area).
For mixing sets with general integer variables such as GMIX defined above, Günlük
and Pochet [13] introduced the so-called mixing inequalities—an exponential family
of linear inequalities that admits an efficient separation oracle—and showed that this
class of inequalities are sufficient to describe the associated convex hull of the sets
GMIX. In fact, prior to [13], in the context of lot-sizing problems, Pochet and Wolsey
[27, Theorem 18] obtained the same result, albeit without using the naming convention
of mixing sets/inequalities. Furthermore, the equivalence of MIX j and GMIX under
the additional domain restrictions z ∈ {0, 1}n and the assumption u ≥ maxi qi is
immediate. The appearance of mixing sets with binary variables dates back to the
work of Atamtürk et al. [5] on vertex covering. Essentially, it was shown in [5] that
the intersection of several sets of the form MIX j with common binary variables z but
separate continuous variables y j , j ∈ [k] can be characterized by the intersection of
the corresponding star inequalities; see [5, Theorem 3]. Furthermore, it is well-known
[24] thatmixing inequalities forMIX j are equivalent to the star inequalities introduced
in [5]. We will give a formal definition of mixing (star) inequalities for mixing sets
with binary variables in Sect. 3.

Due to the importance of their use in joint CCPs, the mixing (with knapsack)
substructure (3c)–(3e) present in the reformulations of joint CCPs has received a lot
of attention in the more recent literature.

• For general k, i.e., when the number of linear constraints inside the chance con-
straint is more than one, Atamtürk et al. [5] proved that the convex hull of a joint
mixing set of the form (3c) and (3e), which is equivalent to M(W , 0, 0), can be
described by applying the mixing inequalities.

• For k = 1, Luedtke et al. [24], Küçükyavuz [16], and Abdi and Fukasawa [1]
suggested valid inequalities for a single mixing set subject to the knapsack con-
straint (3d).
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• For general k, Küçükyavuz [16] and Zhao et al. [41] proposed valid inequalities
for a joint mixing set with a knapsack constraint.

Luedtke et al. [24] showed that the problem is NP-hard for k > 1 even when the
restrictions inside the chance constraints are linear and each scenario has equal prob-
ability, in which case the knapsack constraint (3d) becomes a cardinality constraint.
However, Küçükyavuz [16] argued that the problem for k = 1 under equiprobable
scenarios is polynomial-time solvable and gave a compact and tight extended for-
mulation based on disjunctive programming. Note that while not explicitly stated in
Küçükyavuz [16], when k = 1 the polynomial-time solvability argument extends for
the unequal probability case.

Many of these prior works aim to convexify a (joint) mixing set with a knapsack
constraint directly. In contrast, in our paper we exploit the knapsack structure through
an indirect approach based on quantile inequalities. Given c ∈ Rk+ and δ > 0, the
(1 − δ)-quantile for c� y is defined as

qc,δ := min

⎧
⎨

⎩
c� y :

∑

i∈[n]
pi zi ≤ δ, ( y, z) satisfies (3c), (3e)

⎫
⎬

⎭
,

and the inequality c� y ≥ qc,δ is called a (1− δ)-quantile cut. By definition, a (1− ε)-
quantile cut is valid for the solutions satisfying (3c)–(3e). The quantile cuts have been
studied in [2,19,22,29,31,36], and their computational effectiveness has been observed
in practice. As opposed to mixing sets and associated mixing inequalities, the quantile
cuts link many continuous variables together; it is plausible to conjecture that this
linking of the continuous variables is the one of the main sources of their effectiveness
in practice.

The structure of a joint mixing set with lower boundsM(W , �, ε), defined in (1), is
flexible enough to simultaneously work with quantile cuts. For j ∈ [k], let � j denote
the (1 − ε)-quantile for c� y = y j . Then, for any j ∈ [k], we have

� j = min

{
max
i∈[n]

{
wi, j (1 − zi )

} : z satisfies (3d), (3e)

}
.

Note that � j can be computed in O(n log n) time, because without loss of generality
we can assume w1, j ≥ · · · ≥ wn, j after possible reordering of [n], and the optimum
value of the above optimization problem is preciselywt, j where t is the index such that∑

i≤t−1 pi ≤ ε and
∑

i≤t pi > ε. Although the (1− ε)-quantile for
∑

j∈[k] y j seems
harder to compute, at least we know that the value is greater than or equal to

∑
j∈[k] � j .

Therefore, we have quantile cuts y j ≥ � j for j ∈ [k] and∑ j∈[k] y j ≥ ε +∑
j∈[k] � j

for some ε ≥ 0, and the set defined by these quantile cuts and the constraints (3c), (3e)
is precisely a set of the form M(W , �, ε). Similarly, it is straightforward to capture
the quantile cut c� y ≥ ε +∑

j∈[k] c j� j for general c ∈ Rk+, because we can rewrite
y j ≥ � j for j ∈ [k], (3c) and (3e) in terms of c1y1, . . . , c j y j , and thus the resulting
system is equivalent to a joint mixing set with lower bounds.

Next, we summarize our contributions and provide an outline of the paper.
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1.1 Contributions and outline

In this paper, we study the polyhedral structure ofM(W , �, ε), i.e., joint mixing sets
with lower bounds, mainly in the context of joint linear CCPs with random right-hand
sides and a discrete probability distribution. Our approach is based on a connection
between mixing sets and submodularity that has been overlooked in the literature.
Therefore, in Sect. 2.1,wefirst discuss basics of submodular functions andpolymatroid
inequalities as they relate to our work. In addition, we devote Sect. 2.2 to establish
new tools on a particular joint submodular structure; these new tools play a critical
role in our analysis of the joint mixing sets.

Our contributions are as follows:

(i) We first establish a strong and somewhat surprising connection between polyma-
troids and the basic mixing sets with binary variables (Sect. 3). It is well-known
that submodularity imposes favorable characteristics in terms of explicit convex
hull descriptions via known classes of inequalities and their efficient separation.
In particular, the idea of utilizing polymatroid inequalities from submodular
functions has appeared in various papers in other contexts for specific binary
integer programs [3,4,6,35,37,39]. Notably, mixing sets have been known to
be examples of simple structured sets whose convex hull descriptions possess
similar favorable characteristics. However, to the best of our knowledge, the con-
nection between submodularity and mixing sets has not been recognized before.
Establishing this connection enables us to unify and generalize various existing
results on mixing sets with binary variables.

(ii) In Sect. 4, we propose a new class of valid inequalities, referred to as the aggre-
gated mixing inequalities, for the set M(W , �, ε). One important feature of
the class of aggregated mixing inequalities as opposed to the standard mixing
inequalities is that it is specifically designed to simultaneously exploit the infor-
mation encoded in multiple mixing sets with common binary variables.

(iii) In Sect. 5, we establish conditions under which the convex hull of the set
M(W , �, ε) can be characterized through a submodularity lens.We show that the
new class of aggregated mixing inequalities, in addition to the classical mixing
inequalities, are sufficient under appropriate conditions.

(iv) In Sect. 6, we revisit the results from a recent paper by Liu et al. [20] onmodeling
two-sided CCPs. We show that mixing sets of the particular structure considered
in Liu et al. [20] is nothing but a joint mixing set with lower bound structure with
k = 2 and two additional constraints involving only the continuous variables y.
Thus, our results on aggregatedmixing inequalities are immediately applicable to
two-sided CCPs. In addition, we show that, due to the simplicity of the additional
constraints on the variables y in two-sided CCPs, our general convex hull results
onM(W , �, ε) can be extended easily to accommodate the additional constraints
on y and recover the convex hull results from [20].

Finally, we would like to highlight that although our results are motivated by joint
CCPs, they are broadly applicable to other settings where the intersection of mixing
sets with common binary variables is present. In addition, applicability of our results
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from Sect. 2.2 extend to other cases where epigraphs of general submodular functions
appear in a similar structure.

1.2 Notation

Given a positive integer n, we let [n] := {1, . . . , n}. We let 0 denote the vector of all
zeros whose dimension varies depending on the context, and similarly, 1 denotes the
vector of all ones. ej denotes the unit vectorwhose j th coordinate is 1, and its dimension
depends on the context. For V ⊆ [n], 1V ∈ {0, 1}n denotes the characteristic vector,
or the incidence vector, of V . For a set Q, we denote its convex hull and the extreme
points of its convex hull by conv(Q) and ext(Q) respectively. For t ∈ R, (t)+ denotes
max{0, t}. Given a vector π ∈ Rn , and a set V ⊆ [n], we define π(V ) = ∑

i∈V πi .
For notational purposes, when S = ∅, we define maxi∈S si = 0 and

∑
i∈S si = 0.

2 Submodular functions and polymatroid inequalities

In this section, we start with a brief review of submodular functions and polymatroid
inequalities, and then in Sect. 2.2 we establish tools on joint submodular constraints
that are useful for our analysis of M(W , �, ε).

2.1 Preliminaries

Consider an integer n ≥ 1 and a set function f : 2[n] → R. Recall that f is submodular
if

f (A) + f (B) ≥ f (A ∪ B) + f (A ∩ B), ∀A, B ⊆ [n].

Given a submodular set function f , Edmonds [12] introduced the notion of extended
polymatroid of f, which is a polyhedron associated with f defined as follows:

EPf := {
π ∈ Rn : π(V ) ≤ f (V ), ∀V ⊆ [n]} . (4)

Observe that EPf is nonempty if and only if f (∅) ≥ 0. In general, a submodular
function f need not satisfy f (∅) ≥ 0. Nevertheless, it is straightforward to see that the
function f − f (∅) is submodular whenever f is submodular, and that ( f − f (∅))(∅) =
0. Hence, EPf − f (∅) is always nonempty. Hereinafter, we use notation f̃ to denote
f − f (∅) for any set function f .
A function on {0, 1}n can be interpreted as a set function over the subsets of [n],

and thus, the definitions of submodular functions and extended polymatroids extend
to functions over {0, 1}n . To see this, consider any integer n ≥ 1 and any function
f : {0, 1}n → R. With a slight abuse of notation, define f (V ) := f (1V ) for V ⊆ [n]
where 1V denotes the characteristic vector of V . We say that f : {0, 1}n → R is
a submodular function if the corresponding set function over [n] is submodular. We
can also define the extended polymatroid of f : {0, 1}n → R as in (4). Throughout
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this paper, given a function f : {0, 1}n → R, we will switch between its set function
interpretation and its original form, depending on the context.

Given a submodular function f : {0, 1}n → R, its epigraph is the mixed-integer
set given by

Q f = {
(y, z) ∈ R × {0, 1}n : y ≥ f (z)

}
.

It is well-known that when f is submodular, one can characterize the convex hull of
Q f through the extended polymatroid of f̃ .

Theorem 2.1 (Lovász [21], Atamtürk and Narayanan [4, Proposition 1]) Let f :
{0, 1}n → R be a submodular function. Then

conv(Q f ) =
{
(y, z) ∈ R × [0, 1]n : y ≥ π�z + f (∅), ∀π ∈ EPf̃

}
.

The inequalities y ≥ π�z+ f (∅) for π ∈ EPf̃ are called the polymatroid inequal-
ities of f . Although there are infinitely many polymatroid inequalities of f , for the
description of conv(Q f ), it is sufficient to consider only the ones corresponding to the
extreme points of EPf̃ .We refer to the polymatroid inequalities defined by the extreme
points of EPf̃ as the extremal polymatroid inequalities of f. Moreover, Edmonds [12]
provided the following explicit characterization of the extreme points of EPf̃ .

Theorem 2.2 (Edmonds [12]) Let f : {0, 1}n → R be a submodular function. Then
π ∈ Rn is an extreme point of E P f̃ if and only if there exists a permutation σ of [n]
such that πσ(t) = f (Vt ) − f (Vt−1), where Vt = {σ(1), . . . , σ (t)} for t ∈ [n] and
V0 = ∅.

The algorithmic proof of Theorem 2.2 from Edmonds [12] is of interest. Suppose

that we are given a linear objective z̄ ∈ Rn ; then maxπ

{
z̄�π : π ∈ EPf̃

}
can be

solved by the following “greedy” algorithm: given z̄ ∈ Rn , first find an ordering σ

such that z̄σ(1) ≥ · · · ≥ z̄σ(n), and let Vt := {σ(1), . . . , σ (t)} for t ∈ [n] and V0 = ∅.
Then, π ∈ Rn where πσ(t) = f (Vt ) − f (Vt−1) for t ∈ [n] is an optimal solution to

maxπ

{
z̄�π : π ∈ EPf̃

}
. Note that the implementation of this algorithm basically

requires a sorting algorithm to compute the desired ordering σ , and this can be done
in O(n log n) time. Thus, the overall complexity of this algorithm is O(n log n).

Consequently, given a point (ȳ, z̄) ∈ R × Rn , separating a violated polymatroid

inequality amounts to solving the optimization problem maxπ

{
z̄�π : π ∈ EPf̃

}
,

and thus we arrive at the following result.

Corollary 1 (Atamtürk and Narayanan [4, Section 2]) Let f : {0, 1}n → R be a
submodular function. Then the separation problem for polymatroid inequalities can
be solved in O(n log n) time.
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2.2 Joint submodular constraints

In this section, we establish tools that will be useful throughout this paper. Recall that
when f is submodular, the convex hull of its epigraph Q f is described by the extremal
polymatroid inequalities of f . Henceforth, we use the restriction (y, z) ∈ conv(Q f )

as a constraint to indicate the inclusion of the corresponding extremal polymatroid
inequalities of f in the constraint set.

Let f1, . . . , fk : {0, 1}n → R be k submodular functions. Let us examine the
convex hull of the following mixed-integer set:

Q f1,..., fk :=
{
( y, z) ∈ Rk × {0, 1}n : y1 ≥ f1(z), . . . , yk ≥ fk(z)

}
.

When k = 1, the set Q f1 is just the epigraph of the submodular function f1 on {0, 1}n .
For general k, Q f1,..., fk is described by k submodular functions that share the same set
of binary variables. For ( y, z) ∈ Q f1,..., fk , constraint y j ≥ f j (z) can be replaced with
(y j , z) ∈ Q f j for j ∈ [k]. Therefore, the polymatroid inequalities of f j with left-hand
side y j , of the form y j ≥ π�z+ f j (∅)with π ∈ EPf̃ j

, are valid for Q f1,..., fk . In fact,
these inequalities are sufficient to describe conv(Q f1,..., fk ) as well.

Proposition 1 (Baumann et al. [6, Theorem 2]) Let the functions f1, . . . , fk :
{0, 1}n → R be submodular. Then,

conv
(
Q f1,..., fk

) =
{
( y, z) ∈ Rk × [0, 1]n : (y j , z) ∈ conv(Q f j ), ∀ j ∈ [k]

}
.

By Proposition 1, when f1, . . . , fk are submodular, conv
(
Q f1,..., fk

)
can be

described by the polymatroid inequalities of f j with left-hand side y j for j ∈ [k].
The submodularity requirement on all of the functions f j in Proposition 1 is indeed
critical. We demonstrate in the next example that even when k = 2, and only one
of the functions fi is not submodular, we can no longer describe the corresponding
convex hull using the polymatroid inequalities for f j .

Example 1 Let f1, f2 : {0, 1}2 → R be defined by

f1(0, 0) = f1(1, 1) = 0, f1(0, 1) = f1(1, 0) = 1

and f2(0, 0) = f2(1, 1) = 1, f2(0, 1) = f2(1, 0) = 0.

While f1 is submodular, f2 is not. Since f1(0, 0) = f1(1, 1) = 0, we deduce that
(0, 1/2, 1/2) ∈ conv(Q f1). Similarly, as f2(0, 1) = f2(1, 0) = 0, it follows that
(0, 1/2, 1/2) ∈ conv(Q f2). This implies that

(0, 0, 1/2, 1/2) ∈
{
( y, z) ∈ R2 × [0, 1]2 : (y1, z) ∈ conv(Q f1), (y2, z) ∈ conv(Q f2)

}
.

Notice that, by definition of f1, f2, we have f1(z) + f2(z) = 1 for each z ∈ {0, 1}2,
implying in turn that y1 + y2 ≥ 1 is valid for conv

(
Q f1, f2

)
. Therefore, the point
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(0, 0, 1/2, 1/2) cannot be in conv
(
Q f1, f2

)
. So, it follows that conv

(
Q f1, f2

) �={
( y, z) ∈ R2 × [0, 1]2 : (y j , z) ∈ conv(Q f j ), ∀ j ∈ [2]}.
In Sect. 3, we will discuss how Proposition 1 can be used to provide the convex

hull description of a joint mixing setM(W , 0, 0).
We next highlight a slight generalization of Proposition 1 that is of interest for

studyingM(W , �, ε). Observe that Q f1,..., fk is defined by multiple submodular con-
straints with independent continuous variables y j . We can replace this independence
condition by a certain type of dependence. Consider the following mixed-integer set:

P =
{
( y, z) ∈ Rk × {0, 1}n : a�

1 y ≥ f1(z), . . . , a�
m y ≥ fm(z)

}
(5)

where a1, . . . , am ∈ Rk+\{0} and f1, . . . , fm : {0, 1}n → R are submodular functions.
Here, m can be larger than k, so a1, . . . , am need not be linearly independent. Now
consider α = ∑

j∈[m] c jaj for some c ∈ Rm+. Notice that fα ≥ ∑
j∈[m] c j f j where

fα : {0, 1}n → R is defined as

fα(z) := min
{
α� y : ( y, z) ∈ P

}
, ∀z ∈ {0, 1}n . (6)

Definition 1 We say that a�
1 y, . . . , a�

m y are weakly independent with respect to
f1, . . . , fm if for any α = ∑

j∈[m] c jaj with c ∈ Rm+, we have fα = ∑
j∈[m] c j f j .

It is straightforward to see that if a1, . . . , am are distinct unit vectors, i.e., m = k
and a�

j y = y j for j ∈ [k], then a�
1 y, . . . , a�

m y are weakly independent. It is also

easy to see that if a1, . . . , am are linearly independent, then a�
1 y, . . . , a�

m y are weakly
independent. Based on this definition, we have the following slight extension of Propo-
sition 1.

Proposition 2 Let P be defined as in (5). If a�
1 y, . . . , a�

m y are weakly independent
with respect to f1, . . . , fm, then

conv (P) =
{
( y, z) ∈ Rk × [0, 1]n : (a�

j y, z) ∈ conv(Q f j ), ∀ j ∈ [m]
}

.

Proof DefineR :=
{
( y, z) ∈ Rk × [0, 1]n : (a�

j y, z) ∈ conv(Q f j ), ∀ j ∈ [m]
}
. It is

clear that conv (P) ⊆ R. For the direction conv (P) ⊇ R, we need to show that any
inequality α� y+β�z ≥ γ valid for conv (P) is also valid forR. To that end, take an
inequality α� y + β�z ≥ γ valid for conv (P). Note that every recessive direction of
conv(P) is of the form (r, 0) for some r ∈ Rk . Moreover, (r, 0) is a recessive direction
of conv(P) if and only if r satisfies a�

j r ≥ 0 for all j ∈ [m]. Since α� y + β�z ≥ γ

is valid for conv (P), α�r ≥ 0 for every recessive direction (r, 0) of conv(P), and
therefore, α�r ≥ 0 holds for all r ∈ {r ∈ Rk : a�

j r ≥ 0, ∀ j ∈ [m]}. Then, by
Farkas’ lemma, there exists some c ∈ Rm+ such that α = ∑

j∈[m] c jaj. Moreover,

α� y + β�z ≥ γ is valid for

Q :=
{
( y, z) ∈ Rk × {0, 1}n : α� y ≥ fα(z)

}
,
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where fα is defined as in (6). Since a�
1 y, . . . , a�

m y areweakly independentwith respect
to f1, . . . , fm , it follows that fα = ∑

j∈[m] c j f j , and therefore, fα is submodular.
Then it is not difficult to see that

conv(Q) =
{
( y, z) ∈ Rk × [0, 1]n : (α� y, z) ∈ conv(Q fα )

}
.

Therefore, to show that α� y + β�z ≥ γ is valid for R, it suffices to argue that
R ⊆ conv(Q). Let ( ȳ, z̄) ∈ R. Then, by Theorem 2.1, it suffices to show that α� ȳ ≥
π� z̄ + fα(∅) holds for every extreme point π of EPf̃α

. To this end, take an extreme
point π of EPf̃α

. By Theorem 2.2, there exists a permutation σ of [n] such that
πσ(t) = fα(Vt ) − fα(Vt−1) where Vt = {σ(1), . . . , σ (t)} for t ∈ [n] and V0 = ∅.
Now, for j ∈ [m], let π j ∈ Rn be the vector such that π j

σ(t) = f j (Vt ) − f j (Vt−1)

for t ∈ [n]. Then, we have π = ∑
j∈[m] c jπ j because fα = ∑

j∈[m] c j f j . Moreover,

by Theorem 2.2, π j is an extreme point of EPf̃ j
. Hence, due to our assumption that

(a�
j ȳ, z̄) ∈ conv(Q f j ), Theorem 2.1 implies a�

j ȳ ≥ (π j )� z̄ + π j (∅) is valid for all

j ∈ [m]. Since α� ȳ ≥ π� z̄+ fα(∅) is obtained by adding up a�
j ȳ ≥ (π j )� z̄+π j (∅)

for j ∈ [m], it follows that α� ȳ ≥ π� z̄ + fα(∅) is valid, as required. We just have
shown that R ⊆ conv(Q), thereby completing the proof. ��

In Sect. 5, we will use Proposition 2 to study the convex hull of M(W , 0, ε), i.e.,
a joint mixing set with a linking constraint. Again, the submodularity assumption on
f1, . . . , fm is important in Proposition 2. Recall that Example 1 demonstrates that in
Proposition 2 even when m is taken to be equal to k and the vectors aj ∈ Rk+ \ {0},
j ∈ [m] = [k], are taken to be the unit vectors in Rk , the statement does not hold if
one of the functions f j is not submodular.

3 Mixing inequalities and joint mixing sets

In this section, we establish that mixing sets with binary variables are indeed nothing
but the epigraphs of certain submodular functions. In addition, through this submodu-
larity lens, we prove that the well-known mixing (or star) inequalities for mixing sets
are nothing but the extremal polymatroid inequalities.

Recall that a joint mixing set with lower bounds M(W , �, ε), where W ∈ Rn×k+ ,
� ∈ Rk+ and ε ≥ 0, is defined by (1). In this section, we study the case when ε = 0,
and characterize the convex hull of M(W , �, 0) for any W ∈ Rn×k+ and � ∈ Rk+. As
corollaries, we prove that the famous star/mixing inequalities are in fact polymatroid
inequalities, and we recover the result of Atamtürk et al. [5, Theorem 3] on joint
mixing sets M(W , 0, 0).

Given a matrix W = {wi, j } ∈ Rn×k+ and a vector � ∈ Rk+, we define the following
mixed-integer set:

P(W , �, ε) =
{
( y, z) ∈ Rk × {0, 1}n : (8)−(10)

}
(7)
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where

y j ≥ wi, j zi , ∀i ∈ [n], j ∈ [k], (8)

y j ≥ � j , ∀ j ∈ [k], (9)
∑

j∈[k]
y j ≥ ε +

∑

j∈[k]
� j . (10)

Remark 1 By definition, ( y, z) ∈ M(W , �, ε) if and only if ( y, 1− z) ∈ P(W , �, ε).
Thus, the convex hull of M(W , �, ε) can be obtained after taking the convex hull of
P(W , �, ε) and complementing the z variables.

For j ∈ [k], we define

f j (z) := max

{
� j , max

i∈[n]
{
wi, j zi

}}
, ∀z ∈ {0, 1}n . (11)

Then, the set P(W , �, 0) admits a representation as the intersection of epigraphs of
the functions f j (z):

P(W , �, 0) =
{
( y, z) ∈ Rk × {0, 1}n : y j ≥ f j (z), ∀ j ∈ [k]

}
.

We next establish that the functions f j (z), j ∈ [k] are indeed submodular.

Lemma 1 Let � ∈ Rk+. For each j ∈ [k], the function f j defined as in (11) satisfies
f j (∅) = � j and it is submodular.

Proof Let j ∈ [k]. Notice that f j (∅) = f j (0) = max
{
� j , 0

} = � j . In order to
establish the submodularity of f j , for ease of notation, we drop the index j and use
f to denote f j . As before, for each V ⊆ [n], let f (V ) be defined as f (1V ) where
1V ∈ {0, 1}n denotes the characteristic vector of V . Consider two setsU , V ⊆ [n]. By
definition of f , we have max{ f (U ), f (V )} = f (U ∪ V ), and min{ f (U ), f (V )} ≥
f (U ∩ V ). Then we immediately get

f (U ) + f (V ) = max{ f (U ), f (V )} + min{ f (U ), f (V )} ≥ f (U ∪ V ) + f (U ∩ V ),

thereby proving that f j is submodular, as required. ��
Corollary 2 Let � ∈ Rk+ and f j be as defined in (11). Then,

conv(M(W , �, 0)) =
{
( y, z) ∈ Rk × [0, 1]n : (y j , 1 − z) ∈ conv(Q f j ), ∀ j ∈ [k]

}
,

i.e., the convex hull of M(W , �, 0) is given by the extremal polymatroid inequalities
of particular submodular functions.
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Proof We deduce from Proposition 1 that

conv(P(W , �, 0)) =
{
( y, z) ∈ Rk × [0, 1]n : (y j , z) ∈ conv(Q f j ), ∀ j ∈ [k]

}
,

which immediately implies the desired relation via Remark 1 and Theorem 2.1 since
the constraint (y j , 1 − z) ∈ conv(Q f j ) is equivalent to the set of the corresponding
extremal polymatroid inequalities. ��
Corollary 2 establishes a strong connection between the mixing sets with binary vari-
ables and the epigraphs of submodular functions, and implies that the convex hull of
joint mixing sets are given by the extremal polymatroid inequalities. To the best of our
knowledge this connection between mixing sets with binary variables and submodu-
larity has not been identified in the literature before.

An explicit characterization of the convex hull of a mixing set with binary vari-
ables in the original space has been studied extensively in the literature. Specifically,
Atamtürk et al. [5] gave the explicit characterization of conv(M(W , 0, 0)) in terms of
the so called mixing (star) inequalities. Let us state the definition of these inequalities
here.

Definition 2 We call a sequence { j1 → · · · → jτ } of indices in [n] a j-mixing-
sequence if w j1, j ≥ w j2, j ≥ · · · ≥ w jτ , j ≥ � j .

For W = {wi, j } ∈ Rn×k+ and � ∈ Rk+, the mixing inequality derived from a j-mixing-
sequence { j1 → · · · → jτ } is defined as the following (see [13, Section 2]):

y j +
∑

s∈[τ ]

(
w js , j − w js+1, j

)
z js ≥ w j1, j , (MixW ,�)

where w jτ+1, j := � j for convention. Atamtürk et al. [5, Proposition 3] showed that
the inequality (MixW ,�) for any j-mixing-sequence { j1 → · · · → jτ } is valid for
M(W , �, 0) when � = 0. Luedtke [22, Theorem 2] later observed that the inequal-
ity (MixW ,�) for any j-mixing-sequence { j1 → · · · → jτ } is valid for M(W , �, 0)
for any � ∈ Rk+.

Given these results from the literature on the convex hull characterizations of
mixing sets and Corollary 2, it is plausible to think that there must be a strong
connection between the extremal polymatroid inequalities and the mixing (star)
inequalities (MixW ,�). We next argue that the extremal polymatroid inequalities given
by the constraint (y j , 1− z) ∈ conv(Q f j ) are precisely the mixing (star) inequalities.

Proposition 3 Let W = {wi, j } ∈ Rn×k+ and � ∈ Rk+. Consider any j ∈ [k]. Then, for
every extreme point π of E Pf̃ j

, there exists a j-mixing-sequence { j1 → · · · → jτ } in
[n] that satisfies the following:
(1) w j1, j = max

{
wi, j : i ∈ [n]},

(2) the corresponding polymatroid inequality y j +∑
i∈[n] πi zi ≥ � j +∑

i∈[n] πi is
equivalent to the mixing inequality (MixW ,�) derived from the sequence { j1 →
· · · → jτ }.
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In particular, for any j ∈ [k], the extremal polymatroid inequality is of the form

y j +
∑

s∈[τ ]
(w js , j − w js+1, j )z js ≥ max

{
wi, j : i ∈ [n]} , (Mix∗

W ,�)

where w j1, j = max
{
wi, j : i ∈ [n]} and w jτ+1, j := � j .

Proof By Theorem 2.2, there exists a permutation σ of [n] such that πσ(t) = f j (Vt )−
f j (Vt−1) where Vt = {σ(1), . . . , σ (t)} for t ∈ [n] and V0 = ∅. By definition of f j
in (11), we have � j = f j (V0) ≤ f j (V1) ≤ · · · ≤ f j (Vn), because ∅ = V0 ⊂ V1 ⊂
· · · ⊂ Vn . Let {t1, . . . , tτ } be the collection of all indices t satisfying f j (Vt−1) <

f j (Vt ). Without loss of generality, we may assume that wσ(t1), j ≥ · · · ≥ wσ(tτ ), j .
Notice that wσ(tτ ), j > � j , because f j (Vtτ ) > f j (Vtτ −1) ≥ � j . Then, after setting
js = σ(ts) for s ∈ [τ ], it follows that { j1 → · · · → jτ } is a j-mixing-sequence.
Moreover, we have w j1, j = f j (Vt1) = f j ([n]) = max

{
wi, j : i ∈ [n]}. Therefore,

we deduce that πi = w js , j − w js+1, j if i = σ(ts) = js for some s ∈ [τ ] and πi = 0
otherwise. ��

As the name “mixing” inequalities is more commonly used in the literature than “star”
inequalities, we will stick to the term “mixing” hereinafter to denote the inequalities
of the form (MixW ,�) or (Mix∗

W ,�).
Proposition 1 and consequently Corollary 2 imply that, for any facet defining

inequality of the set conv(M(W , �, 0)), there is a corresponding extremal polymatroid
inequality. Proposition 3 implies that mixing inequalities are nothing but the extremal
polymatroid inequalities. Therefore, an immediate consequence of Corollary 2 and
Proposition 3 is the following result.

Theorem 3.1 Given W = {wi, j } ∈ Rn×k+ and any � ∈ Rk+, the convex hull of
M(W , �, 0) is described by the mixing inequalities of the form (Mix∗

W ,�) for j ∈ [k]
and the bounds 0 ≤ z ≤ 1.

A few remarks are in order.

Remark 2 First, note that Luedtke et al. [24, Theorem2] showed the validity of inequal-
ity (Mix∗

W ,�) and its facet condition for a particular choice of � ∈ Rk+ in the case of
k = 1. Also, recall that M(W , 0, 0) is called a joint mixing set, and Atamtürk et al.
[5, Theorem 3] proved that conv(M(W , 0, 0)) is described by the mixing inequali-
ties and the bound constraints y ≥ 0 and z ∈ [0, 1]n . Since Theorem 3.1 applies to
M(W , �, 0) for arbitrary �, it immediately extends [5, Theorem 3] and further extends
the validity inequality component of Luedtke et al. [24, Theorem 2].

Remark 3 Our final remark is that, since the mixing inequalities (Mix∗
W ,�) for j ∈ [k]

are polymatroid inequalities, they can be separated in O(k n log n) time by a simple
greedy algorithm, thanks to Corollary 1. This also matches the best known separation
complexity of mixing inequalities [13].
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4 Aggregatedmixing inequalities

As discussed in Sect. 1, in order to make use of the knapsack constraint in the MIP
formulation of joint CCPs via quantile cuts, we need to study the setM(W , �, ε) for
general ε ≥ 0. Unfortunately, in contrast to our results in Sect. 3 for the convex hull of
M(W , �, 0), the convex hull of M(W , �, ε) for general ε ≥ 0 may be complicated;
we will soon see this in Example 2. In this section, we introduce a new class of
valid inequalities for M(W , �, ε) for arbitrary ε ≥ 0. In Sects. 5.2 and 5.3, we
identify conditions under which these new inequalities along with the original mixing
inequalities are sufficient to give the complete convex hull characterization.

For general ε ≥ 0, M(W , �, ε), given by (1), is a subset of M(W , �, 0), which
means that any inequality valid for M(W , �, 0) is also valid for M(W , �, ε). In
particular, Theorem 3.1 implies that the mixing inequalities of the form (MixW ,�) are
valid for M(W , �, ε). However, unlike the ε = 0 case, we will see that the mixing
inequalities are not sufficient to describe the convex hull of M(W , �, ε) if ε > 0.

We first present a simplification ofM(W , �, ε). Although it is possible thatwi, j <

� j for some i, j when W , � are arbitrary, we can reduce M(W , �, ε) to a set of the

formM(W�, 0, ε) for some W� =
{
w�
i, j

}
∈ Rn×k+ .

Lemma 2 Let � ∈ Rk+. Then M(W , �, ε) = {
( y, z) ∈ Rk × Rn : ( y − �, z)

∈ M(W�, 0, ε)
}
, where W� =

{
w�
i, j

}
∈ Rn×k+ is the matrix whose entries are given

by
w�
i, j = (wi, j − � j )+ ∀i ∈ [n], j ∈ [k].

Proof By definition, ( y − �, z) ∈ M(W�, 0, ε) if and only if

y j + (wi, j − � j )+zi ≥ � j + (wi, j − � j )+, ∀i ∈ [n], j ∈ [k], (12)

and ( y, z) satisfies (1b)–(1d). Consider any j ∈ [k]. If � j > wi, j , then the
constraint (12) becomes y j ≥ � j and the inequality y j + wi, j zi ≥ wi, j is a con-
sequence of y j ≥ � j . On the other hand, if � j ≤ wi, j , then (12) is equivalent to
y j + (wi, j − � j )zi ≥ wi, j , and therefore we have y j ≥ wi, j when zi = 0 and have
y j ≥ � j when zi = 1. Then, in both cases, it is clear that

{
(y j , zi ) ∈ R × {0, 1} : y j ≥ � j , y j + (wi, j − � j )+zi ≥ � j + (wi, j − � j )+

}

is equal to

{
(y j , zi ) ∈ R × {0, 1} : y j ≥ � j , y j + wi, j zi ≥ wi, j

}
,

because � j ≥ 0. Hence, we have ( y − �, z) ∈ M(W�, 0, ε) if and only if ( y, z) ∈
M(W , �, ε), as required. ��

We deduce from Lemma 2 that

conv(M(W , �, ε)) =
{
( y, z) ∈ Rk × Rn : ( y − �, z) ∈ conv

(M(
W�, 0, ε

))}
,
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and thus the convex hull description of M(W , �, ε) can be obtained by taking the
convex hull of M(W�, 0, ε). Moreover, any inequality α� y + β�z ≥ γ is valid for
M(W�, 0, ε) if and only if α�( y − �) + β�z ≥ γ is valid for M(W , �, ε).

So, from now on, we assume that � = 0, and we work over M(W , 0, ε) with
W ∈ Rn×k+ and ε ≥ 0. Recall that M(W , 0, ε), which we call a joint mixing set with
a linking constraint, is the mixed-integer set defined by

y j + wi, j zi ≥ wi, j , ∀i ∈ [n], j ∈ [k], (13a)

y j ≥ 0, ∀ j ∈ [k], (13b)

y1 + · · · + yk ≥ ε, (13c)

y ∈ Rk, z ∈ {0, 1}n . (13d)

Let us begin with an example.

Example 2 Consider the followingmixing setwith a linking constraint, i.e.,M(W , 0, ε)
with ε = 7 > 0.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

( y, z) ∈ R2+ × {0, 1}5 :

y1 + 8z1 ≥ 8,
y1 + 6z2 ≥ 6,
y1 + 13z3 ≥ 13,
y1 + z4 ≥ 1,
y1 + 4z5 ≥ 4,

y2 + 3z1 ≥ 3,
y2 + 4z2 ≥ 4,
y2 + 2z3 ≥ 2,
y2 + 2z4 ≥ 2,
y2 + z5 ≥ 1,

y1 + y2 ≥ 7

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

. (14)

Using PORTA [9], we derive the convex hull description of this set, which is given by

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

( y, z) ∈ R2+ × [0, 1]5 :

the mixing inequalities (MixW ,�),

y1 + y2 + z1 + z2 + 8z3 ≥ 17,
y1 + y2 + 2z2 + 8z3 ≥ 17,
y1 + y2 + 3z2 + 7z3 ≥ 17,
y1 + y2 + 2z1 + 3z2 + 5z3 ≥ 17,
y1 + y2 + 4z1 + z2 + 5z3 ≥ 17

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

.

In this example, the inequalities y1+2z1+2z2+5z3+z4+3z5 ≥ 13 and y2+2z2+z4+
z5 ≥ 4 are examples ofmixing inequalities from (MixW ,�) that are facet-defining.Note
that the five inequalities with y1 + y2 are not of the form (MixW ,�). Moreover, these
non-mixing inequalities cannot be obtained by simply adding one mixing inequality
involving y1 and anothermixing inequality involving y2. The developmentswe present
next on a new class of inequalities will demonstrate this point, and we will revisit this
example again in Example 3.

The five inequalities with y1 + y2 in Example 2 admit a common interpretation.
To explain them, take an integer θ ∈ [n] and a sequence � of θ indices in [n] given
by {i1 → i2 → · · · → iθ }. Given two indices in the sequence i p, iq , we say that i p
precedes iq in � if p < q. Our description is based on the following definition.
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Definition 3 Given a sequence �, a j-mixing-subsequence of � is the subsequence
{ j1 → · · · → jτ j } of � that satisfies the following property:

{
j1, . . . , jτ j

}
is the collection of all indices i∗ ∈ � satisfying wi∗, j

≥ max
{
wi, j : i∗ precedes i in �

}
,

where we define max
{
wi, j : iθ precedes i in �

} = 0 for convention (iθ is the last
element, so it precedes no element in �).

Based on Definition 3, we deduce that the j-mixing-subsequence of � is unique for
each j ∈ [k] and admits a few nice structural properties as identified below.

Lemma 3 If { j1 → · · · → jτ j } is the j-mixing-subsequence of �, then jτ j is always
the last element iθ of � and w j1, j ≥ · · · ≥ w jτ , j ≥ 0.

Proof When p < q, because jp precedes jq in �, it follows that w j1, j ≥ · · · ≥
w jτ j , j

≥ 0. The last element iθ always satisfies wiθ , j ≥
max

{
wi, j : iθ precedes i in �

} = 0. Therefore, iθ is part of the j-mixing-
subsequence as its last element. ��
Given � = {i1 → i2 → · · · → iθ }, for any j ∈ [n], we denote by � j = { j1 →
· · · → jτ j } the j-mixing-subsequence of�. By Definition 2 and Lemma 3, we deduce
that { j1 → · · · → jτ j } is a j-mixing-sequence. Recall that for any j-mixing-sequence
{ j1 → · · · → jτ j }, the corresponding mixing inequality (MixW ,�) is of the following
form:

y j +
∑

s∈[τ j ]

(
w js , j − w js+1, j

)
z js ≥ w j1, j , (Mix)

where w jτ j+1, j := 0, and it is valid for M(W , 0, ε). In particular, when w j1, j =
max{wi, j : i ∈ [n]}, (Mix) is

y j +
∑

s∈[τ j ]
(w js , j − w js+1, j )z js ≥ max{wi, j : i ∈ [n]}. (Mix*)

Also, for t ∈ [θ ],
(
wit , j − max

{
wi, j : it precedes i in �

})
+

=
{

w js , j − w js+1, j if it = js for some s ∈ [τ j ],
0 if it is not on � j .

(15)

Then (Mix) can be rewritten as

y j +
∑

t∈[θ]

(
wit , j − max

{
wi, j : it precedes i in �

})
+ zit ≥ w j1, j .
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In order to introduce our new class of inequalities, we define a constant LW ,� that
depends on W and � as follows:

LW ,� := min

⎧
⎨

⎩

∑

j∈[k]

(
wit , j − (

wit , j − max
{
wi, j : it precedes i in �

})
+
)

: t ∈ [θ ]
⎫
⎬

⎭

= min

⎧
⎨

⎩

∑

j∈[k]
min

{
wit , j , max

{
wi, j : it precedes i in �

}} : t ∈ [θ ]
⎫
⎬

⎭
(16)

Now we are ready to introduce our new class of inequalities.

Definition 4 Given a sequence � = {i1 → i2 → · · · → iθ }, let LW ,� be defined
as in (16). Then, the aggregated mixing inequality derived from � is defined as the
following:

∑

j∈[k]

⎛

⎝y j +
∑

s∈[τ j ]
(w js , j − w js+1, j )z js

⎞

⎠− min
{
ε, LW ,�

}
ziθ (A-Mix)

≥
∑

j∈[k]
max

{
wi, j : i ∈ �

}
.

Remark 4 Sincemin
{
ε, LW ,�

} ≥ 0, the aggregatedmixing inequality (A-Mix) dom-
inates what is obtained after adding up the mixing inequalities (Mix) for j ∈ [k].

Before proving validity of (A-Mix), we present an example illustrating how the
aggregated mixing inequalities are obtained.

Example 3 We revisit the mixed-integer set in Example 2. Now take a sequence � =
{2 → 1 → 3}. Then {3} and {2 → 1 → 3} are the 1-mixing-subsequence and
2-mixing-subsequence of �, respectively. Moreover,

LW ,� = min {(6 − (6 − 13)+) + (4 − (4 − 3)+), (8 − (8 − 13)+)

+(3 − (3 − 2)+), 13 + 2} = min {6 + 3, 8 + 2, 13 + 2} = 9.

In (14), we have ε = 7. Since ε ≤ LW ,�, the corresponding (A-Mix) is

(y1 + 13z3) + (y2 + (4 − 3)z2 + (3 − 2)z1 + 2z3) − 7z3 ≥ 13 + 4,

that is y1 + y2 + z1 + z2 + 8z3 ≥ 17. In Example 2, the other four inequalities
with y1 + y2 are also of the form (A-Mix), and they are derived from the sequences
{2 → 3}, {3 → 2}, {3 → 1 → 2}, and {3 → 2 → 1}. So, in this example, the convex
hull of (14) is obtained after applying themixing inequalities (Mix) and the aggregated
mixing inequalities (A-Mix).
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We will next present the proof of validity of (A-Mix). To this end, the following
lemma is useful. As the proof of this lemma is technical, we defer its proof to the
appendix. Lemma 4 will be used again when proving Theorem 5.1.

Lemma 4 Let ( ȳ, z̄) ∈ Rk+ × [0, 1]n be a point satisfying (13a)–(13c). If ( ȳ, z̄)
satisfies (A-Mix) for all sequences contained in {i ∈ [n] : z̄i < 1}, then ( ȳ, z̄) sat-
isfies (A-Mix) for all the other sequences as well.

Now we are ready to prove the following theorem:

Theorem 4.1 The aggregated mixing inequalities defined as in (A-Mix) are valid for
M(W , 0, ε) where W ∈ Rn×k+ .

Proof Wewill argue that every point inM(W , 0, ε)withW ∈ Rn×k+ satisfies (A-Mix)
for all sequences in [n]. To this end, take a point ( ȳ, z̄) ∈ M(W , 0, ε). Then, z̄ ∈
{0, 1}n holds by definition of M(W , 0, ε). If z̄ = 1, then ( ȳ, z̄) satisfies (A-Mix) if
and only if

∑
j∈[k] ȳ j ≥ min

{
ε, LW ,�

}
. Since

∑
j∈[k] ȳ j ≥ ε, it follows that ( ȳ, z̄)

satisfies (A-Mix). Thus, we may assume that {i ∈ [n] : z̄i < 1} = {i ∈ [n] : z̄i = 0}
is nonempty. By Lemma 4, it is sufficient to show that ( ȳ, z̄) satisfies (A-Mix) for
every sequence contained in the nonempty set {i ∈ [n] : z̄i < 1}. Take a nonempty
sequence � = {i1 → · · · → iθ } in {i ∈ [n] : z̄i = 0}. By our choice of �, we have
z̄iθ = 0, so ( ȳ, z̄) satisfies (A-Mix) if and only if

∑

j∈[k]

⎛

⎝ȳ j +
∑

s∈[τ j ]
(w js , j − w js+1, j )z̄ js

⎞

⎠ ≥
∑

j∈[k]
w j1, j .

This inequality is preciselywhat is obtained by adding up themixing inequalities (Mix)
for j ∈ [k], and therefore, ( ȳ, z̄) satisfies it, as required. ��

In Example 3, ε = 7 and LW ,{2→1→3} = 9. It can also be readily checked that
LW ,{2→3} = LW ,{3→2} = 8 and LW ,{3→1→2} = LW ,{3→2→1} = 9, which means
min

{
ε, LW ,�

} = ε for the sequences corresponding to the five aggregated mixing
inequalities in the convex hull description of (14). In general, the following holds:

Proposition 4 If ε ≤ LW ,�, then the aggregated mixing inequality (A-Mix) obtained
from � dominates the linking constraint y1 + · · · + yk ≥ ε.

Proof The inequality (A-Mix) is equivalent to

∑

j∈[k]
y j ≥ εziθ +

∑

j∈[k]

⎛

⎝w j1, j −
∑

s∈[τ j ]
(w js , j − w js+1, j )z js

⎞

⎠ .
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Since
∑

s∈[τ j ](w js , j −w js+1, j ) = w j1, j , we deduce by by Lemma 3 that for all j ∈ [k],

w j1, j −
∑

s∈[τ j ]

(
w js , j − w js+1, j

)
z js

=
∑

s∈[τ j ]

(
w js , j − w js+1, j

)(
1 − z js

)

≥ (
w jτ j , j

− w jτ j+1, j
)
(1 − z jτ j ) = wiθ , j

(
1 − ziθ

)
,

where the inequality follows from the facts that w js , j − w js+1, j ≥ 0 for all js ∈ [τ j ]
and thus each summand is nonnegative, and the last equation follows from jτ j = iθ
and by our convention that w jτ j+1, j = 0. Therefore, the following inequality is a
consequence of (A-Mix):

∑

j∈[k]
y j ≥

∑

j∈[k]
wiθ , j +

⎛

⎝ε −
∑

j∈[k]
wiθ , j

⎞

⎠ ziθ .

Since 0 ≤ ziθ ≤ 1, its right-hand side is always greater than or equal to

min
{∑

j∈[k] wiθ , j , ε
}
. Since max

{
wi, j : iθ precedes i in �

} = 0, it follows from

the definition of LW ,� in (16) that
∑

j∈[k] wiθ , j ≥ LW ,θ . Then, by our assumption that

LW ,� ≥ ε, we havemin
{∑

j∈[k] wiθ , j , ε
}

= ε, implying in turn that y1+· · ·+yk ≥ ε

is implied by (A-Mix), as required. ��

We next demonstrate that when ε is large, applying the aggregated mixing inequal-
ities is not always enough to describe the convex hull ofM(W , 0, ε) via an example.

Example 4 The following set is the same as (14) in Examples 2 and 3 except that ε = 9.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

( y, z) ∈ R2+ × {0, 1}5 :

y1 + 8z1 ≥ 8,
y1 + 6z2 ≥ 6,
y1 + 13z3 ≥ 13,
y1 + z4 ≥ 1,
y1 + 4z5 ≥ 4,

y2 + 3z1 ≥ 3,
y2 + 4z2 ≥ 4,
y2 + 2z3 ≥ 2,
y2 + 2z4 ≥ 2,
y2 + z5 ≥ 1,

y1 + y2 ≥ 9

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

. (17)

Recall that LW ,{2→3} = 8, so ε > LW ,{2→3} in this case. As before, we obtain the
convex hull description of (17) via PORTA [9]:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

( y, z) ∈ R2+ × [0, 1]5 :

the mixing inequalities (Mix)
7y1 + 6y2 + 12z2 + 49z3 ≥ 115,
6y1 + 5y2 + 10z2 + 42z3 + z4 ≥ 98,
3y1 + 2y2 + 4z2 + 21z3 + z4 + 3z5 ≥ 47,
3y1 + 2y2 + 4z2 + 21z3 + 4z5 ≥ 47,
2y1 + 3y2 + 6z2 + 14z3 ≥ 38,
y1 + 2y2 + 4z2 + 7z3 + z5 ≥ 21,
y1 + y2 + z1 + z2 + 6z3 ≥ 17,
y1 + y2 + 2z1 + z2 + 5z3 ≥ 17

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

In this convex hull description, there are still two inequalities with y1 + y2, and it
turns out that these are aggregated mixing inequalities. To illustrate, take a sequence
� = {2 → 1 → 3}. We observed in Example 3 that {3} and {2 → 1 → 3} are the
1-mixing subsequence and the 2-mixing subsequence of� and that LW ,� = 9. So, the
corresponding aggregated mixing inequality (A-Mix) is y1+ y2 + z1+ z2 +6z3 ≥ 17.
Similarly,we obtain y1+y2+2z1+z2+5z3 ≥ 17 from {3 → 2 → 1}. However, unlike
the system (14) in Example 2, there are facet-defining inequalities for the convex hull
of this set other than the aggregated mixing inequalities, i.e., the first 6 inequalities in
the above description of the convex hull have different coefficient structures on the y
variables.

So, a natural question is: When are the mixing inequalities and the aggregated mix-
ing inequalities sufficient to describe the convex hull of M(W , 0, ε)? Examples 2–4
suggest that whether or not the mixing and the aggregated mixing inequalities are suf-
ficient depends on the value of ε. In the next section, we find a necessary and sufficient
condition for the sufficiency of the mixing and the aggregated mixing inequalities.

5 Joint mixing sets with a linking constraint

In this section, we study the convex hull of M(W , 0, ε), where W = {
wi, j

} ∈ Rn×k+
and ε ∈ R+. More specifically, we focus on the question of when the convex hull of
this set is obtained after applying the mixing inequalities and the aggregated mixing
inequalities. By Remark 1, we have ( y, z) ∈ M(W , 0, ε) if and only if ( y, 1 − z) ∈
P(W , 0, ε). In Sect. 3, we identified thatP(W , �, 0) defined as in (7) has an underlying
submodularity structure (due to Lemma 1 and Proposition 1). In this section, we will
first establish that P(W , 0, ε) has a similar submodularity structure for particular
values of ε. In fact, for those favorable values of ε, we show that the mixing and the
aggregatedmixing inequalities are sufficient to describe the convex hull ofM(W , 0, ε)
if and only ifP(W , 0, ε) has the desired submodularity structure; this is themain result
of this section.

123



304 F. Kılınç-Karzan et al.

5.1 Submodularity in joint mixing sets with a linking constraint

In order to make a connection with submodularity, we first define the following func-
tions f1, . . . , fk, g : {0, 1}n → R: for z ∈ {0, 1}n ,

f j (z) := max
i∈[n]

{
wi, j zi

}
for j ∈ [k] and g(z) := max

⎧
⎨

⎩
ε,
∑

j∈[k]
f j (z)

⎫
⎬

⎭
. (18)

Then, we immediately arrive at the following representation of P(W , 0, ε).

Lemma 5 Let f1, . . . , fk, g : {0, 1}n → R be as defined in (18). Then,

P(W , 0, ε) =
{
( y, z) ∈ Rk × {0, 1}n : y j ≥ f j (z), ∀ j ∈ [k],

y1 + · · · + yk ≥ g(z)} . (19)

Proof We deduce the equivalence of the relations y j ≥ f j (z) for j ∈ [k] to the first set
of constraints in P(W , 0, ε) from the corresponding definition of this set in (7). Also,

we immediately have
∑

j∈[k] y j ≥ max
{
ε,
∑

j∈[k] f j (z)
}
. The result then follows

from the definition of the function g. ��
We would like to understand the convex hull of P(W , 0, ε) for W ∈ Rn×k+ and

ε ∈ R+ using Lemma 5. Observe that f1, . . . , fk defined in (18) coincide with the
functions f1, . . . , fk defined in (11) for the � = 0 case. So, the following is a direct
corollary of Lemma 1.

Corollary 3 For any j ∈ [k], the function f j defined as in (18) is submodular and
satisfies f j (∅) ≥ 0.

In contrast to the functions f1, . . . , fk , the function g is not always submodular.
However, we can characterize exactly when g is submodular in terms of ε. For this
characterization, we need to define several parameters based on W and ε. For a given
ε, let Ī (ε) be the following subset of [n]:

Ī (ε) :=
⎧
⎨

⎩
i ∈ [n] :

∑

j∈[k]
wi, j ≤ ε

⎫
⎬

⎭
. (20)

Here, Ī (ε) is the collection of indices i with g({i}) = ε. In Examples 2 and 4, we have
Ī (ε) = {4, 5}.
Definition 5 We say that Ī (ε) is ε-negligible if either

• Ī (ε) = ∅ or
• Ī (ε) �= ∅ and Ī (ε) satisfies both of the following two conditions:

max
i∈ Ī (ε)

{
wi, j

} ≤ wi, j for every i ∈ [n] \ Ī (ε) and j ∈ [k], (C1)

123



Joint chance-constrained programs and the intersection… 305

∑

j∈[k]
max
i∈ Ī (ε)

{
wi, j

} ≤ ε. (C2)

Example 5 In Example 2, it can be readily checked that Ī (ε) satisfies (C1) and (C2), so
I (ε) is ε-negligible. ThematrixW of Example 4 is the same as that of Example 2,while
the value of ε is higher in Example 4. Hence, Ī (ε) in Example 4 is also ε-negligible.

In Definition 5, (C2) imposes that g( Ī (ε)) = ε, and (C1) requires that f j ({i}∪ Ī (ε)) =
f j ({i}) for any i ∈ [n] \ Ī (ε). In fact, we can argue that if Ī (ε) is ε-negligible, Ī (ε)
does not affect the value of g; this is why we call this property ε-“negligibility." The
following lemma formalizes this observation.

Lemma 6 Let g be as defined in (18). If Ī (ε) is ε-negligible, then g(U ) = g(U \ Ī (ε))
for every U ⊆ [n].

Proof Suppose Ī (ε) is nonempty and satisfies conditions (C1) and (C2). Take a subset
U of [n]. If U ⊆ Ī (ε), then g(U ) ≤ g( Ī (ε)) because g is a monotone function.
Since

∑
j∈[k] maxi∈ Ī (ε)

{
wi, j

} ≤ ε, we obtain g( Ī (ε)) = ε by definition of g in (18).

So, g(U ) = g(∅) = ε in this case. If U \ Ī (ε) �= ∅, then ∑ j∈[k] wp, j > ε for

some p ∈ U , implying in turn that
∑

j∈[k] maxi∈U
{
wi, j

}
> ε. Moreover, as Ī (ε)

satisfies (C1),
∑

j∈[k] maxi∈U
{
wi, j

} = ∑
j∈[k] maxi∈U\ Ī (ε)

{
wi, j

}
, and therefore,

g(U ) = g(U \ Ī (ε)), as required. ��

Next we show that ε-negligibility is necessary for g to be submodular.

Lemma 7 If the function g defined as in (18) is submodular, then Ī (ε) is ε-negligible.

Proof Assume that g is submodular. Suppose for a contradiction that Ī (ε) is not ε-
negligible. Then Ī (ε) is nonempty, and (C1) or (C2) is violated. Assume that Ī (ε) does
not satisfy (C1). Then wq, j > wp, j for some j ∈ [k], p ∈ [n] \ Ī (ε) and q ∈ Ī (ε). By
our choice of q, we have g({q}) = ε. Moreover,wq, j > wp, j implies that g({p, q}) =∑

j∈[k] max{wp, j , wq, j } >
∑

j∈[k] wp, j = g({p}). Since g(∅) = ε, it follows that
g({p})+ g({q}) < g(∅)+ g({p, q}), a contradiction to the submodularity of g. Thus,
we may assume that Ī (ε) does not satisfy (C2). Then

∑
j∈[k] maxi∈ Ī (ε)

{
wi, j

}
> ε,

so g( Ī (ε)) = ∑
j∈[k] maxi∈ Ī (ε)

{
wi, j

}
. Now take a minimal subset I of Ī (ε) with

g(I ) > ε. Since I ⊆ Ī (ε) and g(I ) > ε, we know that |I | ≥ 2. That means that one
can find two nonempty subsets U , V of I partitioning I . By our minimal choice of I ,
we have g(U ) = g(V ) = ε, but this indicates that g(U ) + g(V ) < g(∅) + g(I ) =
g(U ∩ V ) + g(U ∪ V ), a contradiction to the submodularity of g. Therefore, Ī (ε) is
ε-negligible. ��

On the other hand, it turns out that ε-negligibility alone does not always guarantee
that g is submodular. If Ī (ε) = [n], Ī (ε) being ε-negligiblemeans that g(U ) = g(∅) =
ε for every U ⊆ [n] and thus g is clearly submodular. However, when Ī (ε) is a strict
subset of [n], g may not necessarily be submodular even though Ī (ε) is ε-negligible.
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Example 6 In Example 4, we have observed that Ī (ε) = {4, 5} and Ī (ε) is ε-negligible.
By definition, we have g(∅) = ε = 9. Since 2, 3 /∈ Ī (ε), we have that g({2}) =
w2,1 + w2,2 = 10, g({3}) = w3,1 + w3,2 = 15, and g({2, 3}) = max{w2,1, w3,1} +
max{w2,2+w3,2} = 17. Then g({2})+g({3}) = 25 is less than g({2, 3})+g(∅) = 26,
so g is not submodular.

In order to understand when the function g is submodular, let us take a closer look at
Example 6. In this example, g({2})+ g({3})− g({2, 3}) is equal to min{w2,1, w3,1}+
min{w2,2 + w3,2}, and this value is less than ε = g(∅), implying that g is not sub-
modular. In general, for any distinct indices p, q ∈ [n] \ Ī (ε),

g({p}) + g({q}) − g({p, q}) =
∑

j∈[k]
min

{
wp, j , wq, j

}
, (21)

and this quantity needs to be greater than or equal to ε = g(∅) for g to be submodular.
To formalize this, we define another parameter LW (ε) ∈ R+ as follows:

LW (ε) :=

⎧
⎪⎨

⎪⎩

min
p,q∈[n]\ Ī (ε)

{
∑

j∈[k]
min

{
wp, j , wq, j

}
}

, if Ī (ε) �= [n],
+∞, if Ī (ε) = [n].

(22)

Example 7 In Example 2, we have Ī (ε) = {4, 5} and LW (ε) = w2,1 + w3,2 =
8. Moreover, as Ī (ε) = {4, 5} in Example 4 as well, we still have LW (ε) = 8 in
Example 4.

Lemma 8 If the function g defined as in (18) is submodular, then ε ≤ LW (ε).

Proof Suppose for a contradiction that ε > LW (ε). Then, LW (ε) �= ∞, implying
Ī (ε) �= [n] and ε >

∑
j∈[k] min

{
wp, j , wq, j

}
for some p, q ∈ [n] \ Ī (ε). Moreover,

because both
∑

j∈[k] wp, j and
∑

j∈[k] wq, j are greater than ε, we deduce that p and
q are distinct. Then,

g ({p}) + g ({q}) =
∑

j∈[k]
wp, j +

∑

j∈[k]
wq, j

=
∑

j∈[k]
max

{
wp, j , wq, j

}+
∑

j∈[k]
min

{
wp, j , wq, j

}

= g ({p, q}) +
∑

j∈[k]
min

{
wp, j , wq, j

}
< g ({p, q}) + g (∅) ,

where the strict inequality follows from g(∅) = ε. This is a contradiction to the
assumption that g is submodular. Hence, ε ≤ LW (ε), as required. ��
ByLemmas 7 and 8, both of the conditions that Ī (ε) is ε-negligible and ε ≤ LW (ε) are
necessary for the submodularity of g. In fact, wewill next see that these two conditions
are also sufficient to guarantee that g is submodular. So, whether the function g is
submodular or not is determined entirely by Ī (ε) and LW (ε).
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Lemma 9 The function g defined as in (18) is submodular if and only if Ī (ε) is ε-
negligible and ε ≤ LW (ε).

Proof (⇒): This direction is settled by Lemmas 7 and 8.
(⇐): Assume that Ī (ε) is ε-negligible and ε ≤ LW (ε). We will show that g(U ) +

g(V ) ≥ g(U ∪ V ) + g(U ∩ V ) for every two sets U , V ⊆ [n]. If Ī (ε) = [n], then
we have g(U ) = ε for every subset U of [n] due to (C2). Thus, we may assume
that Ī (ε) �= [n]. By Lemma 6, for every two subsets U , V ⊆ [n], g(U ) + g(V ) ≥
g(U∪V )+g(U∩V ) holds if and only if g

(
U ′)+g

(
V ′) ≥ g

(
U ′ ∪ V ′)+g

(
U ′ ∩ V ′),

where U ′ := U \ Ī (ε) and V ′ := V \ Ī (ε), holds. This means that it is sufficient to
consider subsets of [n]\ Ī (ε). Consider two setsU , V ⊆ [n]\ Ī (ε). IfU = ∅ or V = ∅,
the inequality trivially holds due to the monotonicity of g. So, we may assume that
U , V �= ∅. First, suppose thatU ∩V �= ∅. BecauseU , V ⊆ [n] \ Ī (ε), we deduce that
g(X) = ∑

j∈[k] f j (X) for any X ∈ {U , V ,U ∪V ,U ∩V }. Then, Corollary 3 implies
that g(U ) + g(V ) ≥ g(U ∪ V ) + g(U ∩ V ). Now, consider the case of U ∩ V = ∅.
Note that for each j ∈ [k], the definition of f j (V ) = maxi∈V {wi, j } implies that

f j (U ) + f j (V ) − f j (U ∪ V )

= max{ f j (U ), f j (V )} + min{ f j (U ), f j (V )} − f j (U ∪ V )

= min{ f j (U ), f j (V )}.

Hence, we have

g(U ) + g(V ) − g(U ∪ V ) =
∑

j∈[k]

(
f j (U ) + f j (V ) − f j (U ∪ V )

)

=
∑

j∈[k]
min{ f j (U ), f j (V )}.

So, it suffices to argue that
∑

j∈[k] min{ f j (U ), f j (V )} ≥ g(∅) = ε. Since U , V �= ∅
and U ∩ V = ∅, there exist distinct p, q ∈ [n] \ Ī (ε) such that p ∈ U and q ∈ V .
Then f j (U ) ≥ f j ({p}) = wp, j and f j (V ) ≥ f j ({q}) = wq, j , implying in turn that

∑

j∈[k]
min{ f j (U ), f j (V )} ≥

∑

j∈[k]
min{wp, j , wq, j } ≥ LW (ε),

where the last inequality follows from the definition of LW (ε) in (22). Finally, our
assumption that ε ≤ LW (ε) implies that

∑
j∈[k] min{ f j (U ), f j (V )} ≥ ε as desired.

��
Therefore, Lemma 9, along with Corollary 3, establish that f1, . . . , fk and g are

submodular when Ī (ε) is ε-negligible and ε ≤ LW (ε). Note that Ī (ε) can be found in
O(kn) time and that LW (ε) can be computed in O(kn2) time, so testing whether g is
submodular can be done in polynomial time.

In Sect. 4, we introduced the parameter LW ,� that depends on W and a sequence
� of indices in [n] to define the aggregated mixing inequality (A-Mix) derived from
�. The following lemma illustrates a relationship between LW (ε) and LW ,�:
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Lemma 10 If Ī (ε) �= [n], then LW (ε) = min�

{
LW ,� : � is a nonempty sequence in

[n] \ Ī (ε)
}
.

Proof Take anonempty sequence� in [n]\ Ī (ε).When� = {r} for some r ∈ [n]\ Ī (ε),
LW ,� = ∑

j∈[k] wr , j , so LW (ε) ≤ LW ,� in this case. When � = {i1 → · · · → iθ }
with θ ≥ 2, for any s ∈ [θ ] we have

min
{
wis , j , max

{
wi, j : is precedes i in �

}} ≥ min
{
wis , j , wis+1, j

}

where wiθ+1, j is set to 0 for convention. Then it follows from the definition of LW ,�

in (16) that LW ,� ≥ min
{∑

j∈[k] min
{
wis , j , wis+1, j

} : s ∈ [θ ]
}
. Consequently,

from the definition of LW (ε), we deduce that LW (ε) ≤ LW ,�. In both cases, we
get LW (ε) ≤ LW ,�.

Now it remains to show LW (ε) ≥ min
{
LW ,� : � is a nonempty sequence in

[n] \ Ī (ε)
}
. Since Ī (ε) �= [n], either there exist distinct p, q ∈ [n] \ Ī (ε) such that

LW (ε) = ∑
j∈[k] min

{
wp, j , wq, j

} = LW ,{p→q} or there exists r ∈ [n] \ Ī (ε) such
that LW (ε) = ∑

j∈[k] wr , j = LW ,{r}, implying in turn that LW (ε) ≥ LW ,� for some

nonempty sequence � in [n] \ Ī (ε), as required. ��
We have shown in Sect. 3 that the polymatroid inequalities corresponding to the

functions f1, . . . , fk aremixing inequalities. Although g is not always submodular, we
now have a complete characterization of when g is submodular. In the next subsection,
we show thatwhen g is indeed submodular, the corresponding polymatroid inequalities
are aggregated mixing inequalities.

5.2 Polymatroid inequalities and aggregatedmixing inequalities

Consider P(W , 0, ε) with W ∈ Rn×k+ and ε ∈ R+. Then, from Lemma 5 we deduce
that

conv(P(W , 0, ε)) ⊆
{
( y, z) ∈ Rk × [0, 1]n : (y j , z)

∈ conv(Q f j ), ∀ j ∈ [k], (y1 + · · · + yk, z) ∈ conv(Qg)
}
,

where f j , g are as defined in (18). In this section we will prove that in fact equality
holds in the above relation when g is submodular, i.e., by Lemma 9, when Ī (ε) is ε-
negligible and ε ≤ LW (ε). Then, consequently, if Ī (ε) is ε-negligible and ε ≤ LW (ε),
then the separation problem over conv(P(W , 0, ε)) (equivalently, conv(M(W , 0, ε)))
can be solved in O(kn log n) time by a simple greedy algorithm. To this end, we
first characterize the V-polyhedral, or inner, description of conv(P(W , 0, ε)). For
notational purposes, we define a specific set of binary solutions as follows:

S(ε) :=
⎧
⎨

⎩
z ∈ {0, 1}n :

∑

j∈[k]
max
i∈[n]

{
wi, j zi

}
> ε

⎫
⎬

⎭
. (23)

123



Joint chance-constrained programs and the intersection… 309

Lemma 11 The extreme rays of conv(P(W , 0, ε)) are (ej, 0) for j ∈ [k], and the
extreme points are precisely the following:

• A(z) = ( yz, z) for z ∈ S(ε) where yzj = maxi∈[n]
{
wi, j zi

}
for j ∈ [k],

• B(z, d) = ( yz,d , z) for z ∈ {0, 1}n \ S(ε) and d ∈ [k] where

yz,dj =

⎧
⎪⎨

⎪⎩

max
i∈[n]

{
wi, j zi

}
, if j �= d,

max
i∈[n]

{
wi,d zi

}+
(

ε −∑
j∈[k] max

i∈[n]
{
wi, j zi

})
, if j = d.

Proof It is clear that (ej, 0) for j ∈ [k] are the extreme rays of conv(P(W , 0, ε)).
Let ( ȳ, z̄) be an extreme point of conv(P(W , 0, ε)). Then z̄ ∈ {0, 1}n , and con-
straints (8) become ȳ j ≥ maxi∈[n]

{
wi, j z̄i

}
for j ∈ [k]. If z̄ ∈ S(ε), then∑

j∈[k] maxi∈[n]
{
wi, j z̄i

}
> ε, so ( ȳ, z̄) automatically satisfies (9)–(10). As ( ȳ, z̄)

is an extreme point, it follows that ȳ j = maxi∈[n]
{
wi, j z̄i

}
for j ∈ [k], and therefore,

( ȳ, z̄) = A( z̄). If z̄ /∈ S(ε), then
∑

j∈[k] maxi∈[n]
{
wi, j z̄i

} ≤ ε. Since ( ȳ, z̄) satisfies
ȳ1 +· · ·+ ȳk ≥ ε and ( ȳ, z̄) cannot be expressed as a convex combination of two dis-
tinct points, it follows that ȳ1 +· · ·+ ȳk ≥ ε and constraints ȳ j ≥ maxi∈[n]

{
wi, j z̄i

}
,

j ∈ [k] \ {d} are tight at ( ȳ, z̄) for some d ∈ [k], so ( ȳ, z̄) = B(z, d). ��

Based on the definition of S(ε) and (18), we have

g(z) = max

⎧
⎨

⎩
ε,
∑

j∈[k]
f j (z)

⎫
⎬

⎭
=
{∑

j∈[k] f j (z), if z ∈ S(ε)

ε, if z /∈ S(ε).

Remember the definition of Ī (ε) in (20) and the conditions for Ī (ε) to be ε-negligible.
Recall the definition of LW (ε) in (22) as well. Based on these definitions and Proposi-
tion 2, we are now ready to give the explicit inequality characterization of the convex
hull of M(W , 0, ε).

Proposition 5 Let W = {wi, j } ∈ Rn×k+ and ε ∈ R+. If Ī (ε) is ε-negligible and
ε ≤ LW (ε), then the convex hull of M(W , 0, ε) is given by

{
( y, z) ∈ Rk × [0, 1]n : (y j , 1 − z)

∈ conv(Q f j ), ∀ j ∈ [k], (y1 + · · · + yk, 1 − z) ∈ conv(Qg)
}
.

Proof Wewill show that y1, . . . , yk and
∑

j∈[k] y j areweakly independentwith respect
to submodular functions f1, . . . , fk and g (recall Definition 1). Consider α ∈ Rk+\{0},
and letαmin denote the smallest coordinate valueofα. Thenα andα� y canbewritten as
α = αmin1+∑ j∈[k](α j −αmin)ej and α� y = αmin

∑
j∈[k] y j +

∑
j∈[k](α j −αmin)y j .

Let fα be defined as fα(z) := min
{
α� y : ( y, z) ∈ P(W , 0, ε)

}
for z ∈ {0, 1}n .

Then, it is sufficient to show that fα = αming +∑
j∈[k](α j − αmin) f j .
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Let z̄ ∈ {0, 1}n . For any y with ( y, z̄) ∈ P(W , 0, ε), we have y j ≥ f j ( z̄) for
j ∈ [k] and∑ j∈[k] y j ≥ g( z̄) by Lemma 5, implying in turn that

fα( z̄) = min
{
α� y : ( y, z̄) ∈ P(W , 0, ε)

}
≥ αming( z̄) +

∑

j∈[k]
(α j − αmin) f j ( z̄).

(24)
Recall the definition of S(ε) in (23). If z̄ ∈ S(ε), then g( z̄) = ∑

j∈[k] f j ( z̄), and

therefore, A( z̄) = ( yz̄, z̄) defined in Lemma 11 satisfies (24) at equality. If z̄ /∈ S(ε),
then g( z̄) = ε. Let d ∈ [k] be the index satisfying αd = αmin. Then B( z̄, d) =
( yz̄,d, z̄) defined in Lemma 11 satisfies (24) at equality. Therefore, we deduce that
fα = αming +∑

j∈[k](α j − αmin) f j .
From Proposition 2 applied to (19), we obtain that conv(P(W , 0, ε)) is equal to

{
( y, z) ∈ Rk × [0, 1]n : (y j , z) ∈ conv(Q f j ), ∀ j ∈ [k],
(y1 + · · · + yk, z) ∈ conv(Qg)

}
.

After complementing the z variables, we obtain the desired description of
conv(M(W , 0, ε)). This finishes the proof. ��

Proposition 5 indicates that if Ī (ε) is ε-negligible and ε ≤ LW (ε), then the convex
hull of M(W , 0, ε) is described by the polymatroid inequalities of f j with left-hand
side y j for j ∈ [k] and the polymatroid inequalities of g with left-hand side

∑
j∈[k] y j .

We have seen in Sect. 3 that the polymatroid inequalities of f j with left-hand side
y j for j ∈ [k] are nothing but the mixing inequalities. In fact, it turns out that an
extremal polymatroid inequality of gwith left-hand side

∑
j∈[k] y j is either the linking

constraint y1+· · ·+ yk ≥ ε or an aggregated mixing inequality, depending on whether
or not Ī (ε) = [n]. We consider the Ī (ε) = [n] case first.
Proposition 6 Assume that Ī (ε) = [n] and Ī (ε) is ε-negligible. Then for every extreme
point π of E Pg̃, the corresponding polymatroid inequality

∑
j∈[k] y j +

∑
i∈[n] πi zi ≥

ε +∑
i∈[n] πi is equivalent to the linking constraint.

Proof By Theorem 2.2, there exists a permutation σ of [n] such that πσ(t) = g(Vt ) −
g(Vt−1) where Vt = {σ(1), . . . , σ (t)} for t ∈ [n] and V0 = ∅. Since Ī (ε) = [n] and
Ī (ε) is ε-negligible, it follows that g(U ) = ε for every U ⊆ [n], so πσ(t) = 0 for
all t . Therefore,

∑
j∈[k] y j +∑

i∈[n] πi zi ≥ ε +∑
i∈[n] πi equals

∑
j∈[k] y j ≥ ε, as

required. ��
The Ī (ε) �= [n] case is more interesting; the following proposition is similar to

Proposition 3:

Proposition 7 Assume that Ī (ε) �= [n] is ε-negligible and ε ≤ LW (ε). Then for every
extreme point π of E Pg̃, there exists a sequence � = {i1 → · · · → iθ } contained in
[n] \ Ī (ε) that satisfies the following:

(1) the j-mixing-subsequence { j1 → · · · → jτ j } of � satisfies w j1, j =
max

{
wi, j : i ∈ [n]} for each j ∈ [k],
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(2) the correspondingpolymatroid inequality
∑

j∈[k] y j+
∑

i∈[n] πi zi ≥ ε+∑i∈[n] πi

is equivalent to the aggregated mixing inequality (A-Mix) derived from �.

In particular, the polymatroid inequality is of the form

∑

j∈[k]

⎛

⎝y j +
∑

s∈[τ j ]

(
w js , j − w js+1, j

)
z js

⎞

⎠− εziθ ≥
∑

j∈[k]
max

{
wi, j : i ∈ [n]} .

(A-Mix∗)

Proof By Theorem 2.2, there exists a permutation σ of [n] such that πσ(t) = g(Vt ) −
g(Vt−1) where Vt = {σ(1), . . . , σ (t)} for t ∈ [n] and V0 = ∅. By Lemma 6, g(Vt ) −
g(Vt−1) = g(Vt \ Ī (ε))−g(Vt−1 \ Ī (ε)), so πσ(t) is nonzero only if σ(t) /∈ Ī (ε). This
in turn implies that at most |n \ Ī (ε)| coordinates of π are nonzero. Let {t1, . . . , tθ }
be the collection of t’s such that πσ(t) �= 0. Then 1 ≤ θ ≤ |n \ Ī (ε)|. Without loss of
generality, we may assume that t1 > · · · > tθ . Let i1 = σ(t1), i2 = σ(t2), . . . , iθ =
σ(tθ ), and � denote the sequence {i1 → · · · → iθ }. We will show that � satisfies
conditions (1) and (2) of the proposition.

(1): For j ∈ [k], let � j = {
j1 → · · · → jτ j

}
denote the j-mixing-subsequence of

�. By definition of the j-mixing-subsequence of �, we have w j1, j = max{wi, j : i ∈
�}. By our choice of {t1, . . . , tθ } and assumption that t1 > · · · > tθ , it follows that
g(Vt1) = g([n]), which means that f j (Vt1) = f j ([n]) for each j ∈ [k]. Therefore, we
deduce that max{wi, j : i ∈ �} = max{wi, j : i ∈ [n]}, as required.

(2): By convention, we have wiθ+1, j = w jτ j+1, j = 0 for j ∈ [k]. In addition, due
to our choice of {t1, . . . , tθ }, we have g(Vts ) > g(Vts−1) = · · · = g(Vts+1) holds for
s < θ . Then, we obtain

πis = πσ(ts ) = g
(
Vts
)− g

(
Vts+1

)

=
∑

j∈[k]
f j
(
Vts
)−

∑

j∈[k]
f j
(
Vts+1

)

=
∑

j∈[k]
f j
( {iθ , iθ−1, . . . , is}

)−
∑

j∈[k]
f j
( {iθ , iθ−1, . . . , is+1}

)
.

We observed before that g(Vts ) > g(Vts−1) = · · · = g(Vts+1), so it follows that
f j (Vts ) ≥ f j (Vts−1) = · · · = f j (Vts+1), implying in turn that

f j ({iθ , iθ−1, . . . , is}) − f j ({iθ , iθ−1, . . . , is+1})
= (

wis , j − max
{
wi, j : is precedes i in �

})
+ .

This means that for s < θ ,

πis =
∑

j∈[k]

(
wis , j − max

{
wi, j : is precedes i in �

})
+ . (25)
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Note that

πiθ = πσ(tθ ) = g(Vtθ ) − g(V0) =
∑

j∈[k]
f j (Vtθ ) − ε =

∑

j∈[k]
f j ({iθ }) − ε.

Since f j ({iθ }) = wiθ , j and max
{
wi, j : iθ precedes i in �

}
was set to w jτ j+1 j = 0,

it follows that

πiθ =
∑

j∈[k]

(
wiθ , j − max

{
wi, j : iθ precedes i in �

})
+ − ε. (26)

Therefore, by (25) and (26), it follows that the polymatroid inequality
∑

j∈[k] y j +∑
i∈[n] πi zi ≥ ε + ∑

i∈[n] πi is precisely (A-Mix∗). Since ε ≤ LW (ε) by our
assumption and LW (ε) ≤ LW ,� by Lemma 10, min{ε, LW ,�} = ε, and thus the
inequality (A-Mix∗) is identical to the aggregated mixing inequality (A-Mix) derived
from �, as required. ��

5.3 Necessary conditions for obtaining the convex hull by themixing and the
aggregatedmixing inequalities

Let us get back to our original question as to when the convex hull of a joint mixing
set with a linking constraint can be completely described by the mixing inequalities
and the aggregated mixing inequalities.

By Propositions 5, 6, and 7, if Ī (ε) is ε-negligible and ε ≤ LW (ε), then the
convex hull ofM(W , 0, ε) can be described by the mixing and the aggregated mixing
inequalities together with the linking constraint y1 + · · · + yk ≥ ε and the bounds
0 ≤ z ≤ 1. Another implication of these is that if Ī (ε) is ε-negligible and ε ≤ LW (ε),
then the aggregated mixing inequalities other than the ones of the form (A-Mix∗) are
not necessary.

It turns out that Ī (ε) being ε-negligible and ε ≤ LW (ε) are necessary conditions
for the mixing and the aggregated mixing inequalities to describe completely the
convex hull of M(W , 0, ε). Before establishing this result, let us consider examples
where either one of these two condition is violated: either Ī (ε) is not ε-negligible or
ε > LW (ε).

Example 8 Let us consider Example 2 with a slight modification. The following set is
the same as (14) except that w4,2 is now 3.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

( y, z) ∈ R2+ × {0, 1}5 :

y1 + 8z1 ≥ 8,
y1 + 6z2 ≥ 6,
y1 + 13z3 ≥ 13,
y1 + z4 ≥ 1,
y1 + 4z5 ≥ 4,

y2 + 3z1 ≥ 3,
y2 + 4z2 ≥ 4,
y2 + 2z3 ≥ 2,
y2 + 3z4 ≥ 3,
y2 + z5 ≥ 1,

y1 + y2 ≥ 7

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

. (27)
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In this example, Ī (ε) is still {4, 5}. But, Ī (ε) is no longer ε-negligible because
3 /∈ Ī (ε) yet w4,2 > w3,2 implying that condition (C1) is violated. The following set
is the same as (14) except that w5,1 is now 6.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

( y, z) ∈ R2+ × {0, 1}5 :

y1 + 8z1 ≥ 8,
y1 + 6z2 ≥ 6,
y1 + 13z3 ≥ 13,
y1 + z4 ≥ 1,
y1 + 6z5 ≥ 6,

y2 + 3z1 ≥ 3,
y2 + 4z2 ≥ 4,
y2 + 2z3 ≥ 2,
y2 + 2z4 ≥ 2,
y2 + z5 ≥ 1,

y1 + y2 ≥ 7

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

. (28)

Again, Ī (ε) is {4, 5}.However, Ī (ε) is not ε-negligible because∑ j∈[k] maxi∈ Ī (ε)
{
wi, j

} =
6+ 2 > ε implying that condition (C2) is violated. Using PORTA [9], one can check
that there are facet-defining inequalities other than the mixing and the aggregated mix-
ing inequalities in both of these examples. For instance, 2y1+3y2+3z2+18z3+3z4 ≥
38 is facet-defining for the convex hull of (27) and 2y1+y2+z1+z2+14z3+z4+6z5 ≥
30 is facet-defining for the convex hull of (28).

Example 9 In Example 4, Ī (ε) is ε-negligible but ε > LW (ε) (see Examples 5 and 7).
Recall that the convex hull of (17) has a facet-defining inequality, e.g., 7y1 + 6y2 +
12z2 + 49z3 ≥ 115, that is neither a mixing inequality nor an aggregated mixing
inequality.

These examples already demonstrate that the mixing and the aggregated mixing
inequalities are not sufficient whenever the ε-negligibility condition or the condition
ε ≤ LW (ε) does not hold. This is formalized by the following theorem.

Theorem 5.1 Let W = {wi, j } ∈ Rn×k+ and ε ≥ 0. Let Ī (ε) and LW (ε) be defined as
in (20) and (22), respectively. Then the following statements are equivalent:

(i) Ī (ε) is ε-negligible and ε ≤ LW (ε),
(ii) the convex hull ofM(W , 0, ε) can be described by the mixing inequalities (Mix)

and the aggregated mixing inequalities (A-Mix) together with the linking con-
straint y1 + · · · + yk ≥ ε and the bounds 0 ≤ z ≤ 1, and

(iii) the convex hull of M(W , 0, ε) can be described by the mixing inequalities of the
form (Mix*) and the aggregated mixing inequalities of the form (A-Mix∗) together
with the linking constraint y1 + · · · + yk ≥ ε and the bounds 0 ≤ z ≤ 1.

The proof of this theorem is given in Appendix B. Direction (i)⇒(iii) is already proved
by Propositions 5, 6 and 7, and (iii)⇒(ii) is trivial. Hence, the main effort in this proof
is to establish that (ii)⇒(i) holds.

6 Two-sided chance-constrained programs

A two-sided chance-constrained program has the following form:

min
x∈X

h�x (29a)

s.t. P
[ ∣∣∣a�x − b(ξ)

∣∣∣ ≤ c�x − d(ξ)
]

≥ 1 − ε, (29b)
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whereX ⊆ Rm is a domain for the decision variables x, ε ∈ (0, 1) is a risk level, a, c ∈
Rm are deterministic coefficient vectors, and b(ξ), d(ξ) ∈ R are random parameters
that depend on the random variable ξ ∈ �; see Liu et al. [20] for further details on two-
sided CCPs. Note that (29) is indeed a special case of joint CCPs with random right-
hand vector because the nonlinear constraint in (29b) is equivalent to the following
system of two linear inequalities:

(c+ a)�x ≥ d(ξ) + b(ξ), (28b’)

(c− a)�x ≥ d(ξ) − b(ξ). (28b”)

Hence, just like other joint CCPs we have studied in this paper, the two-sided CCP can
be reformulated as amixed-integer linear program.Note also that in the resultingMILP
formulation, each inequality (28b’) and (28b”) individually will lead to a mixing set,
and consequently the resultingMILP reformulationwill have a substructure containing
the intersection of two mixing sets where the continuous variables of these mixing
sets are correlated. Recall that the convex hull of the intersection of two mixing sets,
as long as they do not share continuous variables, can be completely described by the
mixing inequalities. However, as we observed in Sect. 4 the mixing inequalities are
not sufficient when additional constraints linking the continuous variables are present.
We have thus far considered constraints on the continuous variables that correspond to
quantile cuts. On the other hand, Liu et al. [20] focus on additional bound constraints
on the continuous variables that can be easily justified when for example the original
decision variables x are bounded. In particular, they use bounds on c�x and a�x. To
simplify our discussion,1 let us assume that

c�x ≥ 0, ua ≥ a�x ≥ 0, ∀x ∈ X . (30)

In order to point out the intersection of two mixing sets connection and also to explain
how to use (30) to strengthen this intersection, we follow the setup in Liu et al. [20]
and define two continuous variables yc and ya for c�x and a�x, respectively.2 Given
n scenarios ξ1, . . . , ξn , definewi := d(ξ i )+b(ξ i ) and vi := d(ξ i )−b(ξ i ) for i ∈ [n].
Liu et al. [20] focus on the setting where the following condition holds:

ua ≥ max {wi : i ∈ [n]} , wi ≥ vi ≥ 0, ∀i ∈ [n] (31)

In particular, as the parameters wi , vi are nonnegative for all i ∈ [k], the MIP refor-
mulation, given by (3), of (29) gives rise to the following mixed-integer set:

yc + ya + wi zi ≥ wi , ∀i ∈ [n], (32a)

yc − ya + (vi + ua)zi ≥ vi , ∀i ∈ [n], (32b)

1 Arbitrary bounds on c�x and a�x can be also dealt with by taking appropriate linear transformations
(see Section 1.1 of Liu et al. [20]).
2 This is equivalent to taking continuous variables yc+a = (c+ a)�x and yc−a = (c− a)�x as in (3).
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ua ≥ ya ≥ 0, (32c)

yc ≥ 0, (32d)

z ∈ {0, 1}n . (32e)

Note that the coefficient of zi in (32b) differs from the right-hand side, but (32b) indeed
corresponds to themixing set for (28b”) since ua can be added to the both sides of (32b)
and yc− ya +ua ≥ 0 holds. In addition, (32a) corresponds to the mixing set for (28b’)
since yc + ya ≥ 0 by (32c) and (32d). Liu et al. [20] characterize the convex hull
description of the mixed-integer set given by (32) under the condition (31). It turns
out that this result can be driven as a simple consequence of Theorem 5.1. We will
elaborate on this in the remainder of this section.

After setting y1 = yc + ya and y2 = yc − ya + ua, the set (32) is equivalent to the
following system:

y1 + wi zi ≥ wi , ∀i ∈ [n], (33a)

y2 + (vi + ua)zi ≥ (vi + ua), ∀i ∈ [n], (33b)

ua ≥ y1 − y2 ≥ −ua, (33c)

y1 + y2 ≥ ua, y1 ≥ 0, y2 ≥ 0 (33d)

z ∈ {0, 1}n . (33e)

Note that the set defined by (33a), (33b), (33d), and (33e) is nothing but a joint mixing
set with a linking constraint of the formM(W , 0, ua)with k = 2.Moreover, it follows
from wi , vi ≥ 0 for i ∈ [N ] that

wi + (vi + ua) ≥ ua for all i ∈ [n] and min {wi : i ∈ [n]} + min {vi + ua : i ∈ [n]} ≥ ua.

Then Ī (ua), where Ī is defined as in (20), is given by

Ī (ua) = {i ∈ [n] : wi = vi = 0} = {i ∈ [n] : wi = 0, vi + ua = ua} .

If Ī (ua) �= ∅, then

max
i∈ Ī (ua)

{wi } = 0 and max
i∈ Ī (ua)

{vi + ua} = ua,

inwhich case conditions (C1) and (C2) are clearly satisfied. Therefore, byDefinition 5,
Ī (ua) is ua-negligible. Furthermore, we can next argue that LW (ua) ≥ ua. By the
definition of LW (ua) given in (22), when Ī (ua) �= [n],

LW (ua) ≥ min
i∈[n] {wi } + min

i∈[n] {vi + ua} ≥ ua,

andwe have LW (ua) = +∞ ≥ ua if Ī (ua) = [n]. Hence, by Theorem 5.1, the convex
hull of the joint mixing set with a linking constraint can be obtained after applying the
mixing and the aggregated mixing inequalities.

123



316 F. Kılınç-Karzan et al.

In particular, given a sequence {i1 · · · → iθ } of indices in [n], the corresponding
aggregated mixing inequality (A-Mix) is of the following form:

y1 + y2 +
∑

s∈[τR ]
(wrs −wrs+1)zrs +

∑

s∈[τG ]
(vgs − vgs+1)zgs − uaziθ ≥ wr1 + (vg1 + ua),

(34)
where {r1 → · · · → rτR } and {g1 → · · · → gτG } are the 1-mixing-subsequence and
the 2-mixing-subsequence of �, respectively, and wrτR+1 := 0, vgτG+1 := −ua. By
Lemma 3, we know that zgτG

= ziθ , so (vgτG
−vgτG+1)zgτG

−uaziθ = vgτG
zgτG

. Since
y1 + y2 = 2yc + ua, (34) is equivalent to the following inequality:

2yp +
∑

s∈[τR ]
(wrs − wrs+1)zrs +

∑

s∈[τG ]
(vgs − vgs+1)zgs ≥ wr1 + vg1 , (35)

where wrτR+1 := 0 as before but vgτG+1 is now set to 0.
In Liu et al. [20], the inequality (35) is called the generalized mixing inequality from

�, so the aggregatedmixing inequalities generalize the generalizedmixing inequalities
to arbitrary k. Furthermore, Theorem 5.1 can be extended slightly to recover the
following main result of Liu et al. [20]:

Theorem 6.1 ([20], Theorem 3.1) Let P be the mixed-integer set defined by (33a)–
(33e). Then the convex hull ofP can be described by the mixing inequalities for y1, y2,
the aggregated mixing inequalities of the form (34) together with (33c) and the bounds
0 ≤ z ≤ 1 under the condition (31).

Proof LetR be the mixed-integer set defined by (33a), (33b), (33d), and (33e). Then
P ⊆ R and, byTheorem5.1, conv(R) is described by themixing inequalities for y1, y2
and the generalized mixing inequalities of the form (34) together with 0 ≤ z ≤ 1. We
will argue that adding constraint (33c), that is ua ≥ y1 − y2 ≥ −ua, to the description
of conv(R) does not affect integrality of the resulting system.

By Lemma 11, the extreme rays of conv(R) are (ej, 0) for j ∈ [2], and the extreme
points are

• A(z) = (y1, y2, z) for z ∈ {0, 1}n \ {1} where

y1 = max
i∈[n] {wi (1 − zi )} and y2 = max

i∈[n] {(vi + ua)(1 − zi )} ,

• B(1) = (ua, 0, 1) and B(2) = (0, ua, 1).

It follows from (31) that all extreme points of conv(R) satisfy ua ≥ y1 − y2 ≥ −ua.
Observe that two hyperplanes {(y, z) : ua = y1 − y2} and {(y, z) : y1 − y2 = −ua}
are parallel. So, each of the new extreme points created after adding ua ≥ y1 − y2 ≥
−ua is obtained as the intersection of one of the two hyperplanes and a ray emanating
from an extreme point of conv(R). Since every extreme ray of conv(R) has 0 in its
z component and every extreme point of conv(R) has integral z component, the z
component of every new extreme point is also integral, as required.

Therefore, the convexhull ofP is equal to {( y, z) ∈ conv(R) : ( y, z) satisfies (33c)},
implying in turn that conv(P) can be described by the mixing inequalities for y1, y2,

123



Joint chance-constrained programs and the intersection… 317

the aggregated mixing inequalities of the form (34) together with (33c) and the bounds
0 ≤ z ≤ 1, as required. ��

7 Conclusions

In this paper, we show that mixing inequalities with binary variables may be viewed
as polymatroid inequalities applied to a specific submodular function.With this obser-
vation, we unify and generalize extant valid inequalities and convex hull descriptions
of the mixing sets with common binary variables and their intersection under addi-
tional constraints on a linear function of the continuous variables. Such substructures
have attracted interest as they appear in joint CCPs. However, our results are broadly
applicable to other settings that involve similar substructures, including epigraphs of
submodular functions other than those considered in this paper.
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A Proof of Lemma 4

Let ( ȳ, z̄) ∈ Rk+ × [0, 1]n be a point satisfying (13a)–(13c), and assume that ( ȳ, z̄)
satisfies (A-Mix) for all sequences contained in {i ∈ [n] : z̄i < 1}. Then we need to
prove that ( ȳ, z̄) satisfies (A-Mix) for all the other sequences as well.

For a sequence �, we denote by N (�) the set {i ∈ � : z̄i = 1}. We argue by
induction on |N (�)| that ( ȳ, z̄) satisfies (A-Mix) for �. If |N (�)| = 0, then ( ȳ, z̄)
satisfies (A-Mix) by the assumption. For the induction step, we assume that ( ȳ, z̄)
satisfies (A-Mix) for every sequence � with |N (�)| < N for some N ≥ 1. Now
we take a sequence � = {i1 → · · · → iθ } with |N (�)| = N . Notice that ( ȳ, z̄)
satisfies (A-Mix) if and only if ( ȳ, z̄) satisfies

∑

j∈[k]

⎛

⎝ȳ j +
∑

t∈[θ]

(
wit , j − max

{
wi, j : it precedes i in �

})
+ z̄it

⎞

⎠

− min
{
ε, LW ,�

}
z̄iθ ≥

∑

j∈[k]
max

{
wi, j : i ∈ �

}
. (36)

Hence, it is sufficient to show that (ȳ, z̄) satisfies (36). We consider two cases z̄iθ = 1
and z̄iθ �= 1 separately.

First, consider the case when z̄iθ �= 1. Since |N (�)| ≥ 1, we have z̄i p = 1 for
some p ∈ [θ −1]. Let�′ denote the subsequence of� obtained by removing i p. Then
|N (�′)| = |N (�)| − 1, so it follows from the induction hypothesis that (A-Mix) for
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�′ is valid for ( ȳ, z̄):

∑

j∈[k]

⎛

⎝ȳ j +
∑

t∈[θ]\{p}

(
wit , j − max

{
wi, j : it precedes i in �′})

+ z̄it

⎞

⎠

− min
{
ε, LW ,�′

}
z̄iθ ≥

∑

j∈[k]
max

{
wi, j : i ∈ �′} . (37)

Since �′ is a subsequence of �, it follows that for any t �= p.

(
wit , j − max

{
wi, j : it precedes i in �′})

+ ≥ (
wit , j − max

{
wi, j : it precedes i in �

})
+ .

(38)
Since −z̄it ≥ −1 is valid for each t , we deduce the following inequality from (37):

∑

j∈[k]

⎛

⎝ȳ j +
∑

t∈[θ]\{p}

(
wit , j − max

{
wi, j : it precedes i in �

})
+ z̄it

⎞

⎠− min
{
ε, LW ,�′

}
z̄iθ

≥
∑

j∈[k]
max

{
wi, j : i ∈ �

}−
∑

j∈[k]

(
wi p, j − max

{
wi, j : i p precedes i in �

})

+ ,

(39)

because

∑

t∈[θ]\{p}

(
wit , j − max

{
wi, j : it precedes i in �′})

+ =
∑

j∈[k]
max

{
wi, j : i ∈ �′}

and

∑

t∈[θ]

(
wit , j − max

{
wi, j : it precedes i in �

})
+ =

∑

j∈[k]
max

{
wi, j : i ∈ �

}
. (40)

Moreover, notice that LW ,�′ ≥ LW ,� due to (38). So, it follows that (39) implies (36)
since z̄i p = 1. This in turn implies that ( ȳ, z̄) satisfies (A-Mix) for �, as required.

Next we consider the z̄iθ = 1 case. In this case, (36) is equivalent to

∑

j∈[k]

⎛

⎝ȳ j +
∑

t∈[θ−1]

(
wit , j − max

{
wi, j : it precedes i in �

})
+ z̄it

⎞

⎠

≥ min
{
ε, LW ,�

}−
∑

j∈[k]
wiθ , j +

∑

j∈[k]
max

{
wi, j : i ∈ �

}
. (41)
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Take the subsequence�′ of� obtained by removing iθ . As before, we have |N (�′)| =
|N (�)|−1, and the induction hypothesis implies that (A-Mix) for�′ is valid for ( ȳ, z̄):

∑

j∈[k]

⎛

⎝ȳ j +
∑

t∈[θ−2]

(
wit , j − max

{
wi, j : it precedes i in �′})

+ z̄it

⎞

⎠

+
⎛

⎝
∑

j∈[k]
wiθ−1, j − min

{
ε, LW ,�′

}
⎞

⎠ z̄iθ−1 ≥
∑

j∈[k]
max

{
wi, j : i ∈ �′} .

(42)

We will deduce from (42) that (41) is valid for ( ȳ, z̄). As �′ is a subsequence of
�, (38) holds for t ∈ [θ − 2]. So, as ( ȳ, z̄) satisfies −z̄it ≥ −1 for t ∈ [θ − 2], we
obtain the following from (42):

∑

j∈[k]

⎛

⎝ȳ j +
∑

t∈[θ−2]

(
wit , j − max

{
wi, j : it precedes i in �

})
+ z̄it

⎞

⎠

+
⎛

⎝
∑

j∈[k]
wiθ−1, j − min

{
ε, LW ,�′

}
⎞

⎠ z̄iθ−1

≥
∑

j∈[k]
min

{
wiθ−1, j , wiθ , j

}−
∑

j∈[k]
wiθ , j +

∑

j∈[k]
max

{
wi, j : i ∈ �

}
, (43)

because (40) holds,

∑

t∈[θ−1]

(
wit , j − max

{
wi, j : it precedes i in �′})

+ =
∑

j∈[k]
max

{
wi, j : i ∈ �′} ,

and

∑

j∈[k]
wiθ−1, j −

∑

j∈[k]

(
wiθ−1, j − max

{
wi, j : iθ−1 precedes i in �

})

+ =
∑

j∈[k]
min

{
wiθ−1, j , wiθ , j

}
.

(44)
Now let us compare the coefficient of z̄iθ−1 in (43) and that of z̄iθ−1 in (41). If the
coefficient in (43) is less than the coefficient in (41), then (43) implies that (41) is
valid, because we can add an appropriate scalar multiple of z̄iθ−1 ≥ 0 to (43) in order
to achieve the coefficient in (41) and the term

∑
j∈[k] min

{
wiθ−1, j , wiθ , j

}
in the right-

hand side of (43) is at least LW ,�. If not, then by adding an appropriate scalar multiple
of −z̄iθ−1 ≥ −1 to (43), we deduce the following inequality:

∑

j∈[k]

⎛

⎝ȳ j +
∑

t∈[θ−1]

(
wit , j − max

{
wi, j : it precedes i in �

})
+ z̄it

⎞

⎠
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≥ min
{
ε, LW ,�′

}−
∑

j∈[k]
wiθ , j +

∑

j∈[k]
max

{
wi, j : i ∈ �

}
, (45)

because (44) holds. Since �′ is a subsequence of �, we have LW ,�′ ≥ LW ,�, so
it follows that the term min

{
ε, LW ,�′

}
in the right-hand side of (45) is at least

min
{
ε, LW ,�

}
. Therefore, (45) implies that (41) is valid for ( ȳ, z̄). In summary,

when z̄iθ = 1, ( ȳ, z̄) satisfies (41), thereby proving that ( ȳ, z̄) satisfies (A-Mix). This
finishes the proof of Lemma 4.

B Proof of Theorem 5.1

Propositions 5, 6 and 7 already prove that (i)⇒(iii), and the direction (iii)⇒(ii) is
trivial. Thus, what remains is to show (ii)⇒(i). We will prove the contrapositive of
this direction. It is sufficient to exhibit a point ( ȳ, z̄)with

∑
j∈[k] ȳ j ≥ ε and 0 ≤ z̄ ≤ 1

that satisfies the mixing and the aggregated mixing inequalities but is not contained in
the convex hull of M(W , 0, ε).

Assume first that Ī (ε) is not ε-negligible. Then Ī (ε) is nonempty and either (C1)
or (C2) is violated. First, consider the case when (C2) is violated. Take a minimal
subset U of Ī (ε) satisfying

∑
j∈[k] maxi∈U {wi, j } > ε. Note that by definition of

Ī (ε), we have for every i ∈ Ī (ε) that
∑

j∈[k] wi, j ≤ ε. Then by the assumption that∑
j∈[k] maxi∈U {wi, j } > ε, we deduce that |U | ≥ 2. Moreover, by our minimal choice

of U , we have
∑

j∈[k] maxi∈V {wi, j } ≤ ε for any V ⊂ U such that |V | ≤ |U | − 1.
Moreover, for each j ∈ [k], the largest element of

{
wi, j : i ∈ U

}
is contained in

|U | − 1 subsets of
{
wi, j : i ∈ U

}
of size |U | − 1, while the second largest element of

U is the largest in another subset of size |U | − 1. From these observations, we deduce
that

(|U | − 1)
∑

j∈[k]
max
i∈U {wi, j } +

∑

j∈[k]
second-max{wi, j : i ∈ U }

=
∑

V⊂U|V |=|U |−1

⎛

⎝
∑

j∈[k]
max
i∈V {wi, j }

⎞

⎠ ≤ |U | ε (46)

where second-max{wi, j : i ∈ U } denotes the second largest value in {wi, j : i ∈ U }
for j ∈ [k]. Let us consider ( ȳ, z̄) where

z̄i =
{

1
|U | if i ∈ U

1 if i /∈ U
and

ȳ j =

⎧
⎪⎪⎨

⎪⎪⎩

|U |−1
|U | max

i∈U
{
wi, j

}
, if j ∈ [k − 1]

|U |−1
|U | max

i∈U
{
wi,k

}+
(

ε − |U |−1
|U |

∑

j∈[k]
max
i∈U

{
wi, j

}
)

, if j = k
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Then, we always have
∑

j∈[k] ȳ j = ε. This, together with (46), implies that

∑

j∈[k]
ȳ j = ε ≥ |U | − 1

|U |
∑

j∈[k]
max
i∈U

{
wi, j

}+ 1

|U |
∑

j∈[k]
second-max{wi, j : i ∈ U }.

(47)
Then, from W ∈ Rn×k+ we deduce

∑
j∈[k] second-max{wi, j : i ∈ U } ≥ 0, and

hence ȳk ≥ |U |−1
|U | maxi∈U

{
wi,k

}
. Let us argue that ( ȳ, z̄) satisfies the mixing and the

aggregated mixing inequalities. Take a j-mixing-sequence { j1 → · · · → jτ j }. Since∑
s∈[τ j ](w js , j − w js+1, j ) = w j1, j , ( ȳ, z̄) satisfies (Mix) if and only if

ȳ j ≥ |U | − 1

|U |
∑

js∈U

(
w js , j − w js+1, j

)
.

As
∑

js∈U
(
w js , j − w js+1, j

) ≤ maxi∈U {wi, j }, it follows that ( ȳ, z̄) satisfies (Mix).
Now we argue that ( ȳ, z̄) satisfies every aggregated mixing inequality. By Lemma 4,
it is sufficient to argue this for only the sequences � = {i1 → · · · → iθ } that are
contained in U . By (15), ( ȳ, z̄) satisfies (A-Mix) for � if and only if

∑

j∈[k]

⎛

⎝ȳ j +
∑

t∈[�]

(
wit , j − max

{
wi, j : it precedes i in �

})
+ z̄it

⎞

⎠

− min
{
ε, LW ,�

}
z̄iθ ≥

∑

j∈[k]
max

{
wi, j : i ∈ �

}
. (48)

Since � ⊆ U , we have z̄i1 = · · · = z̄iθ = 1
|U | . Then, (48) is exactly

∑

j∈[k]
ȳ j ≥ |U | − 1

|U |
∑

j∈[k]
max

{
wi, j : i ∈ �

}+ 1

|U | min
{
ε, LW ,�

}
. (49)

Recall that
∑

j∈[k] ȳ j = ε. If |�| = 1, then because |U | ≥ 2 we deduce � �= U .

Moreover, because |�| = 1 and � is a proper subset of Ī (ε), we deduce from the
definition of Ī (ε) that

∑
j∈[k] max

{
wi, j : i ∈ �

} ≤ ε. Hence, when |�| = 1, we
also have min

{
ε, LW ,�

} ≤ ε, and thus (49) clearly holds. So, we may assume that
|�| ≥ 2. By definition of LW ,� in (16), we have LW ,� ≤ ∑

j∈[k] second-max{wi, j :
i ∈ �} where second-max{wi, j : i ∈ �} denotes the second largest element in
{wi, j : i ∈ �}. Since maxi∈�

{
wi, j

} ≤ maxi∈U
{
wi, j

}
and second-max{wi, j : i ∈

�} ≤ second-max{wi, j : i ∈ U } hold because � ⊆ U , we deduce from (47)
that (49) holds. Consequently, Lemma 4 implies that ( ȳ, z̄) satisfies the aggregated
mixing inequalities (A-Mix) for all sequences aswell. Let us nowshow that ( ȳ, z̄) is not
contained in conv(M(W , 0, ε)). Observe that ( ȳ, z̄) satisfies the constraints zi ≤ 1 for
i /∈ U at equality. For j ∈ [k−1], let { j1 → · · · → j|U |} be an ordering of the indices
in U such that w j1, j ≥ · · · ≥ w j|U |, j . Then { j1}, { j1 → j2}, . . . , { j1 → · · · → j|U |}
are all j-mixing-sequences, and notice that ( ȳ, z̄) satisfies the mixing inequalities

123



322 F. Kılınç-Karzan et al.

corresponding to all these j-mixing-sequences at equality. In particular, it follows
that ( ȳ, z̄) satisfies z j1 = z j2 = · · · = z j|U | at equality. There are only two points
in {0, 1}n that satisfy both of the constraints zi ≤ 1 for i /∈ U and z j1 = z j2 =
· · · = z j|U | at equality; these points are 1 and 1[n]\U . Let y1, y2 ∈ Rk be such that
( y1, 1), ( y2, 1[n]\U ) ∈ M(W , 0, ε). Then we have

∑

j∈[k]
y1j ≥ ε and

∑

j∈[k]
y2j ≥

∑

j∈[k]
max
i∈U {wi, j }.

As
∑

j∈[k] maxi∈U {wi, j } > ε by our assumption and
∑

j∈[k] ȳ j = ε, ( ȳ, z̄) cannot
be a convex combination of ( y1, 1) and ( y2, 1[n]\U ), implying in turn that ( ȳ, z̄) does
not belong to conv(M(W , 0, ε)).

Now consider the case when (C1) is violated. Then there exist p ∈ [n] \ Ī (ε) and
q ∈ Ī (ε) such that wq, j > wp, j for some j ∈ [k]. In particular,

∑
j∈[k] wp, j <∑

j∈[k] max{wp, j , wq, j }. Let us consider the point ( ȳ, z̄) where

z̄i =
{
1
2 if i ∈ {p, q}
1 if i /∈ {p, q} , and

ȳ j =

⎧
⎪⎪⎨

⎪⎪⎩

1
2 max

{
wp, j , wq, j

}
, if j ∈ [k − 1]

1
2 max

{
wp,k , wq,k

}+ 1
2

(

ε + ∑

j∈[k]
wp, j − ∑

j∈[k]
max

{
wp, j , wq, j

}
)

, if j = k

By definition of ȳ, we always have
∑

j∈[k] ȳ j = 1
2

(
ε +∑

j∈[k] wp, j

)
> ε, where

the inequality follows from p /∈ Ī (ε). Moreover, as p ∈ [n] \ Ī (ε) and q ∈ Ī (ε), we
have

∑
j∈[k] wp, j > ε ≥ ∑

j∈[k] wq, j , and hence

ε +
∑

j∈[k]
wp, j −

∑

j∈[k]
max

{
wp, j , wq, j

}

≥
∑

j∈[k]
wq, j +

∑

j∈[k]
wp, j −

∑

j∈[k]
max

{
wp, j , wq, j

}

=
∑

j∈[k]
min

{
wp, j , wq, j

} ≥ 0,

where the last inequality follows from the fact thatwi, j ≥ 0 for all i ∈ [n] and j ∈ [k].
So, it follows that

ȳk ≥ 1

2
max

{
wp,k, wq,k

}
.

As before, we can argue that ( ȳ, z̄) satisfies the mixing inequalities. Now we argue
that ( ȳ, z̄) satisfies every aggregated mixing inequality. By Lemma 4, it is sufficient to
consider only the sequences � = {i1 → · · · → iθ } that are contained in {p, q}. Since
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� ⊆ {p, q}, we know that z̄i1 = · · · = z̄iθ = 1
2 . Then, the following inequality (50)

implies (48).

∑

j∈[k]
ȳ j = 1

2

⎛

⎝ε +
∑

j∈[k]
wp, j

⎞

⎠ ≥ 1

2
min

{
ε, LW ,�

}+ 1

2

∑

j∈[k]
max

{
wi, j : i ∈ �

}
.

(50)
When � contains both p and q, we have LW ,� = ∑

j∈[k] min{wp, j , wq, j } ≤
∑

j∈[k] wq, j ≤ ε (since q ∈ Ī (ε)) and
∑

j∈[k] max
{
wi, j : i ∈ �

} = ∑
j∈[k]

max
{
wp, j , wq, j

}
. Then the right-hand side of (50) is

1

2

⎛

⎝
∑

j∈[k]
min{wp, j , wq, j } +

∑

j∈[k]
min{wp, j , wq, j }

⎞

⎠ = 1

2

∑

j∈[k]
wp, j + 1

2

∑

j∈[k]
wq, j ,

so inequality (50) holds in this case since q ∈ Ī (ε). If� = {p} or� = {q}, inequality
(50) clearly holds. Consequently, Lemma 4 implies that ( ȳ, z̄) satisfies the aggregated
mixing inequalities (A-Mix) for all sequences as well. Suppose for a contradiction that
( ȳ, z̄) is a convex combination of two points ( y1, z1) and ( y2, z2) inM(W , 0, ε). As
the previous case, we can argue that z1 and z2 satisfy z p = zq and zi ≤ 1 for i /∈ {p, q}
at equality, and therefore, z1 = 1 and z2 = 1[n]\{p,q}. Then we have

∑

j∈[k]
y1j ≥ ε,

∑

j∈[k]
y2j ≥

∑

j∈[k]
max{wp, j , wq, j } and ( ȳ, z̄) = 1

2

(
y1, z1

)+ 1

2

(
y2, z2

)
,

which implies that

1

2

⎛

⎝ε +
∑

j∈[k]
wp, j

⎞

⎠ =
∑

j∈[k]
ȳ j = 1

2

∑

j∈[k]

(
y1j + y2j

)
≥ 1

2
ε + 1

2

∑

j∈[k]
max{wp, j , wq, j }.

This is a contradiction, because we assumed
∑

j∈[k] wp, j <
∑

j∈[k] max{wp, j , wq, j }.
Therefore, ( ȳ, z̄) is not contained in conv(M(W , 0, ε)), as required.

In order tofinish the proofwe consider the case of ε > LW (ε). Basedon the previous
parts of the proof, we may assume that Ī (ε) is ε-negligible. Then, LW (ε) is finite, and
thus there exist distinct p, q ∈ [n] \ Ī (ε) such that ε >

∑
j∈[k] min

{
wp, j , wq, j

} =
LW (ε). Let us consider the point ( ȳ, z̄) where

z̄i =
{

1
2 if i ∈ {p, q}
1 if i /∈ {p, q} and

ȳ j =
{

1
2 max

{
wp, j , wq, j

}
if j ∈ [k − 1]

1
2 max

{
wp,k, wq,k

}+ 1
2 LW (ε) if j = k

.
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Then

∑

j∈[k]
ȳ j =

∑

j∈[k]

1

2
max

{
wp, j , wq, j

}+ 1

2

∑

j∈[k]
min

{
wp, j , wq, j

}

= 1

2

∑

j∈[k]
wp, j + 1

2

∑

j∈[k]
wq, j > ε,

where the first equation follows from the properties of LW (ε) in this case, and the
inequality follows from our assumption that p, q ∈ [n] \ Ī (ε). Similar to the previous
cases, we can argue that ( ȳ, z̄) satisfies the mixing inequalities. Now we argue that
( ȳ, z̄) satisfies every aggregated mixing inequality. By Lemma 4, it is sufficient to
consider only the sequences � = {i1 → · · · → iθ } contained in {p, q}. Since � ⊆
{p, q}, we know that z̄i1 = · · · = z̄iθ = 1

2 . Then the following inequality (51)
implies (48).

∑

j∈[k]
ȳ j = 1

2

∑

j∈[k]
wp, j + 1

2

∑

j∈[k]
wq, j ≥ 1

2
min

{
ε, LW ,�

}+ 1

2

∑

j∈[k]
max

{
wi, j : i ∈ �

}
.

(51)
When � contains both p and q, we have

LW ,� =
∑

j∈[k]
min{wp, j , wq, j }

and
∑

j∈[k]
max

{
wi, j : i ∈ �

} =
∑

j∈[k]
max

{
wp, j , wq, j

}
.

Therefore, (51) holds in this case. (51) clearly holds if � = {p} or � = {q}, because
ε is smaller than

∑
j∈[k] wp, j and

∑
j∈[k] wq, j (this follows from p, q /∈ Ī (ε)).

Consequently, Lemma 4 implies that ( ȳ, z̄) satisfies the aggregated mixing inequal-
ities (A-Mix) for all sequences as well. Suppose for a contradiction that ( ȳ, z̄) is a
convex combination of two points ( y1, z1) and ( y2, z2) inM(W , 0, ε). As in the pre-
vious cases, we can argue that z1 and z2 satisfy the constraints zi ≤ 1 for i /∈ {p, q}
and z p = zq at equality. Therefore, z1 = 1 and z2 = 1[n]\{p,q}. Then we have

∑

j∈[k]
y1j ≥ ε,

∑

j∈[k]
y2j ≥

∑

j∈[k]
max{wp, j , wq, j }

and ( ȳ, z̄) = 1

2

(
y1, z1

)+ 1

2

(
y2, z2

)
,

which implies that

∑

j∈[k]

1

2
max

{
wp, j , wq, j

}+ 1

2

∑

j∈[k]
min

{
wp, j , wq, j

}
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=
∑

j∈[k]
ȳ j = 1

2

∑

j∈[k]

(
y1j + y2j

)
≥ 1

2
ε + 1

2

∑

j∈[k]
max{wp, j , wq, j }.

This is a contradiction to our assumption that ε >
∑

j∈[k] min
{
wp, j , wq, j

}
. There-

fore, ( ȳ, z̄) is not contained in conv(M(W , 0, ε)). This completes the proof of
Theorem 5.1.
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