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Abstract
We study a Stackelberg game with multiple leaders and a continuum of followers that
are coupled via congestion effects. The followers’ problem constitutes a nonatomic
congestion game, where a population of infinitesimal players is given and each player
chooses a resource. Each resource has a linear cost function which depends on the con-
gestion of this resource. The leaders of the Stackelberg game each control a resource
and determine a price per unit as well as a service capacity for the resource influenc-
ing the slope of the linear congestion cost function. As our main result, we establish
existence of pure-strategy Nash–Stackelberg equilibria for this multi-leader Stackel-
berg game. The existence result requires a completely new proof approach compared
to previous approaches, since the leaders’ objective functions are discontinuous in
our game. As a consequence, best responses of leaders do not always exist, and thus
standard fixed-point arguments á la Kakutani (Duke Math J 8(3):457–458, 1941) are
not directly applicable. We show that the game is C-secure (a concept introduced by
Reny (Econometrica 67(5):1029–1056, 1999) and refined byMcLennan et al. (Econo-
metrica 79(5):1643–1664, 2011), which leads to the existence of an equilibrium. We
furthermore show that the equilibrium is essentially unique, and analyze its efficiency
compared to a social optimum. We prove that the worst-case quality is unbounded.
For identical leaders, we derive a closed-form expression for the efficiency of the
equilibrium.
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1 Introduction

We consider a Stackelberg game with multiple leaders N = {1, . . . , n}, n ≥ 2, and
a continuum of followers represented by the interval [0, 1]1. The followers’ problem
constitutes a (nonatomic) singleton congestion game, that is, each follower chooses
one resource and the cost of the resource depends on the congestion of this resource.
The leaders of the game each control one resource, and decide about a price which
is charged to the followers for the usage of the resource, as well as a capacity which
influences the slope of the congestion cost of her resource. Concretely, each leader i ∈
N chooses a price pi ∈ [0, Ci ], where Ci > 0 is a given price cap, and a capacity
zi ≥ 0. The resulting effective cost function of leader i’s resource - from the perspective
of a follower - is the sum of the congestion cost function �i (xi , zi ) and the price pi

charged, where xi denotes the volume of followers who have chosen leader i . We
assume that the congestion cost �i (xi , zi ) is infinite if no capacity is installed (i.e.,
zi = 0), and else it depends linearly on the volume of followers and inverse-linearly
on the installed capacity, that is,

�i (xi , zi ) :=
{

ai xi
zi

+ bi , for zi > 0,

∞, for zi = 0,

where ai > 0 and bi ≥ 0 are given parameters for i ∈ N . As is common in the trans-
portation science literature (see, e.g., [18,28] and the references mentioned therein),
the capacity zi is not a strict bound on the admissible flow, but instead influences
the congestion dependent cost. The case zi = 0 can be interpreted as if the resource
controlled by leader i is not present in the followers’ congestion game. Given a capac-
ity vector z = (z1, . . . , zn) with

∑
i∈N zi > 0, i.e., there is at least one resource in

the followers’ congestion game, and a price vector p = (p1, . . . , pn), the followers
choose rationally the most attractive resource in terms of the effective cost. That is,
the outcome x ∈ P := {x ∈ R

n≥0|
∑

i∈N xi = 1} of the followers’ congestion game is
a Wardrop equilibrium, described by the following Wardrop equilibrium conditions:

ci (x, z, p) := �i (xi , zi ) + pi ≤ � j (x j , z j ) + p j =: c j (x, z, p)

holds for all i, j ∈ N with xi > 0. Note that for given capacities z �= 0 and prices p,
there is exactly one x ∈ P satisfying the Wardrop equilibrium conditions (see, e.g.,
[10]). Call this flow x = x(z, p) the Wardrop flow induced by (z, p).2 In particular,
there is a constant K ≥ 0 such that ci (x, z, p) = K holds for each i ∈ N with xi > 0,
and ci (x, z, p) ≥ K holds for each i ∈ N with xi = 0. For a Wardrop flow x , call the
corresponding constant K the (routing) cost of x . We assume that each leader i ∈ N

1 Each follower is assumed to be infinitesimally small and represented by a number in [0, 1]. All results
hold for arbitrary intervals [0, d], d ∈ R>0 by a standard scaling argument.
2 Since x ∈ P can be interpreted as a flow in a network consisting of n parallel links, we also call x a flow.
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Stackelberg pricing games with congestion effects 765

seeks to maximize her own profit function, which is defined as

�i (z, p) :=
{

pi xi (z, p) − γi zi , for
∑

i∈N zi > 0,

0, else,

where γi > 0 is a given installation cost parameter for leader i . This completes the
description of our game, which we denote a Stackelberg pricing game.

Note that the introduced Stackelberg pricing game captures many aspects of
realistic oligopolistic markets where firms offer a service to customers, like build-
operate schemes in traffic networks or competition among WIFI-providers (see, e.g.,
[1,9,20,21,26,34]).

In this paper, we analyze the stable states of Stackelberg pricing games, that is, pure
Nash(–Stackelberg) equilibria as defined in the following. For each leader i ∈ N , let
Si := {si = (zi , pi ) : 0 ≤ zi , 0 ≤ pi ≤ Ci }be her strategy set.Avector s consisting of
strategies si = (zi , pi ) ∈ Si for all i ∈ N is called a strategy profile, and S := ×i∈N Si

denotes the set of strategy profiles. Usually, we will write a strategy profile s ∈ S
in the form s = (z, p), where z denotes the vector consisting of all capacities zi for
i ∈ N , and p is the vector of prices pi for i ∈ N . The profit of leader i for a strategy
profile s = (z, p) is then defined as �i (s) := �i (z, p). Furthermore, we write
x(s) := x(z, p) for the Wardrop-flow induced by s = (z, p) and K (s) := K (z, p) for
the routing cost of x(s). For leader i , denote by s−i = (z−i , p−i ) ∈ S−i := × j∈N\{i}S j

the vector consisting of strategies s j = (z j , p j ) ∈ S j for all j ∈ N \ {i}. We then
write (si , s−i ) = ((zi , pi ), (z−i , p−i )) for the strategy profile where leader i chooses
si = (zi , pi ) ∈ Si , and the other leaders choose s−i = (z−i , p−i ) ∈ S−i .Moreover,we
use the simplified notation �i ((si , s−i )) = �i (si , s−i ) and x((si , s−i )) = x(si , s−i ).
A strategy profile s = (si , s−i ) is a pure Nash(–Stackelberg) equilibrium (PNE), if for
each leader i ∈ N :

�i (si , s−i ) ≥ �i (s
′
i , s−i ) for all s′

i ∈ Si .

For given strategies s−i ∈ S−i of the other leaders, the best response correspondence
of leader i is defined by

BRi (s−i ) := argmax{�i (si , s−i )|si ∈ Si }.

If s−i is clear from the context, we just write BRi instead of BRi (s−i ). Clearly, the
strategy profile s = (si , s−i ) is a PNE if and only if si ∈ BRi (s−i ) is fulfilled for each
i ∈ N .

The next subsection summarizes our results in terms of existence, uniqueness and
quality of PNE for Stackelberg pricing games.

1.1 Our results and proof techniques

As our main result, we show existence of PNE for the introduced Stackelberg pricing
game. This result requires a completely new proof approach compared to previous
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766 T. Harks, A. Schedel

approaches, since the leaders’ profit functions are not continuous. Therefore, best
responses do not always exist and standard fixed-point arguments à la Kakutani are
not directly applicable. For the existence proof, we first completely characterize in
Theorem 1 the continuity of the joint profit function (consisting of all leaders’ profits).
Using this, we completely characterize the structure of best response correspondences
of leaders; including the possibility of non-existence of a best response (Theorem 2).
We then establish the existence of equilibria (Theorem 4) using the concept of C-
security introduced by [29], which in turn resembles ideas of [31]. A game isC-secure
at a given strategy profile, if each player has a pure strategy guaranteeing a certain
utility value, even if the other players play some perturbed strategy within a (small
enough) neighborhood, and furthermore, for each slightly perturbed strategy profile,
there is a player whose perturbed strategy can in some sense be strictly separated
from her securing strategies. Intuitively, the concept of securing strategies means that
those strategies are robust to other players’ small deviations. The result of [29] states
that a game with compact, convex strategy sets and bounded profit functions admits
an equilibrium, if every non-equilibrium profile is C-secure. It is important to note
that the concept of C-security does not rely on quasi-concavity or continuity of profit
functions. With our characterization of best response correspondences at hand, we
show that the considered Stackelberg pricing game fulfills the conditions of [29] and
thus admits PNE.

As our second main result, we show that the equilibrium is essentially unique
(Theorem 5). While the general proof approach is related to that of Johari et al. [21]
(see also the related work in the following subsection), our model allows for price
caps thus requiring additional ideas. In particular, the set of leaders having positive
capacity needs to be decomposed, where the decomposition is related to the property
whether the price of a leader is equal to its cap, or strictly smaller.

We finally study the efficiency of the unique equilibrium compared to a natural
benchmark, in which we relax the equilibrium conditions of the leaders, but not the
equilibrium conditions of the followers. We show that the unique equilibrium might
be arbitrarily inefficient (Theorem 6), by presenting a family of instances such that the
quality of the equilibriumgets arbitrarily bad. Furthermore, for instanceswith identical
leaders, we derive a closed-form expression for the equilibrium quality (Theorem 7).

1.2 Related work

Johari et al. [21] study existence, uniqueness and worst-case quality of PNE assuming
that the demand of the followers is elastic: The volume of followers participating
in the congestion game decreases with increasing combined cost of congestion and
price. As a consequence of the elastic demand assumption, best responses of leaders
do always exist in their model, and Kakutani’s fixed point theorem can be applied
to show existence of PNE. As already noted, this is not possible for the model with
inelastic demand that we consider in this paper. We discuss in detail the motivation for
assuming inelastic demand in Sect. 1.3. Johari et al. also consider the case of inelastic
follower’s demand, assuming homogeneous leaders (that is, all leaders have the same
parameters). As shown in their paper, homogeneity (together with some assumptions
on the congestion costs) implies that there is only one symmetric equilibrium candidate
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Stackelberg pricing games with congestion effects 767

profile. For this specific symmetric strategy profile, they directly prove stability using
concavity arguments. This proof technique is clearly not applicable in the general
non-homogeneous case (with fixed demand). Further differences between our model
and Johari et al. are that they do not consider price caps, but on the other hand, allow
more general congestion cost functions.

Acemoglu et al. [1] study amodel inwhich the capacities represent “hard” capacities
bounding the admissible customer volume for a leader. They observe that equilibria do
not exist in this model. Subsequently they study amodel in which capacities and prices
are not chosen simultaneously anymore, but the leaders first determine capacities, and
only after the chosen capacities became apparent, set prices. For this model, they
investigate existence and worst-case quality of equilibria (see also [23] for earlier
work on the two-stage model).

Schmand et al. [33] study a network investment game in which the leaders invest
in edges of a series-parallel graph (but do not directly set prices).

Further related models are used in the papers of Harks et al. [20] and Correa et
al. [9]. There, leaders do not choose capacities, but only prices, and the prices are
upper-bounded by caps (equal for all leaders in [20], leader-specific in [9]). The two
papers consider the problem of a system designer who chooses the cap(s) in order to
minimize total congestion.

There are also numerous works analyzing Stackelberg games with a single leader.
For example, Labbé et al. [24] study amodelwhere a single leader sets prices in order to
maximize her profit in a subsequent network routing game without congestion effects.
Situations where the leader determines capacities or prices in order to reduce the
total congestion (plus investments for the case of capacities) of the resulting Wardrop
equilibria are for example studied in [18,28] for setting capacities, and [4,35] for setting
prices. Castiglioni et al. [7] and Marchesi et al. [27] consider Stackelberg games with
an underlying (atomic) congestion game, where the single leader participates in the
same congestion game than the followers.

Finally, network design problems with congestion dependent costs have also been
studied from a purely optimization point of view, for example in the context of energy-
efficient networks [3,14]. There one wants to minimize the congestion-dependent cost
under certain network connectivity requirements.

1.3 Motivation for inelastic demand

We focus on the case of inelastic demand, that is, there is a fixed volume of followers
in the congestion game. This assumption is made by many works in the transportation
science and algorithmic game theory literature (see, e.g., [6,11–13,17,35] and [2,8,
16,32], respectively) and usually considered as a fundamental base case. As already
noted, in terms of equilibrium existence, the case of inelastic demand is much more
complicated for our model compared to the seemingly more general case of elastic
demand: best responses do not always exist in the inelastic case, putting standard
fixed-point approaches out of reach.

Besides this theoretical aspect, we think that a thorough analysis of the inelastic
demand case will be helpful in understanding realistic demand scenarios which are not
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768 T. Harks, A. Schedel

captured by the literature for the elastic demand. To make this point clear it is worth
recalling the underlying assumptions made in the literature for the elastic demand
case. In Johari et al. [21], the demand function can be described by a differentiable,
strictly decreasing and concave function. Liu et al. [26] assume instead of concavity
that d · B(d) is concave, where B(d) denotes the inverse demand function.3 The strict
monotonicity of the demand function implies that every follower particle has its own
unique valuation w.r.t. participating in the game. These assumptions do not cover
the realistic case that commuters stick to a travel mode (private car) for some cost
range, and only if the travel cost exceeds that of an alternative travel mode (public
transport), they switch mode. A demand function of this type would be piecewise
constant, or piecewise linear, but in either case not strictly decreasing, and perhaps
not even continuous.

Further examples of a rather inelastic demand appear for higher value travel (as
business or commute travel, in particular “urban peak-period trips”), in case the public
transport alternatives are sparse (rural areas) or if commuters with higher income are
considered, see also Litman [25], where various factors influencing travel demand are
discussed.

1.4 Outline of the paper

The following sections contain the technical presentation of our results. Concretely,
we characterize in Sects. 2 and 3 the continuity of the leaders’ profit functions, as well
as the best response correspondences. These results are then used to show existence
(Sect. 4) and uniqueness (Sect. 5) of PNE. Finally, we analyze the quality of PNE in
Sect. 6.

2 Continuity of the profits

In this section, we prove a fundamental result about the continuity of the profits. We
will use Theorem 1, which completely characterizes the strategy profiles s having the
property that all profit functions �i , i ∈ N , are continuous at s, several times during
the rest of the paper.

Theorem 1 Let s = (z, p) ∈ S. Then: The profit function �i is continuous at s =
(z, p) for all i ∈ N if and only if z �= 0 or (z, p) = (0, 0).

Proof We start with the strategy profile s = (z, p) = (0, 0) and show that for each
leader i , her profit function �i is continuous at s. Let i ∈ N . For ε > 0, define
δ := min{ε/(2γi ), ε/2} > 0, and let s′ ∈ S with ||s′|| = ||s′ − s|| < δ (where || · ||
denotes the Euclidean norm). If z′

i = 0, then �i (s′) = �i (s) = 0. Otherwise, the
following holds, showing that �i is continuous at s:

|�i (s
′) − �i (s)| = |xi (s

′)p′
i − γi z

′
i | ≤ p′

i + γi z
′
i ≤ ||s′|| + γi ||s′|| < δ(1 + γi ) ≤ ε

3 Note that for a strictly decreasing demand function, there is a well-defined inverse demand function.
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Stackelberg pricing games with congestion effects 769

Now consider s = (z, p) ∈ S with z �= 0. We again need to show that all profit
functions �i , i ∈ N , are continuous at s. Since z �= 0, we get that N+ := { j ∈ N :
z j > 0} �= ∅. Furthermore, for δ1 > 0 sufficiently small, N+ ⊆ { j ∈ N : z′

j > 0} =:
N+(s′) holds for all s′ = (z′, p′) ∈ S with ||s − s′|| < δ1. Write s′ = (s′

1, s′
2) ∈ S,

where s′
1 denotes the strategies of the leaders in N+, and s′

2 denotes the strategies of the
leaders in N \N+. Now let i ∈ N .We need to show that�i is continuous at s = (z, p).
For all s′ ∈ S with ||s − s′|| < δ1, leader i’s profit is �i (s′) = xi (s′)p′

i − γi z′
i . Thus

it is sufficient to show that xi is continuous at s = (s1, s2), where s1 and s2 denote
the strategies of the leaders in N+ and N \ N+, respectively. The idea of the proof is
to show that, for a slightly perturbed strategy profile (s′

1, s′
2), the difference between

xi (s) and xi (s′
1, s2), as well as the difference between xi (s′

1, s2) and xi (s′
1, s′

2), is small.
In the following, let s′ ∈ S with ||s − s′|| < δ1. It is well known ([4], compare also
[10]) that x(s′) is the unique optimal solution of the following optimization problem
Q = Q(s′):

(Q) min
∑
j∈N

∫ x j

0

(
� j (t, z′

j ) + p′
j

)
dt

s.t.
∑
j∈N

x j = 1, x j ≥ 0 ∀ j ∈ N .

Furthermore, x j (s′) = 0 for j /∈ N+(s′). Therefore, the values (x j (s′)) j∈N+(s′) are
the unique optimal solution of

max−
∑

j∈N+(s′)
(a j/(2z′

j ) · x2j + (b j + p′
j )x j )

s.t.
∑

j∈N+(s′)
x j = 1, x j ≥ 0 ∀ j ∈ N+(s′).

By Berge’s theorem of the maximum [5], for all ε > 0 there is 0 < δ2 = δ2(ε) < δ1
such that ||x(s) − x(s′

1, s2)|| < ε for all (s′
1, s2) ∈ S with ||s − (s′

1, s2)|| < δ2. That
is, x is continuous at s if we only allow changes in s1, but not in s2. Furthermore, if
q(s′) denotes the optimal objective function value of Q(s′), and if only changes in s1
are allowed, q is also continuous in s, i.e., for all ε > 0 there is 0 < δ3 = δ3(ε) < δ1
such that |q(s) − q(s′

1, s2)| < ε for all (s′
1, s2) ∈ S with ||s − (s′

1, s2)|| < δ3. We now
distinguish between zi > 0 and zi = 0.

First consider zi = 0, i.e., i /∈ N+, and let ε > 0. Note that xi (s) = 0, thus we need
to find δ > 0 such that |xi (s) − xi (s′)| = xi (s′) < ε for all s′ ∈ S with ||s − s′|| < δ.
To this end, define

δ = δ(i, ε) :=
{

δ3(1), if q(s) + 1 ≤ biε,

min{δ3(1), ai ε
2

2(q(s)+1−bi ε)
}, else,

and let s′ ∈ S with ||s − s′|| < δ. In particular, |zi − z′
i | = z′

i < δ. Furthermore,
q(s′) ≤ q(s′

1, s2) ≤ q(s) + 1 holds since ||s − (s′
1, s2)|| ≤ ||s′ − s|| < δ ≤ δ3(1).

If z′
i = 0, we immediately get xi (s′) = 0 < ε. Thus assume z′

i > 0 and assume,
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by contradiction, that xi (s′) ≥ ε. Then, by definition of δ, we get the following
contradiction:

q(s) + 1 ≥ q(s′) ≥ ai

2z′
i
xi (s

′)2 + (bi + p′
i )xi (s

′) ≥ ai

2z′
i
ε2 + biε

>
ai

2δ
ε2 + biε ≥ q(s) + 1.

Therefore, xi (s′) < ε holds, showing that xi is continuous at s if i /∈ N+.
Now consider the case i ∈ N+, i.e. zi > 0. For ε > 0, we need to find δ > 0 such

that |xi (s) − xi (s′)| < ε for all s′ ∈ S with ||s − s′|| < δ. To this end, define

δ := min
{
min

{
δ
(

j,
ε

2n

)
: j /∈ N+}

, δ2

(ε

2

)}

and let s′ ∈ S with ||s − s′|| < δ. In particular, ||s − (s′
1, s2)|| < δ ≤ δ2(

ε
2 ), thus|xi (s) − xi (s′

1, s2)| < ε/2. Furthermore, since δ ≤ δ( j, ε
2n ), we get x j (s′) ≤ ε

2n
for all j /∈ N+. If x j (s′) = 0 for all j /∈ N+, we get xi (s′) = xi (s′

1, s2) and thus
|xi (s) − xi (s′)| = |xi (s) − xi (s′

1, s2)| < ε/2 < ε, as desired. Otherwise, there is
j /∈ N+ with 0 < x j (s′) ≤ ε

2n . In particular, z′
j > 0. We now use a result about the

sensitivity of Wardrop flows [15, Theorem 2]. They show that if the followers are not
able to choose leader j’s resource anymore (we say that leader j is deleted from the
followers’ game), the resulting change in the Wardrop flow can be bounded by the
flow that j received. More formally, if x ∈ [0, 1]n is the Wardrop flow for the game
with leaders N , and x ′ ∈ [0, 1]n−1 is the Wardrop flow if leader j is deleted from
the followers’ game, then |xk − x ′

k | ≤ x j for all k ∈ N \ { j}. Obviously, changing
leader j’s capacity from z′

j > 0 to z j = 0 has the same effect on the Wardrop flow as
deleting leader j . Therefore, ifwe change, one after another, the capacities of all leaders
j /∈ N+ having z′

j > 0 to z j = 0, we get |xi (s′) − xi (s′
1, s2)| ≤ (n − 1)ε/(2n) < ε/2

(note that the flow values for j /∈ N+ are always upper-bounded by ε/(2n) due to our
choice of δ and the analysis of the case zi = 0). Using this, we now get the desired
inequality:

|xi (s) − xi (s
′)| ≤ |xi (s

′) − xi (s
′
1, s2)| + |xi (s) − xi (s

′
1, s2)| < ε/2 + ε/2 = ε.

Altogether we showed that all profit functions �i are continuous at s = (z, p) if
z �= 0.

To complete the proof, it remains to show that if all profit functions �i , i ∈ N ,
are continuous at s = (z, p), then z �= 0 or (z, p) = (0, 0) holds. We show this by
contraposititon, thus assume that s = (z, p) fulfills z = 0 and p �= 0. We need to
show that there is a leader i such that �i is not continuous at s. To this end, let i ∈ N
with pi > 0. Define the sequence of strategy profiles sn by (zn

j , pn
j ) := (z j , p j ) for

all j �= i , and (zn
i , pn

i ) := (1/n, pi ). Obviously, sn → s for n → ∞. But for the
profits, we get

�i (s
n) = xi (s

n)pn
i − γi z

n
i = pi − γi/n →n→∞ pi > 0.

Since �i (s) = 0, this shows that �i is not continuous at s. �
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Stackelberg pricing games with congestion effects 771

3 Characterization of best responses

The aim of this section is to derive a complete characterization of the best-response
correspondences of the leaders. We will make use of this characterization in all our
main results, i.e., existence, uniqueness and quality of PNE. Given a leader i ∈ N
and fixed strategies s−i = (z−i , p−i ) ∈ S−i for the other leaders, we characterize the
set BRi = BRi (s−i ) of best responses of leader i to s−i . To this end, we distinguish
between the two cases that z−i = 0 (Sect. 3.1) and z−i �= 0 (Sect. 3.2). Section 3.3
then contains the derived complete characterization. In Sect. 3.4, we discuss how our
results about the best responses influence the applicability of Kakutani’s fixed point
theorem.

3.1 The case z−i = 0

In this subsection, assume that the strategies s−i = (z−i , p−i ) of the other leaders
fulfill z−i = 0. Under this assumption, leader i does not have a best response to s−i :

Lemma 1 If z−i = 0, then BRi (z−i , p−i ) = ∅.

Proof Whenever leader i chooses a strategy (zi , pi ) with zi > 0, then xi = 1 holds
for the induced Wardrop-flow x , thus leader i’s profit is pi − γi zi . On the other hand,
any strategy (zi , pi ) with zi = 0 yields a profit of 0. Thus, leader i’s profit depends
solely on her own strategy (zi , pi ), and can be stated as follows:

�i (zi , pi ) :=
{

pi − γi zi , for zi > 0,

0, for zi = 0.

Obviously, �i (zi , pi ) < Ci holds for each (zi , pi ) ∈ Si , i.e. for zi ≥ 0 and 0 ≤
pi ≤ Ci . On the other hand, by (zi , pi ) = (ε, Ci ) for ε > 0, leader i gets a profit of
Ci − γi · ε arbitrarily near to Ci , that is, sup{�i (zi , pi ) : (zi , pi ) ∈ Si } = Ci . This
shows BRi (z−i , p−i ) = ∅. �

3.2 The case z−i �= 0

In this subsection, assume that the strategies s−i = (z−i , p−i ) of the other leaders
fulfill z−i �= 0. For a strategy si = (zi , pi ) of leader i , write�i (zi , pi ) := �i (si , s−i )

for leader i’s profit function, x(zi , pi ) := x(si , s−i ) for the Wardrop-flow induced by
(si , s−i ) and K (zi , pi ) := K (si , s−i ) for the corresponding routing cost.

For (zi , pi ) ∈ Si , leader i’s profit is �i (zi , pi ) = xi (zi , pi )pi − γi zi . It is clear
that each strategy (zi , pi ) with zi = 0 yields xi (zi , pi ) = 0, and thus �i (zi , pi ) =
0. On the other hand, each strategy (zi , pi ) with zi > Ci/γi yields negative profit
since �i (zi , pi ) = xi (zi , pi )pi − γi zi < Ci − γi · Ci/γi = 0. Therefore, each best
response (zi , pi ) fulfills zi ≤ Ci/γi since it yields nonnegative profit. Thus, BRi can
be described as the set of optimal solutions of the problem

max �i (zi , pi ) subject to zi ∈ [0, Ci/γi ], pi ∈ [0, Ci ]. (Pi )
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Due to the theorem of Weierstrass, (Pi ) has an optimal solution: The feasible set
of (Pi ) is compact and nonempty, and �i is continuous at (zi , pi ) for all feasible
(zi , pi ) (Theorem 1). Since BRi can be described as the set of optimal solutions of
(Pi ), we get BRi �= ∅.

Note that (Pi ) is a bilevel optimization problem (since x(zi , pi ) can be described
as the optimal solution of a minimization problem [4]), and these problems are known
to be notoriously hard to solve. The characterization of BRi that we derive here has
the advantage that it only uses ordinary optimization problems, namely the following
two (1-dimensional) optimization problems in the variable K ∈ R,

max f 1i (K ) := xi (K )(K − bi − 2
√

aiγi ) (P1i )

s.t. 2
√

aiγi + bi ≤ K

K ≤ √
aiγi + bi + Ci

xi (K ) > 0,

max f 2i (K ) := xi (K )

(
Ci − aiγi

K − bi − Ci

)
(P2i )

s.t.
√

aiγi + bi + Ci < K

aiγi/Ci + bi + Ci ≤ K

xi (K ) > 0,

where

xi (K ) := 1 −
∑

j∈N (K )

(K − b j − p j )z j

a j

with N+ := { j ∈ N \ {i} : z j > 0} and N (K ) := { j ∈ N+ : b j + p j < K }.
Note that xi : R → R is a continuous function which is equal to 1 for K ≤

min{b j + p j : j ∈ N+}, and strictly decreasing for K ≥ min{b j + p j : j ∈ N+} ≥ 0
with limK→∞ xi (K ) = −∞. Therefore, there is a unique constant Kmax

i > 0 with the
property xi (Kmax

i ) = 0.Obviously, xi (K ) > 0 if and only if K < Kmax
i . Furthermore,

the function xi is closely related to Wardrop-flows, as described in the following
lemma.

Lemma 2 1. If (zi , pi ) ∈ Si with xi (zi , pi ) > 0, then xi (K ) = xi (zi , pi ) for K :=
K (zi , pi ).

2. If K ≥ 0 with xi (K ) > 0, and (zi , pi ) ∈ Si fulfills zi > 0 and ai xi (K )/zi + bi +
pi = K , then xi (zi , pi ) = xi (K ) and K (zi , pi ) = K .

Proof We start with statement 1. of the lemma, so let (zi , pi ) ∈ Si with xi (zi , pi ) > 0.
Bydefinition of K (zi , pi ) =: K , we get � j (x j (zi , pi ), z j )+p j = K for all j ∈ N with
x j (zi , pi ) > 0, and � j (x j (zi , pi ), z j ) + p j ≥ K for all j ∈ N with x j (zi , pi ) = 0.
Since
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� j (x j (zi , pi ), z j ) + p j =
{

a j x j (zi , pi )/z j + b j + p j , for j ∈ N with z j > 0,

∞, for j ∈ N with z j = 0,

we get that { j ∈ N : x j (zi , pi ) > 0} = { j ∈ N+ : b j + p j < K }∪{i} = N (K )∪{i}.
Therefore, for each j ∈ N (K ), we get a j x j (zi , pi )/z j + b j + p j = K , which is
equivalent to x j (zi , pi ) = (K − b j − p j )z j/a j . Using

∑
j∈N x j (zi , pi ) = 1 yields

xi (zi , pi ) = 1 −
∑

j∈N\{i}
x j (zi , pi ) = 1 −

∑
j∈N (K )

(K − b j − p j )z j/a j = xi (K ).

Now we turn to statement 2. of the lemma, so let K ≥ 0 with xi (K ) > 0 and let
(zi , pi ) ∈ Si be a strategy with zi > 0 and ai xi (K )/zi + bi + pi = K . Consider
x ∈ [0, 1]n defined by

x j :=

⎧⎪⎨
⎪⎩

xi (K ), j = i,

(K − b j − p j )z j/a j , j ∈ N+ with b j + p j < K ,

0, j ∈ N+ with b j + p j ≥ K or j ∈ N \ (N+ ∪ {i}).

It is clear that x j > 0 holds for all j ∈ N+ with b j + p j < K , and xi = xi (K ) > 0.
Furthermore, the definition of xi (K ) yields

∑
j∈N x j = 1. Finally, x fulfills the

Wardrop conditions:

c j (x, z, p) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ai xi (K )/zi + bi + pi = K , j = i,

a j (K − b j − p j )z j/(a j z j ) + b j + p j = K , j ∈ N+ with b j + p j < K ,

b j + p j ≥ K , j ∈ N+ with b j + p j ≥ K ,

∞ > K , j ∈ N \ (N+ ∪ {i}).

The uniqueness of the Wardrop-flow now implies x = x(zi , pi ), and K (zi , pi ) = K
follows from xi (zi , pi ) = xi (K ) > 0 and K (zi , pi ) = ci (x, z, p) = K , completing
the proof. �

In the following lemmata, we analyze the connection between (P1i ) and (P2i ) and
the optimal solutions of (Pi ).

Lemma 3 1. If K is feasible for problem (P1
i ), the tuple (zi , pi ) := (

√
ai/γi ·

xi (K ), K − √
aiγi − bi ) is feasible for (Pi ), and fulfills zi > 0 and �i (zi , pi ) =

f 1i (K ).
2. If K is feasible for problem (P2

i ), the tuple (zi , pi ) := (ai xi (K )/(K −bi −Ci ), Ci )

is feasible for (Pi ), and fulfills zi > 0 and �i (zi , pi ) = f 2i (K ).

Proof We start with statement 1. of the lemma, thus assume that K is feasible for
problem (P1i ). Let zi := √

ai/γi · xi (K ) and pi := K −√
aiγi − bi as stated in 1. The

feasibility of K for (P1i ) yields xi (K ) > 0 and 2
√

aiγi + bi ≤ K ≤ √
aiγi + bi + Ci .

From this we conclude zi > 0 and 0 < pi = K −√
aiγi −bi ≤ Ci , thus (zi , pi ) ∈ Si .

Furthermore, ai xi (K )/zi + bi + pi = ai xi (K )/(
√

ai/γi x i (K ))+ bi + K −√
aiγi −
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bi = K holds, thus we get xi (zi , pi ) = xi (K ) from statement 2. of Lemma 2. Using
this, we can now show that leader i’s profit for (zi , pi ) equals the objective function
value of K for (P1i ):

�i (zi , pi ) = pi xi (zi , pi ) − γi zi = (K − √
aiγi − bi ) · xi (K ) − γi · √

ai/γi · xi (K )

= xi (K ) · (K − 2
√

aiγi − bi ) = f 1i (K )

Note that the feasibility of K for (P1i ) yields f 1i (K ) ≥ 0. It remains to show that (zi , pi )

is feasible for (Pi ).We already know that zi > 0 and 0 < pi ≤ Ci holds. The remaining
inequality zi ≤ Ci/γi follows from the nonnegativity of �i (zi , pi ) = f 1i (K ) ≥ 0
and the fact that any strategy with zi > Ci/γi yields negative profit for leader i .

Now turn to statement 2. Assume that K is feasible for (P2i ), and let zi :=
ai xi (K )/(K − bi − Ci ) and pi := Ci . The feasibility of K for (P2i ) implies
K >

√
aiγi + bi + Ci > bi + Ci and xi (K ) > 0, thus zi > 0 holds and this

yields (zi , pi ) ∈ Si . Furthermore, ai xi (K )/zi + bi + pi = K holds, thus we get
xi (zi , pi ) = xi (K ) from 2. of Lemma 2. The profit of leader i thus is

�i (zi , pi ) = pi xi (zi , pi ) − γi zi = Ci xi (K ) − γi ai xi (K )

K − bi − Ci

= xi (K )(Ci − aiγi

K − bi − Ci
) = f 2i (K ).

Note that f 2i (K ) ≥ 0 holds due to the feasibility of K for (P2i ). As in the proof of
statement 1. of the lemma, this implies zi ≤ Ci/γi . Thus (zi , pi ) is feasible for (Pi ).
�
In particular, Lemma 3 shows that any optimal solution of (P1i ) or (P

2
i ) yields a feasible

strategy for (Pi ) with the same objective fuction value. The next lemma shows that for
certain optimal solutions of (Pi ), the converse is also true.

Lemma 4 Let (z∗
i , p∗

i ) be an optimal solution of (Pi ) and K ∗ := K (z∗
i , p∗

i ). If z∗
i > 0,

then exactly one of the following two cases holds:

1. (z∗
i , p∗

i ) = (
√

ai/γi x i (K ∗), K ∗−√
aiγi −bi ); K ∗ optimal for (P1

i ) with f 1i (K ∗) =
�i (z∗

i , p∗
i ).

2. (z∗
i , p∗

i ) = (ai xi (K ∗)/(K ∗ − bi − Ci ), Ci ); K ∗ optimal for (P2
i ) with f 2i (K ∗) =

�i (z∗
i , p∗

i ).

Proof Let (z∗
i , p∗

i ) with z∗
i > 0 and K ∗ as in the lemma statement, and define x∗ :=

x(z∗
i , p∗

i ). Since �i (z∗
i , p∗

i ) ≥ 0 and z∗
i > 0 holds, 0 ≤ �i (z∗

i , p∗
i ) = p∗

i x∗
i −γi z∗

i <

p∗
i x∗

i follows, which implies x∗
i > 0 and p∗

i > 0. Therefore K ∗ = ai x∗
i /z∗

i + bi + p∗
i

holds and (z∗
i , p∗

i ) is an optimal solution for the following problem (with variables zi

and pi ):

(P) max pi x∗
i − γi zi s.t.: ai x∗

i /zi + bi + pi = K ∗, 0 < zi , 0 < pi ≤ Ci .

Note that the optimal solutions of (P) correspond to all best responses for leader i
such that x∗ remains the Wardrop flow. Reformulating the equality constraint in (P)
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yields pi = K ∗ − ai x∗
i /zi − bi . The constraints 0 < pi ≤ Ci then become (note that

K ∗ > bi + p∗
i ≥ bi holds) 0 < K ∗ − ai x∗

i /zi − bi ⇔ zi > ai x∗
i /(K ∗ − bi ) and

K ∗ − ai x∗
i /zi − bi ≤ Ci ⇔ 1/zi ≥ (K ∗ − bi − Ci )/(ai x∗

i ). Thus (P) is equivalent
to the following problem (with variable zi ):

max

(
K ∗ − ai

zi
x∗

i − bi

)
· x∗

i − γi zi (P′)

s.t.:
ai x∗

i

K ∗ − bi
< zi ,

K ∗ − bi − Ci

ai x∗
i

≤ 1

zi
.

Let f be the objective function of (P′) and consider the derivative f ′(zi ) =
ai x∗

i
2/(z2i ) − γi . We get that f is strictly increasing for 0 < zi <

√
ai/γi · x∗

i
and strictly decreasing for zi >

√
ai/γi · x∗

i . We now distinguish between the cases
that zi = √

ai/γi · x∗
i is feasible for (P′), or not. As we will see, the former case leads

to statement 1. of the lemma, and the latter case to statement 2. Note that in either
case, xi (K ∗) = x∗

i holds (by statement 1. of Lemma 2).
If zi = √

ai/γi · x∗
i is feasible for (P′), it is the unique optimal solution of (P′). But

since z∗
i is also optimal for (P′), we get

z∗
i = √

ai/γi · xi (K ∗) and p∗
i = K ∗ − ai xi (K ∗)/z∗

i − bi = K ∗ − √
aiγi − bi .

For the profit of leader i , we get

�i (z
∗
i , p∗

i ) = p∗
i x∗

i − γi z
∗
i = (K ∗ − √

aiγi − bi )xi (K ∗) − γi
√

ai/γi x i (K ∗) = f 1i (K ∗).

It remains to show that K ∗ is optimal for (P1i ). For feasibility, we need 2
√

aiγi + bi ≤
K ∗ ≤ √

aiγi + bi + Ci and xi (K ∗) > 0. The last inequality follows directly from
xi (K ∗) = x∗

i > 0. Using this and xi (K ∗) · (K ∗ − 2
√

aiγi − bi ) = �i (z∗
i , p∗

i ) ≥ 0
yields K ∗ ≥ 2

√
aiγi + bi . Finally, the feasibility of z∗

i = √
ai/γi · x∗

i for (P′) implies
(K ∗ − bi − Ci )/(ai x∗

i ) ≤ √
γi/(

√
ai x∗

i ), and thus K ∗ ≤ √
aiγi + bi + Ci is fulfilled.

Therefore, K ∗ is feasible for (P1i ). The optimality follows from Lemma 3 and the
optimality of (z∗

i , p∗
i ) for (Pi ).

Now turn to the case that zi = √
ai/γi · x∗

i is not feasible for (P′). We show
that statement 2. of the lemma holds. Since (P′) has an optimal solution (namely
z∗

i ), we get that 0 < ai x∗
i /(K ∗ − bi − Ci ) <

√
ai/γi · x∗

i holds, and therefore
zi = ai x∗

i /(K ∗ − bi − Ci ) is the unique optimal solution for (P′). This shows

z∗
i = ai xi (K ∗)/(K ∗ − bi − Ci ) and p∗

i = K ∗ − ai xi (K ∗)/z∗
i − bi = Ci .

The profit of leader i becomes

�i (z
∗
i , p∗

i ) = Ci · xi (K ∗) − γi · ai xi (K ∗)
K ∗ − bi − Ci

= xi (K ∗) ·
(

Ci − aiγi

K ∗ − bi − Ci

)
= f 2i (K ∗).
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Since xi (K ∗) = x∗
i > 0 and the profit is nonnegative, Ci − aiγi/(K ∗ − bi − Ci ) ≥ 0,

thus K ∗ ≥ aiγi/Ci +bi +Ci holds. Finally, z∗
i = ai x∗

i /(K ∗−bi −Ci ) <
√

ai/γi x∗
i ⇔

K ∗ >
√

aiγi + bi + Ci , which completes the proof since we showed that K ∗ is a
feasible solution of problem (P2i ) (optimality follows fromLemma 3 and the optimality
of (z∗

i , p∗
i ) for (Pi )). �

In the next lemma, we analyze the existence of optimal solutions for the problems (P1i )
and (P2i ), as well as properties of such solutions.

Lemma 5 1. If (P1
i ) is feasible, it has a unique optimal solution.

2. Assume that (P2
i ) is feasible.

• If Ci ≤ √
aiγi , then (P2

i ) has a unique optimal solution.
• If Ci >

√
aiγi , then (P2

i ) has at most one optimal solution.
• If K ∗

2 is optimal for (P2
i ), then f 2i (K ∗

2 ) > 0.

3. If K ∗
1 is optimal for (P1

i ) and K ∗
2 is optimal for (P2

i ), then f 1i (K ∗
1 ) < f 2i (K ∗

2 ).

Proof We start with statement 1. of the lemma, so assume that (P1i ) is feasible. Note
that the feasible set I1 of (P1i ) either is of the form I1 = [2√aiγi +bi ,

√
aiγi +bi +Ci ],

or I1 = [2√aiγi + bi , Kmax
i ), depending on whether

√
aiγi + bi + Ci < Kmax

i holds
or not. Furthermore note that the objective function

f 1i (K ) =
⎛
⎝1 −

∑
j∈N+:b j +p j <K

(K − b j − p j )z j

a j

⎞
⎠ · (

K − bi − 2
√

aiγi
)

of (P1i ) is continuous (over R). From this, we can conclude that (P1i ) has at least one
optimal solution: For I1 = [2√aiγi + bi ,

√
aiγi + bi + Ci ], this follows directly

from the theorem of Weierstrass ( f 1i is continuous and I1 is nonempty and compact).
For I1 = [2√aiγi + bi , Kmax

i ), the theorem of Weierstrass yields that f 1i attains
its maximum over the closure of I1, that is, over [2√aiγi + bi , Kmax

i ]. But since
f 1i (Kmax

i ) = 0 (= f 1i (2
√

aiγi + bi )), and any K ∈ (2
√

aiγi + bi , Kmax
i ) fulfills

f 1i (K ) > 0, the maximum is not attained for K = Kmax
i , and we conclude that f 1i

also attains its maximum over I1. Thus (P1i ) has an optimal solution for both cases. To
complete the proof of statement 1. of the lemma, it remains to show that there is also
at most one optimal solution. We prove this by showing the following monotonicity
behaviour of f 1i over I1: Either f 1i is strictly increasing over I1, or strictly decreasing
over I1, or strictly increasing up to a unique point, and strictly decreasing afterwards.
In all three cases, we obviously get the desired statement, namely that (P1i ) has at most
one optimal solution. To prove the described monotonicity behaviour, we distinguish
between three cases according to the value of min{b j + p j : j ∈ N+}. The first
case is

√
aiγi + bi + Ci ≤ min{b j + p j : j ∈ N+}, which implies N (K ) =

{ j ∈ N+ : b j + p j < K } = ∅ and xi (K ) = 1 for all K ∈ I1. We conclude that
f 1i (K ) = K − bi − 2

√
aiγi is strictly increasing over I1 (in particular, f 1i reaches

its unique maximum over I1 at K = √
aiγi + bi + Ci ). Next, consider the case that
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min{b j + p j : j ∈ N+} < 2
√

aiγi + bi . This implies that N (K ) �= ∅ for all K ∈ I1.
Note that f 1i is twice differentiable on any open interval where N (K ) is constant, and
the first and second derivative of f 1i then are

( f 1i )′(K ) = 1 −
∑

j∈N (K )

(2K − b j − p j − bi − 2
√

aiγi )z j

a j
and

( f 1i )′′(K ) = −2
∑

j∈N (K )

z j

a j
.

Since N (K ) �= ∅ for all K ∈ I1, we conclude that for all K ∈ I1 where ( f 1i )′′(K )

exists, ( f 1i )′′(K ) < 0 holds. If N (K ) is constant on the complete interior of I1 (that
is, on (2

√
aiγi + bi ,

√
aiγi + bi + Ci ) or (2

√
aiγi + bi , Kmax

i ), depending on the
two possible cases for I1), the desired monotonicity behaviour of f 1i over I1 follows.
Otherwise, let α1 < α2 < · · · < αk denote the different values of b j + p j , j ∈ N+
which lie in the interior of I1. Define α0 := 2

√
aiγi + bi and αk+1 := sup I1 (that is,

αk+1 = √
aiγi + bi + Ci or αk+1 = Kmax

i ). Then, N (K ) is constant on the intervals
(α�−1, α�] for � ∈ {1, . . . , k + 1}. For each � ∈ {1, . . . , k}, the set N (K ) increases
immediately after α�, that is, N (α�) � N (α� + ε) holds for any ε > 0. In particular,
N (α� + ε) = N (α�)∪{ j ∈ N+ : b j + p j = α�} holds for all 0 < ε ≤ α�+1 −α�. We
now show that for any � ∈ {1, . . . , k}, the slope of f 1i decreases at α�, whereby we
mean that ( f 1i )′+(α�) < ( f 1i )′−(α�) holds, with ( f 1i )′+(α�) and ( f 1i )′−(α�) denoting the
right and left derivative of f 1i atα�, respectively. This implies the desiredmonotonicity
behaviour of f 1i over I1. Analyzing the left and right derivative of f 1i at α� yields

( f 1i )′−(α�) = 1 −
∑

j∈N (α�)

(2α� − b j − p j − bi − 2
√

aiγi )z j

a j
and

( f 1i )′+(α�) = 1 −
∑

j∈N (α�)∪{ j∈N+:b j +p j =α�}

(2α� − b j − p j − bi − 2
√

aiγi )z j

a j

= ( f 1i )′−(α�) −
∑

j∈N+:b j +p j =α�

(2α� − α� − bi − 2
√

aiγi )z j

a j

= ( f 1i )′−(α�) − (α� − bi − 2
√

aiγi ) ·
∑

j∈N+:b j +p j =α�

z j

a j
.

Since α� lies in the interior of I1, we get α� > 2
√

aiγi + bi and therefore the desired
inequality ( f 1i )′+(α�) < ( f 1i )′−(α�), completing the proof for the case min{b j + p j :
j ∈ N+} < 2

√
aiγi + bi . The remaining case is 2

√
aiγi + bi ≤ min{b j + p j :

j ∈ N+} <
√

aiγi + bi + Ci , which implies that N (K ) = ∅ holds in I1 for K ≤
min{b j + p j : j ∈ N+}, and N (K ) �= ∅ holds in I1 for K > min{b j + p j : j ∈ N+}.
We can now obviously combine the arguments of the other two cases to obtain the
desired monotonicity behaviour of f 1i also for this case. This completes the proof of
statement 1. of the lemma.
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Now we turn to statement 2., thus we assume that (P2i ) is feasible. Let I2 denote the
feasible set of (P2i ). Then, either I2 = [aiγi/Ci + bi + Ci , Kmax

i ) or I2 = (
√

aiγi +
bi + Ci , Kmax

i ) holds, depending on whether Ci <
√

aiγi holds or not. But in both
cases, I2 is an interval with positive length, so that there exists K ∈ I2 with K >

aiγi/Ci + bi + Ci , which implies f 2i (K ) > 0. Therefore, if (P2i ) has an optimal
solution K ∗

2 , we get f 2i (K ∗
2 ) > 0. Furthermore note that the objective function

f 2i (K ) =
⎛
⎝1 −

∑
j∈N (K )

(K − b j − p j )z j

a j

⎞
⎠ ·

(
Ci − aiγi

K − bi − Ci

)

of (P2i ) is continuous over (bi + Ci , R). Using this, we can show that (P2i ) has at least
one optimal solution, if Ci ≤ √

aiγi holds: Due to the theorem of Weierstrass, f 2i
attains its maximum over [aiγi/Ci + bi + Ci , Kmax

i ], the closure of I2. But since
f 2i (aiγi/Ci + bi + Ci ) = 0 = f 2i (Kmax

i ), and f 2i (K ) > 0 for any K ∈ (aiγi/Ci +
bi +Ci , Kmax

i ), the maximum is not attained at K = aiγi/Ci +bi +Ci or K = Kmax
i ,

which shows that f 2i also attains its maximum over I2. Thus, if Ci ≤ √
aiγi holds,

(P2i ) has at least one optimal solution. To complete the proof of statement 2, it remains
to show that (P2i ) has at most one optimal solution (in the general case). As in the
proof of statement 1 of the lemma, we prove this by showing that f 2i exhibits a certain
monotonicity behaviour over I2, namely: Either f 2i is strictly decreasing over I2, or
strictly increasing up to a unique point, and strictly decreasing afterwards. Note that
f 2i cannot be strictly increasing over I2, due to the continuity of f 2i and the fact that
f 2i (Kmax

i ) = 0 < f 2i (K ) holds for any K in the interior of I2. The remaining proof is
very similar to the proof of statement 1. First, f 2i is twice differentiable on any open
interval where N (K ) is constant. First and second derivative of f 2i then are

( f 2i )′(K ) = −
∑

j∈N (K )

z j

a j
·
(

Ci − aiγi

K − bi − Ci

)
+ xi (K ) · aiγi

(K − bi − Ci )2
and

( f 2i )′′(K ) = − 2aiγi

(K − bi − Ci )2
·
⎛
⎝ ∑

j∈N (K )

z j

a j
+ xi (K )

K − bi − Ci

⎞
⎠ .

Since xi (K ) > 0 for all K ∈ I2, we conclude that for all K ∈ I2 where ( f 2i )′′(K )

exists, ( f 2i )′′(K ) < 0 holds. If N (K ) is constant on the complete interior of I2, the
desired monotonicity behaviour of f 2i over I2 follows, otherwise let β1 < β2 < · · · <

βk denote the different values of b j + p j , j ∈ N+ which lie in the interior of I2. We
show that the slope of f 2i decreases at β�, i.e. ( f 2i )′+(β�) < ( f 2i )′−(β�) holds, which
implies the desired monotonicity behaviour of f 2i over I2. Analyzing the left and right
derivative yields

( f 2i )′−(β�) = −
∑

j∈N (β�)

z j

a j
·
(

Ci − aiγi

β� − bi − Ci

)
+ xi (β�) · aiγi

(β� − bi − Ci )2
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and

( f 2i )′+(β�) = −
∑

j∈N (β�)∪{ j∈N+:b j +p j =β�}

z j

a j
·
(

Ci − aiγi

β� − bi − Ci

)

+ xi (β�) · aiγi

(β� − bi − Ci )2

= ( f 2i )′−(β�) −
∑

j∈N+:b j +p j =β�

z j

a j
·
(

Ci − aiγi

β� − bi − Ci

)

Since β� lies in the interior of I2, we get Ci − aiγi/(β� − bi − Ci ) > 0, and thus the
desired inequality ( f 2i )′+(β�) < ( f 2i )′−(β�), completing the proof of statement 2. of
the lemma.

Finally we show statement 3. Assume that K ∗
1 and K ∗

2 are the optimal solutions
of (P1i ) and (P2i ). Since (P

1
i ) and (P2i ) have to be feasible,

√
aiγi ≤ Ci and

√
aiγi +

bi + Ci < Kmax
i holds. This implies that the feasible set of (P1i ) is I1 = [2√aiγi +

bi ,
√

aiγi + bi + Ci ] and the feasible set of (P2i ) is I2 = (
√

aiγi + bi + Ci , Kmax
i ).

Let K̄ := √
aiγi + bi + Ci . Then, f 1i (K̄ ) = f 2i (K̄ ) holds. If additionally the slope

of f 1i in K̄ is greater than or equal to the slope of f 2i in K̄ , whereby we mean that
( f 1i )′−(K̄ ) ≥ ( f 2i )′+(K̄ ) holds, we get f 1i (K ∗

1 ) = f 1i (K̄ ) < f 2i (K ∗
2 ) from our analysis

of f 1i and f 2i in the proofs of the statements 1. and 2. (note that f 2i is strictly increasing
on (

√
aiγi + bi + Ci , K ∗

2 ]). The remaining inequality for the slopes follows from

( f 1i )′−(K̄ ) = 1 −
∑

j∈N (K̄ )

(2K̄ − b j − p j − bi − 2
√

aiγi )z j

a j

= 1 −
∑

j∈N (K̄ )

(2Ci + bi − b j − p j )z j

a j
and

( f 2i )′+(K̄ ) = −
∑

j∈N (K̄ )∪{ j∈N+:b j +p j =K̄ }

z j

a j

(
Ci − aiγi

K̄ − bi − Ci

)

+ xi (K̄ )
aiγi

(K̄ − bi − Ci )2

= −
∑

j∈N (K̄ )∪{ j∈N+:b j +p j =K̄ }

z j

a j
· (Ci − √

aiγi )

+ 1 −
∑

j∈N (K̄ )

(K̄ − b j − p j )z j

a j

= 1 −
∑

j∈N (K̄ )

(K̄ − b j − p j + Ci − √
aiγi )z j

a j

−
∑

j∈N+:b j +p j =K̄

z j (Ci − √
aiγi )

a j
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Table 1 Characterization of BRi

{(zi , pi )} = BRi Conditions

∅ z−i = 0

{(0, pi ) : 0 ≤ pi ≤ Ci } z−i �= 0, (P1i ) and (P
2
i ) infeasible{(

ai ·xi (K ∗
2 )

K ∗
2−bi −Ci

, Ci

)}
z−i �= 0, (P2i ) has an optimal solution{(√

ai /γi · xi (K ∗
1 ), K ∗

1 − √
ai γi − bi

)}
z−i �= 0, (P1i ) feasible, (P

2
i ) has no optimal solution

= 1 −
∑

j∈N (K̄ )

(2Ci + bi − b j − p j )z j

a j
−

∑
j∈N+:b j +p j =K̄

z j (Ci − √
aiγi )

a j

= ( f 1i )′−(K̄ ) −
∑

j∈N+:b j +p j =K̄

z j (Ci − √
aiγi )

a j
≤ ( f 1i )′−(K̄ ),

where the inequality follows from
√

aiγi ≤ Ci . �

3.3 The characterization

The following theorem provides a complete characterization of the best response
correspondence. We will make use of this characterization several times during the
rest of the paper.

Theorem 2 For a leader i ∈ N and fixed strategies s−i = (z−i , p−i ) ∈ S−i of the
other leaders, the set BRi = BRi (s−i ) of best responses of leader i to s−i is given
as indicated in Table 1, where the first column contains BRi and the second column
contains the conditions on s−i under which BRi has the stated form. For j = 1, 2, K ∗

j

denotes the unique optimal solution of problem (P j
i ), if this problem has an optimal

solution.
Furthermore, if BRi (s−i ) consists of a unique best response si = (zi , pi ) of leader i

to s−i , we get zi > 0 and �i (si , s−i ) > 0.

Proof Note that if BRi (s−i ) consists of a unique best response si = (zi , pi ) of leader i
to s−i , then zi > 0 and �i (si , s−i ) > 0 hold: Otherwise, any strategy (z′

i , p′
i ) ∈

{0} × [0, Ci ] is a best response, too, contradicting the uniqueness assumption.
Now turn to the proof of the characterization. We show that the case distinction

covers all possible cases, and that the given representation for BRi is correct for each
case. If z−i = 0, Lemma 1 shows BRi = ∅. For the rest of the proof, assume z−i �= 0.
Then, leader i has at least one best response to s−i , since BRi can be described as the
set of optimal solution of the problem (Pi ), and this problem has an optimal solution
(as shown in the beginning of Sect. 3.2). If (P1i ) and (P

2
i ) are both infeasible, Lemma 4

implies that each best response (zi , pi ) fulfills zi = 0. Therefore, BRi = {0}×[0, Ci ].
For the remaining proof, assume that at least one of (P1i ) and (P2i ) is feasible.
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First consider the case that (P2i ) has an optimal solution. It follows from 2. of
Lemma 5 that the solution is unique, and, if K ∗

2 denotes this solution, that f 2i (K ∗
2 ) > 0.

Let (zi , pi ) be an arbitrary best response of player i to s−i . We need to show that
(zi , pi ) = (ai xi (K ∗

2 )/(K ∗
2 − bi − Ci ), Ci ) holds. First, statement 2. of Lemma 3

shows that �i (zi , pi ) ≥ f 2i (K ∗
2 ) > 0. Thus zi > 0 holds, since zi = 0 yields a profit

of 0. Note that either (P1i ) is infeasible, or it has a unique optimal solution K ∗
1 with

f 1i (K ∗
1 ) < f 2i (K ∗

2 ) ≤ �i (zi , pi ) (see 1. and 3. of Lemma 5). In both cases, Lemma 4
yields (zi , pi ) = (ai xi (K ∗

2 )/(K ∗
2 − bi − Ci ), Ci ).

Now assume that (P2i ) does not have an optimal solution (either (P2i ) is infeasible,
or it is feasible, but the maximum is not attained). We first show that (P1i ) is feasible.
If (P2i ) is infeasible, (P

1
i ) is feasible since we assumed that at least one of the two

problems is feasible. Otherwise (P2i ) is feasible, but does not have an optimal solution.
Then, Ci >

√
aiγi follows from 2. of Lemma 5, and

√
aiγi +bi +Ci < Kmax

i follows
since (P2i ) is feasible. Together, 2

√
aiγi + bi <

√
aiγi + bi + Ci < Kmax

i holds,
showing that (P1i ) is feasible. By 1. of Lemma 5 we then get that (P1i ) has a unique
optimal solution K ∗

1 . Furthermore, each best response (zi , pi ) with zi > 0 fulfills
(zi , pi ) = (

√
ai/γi ·xi (K ∗

1 ), K ∗
1 −√

aiγi −bi ) (see Lemma 4). To complete the proof,
we need to show that there is no best response (zi , pi ) with zi = 0. This follows from
Lemma 3 if f 1i (K ∗

1 ) > 0. Thus it remains to show that f 1i (K ∗
1 ) > 0 holds. Assume,

by contradiction, that f 1i (K ∗
1 ) = 0. This implies that K ∗

1 = 2
√

aiγi + bi is the only
feasible solution for (P1i ), which in turn yields

√
aiγi = Ci and

√
aiγi + bi + Ci <

Kmax
i . But this implies that (P2i ) is feasible and has an optimal solution (by 2. of

Lemma 5), contradicting our assumption that (P2i ) does not have an optimal solution.
�

3.4 Discussion

We now briefly discuss consequences of the characterization of the best reponses with
respect to applying Kakutani’s fixed point theorem (see [22]). Kakutani’s theorem in
particular requires that for each leader i and each vector s−i = (z−i , p−i ) of strategies
of the other leaders, the set BRi (s−i ) of best responses is nonempty and convex. But
as we have seen in Lemma 1, the set BRi (s−i ) can be empty, namely if z−i = 0. On
the other hand, a profile with z−i = 0 for some leader i will of course never be a PNE.

A first natural approach to overcome the problem of empty best responses is the
following. Given a strategy profile s = (z, p) such that z−i = 0 for some leader i ,
redefine, for each such leader i , the set BRi (s−i ) by some suitable nonempty convex
set. “Suitable” here means that the correspondence BRi has a closed graph, and at the
same time, s must not be a fixed point of the global best response correspondence BR
(where BR(s) := {s′ ∈ S : s′

i ∈ BRi (s−i ) for each i ∈ N }). But unfortunately, these
two goals are not compatible: For the strategy profile s = (z, p)with (zi , pi ) = (0, Ci )

for all leaders i , the closed graph property requires (0, Ci ) ∈ BRi (s−i ) for all i , which
implies that s is a fixed point of BR.

Another intuitive idea is to consider a game in which each leader has an initial
capacity of some ε > 0. If this game has a PNE for each ε, the limit for ε going to

123



782 T. Harks, A. Schedel

zero should be a PNE for our original Stackelberg pricing game. For the game with
at least ε capacity, one can also characterize the best response correspondences (now
by optimal solutions of three optimization problems), but the main problem is that an
analogue of Lemma 5 may not hold anymore. As a consequence, it is not clear if the
best responses are always convex, and we again do not know how to apply Kakutani’s
theorem. Instead, we show existence of PNE by using a result of McLennan et al. [29],
see Sect. 4.4

4 Existence of equilibria

In this section, we show that each Stackelberg pricing game has a PNE. A frequently
used tool to show existence of PNE isKakutani’s fixed point theorem.But, as discussed
inSect. 3.4,we cannot directly apply this result to showexistence of PNE.Furthermore,
the existence theorem of [31] can also not be used, since a Stackelberg pricing game
is not quasiconcave in general (it is not difficult to construct instances which are not
quasiconcave). Instead, we turn to another existence result due to McLennan et al.
[29]. They introduced a concept called C-security and they showed that if the game is
C-secure at each strategy profile which is not a PNE, then a PNE exists. Informally,
the game is C-secure at a strategy profile s if there is a vector α ∈ R

n satisfying the
following two properties: First, each leader i has some securing strategy for αi which
is robust to small deviations of the other leaders, i.e. leader i always achieves a profit of
at least αi by playing this strategy even if the other leaders slightly deviate from their
strategies in s−i . The second property requires for each slightly perturbed strategy
profile s′ resulting from s, that there is at least one leader i such that her perturbed
strategy s′

i can (in some sense) be strictly separated from all strategies achieving a
profit of αi , so in particular from all her securing strategies. One can think of leader
i being “not happy” with her perturbed strategy s′

i since she could achieve a higher
profit. This already indicates the connection between a strategy profile which is not a
PNE, and C-security. We will see that for certain strategy profiles, αi can be chosen
as the profit that leader i gets by playing a best response to s−i .5 Then, leader i’s
securing strategies for αi are related to her set of best responses, and we need to
“strictly separate” these best responses from si . At this point, our characterization of
best responses in Theorem 2 becomes useful.

We now formally describe McLennan et al.’s result in our context. First of all,
note that they consider games with compact convex strategy sets and bounded profit
functions. In a Stackelberg pricing game, the strategy set Si = {(zi , pi ) : 0 ≤ zi , 0 ≤
pi ≤ Ci } of leader i is not compact a priori. But since zi will never be larger than
Ci/γi in any best response, and thus in any PNE (see the discussion at the beginning
of Sect. 3.2), we can redefine Si := {(zi , pi ) : 0 ≤ zi ≤ Ci/γi , 0 ≤ pi ≤ Ci } without
changing the set of PNE of the game, for any leader i . Furthermore, this also does
not change the best responses, so Theorem 2 continues to hold. Using the redefined

4 Perhaps interesting, McLennan et al. identify a non-trivial restriction of the players’ non-equilibrium
strategies so that they can eventually apply Kakutani’s theorem.
5 More precisely, we need to choose αi slightly smaller than the profit of a best response.
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strategies, for any leader i and any strategy profile s, the profit of leader i is bounded
by −Ci ≤ �i (s) ≤ Ci . For a strategy profile s ∈ S, leader i ∈ N and αi ∈ R let

Bi (s, αi ) := {s′
i ∈ Si : �i (s

′
i , s−i ) ≥ αi } and Ci (s, αi ) := convBi (s, αi ),

where convBi (s, αi ) denotes the convex hull of Bi (s, αi ).

Definition 1 A leader i can secure a profit αi ∈ R on S′ ⊆ S, if there is some si ∈ Si

such that si ∈ Bi (s′, αi ) for all s′ ∈ S′. We say that leader i can secure αi at s ∈ S, if
she can secure αi on U ∩ S for some open set U with s ∈ U .

Definition 2 The game is C-secure on S′ ⊆ S, if there is an α ∈ R
n such that the

following conditions hold:

(i) Every leader i can secure αi on S′.
(ii) For any s′ ∈ S′, there exists some leader i with s′

i /∈ Ci (s′, αi ).

The game is C-secure at s ∈ S, if it is C-secure on U ∩ S for some open set U with
s ∈ U .

Theorem 3 (Proposition 2.7 in [29]) If the game is C-secure at each s ∈ S that is not
a PNE, then the game has a PNE.

We now turn to Stackelberg pricing games and show the existence of a PNE by using
Theorem 3, i.e., we show that if a given strategy profile s = (z, p) is not a PNE,
then the game is C-secure at s. To this end, we distinguish between the two cases
that there are at least two leaders i with zi > 0 (Lemma 6), or not (Lemma 7). Both
lemmata together then imply the desired existence result. Note that the mentioned case
distinction is equivalent to the case distinction that each leader i has a best response
for s−i , or there is at least one leader i with BRi (s−i ) = ∅ (see Theorem 2).

We start with the case that all best responses exist. The proof of the following lemma
follows an argument in [29, p. 1647f] where McLennan et al. show that Theorem 3
implies the existence result of [30].

Lemma 6 Let s = (z, p) ∈ S be a strategy profile which is not a PNE. Assume that
there are at least two leaders i ∈ N such that zi > 0 holds. Then the game is C-secure
at s.

Proof We first introduce some notation used in this proof. Let S′ ⊆ S be a subset
of the strategy profiles and i ∈ N . By S′

i ⊆ Si , we denote the projection of S′ into
Si , the set of leader i’s strategies, and S′−i ⊆ S−i denotes the projection of S′ into
S−i = × j∈N\{i}S j , the set of strategies of the other leaders. Note that since z has at
least two positive entries zi , all strategy profiles s′ = (z′, p′) in a sufficiently small
open neighbourhood of s also have at least two entries z′

i > 0. In the following,
whenever we speak of an open set U containing s, we implicitly require U small
enough to fulfill this property. Furthermore, since it is clear that we are only interested
in the elements of U which are strategy profiles, we simply write U instead of U ∩ S.
Consequently, s′ ∈ U denotes a strategy profile contained in U . Now we turn to the
actual proof.
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Fig. 1 Illustration of the proof
construction for the case
B j (s, β j ) = {s∗

j }. Note that it is
not necessary that
s∗

j ∈ B j (s
′, β j − ε)

H

s∗
j

sjsj

V

Uj

Bj(s , βj − ε)

Since we assumed that at least two leaders have positive capacity at s = (z, p), we
get that z−i �= 0 holds for each leader i . Thus, by Theorem 2, each leader i has a best
response to s−i , and the set of best responses either is a singleton, or consists of all
strategies (0, pi ) for 0 ≤ pi ≤ Ci . Since s is not a PNE, there is at least one leader j
such that s j = (z j , p j ) is not a best response, i.e. either s j �= s∗

j for the unique best
response s∗

j , or z j > 0, and all best responses s∗
j = (z∗

j , p∗
j ) fulfill z∗

j = 0. In both
cases it is clear that there is a hyperplane H which strictly separates s j from the set
of best responses to s− j .

Now turn to the properties in Definition 2. For each leader i , let s∗
i be a best response

of leader i to s−i and βi := �i (s∗
i , s−i ). We know that�i is continuous at (s∗

i , s−i ) for
each leader i (Theorem 1). Therefore, for each ε > 0, there is an open set U (ε) ⊃ {s}
with �i (s∗

i , s′−i ) ≥ βi − ε for each s′ ∈ U (ε) and each leader i . That is, each leader i
can secureβi −ε onU (ε). Now turn to the second property ofDefinition 2 and consider
leader j . We show that there is an ε > 0 and an open set U ⊆ U (ε) containing s, such
that for each s′ ∈ U , the hyperplane H (which strictly separates s j and B j (s, β j ))
also strictly separates s′

j and B j (s′, β j − ε), thus s′
j /∈ C j (s′, β j − ε) (see Fig. 1 for

illustration). Since each leader i can secure βi − ε on U ⊆ U (ε), both properties of
Definition 2 are fulfilled, completing the proof.

To this end, choose an open set V containing B j (s, β j ) such that H strictly separates
s j and V . Since S j \ V is a compact set and � j is continuous at (̃s j , s− j ) for all s̃ j ∈
S j \ V (by Theorem 1), we get that f (s− j ) := max{� j (̃s j , s− j ) : s̃ j ∈ S j \ V } exists.
Furthermore, since B j (s, β j ) ⊂ V , we get f (s− j ) < β j . Let 0 < ε < β j − f (s− j ),
thus f (s− j ) < β j −ε. Note that if we consider, for an open neighbourhood Ū of s and
for fixed s′− j ∈ Ū− j , the problem of maximizing � j (̃s j , s′− j ) subject to s̃ j ∈ S j \ V ,
Berge’s theorem of the maximum ([5]) yields that f (s′− j ) := max{� j (̃s j , s′− j ) :
s̃ j ∈ S j \ V } is a continuous function. Using the continuity of f , there is an open set
U ⊆ U (ε) containing s such that f (s′− j ) < β j −ε for all s′− j ∈ U− j . Additionally, let
U be small enough such that H strictly separates U j and V . Now we have the desired
properties: For each s′ ∈ U and for each s̃ j ∈ S j \ V , we get � j (̃s j , s′− j ) < β j − ε,
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thus B j (s′, β j − ε) ⊂ V . Since s′
j ∈ U j and H strictly separates U j and V , we get

that H strictly separates s′
j and B j (s′, β j − ε), as desired. �

It remains to analyze the strategy profiles s = (z, p)with at most one positive zi . Note
that these profiles cannot be PNE.

Lemma 7 Let s = (z, p) ∈ S be a strategy profile such that zi > 0 holds for at most
one leader i . Then the game is C-secure at s.

Proof Wedistinguish between the two cases that there is a leaderwith positive capacity,
or all capacities are zero.

In the former case, assume that zi > 0 for leader i , and z j = 0 for all j �= i hold.
Choose αi ∈ (Ci − γi zi , Ci ) and 0 < ε < min{zi , (αi + γi zi − Ci )/γi }. Then, there
is an open set U containing s such that leader i can secure αi on U ∩ S =: S′ (note
that by choosing U sufficiently small, leader i can secure each profit < Ci on S′) and
|z′

i−zi | < ε holds for each s′ = (z′, p′) ∈ S′. For j �= i , setα j := 0. It is clear that each
leader j �= i can secure α j = 0 on S′ (by any strategy with zero capacity). In this way,
property (i) of C-security is fulfilled. For property (ii), let s′ = (z′, p′) ∈ S′. We show
that s′

i /∈ Ci (s′, αi )holds. To this end, note that any strategy s∗
i = (z∗

i , p∗
i ) ∈ Bi (s′, αi ),

i.e., with �i (s∗
i , s′−i ) ≥ αi , fulfills z∗

i ≤ zi − ε, since, for z∗
i > zi − ε > 0, we get

�i (s∗
i , s′−i ) = xi (s∗

i , s′−i )p∗
i − γi z∗

i ≤ Ci − γi z∗
i < Ci − γi (zi − ε) < αi , where the

last inequality follows from the choice of ε. Clearly, any strategy in Ci (s′, αi ), i.e.,
any convex combination of strategies in Bi (s′, αi ), then also has this property. Since
z′

i > zi − ε, we get (z′
i , p′

i ) /∈ Ci (s′, αi ), as desired. Thus we showed that the game is
C-secure at s if one leader has positive capacity.

Now turn to the case that zi = 0 for all i ∈ N . We distinguish between two further
subcases, namely that there is a leader i with pi < Ci , or all prices are at their upper
bounds. In the former case, let i ∈ N with pi < Ci , and choose αi with pi < αi < Ci .
There is an open set U containing s such that leader i can secure αi on U ∩ S =: S′
and p′

i < αi holds for each s′ = (z′, p′) ∈ S′. By setting α j := 0 for all j �= i ,
property (i) of C-security is fulfilled. For property (ii), let s′ = (z′, p′) ∈ S′. We
show that s′

i /∈ Ci (s′, αi ) holds. Our assumptions about S′ yield p′
i < αi . On the other

hand, any strategy s∗
i = (z∗

i , p∗
i ) with �i (s∗

i , s′−i ) ≥ αi obviously fulfills p∗
i > αi . In

particular, this holds for any strategy in Ci (s′, αi ), thus showing that s′
i /∈ Ci (s′, αi ).

We conclude that the game is C-secure at s for the case that all zi are zero and there
is a leader i with pi < Ci .

It remains to consider the case that (zi , pi ) = (0, Ci ) holds for all leaders i . For
each leader i , choose αi with (1 − ai

2(ai +Ci )
)Ci < αi < Ci . Note that this implies

1/2 < 1/2 + (Ci − αi )/ai < αi/Ci . (1)

There is an open setU containing s such that each leader i can secureαi onU ∩S =: S′
and z′

i < 1 holds for each s′ = (z′, p′) ∈ S′. Thus, property (i) of C-security is
fulfilled. For property (ii), let s′ = (z′, p′) ∈ S′. In the following, s∗

i = (z∗
i , p∗

i )

denotes a strategy of leader i with �i (s∗
i , s′−i ) ≥ αi > 0. We say that s∗

i achieves
a profit of at least αi . Obviously z∗

i > 0 and p∗
i > αi . Furthermore, �i (s∗

i , s′−i ) =
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xi (s∗
i , s′−i )p∗

i − γi z∗
i ≥ αi implies

xi (s
∗
i , s′−i ) ≥ (αi + γi z

∗
i )/p∗

i > αi/Ci > 1/2, (2)

where the last inequality is due to (1). If z′
i = 0 holds for a leader i , then s′

i /∈ Ci (s′, αi )

holds, since any strategy (z∗
i , p∗

i ) achieving a profit of at least αi > 0 fulfills z∗
i > 0.

Thus we can assume in the following that z′
i > 0 holds for all leaders i . Then, since

n ≥ 2, there is at least one leader i with xi (s′) ≤ 1/2.We now show that s′
i /∈ Ci (s′, αi )

holds. If z′
i = 0 or p′

i ≤ αi holds, s′
i /∈ Ci (s′, αi ) follows, since z∗

i > 0 and p∗
i > αi

hold for any strategy (z∗
i , p∗

i ) achieving a profit of at least αi . Thus we can assume in
the following that z′

i > 0 and p′
i > αi hold. If xi (s′) = 0, the Wardrop equilibrium

conditions yield K (s′) ≤ bi + p′
i . Then, any strategy s̄i = (z̄i , p̄i ) with p̄i ≥ p′

i
yields x(s̄i , s′−i ) = x(s′), and thus xi (s̄i , s′−i ) = 0 and �i (s̄i , s′−i ) ≤ 0 < αi hold.
Therefore, p∗

i < p′
i holds for any strategy (z∗

i , p∗
i ) achieving a profit of at least αi , and

s′
i /∈ Ci (s′, αi ) follows. We can thus assume in the following that xi (s′) > 0 holds.
Summarizing, we can assume that the following inequalities are fulfilled:

0 < xi (s
′
i , s′−i ) ≤ 1/2, αi < p′

i ≤ Ci and 0 < z′
i < 1. (3)

We now show that each strategy s∗
i = (z∗

i , p∗
i ) with �i (s∗

i , s′−i ) ≥ αi fulfills z∗
i > z′

i ,
showing that s′

i /∈ Ci (s′, αi ) and completing the proof. Assume, by contradiction, that
there is a strategy s∗

i = (z∗
i , p∗

i ) which achieves a profit of at least αi and fulfills
z∗

i ≤ z′
i . For any strategy s̃i ∈ Si , write x(s̃i ) := x(s̃i , s′−i ) and K (s̃i ) := K (s̃i , s′−i ).

Now consider the strategy s̃i := (z′
i , αi ). Assume, for the moment, that

K (s̃i ) ≤ K (s∗
i ) < K (s′

i ) (4)

holds (we prove (4) below). Using K (s̃i ) < K (s′
i ) then implies ai xi (s̃i )/z′

i +bi +αi <

ai xi (s′
i )/z′

i + bi + p′
i . Reformulating this inequality and using (3) and (1) then yields

xi (s̃i ) < z′
i (p′

i − αi )/ai + xi (s
′
i ) < (Ci − αi )/ai + 1/2 < αi/Ci . (5)

The inequality K (s̃i ) ≤ K (s∗
i ) from (4) implies x j (s̃i ) ≤ x j (s∗

i ) for all leaders
j �= i . Therefore, xi (s̃i ) ≥ xi (s∗

i ) holds. Using xi (s∗
i ) > αi/Ci from (2) now leads to

xi (s̃i ) > αi/Ci , which contradicts (5). To complete the proof, it remains to show (4).
The property K (s∗

i ) < K (s′
i ) holds since K (s∗

i ) ≥ K (s′
i )would imply x j (s∗

i ) ≥ x j (s′
i )

for all leaders j �= i , and thus xi (s∗
i ) ≤ xi (s′

i ), but we know from (2) and (3) that
xi (s∗

i ) > 1/2 ≥ xi (s′
i ). To prove the other inequality in (4), assume, by contradiction,

that K (s̃i ) > K (s∗
i ). This implies x j (s̃i ) ≥ x j (s∗

i ) for all leaders j �= i , and thus
xi (s̃i ) ≤ xi (s∗

i ). Together with z∗
i ≤ z′

i and p∗
i > αi , this leads to the following

contradiction, and finally completes the proof:

K (s̃i ) ≤ ai xi (s̃i )/z′
i + bi + αi < ai xi (s

∗
i )/z∗

i + bi + p∗
i = K (s∗

i ) < K (s̃i ).

�

123



Stackelberg pricing games with congestion effects 787

Using Theorem 3 together with the Lemmata 6 and 7 now yields the existence of a
PNE:

Theorem 4 Every Stackelberg pricing game has a pure Nash equilibrium.

Note here that in any PNE (z, p), there are at least two leaders i with zi > 0.

5 Uniqueness of equilibria

As we have seen in the last section, a Stackelberg pricing game always has a PNE. In
this section we show that this equilbrium is essentially unique. With essentially we
mean that if (z, p) and (z′, p′) are two different PNE, and i ∈ N is a leader such that
(zi , pi ) �= (z′

i , p′
i ), then zi = z′

i = 0 holds (and thus pi �= p′
i ).

For a PNE s = (z, p), denote by N+(z, p) := {i ∈ N : zi > 0} the set of leaders
with positive capacity (note that |N+(z, p)| ≥ 2 and N+(z, p) = {i ∈ N : xi (s) >

0}). For i ∈ N+(z, p), let (P1i )(s−i ) and (P2i )(s−i ) be the two auxiliary problems
from Sect. 3.6 By Lemma 4, the routing cost K (z, p) is an optimal solution of either
(P1i )(s−i ) or (P2i )(s−i ). We denote by N+

1 (z, p) the set of leaders i ∈ N+(z, p)

such that K (z, p) is an optimal solution of (P1i )(s−i ), and N+
2 (z, p) contains the

leaders i ∈ N+(z, p) such that K (z, p) is an optimal solution of (P2i )(s−i ). Thus

N+(z, p) = N+
1 (z, p)

.∪ N+
2 (z, p). Throughout this section, we use the simplified

notation N ′ \ i instead of N ′ \ {i} for any subset N ′ ⊆ N of leaders and i ∈ N ′.
Note that the proofs in this section are similar to the proofs that [21] use to derive

their uniqueness results. However, since ourmodel includes price caps, some new ideas
are required, in particular the decomposition of N+(z, p) in N+

1 (z, p)
.∪ N+

2 (z, p).
We first derive further necessary equilibrium conditions (by using the KKT condi-

tions) which will become useful in the following analysis.

Lemma 8 Let s = (z, p) be a PNE with x := x(z, p) and K := K (z, p). Let i ∈
N+ := N+(z, p). If pi < Ci holds, then zi = √

ai/γi xi , pi = xi∑
j∈N+\i z j /a j

+√
aiγi ,

and if pi = Ci , then zi = ai xi
K−bi −Ci

and Ci
1+ai /zi ·∑ j∈N+\i z j /a j

= γi z2i
ai xi

∑
j∈N+\i z j /a j

.

Proof Since (z, p) is a PNE, p j > 0 and x j > 0 holds for all j ∈ N+, and
xk = 0 holds for k /∈ N+. Furthermore, (zi , pi ) is a best response of leader i to
s−i and K = a j x j/z j + b j + p j holds for all j ∈ N+. Altogether we get that
(zi , pi , (x j ) j∈N+) is an optimal solution for the following optimization problem (with
variables (z′

i , p′
i , (x ′

j ) j∈N+)):

max x ′
i p′

i − γi z
′
i s.t.: 0 ≤ p′

i ≤ Ci , 0 < z′
i ,

∑
j∈N+

x ′
j = 1, x ′

j ≥ 0 ∀ j ∈ N+,

ai x ′
i/z′

i + bi + p′
i = a j x ′

j/z j + b j + p j ∀ j ∈ N+ \ i .

6 In Sect. 3, we considered fixed strategies s−i , thus we just used (P1i ) and (P2i ) for the problems corre-

sponding to s−i . In this section, we need to consider different strategy profiles, thus we nowwrite (P1i )(s−i )

and (P2i )(s−i ), as well as Kmax
i (s−i ).
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It is easy to show that the LICQ holds for (zi , pi , (x j ) j∈N+) = (zi , pi , xi ,

(x j ) j∈N+\i ), thus the KKT conditions are fulfilled. We get the following equations:

γi − ai xi/z2i
∑

j∈N+\i

λ j = 0 (KKT1)

−xi + μ +
∑

j∈N+\i

λ j = 0 (KKT2)

−pi + λ + ai/zi

∑
j∈N+\i

λ j = 0 (KKT3)

λ − λ j a j/z j = 0 ∀ j ∈ N+ \ i . (KKT4)

We now distinguish between the two cases pi < Ci and pi = Ci .
In the first case, μ = 0 holds, and (KKT2) yields xi = ∑

j∈N+\i λ j . Using this,
(KKT1) yields zi = √

ai/γi xi . Plugging this in (KKT3) leads to pi = λ + ai xi/zi =
λ + √

aiγi . Using (KKT4), i.e., λ j = λz j/a j for all j ∈ N+ \ i , together with
(KKT2) yields xi = λ

∑
j∈N+\i z j/a j , or equivalently, λ = xi∑

j∈N+\i z j /a j
. This shows

pi = xi∑
j∈N+\i z j /a j

+ √
aiγi , as required.

The other case is pi = Ci . The formula for zi follows from K = ai xi/zi +bi +Ci .
Plugging λ j = λz j/a j for all j ∈ N+ \ i in (KKT1) and (KKT3) yields

λ = γi z2i
ai xi

∑
j∈N+\i z j/a j

and λ = Ci − ai/zi · λ ·
∑

j∈N+\i

z j/a j ⇔

λ = Ci

1 + ai/zi
∑

j∈N+\i z j/a j
,

which shows the desired equality. �
In the next lemma, we introduce two functions 
1

i and 
2
i for each leader i and derive

useful properties of these functions.

Lemma 9 For each i ∈ N, define


1
i : (

√
aiγi + bi ,∞) → R, 
1

i (κ) :=
√

aiγi

κ − √
aiγi − bi

and


2
i : (bi + Ci ,∞) → R, 
2

i (κ) := aiγi/Ci

κ − bi − Ci
.

Furthermore, let s = (z, p) be a PNE with x := x(z, p), cost K := K (z, p), and
N+ := N+(z, p) with N+

1 := N+
1 (z, p), N+

2 := N+
2 (z, p). Then:

1. 
1
i and 
2

i are strictly decreasing functions.

2. If i ∈ N+
1 , then 
1

i (K ) = 1 − zi /ai∑
j∈N+ z j /a j

< 1.
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3. If i ∈ N+
2 , then 
2

i (K ) = 1 − zi /ai∑
j∈N+ z j /a j

< 1.

4.
∑

i∈N+
1


1
i (K ) + ∑

i∈N+
2


2
i (K ) = |N+| − 1.

5. If i ∈ N+
1 and there is a (different) PNE s′ = (z′, p′) with i ∈ N+

2 (z′, p′), then
K < K ′ := K (z′, p′) and 
1

i (K ) > 
2
i (K ′).

Proof Statement 1. is clear from the definitions of 
1
i and 
2

i , so turn to statement 2.
and let i ∈ N+

1 . Lemma 4 yields zi = √
ai/γi xi , pi = K − √

aiγi − bi . Using
Lemma 8, B := ∑

j∈N+ z j/a j , and zi = √
ai/γi xi , we get

K = xi∑
j∈N+\i z j/a j

+ 2
√

aiγi + bi = xi

B − zi/ai
+ 2

√
aiγi + bi

= xi + (B − xi/
√

aiγi )
√

aiγi

B − xi/
√

aiγi
+ √

aiγi + bi = B
√

aiγi

B − xi/
√

aiγi
+ √

aiγi + bi .

Using this we get statement 2.:


1
i (K ) = B − xi/

√
aiγi

B
= 1 − zi/ai

B
< 1.

For statement 3., let i ∈ N+
2 . Lemmas 4 and 8 imply Ci

1+ai /zi ·∑ j∈N+\i z j /a j
=

γi z2i
ai xi

∑
j∈N+\i z j /a j

. Rearranging and using the definition of B yields

ai xi

zi
= γi zi (1 + ai/zi · ∑

j∈N+\i z j/a j )

Ci · ∑
j∈N+\i z j/a j

= γi zi (1 + ai/zi · (B − zi/ai ))

Ci · (B − zi/ai )

= γi ai B

Ci · (B − zi/ai )
.

Using K = ai xi/zi +bi +Ci then yields K = γi ai B
Ci ·(B−zi /ai )

+bi +Ci , and statement 3.
follows:


2
i (K ) = B − zi/ai

B
= 1 − zi/ai

B
< 1.

Statement 4. now follows from the statements 2. and 3.:

∑
i∈N+

1


1
i (K ) +

∑
i∈N+

2


2
i (K ) =

∑
i∈N+

1

(
1 − zi/ai

B

)
+

∑
i∈N+

2

(
1 − zi/ai

B

)
= |N+| − 1

It remains to show statement 5. Let i ∈ N+
1 ∩ N+

2 (z′, p′). Since i ∈ N+
1 , the cost K is

in particular feasible for (P1i )(s−i ), thus 2
√

aiγi + bi ≤ K ≤ √
aiγi + bi + Ci holds.

Analogously, using i ∈ N+
2 (z′, p′), the cost K ′ is feasible for (P2i )(s

′−i ), therefore√
aiγi + bi + Ci < K ′ < Kmax

i (s′−i ). Together we get K ≤ √
aiγi + bi + Ci < K ′.

It remains to show 
1
i (K ) > 
2

i (K ′). By definition of N+
2 (z′, p′), the cost K ′ is an
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optimal solution for problem (P2i )(s
′−i ) and in particular (see 1. and 3. of Lemma 5)

yields a better objective function value than
√

aiγi + bi + Ci in (P1i )(s
′−i ) (note that√

aiγi +bi +Ci is feasible for (P1i )(s
′−i ) since 2

√
aiγi +bi ≤ K ≤ √

aiγi +bi +Ci <

K ′ < Kmax
i (s′−i )). If xi denotes the function occurring in the definitions of (P1i )(s

′−i )

and (P2i )(s
′−i ), we thus get xi (

√
aiγi + bi + Ci ) · (Ci − √

aiγi ) < xi (K ′) · (Ci −
aiγi/(K ′ − bi − Ci )) ≤ xi (

√
aiγi + bi + Ci ) · (Ci − aiγi/(K ′ − bi − Ci )), where the

last inequality follows from
√

aiγi + bi + Ci < K ′ and the fact that xi is a decreasing
function. Since xi (

√
aiγi + bi + Ci ) > 0, we get

Ci − √
aiγi < Ci − aiγi

K ′ − bi − Ci
⇔

√
aiγi

Ci
>

aiγi/Ci

K ′ − bi − Ci
= 
2

i (K ′).

Note that 2
√

aiγi + bi ≤ K ≤ √
aiγi + bi + Ci , thus 1/(K − √

aiγi − bi ) ≥ 1/Ci ,
and altogether


1
i (K ) =

√
aiγi

K − √
aiγi − bi

≥
√

aiγi

Ci
> 
2

i (K ′).

�
Nowwe turn to the uniqueness of the equilibrium, and start with the following lemma.

Lemma 10 For a fixed subset N+ of the leaders and a fixed disjoint decomposition
N+ = N+

1

.∪N+
2 , there is essentially at most one PNE (z, p) such that N+(z, p) = N+,

N+
1 (z, p) = N+

1 and N+
2 (z, p) = N+

2 .

Proof Assume that there are two PNE (z, p) and (z′, p′)with the described properties,
i.e., N+(z, p) = N+(z′, p′) = N+, N+

1 (z, p) = N+
1 (z′, p′) = N+

1 and N+
2 (z, p) =

N+
2 (z′, p′) = N+

2 . Let x := x(z, p) and x ′ := x(z′, p′) with costs K := K (z, p) and
K ′ := K (z′, p′). We show that (zi , pi ) = (z′

i , p′
i ) holds for all i ∈ N+, showing that

(z, p) and (z′, p′) are essentially the same.
First note that K = K ′ holds, since f (κ) := ∑

i∈N+
1


1
i (κ) + ∑

i∈N+
2


2
i (κ) is

a strictly decreasing function in κ and f (K ) = ∑
i∈N+

1

1

i (K ) + ∑
i∈N+

2

2

i (K ) =
|N+| − 1 = ∑

i∈N+
1


1
i (K ′) + ∑

i∈N+
2


2
i (K ′) = f (K ′) holds from 4. in Lemma 9.

This implies pi = p′
i for all i ∈ N+, since pi = K −√

aiγi −bi = K ′−√
aiγi −bi =

p′
i holds for i ∈ N+

1 , and pi = Ci = p′
i for i ∈ N+

2 .
If B := ∑

j∈N+ z j/a j = ∑
j∈N+ z′

j/a j =: B ′ holds, we also get zi = z′
i for all

i ∈ N+, since 2. of Lemma 9 yields zi = (1 − 
1
i (K ))ai B = (1 − 
1

i (K ′))ai B ′ =
z′

i for all i ∈ N+
1 and 3. of Lemma 9 yields zi = (1 − 
2

i (K ))ai B = (1 −

2

i (K ′))ai B ′ = z′
i for all i ∈ N+

2 .
It remains to show B = B ′. First consider i ∈ N+

1 . Using zi = √
ai/γi · xi and

z′
i = √

ai/γi · x ′
i , as well as 2. of Lemma 9, yields xi/B = (1 − 
1

i (K ))
√

aiγi =
(1 − 
1

i (K ′))√aiγi = x ′
i/B ′. For i ∈ N+

2 , we use zi
ai

= xi
K−bi −Ci

and
z′

i
ai

= x ′
i

K ′−bi −Ci

and 3. of Lemma 9 to achieve xi/B = (1−
2
i (K ))(K −bi −Ci ) = (1−
2

i (K ′))(K ′−
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bi − Ci ) = x ′
i/B ′. Altogether we have xi/B = x ′

i/B ′ for all i ∈ N+. Using that∑
i∈N+ xi = 1 = ∑

i∈N+ x ′
i yields B = B ′. �

In the previous lemma, we showed that given a fixed subset N+ ⊆ N and a fixed
disjoint decomposition N+ = N+

1

.∪ N+
2 , there is at most one PNE (z, p) such that

N+(z, p) = N+, N+
1 (z, p) = N+

1 and N+
2 (z, p) = N+

2 . Next, we strengthen this
result by showing that for a fixed subset N+ ⊆ N , there is at most one PNE (z, p)

with N+(z, p) = N+ (independently of the decomposition of N+).

Lemma 11 For a fixed subset N+ of the leaders, there is essentially at most one PNE
(z, p) with N+(z, p) = N+.

Proof Assume, by contradiction, that there are two essentially different PNE (z, p) and
(z, p) with N+(z, p) = N+ = N+(z, p). Let N+

1 := N+
1 (z, p), N+

2 := N+
2 (z, p)

and N
+
1 := N+

1 (z, p), N
+
2 := N+

2 (z, p). Further denote x := x(z, p), K := K (z, p)

and x := x(z, p), K := K (z, p).
Lemma 10 yields that the decompositions of N+ have to be different. Without

loss of generality, there is a leader j ∈ N+
1 \ N

+
1 . Since j ∈ N

+
2 , statement 5. of

Lemma 9 yields K < K . The existence of a leader i ∈ N
+
1 \ N+

1 leads (by the same

argumentation) to the contradiction K < K , thus N
+
1 � N+

1 and N+
2 � N

+
2 hold and

we can write (using 4. of Lemma 9)

|N+| − 1 =
∑

i∈N+
1


1
i (K ) +

∑
i∈N+

2


2
i (K ) =

∑
i∈N+

1 \N
+
1


1
i (K ) +

∑
i∈N

+
1


1
i (K )

+
∑

i∈N+
2


2
i (K ) and

|N+| − 1 =
∑

i∈N
+
1


1
i (K ) +

∑
i∈N

+
2


2
i (K ) =

∑
i∈N

+
1


1
i (K ) +

∑
i∈N

+
2 \N+

2


2
i (K )

+
∑

i∈N+
2


2
i (K ).

Using K < K and that both
∑

i∈N+
2


2
i (κ) and

∑
i∈N

+
1


1
i (κ) are decreasing in κ

yields

∑
i∈N+

2


2
i (K ) ≥

∑
i∈N+

2


2
i (K ) and

∑
i∈N

+
1


1
i (K ) ≥

∑
i∈N

+
1


1
i (K ).

Finally, 5. of Lemma 9 yields 
1
i (K ) > 
2

i (K ) for all i ∈ N+
1 \ N

+
1 = N

+
2 \ N+

2 �= ∅,
thus ∑

i∈N+
1 \N

+
1


1
i (K ) >

∑
i∈N

+
2 \N+

2


2
i (K )
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holds. Altogether we get the following contradiction, completing the proof:

|N+| − 1 =
∑

i∈N+
1 \N

+
1


1
i (K ) +

∑
i∈N

+
1


1
i (K ) +

∑
i∈N+

2


2
i (K )

>
∑

i∈N
+
1


1
i (K ) +

∑
i∈N

+
2 \N+

2


2
i (K ) +

∑
i∈N+

2


2
i (K ) = |N+| − 1

�
For the uniqueness of the PNE, it remains to show that there is at most one set N+

such that a PNE (z, p) with N+(z, p) = N+ exists. To this end, we first show that
each leader i has a threshold K ∗

i such that, for any PNE (z, p), leader i has zi > 0 if
and only if K (z, p) > K ∗

i .

Lemma 12 For each i ∈ N, define

K ∗
i :=

{
aiγi/Ci + bi + Ci , if

√
aiγi > Ci ,

2
√

aiγi + bi , else.

Then, for any PNE s = (z, p) and any leader i ∈ N, it holds that zi > 0 iff K (z, p) >

K ∗
i .

Proof Let s = (z, p) be a PNE with x := x(z, p), K := K (z, p), and i ∈ N .
First assume that zi = 0. Since (z, p) is a PNE, the strategy (zi , pi ) = (0, pi ) is

a best response of leader i to s−i . As we have seen in Theorem 2, this is equivalent
to the fact that both problems (P1i )(s−i ) and (P2i )(s−i ) are infeasible. Note that K =
Kmax

i (s−i ) holds due to the definition of Kmax
i (s−i ) (cf. Sect. 3.2 and x j = (K −b j −

p j )z j/a j for all j ∈ { j ′ ∈ N : x j ′ > 0} = { j ′ ∈ N \ i : z j ′ > 0, b j ′ + p j ′<K }.
To show K ≤ K ∗

i , we have to distinguish between the two cases
√

aiγi > Ci and√
aiγi ≤ Ci . First consider

√
aiγi > Ci , thus K ∗

i = aiγi/Ci + bi + Ci . Since
(P2i )(s−i ) is infeasible and

√
aiγi + bi + Ci < aiγi/Ci + bi + Ci , we get the desired

inequality K = Kmax
i (s−i ) ≤ aiγi/Ci +bi +Ci = K ∗

i . Now consider
√

aiγi ≤ Ci , i.e.
K ∗

i = 2
√

aiγi +bi . Since (P1i )(s−i ) is infeasible and 2
√

aiγi +bi ≤ √
aiγi +bi +Ci ,

we get K = Kmax
i (s−i ) ≤ 2

√
aiγi + bi = K ∗

i , as desired. We have seen that zi = 0
implies K ≤ K ∗

i , or, equivalently, K > K ∗
i implies zi > 0.

It remains to show the other direction, i.e., zi > 0 implies K > K ∗
i .We consider the

cases
√

aiγi > Ci and
√

aiγi ≤ Ci and use our results from Lemma 4 and Theorem 2.
If

√
aiγi > Ci , thus K ∗

i = aiγi/Ci + bi + Ci , the cost K is an optimal solution
for problem (P2i )(s−i ) with positive objective function value (note that (P1i )(s−i ) is
infeasible), therefore K ∗

i = aiγi/Ci + bi +Ci < K . In the second case, i.e.,
√

aiγi ≤
Ci and K ∗

i = 2
√

aiγi + bi , the cost K either is optimal for (P1i )(s−i ), or optimal
for (P2i )(s−i ), and has positive objective function value in both cases. We get the
desired property, since K ∗

i = 2
√

aiγi + bi < K holds for the first case and K ∗
i =

2
√

aiγi + bi ≤ √
aiγi + bi + Ci < K holds for the second, completing the proof. �

We can now show the remaining result for the desired uniqueness of PNE.
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Lemma 13 There is at most one N+ ⊆ N such that a PNE (z, p) with N+(z, p) = N+
exists.

Proof Assume, by contradiction, that there are different subsets N+ und N
+

with
PNE (z, p) and (z, p), such that N+(z, p) = N+ and N+(z, p) = N

+
. Let N+

1

.∪
N+
2 and N

+
1

.∪ N
+
2 be the decompositions of N+ and N

+
, i.e., N+

1 (z, p) = N+
1 ,

N+
2 (z, p) = N+

2 , N+
1 (z, p) = N

+
1 and N+

2 (z, p) = N
+
2 . Finally denote x := x(z, p),

K := K (z, p) and x := x(z, p), K := K (z, p).
Using Lemma 12, we can assume w.l.o.g. that K < K and N+

� N
+
. Then,

N+
2 ⊆ N

+
2 holds, since the existence of a leader i ∈ N+

2 \ N
+
2 , i.e. i ∈ N+

2 ∩ N
+
1 ,

leads to the contradiction K < K by statement 5. of Lemma 9. Furthermore, if
there is a leader i ∈ N+

1 \ N
+
1 , i.e. i ∈ N+

1 ∩ N
+
2 , statement 5. of Lemma 9 yields


1
i (K ) > 
2

i (K ). Finally, 
1
i (K ) < 1 holds for all i ∈ N

+
1 , and 
2

i (K ) < 1 holds

for all i ∈ N
+
2 (see 2. and 3. of Lemma 9). Altogether, this leads to the following

contradiction, and completes the proof (where we additionally use K < K , and the
statements 1. and 4. of Lemma 9):

|N+| − 1 =
∑

i∈N
+
1


1
i (K ) +

∑
i∈N

+
2


2
i (K )

=
∑

i∈N
+
1 ∩N+

1


1
i (K ) +

∑
i∈N

+
1 \N+


1
i (K ) +

∑
i∈N

+
2 ∩N+

1


2
i (K ) +

∑
i∈N+

2


2
i (K )

+
∑

i∈N
+
2 \N+


2
i (K )

<
∑

i∈N+
1 ∩N

+
1


1
i (K ) +

∑
i∈N+

1 ∩N
+
2


1
i (K ) +

∑
i∈N+

2


2
i (K ) + |N+| − |N+|

=
∑

i∈N+
1


1
i (K ) +

∑
i∈N+

2


2
i (K ) + |N+| − |N+| = |N+| − 1.

�
Together with the existence result in Theorem 4, the preceding Lemmata 11 and 13
show:

Theorem 5 Every Stackelberg pricing game has an essentially unique PNE, i.e., if
(z, p) and (z′, p′) are different PNE and i ∈ N with (zi , pi ) �= (z′

i , p′
i ), then zi =

z′
i = 0 holds.

6 Quality of equilibria

In the last section, we showed that a Stackelberg pricing game has an (essentially)
unique PNE. Now we analyze the quality of the PNE compared to a social optimum.
Define the social cost C(z, p) of a strategy profile s = (z, p) as
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794 T. Harks, A. Schedel

C(z, p) =
{∑

i∈{1,...,n}:zi >0 (�i (xi (s), zi )xi (s) + γi zi ), if
∑n

i=1 zi > 0,

∞, else.

The functionC(z, p)measures utilitarian socialwelfare over leaders and followers (the
price component cancels out). Common notions to measure the quality of equilibria
are the Price of Anarchy (PoA) and the Price of Stability (PoS), which are defined
as the worst case ratios of the cost of a worst, respectively best, PNE, and a social
optimum. Note that for Stackelberg pricing games, PoA and PoS are the same: Since
a Stackelberg pricing game G has an essentially unique PNE, all PNE of G have
the same social cost. If we denote this cost by C(PNE(G)), and the minimum social
cost in G (compared to all possible strategy profiles) by OPT(G), we thus get that
PoA = PoS = supG C(PNE(G))/OPT(G).

In Sect. 6.1, we show that the PoA for Stackelberg pricing games is unbounded.
For the proof, we use a family of instances with heterogeneous leaders, that is, the
leaders have different parameters. In Sect. 6.2, we then turn to the homogeneous case,
where all leaders have the same parameters. We derive a closed-form expression of
the ratio C(PNE(G))/OPT(G). In particular, this expression implies that the PoA is
unbounded also for homogeneous leaders. Finally, in Sect. 6.3, we briefly discuss other
definitions for the social cost of a strategy profile, and consequences for the quality of
equilibria.

6.1 Unboundedness of the PoA

The following theorem shows that PoA and PoS are unbounded for Stackelberg pricing
games.

Theorem 6 PoA = PoS = ∞. The bound is attained even for games with only two
leaders.

Proof Consider the Stackelberg pricing game G M with n = 2, a1 = γ1 = C1 =
1, b1 = 0, and a2 = γ2 = C2 = M, b2 = 0, where M ≥ 1.

By z1 = 1, p1 = z2 = p2 = 0, we get a profile with social cost 2, thus
OPT(G M ) ≤ 2. We now show C(PNE(G M )) > M , which implies PoA = PoS ≥
C(PNE(G M ))/OPT(G M ) > M/2. By M → ∞, this yields the desired result. It
remains to show C(PNE(G M )) > M . For fixed M ≥ 1, let s = (z, p) be a PNE of
G M with induced Wardrop flow x := x(s) and cost K := K (s). Note that zi > 0
holds for i ∈ {1, 2}, since any PNE has at least two positive capacities. Lemma 4
together with Theorem 2 yields that, for each leader i ∈ {1, 2}, the cost K either is
optimal for (P1i )(s−i ), or optimal for (P2i )(s−i ), and has positive objective function
value in both cases. Since for each leader i ∈ {1, 2}, the only candidate for a feasible
solution of (P1i )(s−i ) is 2

√
aiγi + bi = √

aiγi + bi + Ci and this yields an objective
function value of 0, we get that K is an optimal solution of (P2i )(s−i ). In particular this
yields, by considering leader 2, that 2M = √

a2γ2 + b2 + C2 < K . Furthermore we

get z1 = x1
K−1 and z2 = M(1−x1)

K−M for the capacities. Altogether, the desired inequal-

ity for C(s) = C(PNE(G M )) follows: C(s) = 1
z1

x21 + M
z2

(1 − x1)2 + z1 + Mz2 >

(K − 1)x1 + (K − M)(1 − x1) ≥ K − M > M . �
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Note that for M > 1, the two leaders in the proof of Theorem 6 do not have the
same parameters. This raises the question whether the PoA is bounded if we restrict
ourselves to homogeneous leaders. This question is analyzed in the next subsection.

6.2 Homogeneous leaders

In this subsection, we analyze the quality of equilibria for the case that the leaders
are homogeneous, that is, there exist a > 0, b ≥ 0, C > 0 and γ > 0 such that
ai = a, bi = b, Ci = C and γi = γ for all i ∈ N . We derive the following.

Theorem 7 Assume that G is a Stackelberg pricing game with n homogeneous leaders,
i.e., there exist a > 0, b ≥ 0, C > 0 and γ > 0 such that ai = a, bi = b, Ci = C
and γi = γ for all i ∈ N. Then, the ratio between the equilibrium cost C(PNE) and
the optimal cost OPT of G is

C(PNE)

OPT
=

⎧⎨
⎩
1, if n

n−1
√

aγ < C,
n

n−1 · aγ
C +b+ n−1

n C
2
√

aγ+b , if n
n−1

√
aγ ≥ C .

Note that this shows that even for homogeneous leaders, the PoA for Stackelberg
pricing games is unbounded (consider C → 0). On the other hand, if the caps are
large enough, one can ensure an optimal equilibrium.

Proof First, we analyze the social cost OPT of an optimal profile, and show OPT =
2
√

aγ + b. Note that given z with
∑

i∈N zi > 0, the flow x∗ defined by x∗
i :=

zi/
∑

j∈N z j for all i ∈ N+ := {i ∈ N : zi > 0}, minimizes the total congestion cost∑
i∈N+ �i (xi , zi )xi : Consider

min
∑

i∈N+
(axi/zi + b) xi = a ·

∑
i∈N+

x2i /zi + b s.t.
∑

i∈N+
xi = 1, xi ≥ 0 ∀i ∈ N+.

For this problem, the KKT conditions are necessary and sufficient for the unique
optimal solution. Therefore, x∗ is optimal if and only if there exist λ ∈ R and μi ∈ R

for all i ∈ N+, such that 2ax∗
i /zi + λ − μi = 0, μi x∗

i = 0, and μi ≥ 0 hold for all
i ∈ N+. Setting λ := −2a/

∑
j∈N z j and μi := 0 for all i ∈ N+, these conditions

are fulfilled, and we conclude that x∗ is optimal. Furthermore, we can induce x∗ as
Wardrop-flow, for example by pi := 0 for all i ∈ N , since then, ax∗

i /zi + b + pi =
a/

∑
j∈N z j + b for all i ∈ N+. This shows that OPT equals the optimal objective

function value of the problem

min a/
∑
j∈N

z j + b + γ ·
∑
j∈N

z j s.t.
∑
j∈N

z j > 0, z j ≥ 0 ∀ j ∈ N .

Since the objective function only depends on the sum of the capacities, we can also
minimize a/ζ + b + γ ζ for ζ > 0. The optimal solution of the latter problem is
ζ ∗ = √

a/γ , and the optimal objective function value is 2
√

aγ + b. We have thus
shown that OPT = 2

√
aγ + b.
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We now analyze the cost C(PNE). Note that if (z, p) is a PNE, zi > 0 holds
for each player i ∈ N (this follows from the threshold Lemma 12). This shows that
in case of homogeneous leaders, there is a unique PNE, and we denote this PNE
with (zE , pE ). The uniqueness implies that (zE , pE ) is symmetric, that is, there exist
ζ > 0, ρ ∈ (0, C] such that zE

i = ζ and pE
i = ρ for all i ∈ N . This immediately

implies that x E
i = 1/n holds for all i ∈ N , where x E denotes the Wardrop flow

induced by the PNE. Next, we exploit Lemma 8 to derive explicit formulas for ζ and
ρ, leading to

(ζ, ρ) =
{

(
√

a/γ · 1
n , n

n−1 · √
aγ ), if ρ < C,

( n−1
n2

· C
γ
, C), if ρ = C .

(6)

We show below that ρ < C holds if and only if n/(n − 1) · √aγ < C . Using this, we
get

(ζ, ρ) =
{

(
√

a/γ · 1
n , n

n−1 · √
aγ ), if n

n−1 · √
aγ < C,

( n−1
n2

· C
γ
, C), if n

n−1 · √
aγ ≥ C,

and (7)

C(zE , pE ) = a

ζn
+ b + nγ ζ =

{
2
√

aγ + b, if n
n−1 · √

aγ < C,
n

n−1 · aγ
C + b + n−1

n C, if n
n−1 · √

aγ ≥ C .

Together with OPT = 2
√

aγ + b, this implies the theorem.
It remains to show that ρ < C ⇔ n/(n − 1)

√
aγ < C . Using (6), ρ < C clearly

implies n/(n − 1)
√

aγ < C . We now assume that n/(n − 1)
√

aγ < C . Assume, by
contradiction, that ρ = C , and thus ζ = n−1

n2
· C

γ
by (6). If K E denotes the routing

cost induced by x E , we get K E = a/(ζn) + b + C = anγ /((n − 1)C) + b + C <√
aγ + b + C . By our characterization of best responses, this shows that K E is the

optimal solution of (P1i )(z−i , p−i ), where (z j , p j ) = (ζ, ρ) holds for each j ∈ N \ i ,
and thus ρ = K E − √

aγ − b < C ; contradiction. �
At the end of this subsection, we briefly address the natural question if one can achieve
a closed-form expression of the ratio between equilibrium and optimal cost, as in
Theorem 7, also for heterogeneous leaders, where the parameters do not have to
be equal. We found that at least for two leaders, this is possible. But the resulting
expression is rather complicated and hardly insightful, thus we did not include it in
this paper.

6.3 Different social cost functions

To complete our analysis of the quality of PNE,we nowbriefly discuss other definitions
of the social cost of a strategy profile. Note that the function C(z, p) defined at the
beginning of this sectionmeasures utilitarian socialwelfare over followers and leaders.
Alternatively, one could consider only the followers, or only the leaders. But as we
show below, the worst-case quality of the equilibrium is also unbounded for these
cases.
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For a strategy profile s = (z, p) with
∑

i∈N zi > 0, the total cost of the followers
equals K (s), the cost of the induced Wardrop flow. (If

∑
i∈N zi = 0, i.e., there is no

resource to choose for the followers, we define, as before, that the cost is ∞.) But
for this alternative definition of the cost of a strategy profile, the optimal cost is not
attained, and may even tend to zero: Obviously, K (s) > bmin := min{bi : i ∈ N }
holds for each profile s. On the other hand, the cost of the profile sM defined by
zi = M, pi = 0 for some leader i with bi = bmin, and z j = p j = 0 else, tends to bmin
for M → ∞. In other words, in a “near-optimal” profile, the congestion effects are
extinguished by very high capacities. But naturally, such capacities also induce high
investment costs. To impose an upper bound on the total investment cost (and thus
on the capacities) for the optimal profile does not only seem natural, but would also
imply that the optimal cost is attained, and is strictly positive.7 Assume, e.g., that there
is a budget parameter B > 0 such that

∑
i∈N γi zi ≤ B needs to hold for an optimal

profile.With this restriction, we now analyze the equilibrium quality, and again get that
PoA and PoS are unbounded: To see this, consider the family of instances (G M )M≥1
given in the proof of Theorem 6, and assume that B = 1. It follows from the proof of
Theorem 6 that the equilibrium cost is larger than 2M , whereas the optimal cost is at
most 1, leading to a lower bound of 2M for the PoA. By M → ∞, we get that PoA
and PoS are unbounded.8

Alternatively, one could measure the quality of a strategy profile via the total profits
of the leaders. Here, it is again the case that an optimal profile (maximizing the sum
of the leaders’ profits) does not exist: The total profit is always strictly smaller than
Cmax := max{Ci : i ∈ N }, but for zi = ε, pi = Ci for some leader i with Ci = Cmax,
and z j = p j = 0 else, we get a total profit arbitrarily near to Cmax if ε tends to
0. Irrespective of whether we define OPT as Cmax, or restrict the optimal profile for
example by some lower bound β on the sum of capacities

∑
i∈N zi ≥ β, the worst-

case quality of the PNE is unbounded: To see this, consider (7), where we state the
equilibrium strategies for the case that the leaders are homogeneous. Assume that
we have a homogeneous instance with

√
aγ ≥ C . The total profit of the PNE then is

C −(n −1)/n ·C = C/n. As n gets large, this clearly tends to zero. On the other hand,
the optimal total profit (C or C − βγ ) is independent of n, and strictly positive (for
β < C/γ ). Altogether, this shows that if we consider the total profits of the leaders,
the quality of the PNE may also get arbitrarily bad.

Acknowledgements We thank the two reviewers and the associate editor for the helpful comments that
improved the presentation of the paper.

Funding Open Access funding enabled and organized by Projekt DEAL.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If

7 Note that in a PNE, the total investment cost is also upper-bounded since γi zi < Ci holds for each
leader i .
8 The same argumentation shows that even if we drop the prices and define the cost of a strategy profile as
the total congestion cost of the followers, the PoA is unbounded.

123



798 T. Harks, A. Schedel

material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Acemoglu, D., Bimpikis, K., Ozdaglar, A.: Price and capacity competition. Games Econom. Behav.
66(B), 1–26 (2009)

2. Ackermann, H., Skopalik, A.: On the complexity of pure Nash equilibria in player-specific network
congestion games. In: Deng, X., Graham, F. (eds.) Proceedings of 3rd International Workshop on
Internet and Network Econom., LNCS, vol. 4858, pp. 419–430 (2007)

3. Andrews, M., Antonakopoulos, S., Zhang, L.: Minimum-cost network design with (dis)economies of
scale. SIAM J. Comput. 45(1), 49–66 (2016)

4. Beckmann, M., McGuire, C., Winsten, C.: Studies in the Economics and Transportation. Yale Univer-
sity Press, New Haven (1956)

5. Berge, C.: Topological Spaces: Including a Treatment of Multi-Valued Functions. Vector Spaces and
Convexity. Dover Publications, Mineola (1963)

6. Bergendorff, P., Hearn, D., Ramana, M.: Congestion toll pricing of traffic networks. In: Pardalos, P.,
Hearn, D., Hager, W. (eds.) Network Optimization, Lecture Notes in Economics and Mathematical
Systems, vol. 450, pp. 51–71 (1997)

7. Castiglioni, M., Marchesi, A., Gatti, N., Coniglio, S.: Leadership in singleton congestion games: what
is hard and what is easy. Artif. Intell. 277, 103177 (2019)

8. Cominetti, R., Correa, J.R., Stier-Moses, N.E.: The impact of oligopolistic competition in networks.
Oper. Res. 57(6), 1421–1437 (2009)

9. Correa, J.R., Guzmán, C., Lianeas, T., Nikolova, E., Schröder, M.: Network pricing: How to induce
optimal flows under strategic link operators. In: Proceedings of the 2018 ACM Conference on Eco-
nomics and Computation, Ithaca, NY, USA, pp. 375–392 (2018)

10. Correa, J.R., Stier-Moses, N.E.: Wardrop Equilibria. Wiley Encyclopedia of Operations Research and
Management Science (2011)

11. Dial, R.B.: Minimal-revenue congestion pricing part I: a fast algorithm for the single-origin case.
Transp. Res. 33(1), 189–202 (1999)

12. Dial, R.B.: Network-optimized road pricing: part I: a parable and a model. Oper. Res. 47(1), 54–64
(1999)

13. Dial, R.B.: Network-optimized road pricing: part II: algorithms and examples. Oper. Res. 47(2), 327–
336 (1999)

14. Emek, Y., Kutten, S., Lavi, R., Shi, Y.: Approximating generalized network design under
(dis)economies of scale with applications to energy efficiency. J. ACM 67(1), 7:1–7:33 (2020)

15. Englert, M., Franke, T., Olbrich, L.: Sensitivity of Wardrop equilibria. Theory Comput. Syst. 47(1),
3–14 (2010)

16. Fabrikant, A., Papadimitriou, C., Talwar, K.: The complexity of pure Nash equilibria. In: Babai, L.
(ed.) Proceedings of 36th Annual ACM Symposium Theory Computer, pp. 604–612 (2004)

17. Fleischer, L., Jain, K., Mahdian, M.: Tolls for heterogeneous selfish users in multicommodity networks
and generalized congestion games. In: Proceedings of 45th Annual IEEE Symposium Foundations
Computer Science, pp. 277–285 (2004)

18. Gairing, M., Harks, T., Klimm, M.: Complexity and approximation of the continuous network design
problem. SIAM J. Optim. 27(3), 1554–1582 (2017)

19. Harks, T., Schedel, A.: Capacity and price competition in markets with congestion effects. In: Pro-
ceedings of 15th Internation Conference on Web and Internet Economics, p. 341 (2019)

20. Harks, T., Schröder,M., Vermeulen, D.: Toll caps in privatized road networks. Eur. J. Oper. Res. 276(3),
947–956 (2019)

21. Johari, R.,Weintraub, G.Y., VanRoy, B.: Investment andmarket structure in industries with congestion.
Oper. Res. 58(5), 1303–1317 (2010)

22. Kakutani, S.: A generalization of Brouwer’s fixed point theorem. Duke Math. J. 8(3), 457–458 (1941)
23. Kreps, D.M., Scheinkman, J.A.: Quantity precommitment and Bertrand competition yield Cournot

outcomes. Bell J. Econ. 14(2), 326–337 (1983)

123

http://creativecommons.org/licenses/by/4.0/


Stackelberg pricing games with congestion effects 799

24. Labbé, M., Marcotte, P., Savard, G.: A Bilevel model of taxation and its application to optimal highway
pricing. Manag. Sci. 44(12), 1608–1622 (1998)

25. Litman, T.: Understanding transport demands and elasticities: how prices and other factors affect travel
behavior. http://www.vtpi.org/elasticities.pdf (2019). Accessed 22 Oct 2019

26. Liu, T.L., Chen, J., Huang, H.J.: Existence and efficiency of oligopoly equilibrium under toll and
capacity competition. Transp. Res. E Logist. Transp. Rev. 47(6), 908–919 (2011)

27. Marchesi, A., Castiglioni,M., Gatti, N.: Leadership in congestion games:multiple user classes and non-
singleton actions. In: Kraus, S. (ed.) Proceedings of the Twenty-Eighth International Joint Conference
on Artificial Intelligence, IJCAI, pp. 485–491 (2019)

28. Marcotte, P.: Network design problem with congestion effects: a case of bilevel programming. Math.
Program. Ser. A 34, 142–162 (1986)

29. McLennan, A., Monteiro, P., Tourky, R.: Games with discontinuous payoffs: a strengthening of Reny’s
existence theorem. Econometrica 79(5), 1643–1664 (2011)

30. Nishimura, K., Friedman, J.: Existence ofNash equilibrium in n person gameswithout quasi-concavity.
Int. Econ. Rev. 22(3), 637–648 (1981)

31. Reny, P.: On the existence of pure and mixed strategy Nash equilibria in discontinuous games. Econo-
metrica 67(5), 1029–1056 (1999)

32. Roughgarden, T., Tardos, É.: How bad is selfish routing? J. ACM 49(2), 236–259 (2002)
33. Schmand,D., Schröder,M., Skopalik,A.:Network investment gameswithwardrop followers. In: Baier,

C., Chatzigiannakis, I., Flocchini, P., Leonardi, S. (eds.) 46th International Colloquium on Automata,
Languages, and Programming, ICALP 2019, LIPIcs, vol. 132, pp. 151:1–151:14 (2019)

34. Xiao, F., Yang, H., Han, D.: Competition and efficiency of private toll roads. Transp. Res. BMethodol.
41(3), 292–308 (2007)

35. Yang, H., Huang, H.J.: Themulti-class, multi-criteria traffic network equilibrium and systems optimum
problem. Transp. Res. 38(B), 1–15 (2004)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://www.vtpi.org/elasticities.pdf

	Stackelberg pricing games with congestion effects
	Abstract
	1 Introduction
	1.1 Our results and proof techniques
	1.2 Related work
	1.3 Motivation for inelastic demand
	1.4 Outline of the paper

	2 Continuity of the profits
	3 Characterization of best responses
	3.1 The case z-i=0
	3.2 The case z-ineq0
	3.3 The characterization
	3.4 Discussion

	4 Existence of equilibria
	5 Uniqueness of equilibria
	6 Quality of equilibria
	6.1 Unboundedness of the PoA
	6.2 Homogeneous leaders
	6.3 Different social cost functions

	Acknowledgements
	References




