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Abstract
In this paper, we study the lower iteration complexity bounds for finding the
saddle point of a strongly convex and strongly concave saddle point problem:
minx maxy F(x, y). We restrict the classes of algorithms in our investigation to
be either pure first-order methods or methods using proximal mappings. For
problems with gradient Lipschitz constants (Lx , Ly and Lxy) and strong convex-
ity/concavity constants (μx and μy), the class of pure first-order algorithms with
the linear span assumption is shown to have a lower iteration complexity bound of

�

(√
Lx
μx

+ L2
xy

μxμy
+ Ly

μy
· ln ( 1

ε

))
, where the term

L2
xy

μxμy
explains how the coupling

influences the iteration complexity.Under several special parameter regimes, this lower
bound has been achieved by corresponding optimal algorithms. However, whether or
not the bound under the general parameter regime is optimal remains open. Addi-
tionally, for the special case of bilinear coupling problems, given the availability of

certain proximal operators, a lower bound of�

(√
L2
xy

μxμy
· ln( 1

ε
)

)
is established under

the linear span assumption, and optimal algorithms have already been developed in the
literature. By exploiting the orthogonal invariance technique, we extend both lower
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bounds to the general pure first-order algorithm class and the proximal algorithm class
without the linear span assumption. As an application, we apply proper scaling to the
worst-case instances, and we derive the lower bounds for the general convex concave
problems withμx = μy = 0. Several existing results in this case can be deduced from
our results as special cases.

Keywords Saddle point · Min-max problem · First-order method · Proximal
mapping · Lower iteration complexity bound

Mathematics Subject Classification 90C47

1 Introduction

In this paper, we establish a lower iteration complexity bound for the first-order meth-
ods to solve the following min-max saddle point problem

min
x

max
y

F(x, y), (1)

which is of fundamental importance in, e.g., game theory [31,37], image deconvolu-
tion problems [9], parallel computing [39], adversarial training [4,12], and statistical
learning [1].

To proceed, let us introduce the following two problem classes.

Definition 1.1 (Problem classF(Lx , Ly, Lxy, μx , μy)) F(·, y) isμx -strongly convex
for any fixed y and F(x, ·) isμy-strongly concave for any fixed x . Overall, the function
F is smooth and ∇F satisfies the following Lipschitz continuity condition

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

‖∇x F(x1, y) − ∇x F(x2, y)‖ ≤ Lx‖x1 − x2‖, ∀x1, x2, y
‖∇y F(x, y1) − ∇y F(x, y2)‖ ≤ Ly‖y1 − y2‖, ∀x, y1, y2
‖∇x F(x, y1) − ∇x F(x, y2)‖ ≤ Lxy‖y1 − y2‖, ∀x, y1, y2
‖∇y F(x1, y) − ∇y F(x2, y)‖ ≤ Lxy‖x1 − x2‖, ∀x1, x2, y.

(2)

We shall remark here that the constants in (2) may also be understood as the bounds
on the different blocks of the Hessian matrix ∇2F(x, y) if F is twice continuously
differentiable. That is,

sup
x,y

‖∇2
xx F(x, y)‖2 ≤ Lx , sup

x,y
‖∇2

yy F(x, y)‖2 ≤ Ly, sup
x,y

‖∇2
xy F(x, y)‖2 ≤ Lxy .

However, throughout this paper we do not assume either F(·, y) or F(x, ·) is second-
order differentiable.

The second problem class is the bilinear saddle point model:

Definition 1.2 (Bilinear class B(Lxy, μx , μy)) In this special class, the problems are
written as

min
x

max
y

F(x, y) := f (x) + x�Ay − g(y), (3)
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On lower iteration complexity bounds... 903

where f (x) and g(y) are both lower semi-continuous with f (x) being μx -strongly
convex and g(y) being μy-strongly convex. The coupling matrix A satisfies ‖A‖2 ≤
Lxy .

For this special model class B(Lxy, μx , μy), we assume the availability of the follow-
ing prox-operations:

proxγ f (v) := argmin
x

f (x)+ 1

2γ
‖x−v‖2 and proxσ g(u) := argmin

y
g(y)+ 1

2σ
‖y−u‖2.

(4)
In this paper we shall establish the lower iteration complexity bound

�

⎛
⎝
√

Lx

μx
+ L2

xy

μxμy
+ Ly

μy
· ln

(
1

ε

)⎞⎠ for F(Lx , Ly, Lxy, μx , μy),

and

�

⎛
⎝
√

L2
xy

μxμy
· ln

(
1

ε

)⎞⎠ for B(Lxy, μx , μy)

with the proximal oracles (4). In particular, we first establish these lower bounds for
pure first-order and general proximal algorithm classes under the linear span assump-
tion. Later on we generalize the results for more general algorithm classes without
the linear span assumption through the orthogonal invariance technique introduced
by [25]. For more detailed applications of the orthogonal invariance technique in the
lower bound derivation, the interested readers are referred to [7,8,33].

As an application of the above bound, we apply proper scaling to the worst-case
instances and show that the above result implies several exisiting lower bounds for
general convex-concave problems with bounded saddle point solutions. Specifically,
we have

�

⎛
⎝
√

Lx R2
x

ε
+ Lxy Rx Ry

ε
+
√

Ly R2
y

ε

⎞
⎠ for F(Lx , Ly, Lxy, 0, 0), and ‖x∗‖ ≤ Rx , ‖y∗‖ ≤ Ry,

and

�

(
Lxy Rx Ry

ε

)
for B(Lxy, 0, 0), and ‖x∗‖ ≤ Rx , ‖y∗‖ ≤ Ry .

For the above two lower bounds, we remark that under specific parameter regimes, the
first bound is known, see [25] for the case with Lx = Ly = Lxy and see [33] for the
case with Ly = 0. However to our best knowledge, the first bound under a general set
of parameters as well as the second bound for bilinear problem class are not known.
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904 J. Zhang et al.

Similar reductions can also be done for the problem classes with only one of μx and
μy equal to 0, for which the lower bounds have already been discovered in [33].

Such lower iteration complexity results shed light onunderstanding the performance
of the algorithms designed for min-max saddle point models. There are numerous
results in the literature prior to ours. As a special case of (1), the lower bound results
of convex minimization problem with F(x, y) = f (x) has been well-studied in the
past decades. For convex problems, Nesterov’s accelerated gradient method have
achieved iteration complexities of O(

√
L/ε) for L-smooth convex problems, and

O
(√

L
μ

· ln ( 1
ε

))
for L-smooth andμ-strongly convex problems respectively, and both

of them are shown to match the lower complexity bound for the first-order methods;
see [29].

However, for the min-max saddle-point models, the situation is more subtle. Due
to the convex-concave nature of F , the vector field

G(x, y) =
( ∇x F(x, y)

−∇y F(x, y)

)

is monotone. Hence the convex-concave saddle point problem is often studied as a
subclass of the variational inequality problems (VIP); see e.g. [16,22,24,28,30,36]
and references therein. Although there have been plenty of studies on the variational
inequalities model, the roles played by different Lischitz constants on the different
blocks of variables have not been fully explored in the literature. In other words,
often one would denote L to be an overall Lipschitz constant of the vector field G,
which is of the order �(max{Lx , Ly, Lxy}) in our case, and set μ to be the strong
monotonicity parameter of G, which is of the order �(min{μx , μy}) in our case,
and no further distinctions among the parameters would be made. Hence the con-
sidered problems are of special instances in F(L, L, L, μ, μ). Under such settings,
many algorithms including the mirror-prox algorithm [24], the extra-gradient methods
[17,23], and the accelerated dual extrapolation1 [30] and so on, have all achieved the

iteration complexity ofO
(
L
μ

· ln ( 1
ε

))
, and this complexity is shown to be optimal for

first-order methods in solving the problem classF(L, L, L, μ, μ); see [26]. However,
under the more general parameter regime of F(Lx , Ly, Lxy, μx , μy), these meth-
ods are not optimal. For example, Nesterov’s accelerated dual extrapolation method

[30] has a complexity of O
(
max{Lx ,Lxy ,Ly}

min{μx ,μy} · ln ( 1
ε

))
, even if the algorithm are mod-

ified carefully one can only guarantee a complexity of O
(√

L2x
μ2
x

+ L2xy
μxμy

+ L2y
μ2
y

· ln
(
1
ε

))
,

both of which do not match the lower bound provided in this paper. More recently,
tighter upper bounds have been derived. In [19], the authors consider the problems

class ofF(L, L, L, μx , μy) and achieve an upper bound ofO
(√

L2
μxμy

· ln3
(
1
ε

))
, which

matches our lower boundwhen Lx = Ly = Lxy = L up to a logarithmic term. In [38],
the authors consider the general problems class of F(Lx , Ly, Lxy, μx , μy), the pro-

1 In Nesterov’s original paper [30], the author did not give a name to his algorithm. For convenience of
referencing, in this paper we shall call it accelerated dual extrapolation.
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On lower iteration complexity bounds... 905

posed algorithm achieves an upper bound of O
(√

Lx
μx

+ L·Lxy
μxμy

+ Ly
μy

· ln3
(

L2
μxμy

)
· ln

(
1
ε

))
where L = max{Lx , Ly, Lxy}, which almost matches our lower bound for the general
problem class. Despite the gap for the general problem classF(Lx , Lxy, Ly, μx , μy),
given the availability of proximal operators the authors of [9,10] have derived an algo-

rithm for problem class B(Lxy, μx , μy) with complexity O
(√

L2xy
μxμy

· ln
(
1
ε

))
. We will

prove in this paper that this result has matched the theoretical lower complexity bound
for its problem and algorithm classes, hence optimal.

For the bilinear problem (3), when f is smooth and convex, g(y) = b�y is linear,
the problem is equivalent to the following convex optimization problem

min
x

{ f (x) : A�x − b = 0}.

Without using projection onto the hyperplane {x : A�x = b} which requires a matrix
inversion, pure first-order methods achieveO(1/ε) complexity despite the strong con-
vexity of f ; see e.g. [11,32,40]. Those iteration complexity bounds are shown to
match the lower bound provided in [33]. For more details on the lower and upper
bounds on this formulation, the interested readers are referred to [33]. Finally, for
the bilinear coupling problem (3), the authors of [13] show that a lower bound of

O
(√

L2xy+μxμy

μ2
xy+μxμy

· ln
(
1
ε

))
can be derived, where μxy stands for the minimum singular

value of the coupling matrix A. It is interesting that this result covers the linear conver-
gence phenomenon for pure bilinear saddle point problem [5]where f (x) ≡ g(y) ≡ 0.
Another remark is that, due to the special construction of the worst-case instance and
algorithm class, [13] cannot characterize the impact of Lx and Ly as well as the lower
bound for proximal algorithm class.

Other than studies on the first-order algorithms, there are also studies on the higher-
order methods as well. For example, in [3] lower iteration complexity bounds for
second-order methods are considered, and in [2,27] lower iteration complexity bounds
are presented for general higher-order (tensor) methods. For smooth nonconvex opti-
mization, in [8] the iteration complexity lower bounds for first-order methods are
considered, while in [7] that for higher-order methods are considered.

Another line of research is for the non-conex/concave min-max saddle point prob-
lems; see [14,15] and the references therein. To guarantee convergence, additional
structures are often needed. For example, if one assumes that the solutions of the
problem satisfy the Minty variational inequality [18] then convergent algorithm can
be constructed. Another important situation is when F is concave in y. In that case,
convergence and iteration complexity to a stationary solution is possible; see e.g. [21].
For more literatures in this type of problems, we refer the interested readers to [20]
and the references therein.

Organization This paper is organized as follows. In Sect. 2, we introduce two dif-
ferent algorithm classes (with or without proximal-operators). In Sect. 3, we construct
a worst-case example for problem class B(Lxy, μx , μy) and derive the corresponding
lower iteration complexity bound for the algorithm class allowing proximal-operators.
An optimal algorithm is discussed in this case. In Sect. 4, we construct the worst-case
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906 J. Zhang et al.

example for problem class F(Lx , Ly, Lxy, μx , μy) and establish the corresponding
lower complexity bound for the first-order method (without any proximal oracles).
Optimal algorithms under several special parameter regimes are discussed. Finally,
we conclude the paper in Sect. 6.

2 The first-order algorithm classes

In this section, we discuss some preliminaries for the strongly convex and strongly
concave saddle point problem. Then, we shall introduce two algorithm classes to set
the ground for our discussion, and we shall also note specific known algorithms as
representative members in those algorithm classes.

2.1 Primal function, dual function, and the duality gap

First, we define �(·) to be the primal function and �(·) to be the dual function of the
saddle point problem minx maxy F(x, y), respectively, with the following definitions

�(x) := max
y

F(x, y) and �(y) := min
x

F(x, y). (5)

As the maximum of a class of μx -strongly convex function, we know �(x) is a μx -
strongly convex function. Similarly,�(y) is aμy-strongly concave function.Wedefine
the duality gap as

	(x, y) := max
y′ F(x, y′) − min

x ′ F(x ′, y) = �(x) − �(y).

Suppose the unique solution of this min-max problem is (x∗, y∗). By the strong duality
theorem, we know for any x and y it holds that

�(x) ≥ min
x ′ �(x ′) = �(x∗) = F(x∗, y∗) = �(y∗) = max

y′ �(y′) ≥ �(y).

Together with the μx -strong convexity of � and the μy-strong concavity of �, we
further have

	(x, y) = �(x) − �(x∗) + �(y∗) − �(y) ≥ μx

2
‖x − x∗‖2 + μy

2
‖y − y∗‖2. (6)

Now, suppose that (x̃k, ỹk) is the approximate solution generated after k iterations
of an algorithm. Our aim is to lower bound the distance between (x̃k, ỹk) and (x∗, y∗).
By (6), this would construct a lower iteration complexity bound in terms of the duality
gap as well.
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2.2 Proximal algorithm class

First, let us consider the bilinearly coupled problemclass (3) as introduced inDefinition
1.2:

min
x

max
y

F(x, y) := f (x) + x�Ay − g(y).

For this special problem class, let us consider the lower iteration bound of the algorithm
class where the proximal oracles (4) are available.

Definition 2.1 (Proximal algorithm class) In each iteration, the iterate sequence
{(xk, yk)}k=0,1,... are generated so that (xk, yk) ∈ Hk

x × Hk
y . These subspaces are

generated withH0
x = Span{x0},H0

y = Span{y0} and
{
Hk+1

x := Span{xi ,proxγi f (x̂
i − γi Aỹi ) : ∀x̂ i ∈ Hi

x , ỹi ∈ Hi
y, 0 ≤ i ≤ k}

Hk+1
y := Span{yi ,proxσi g(ŷ

i + σi A� x̃ i ) : ∀x̃ i ∈ Hi
x , ŷi ∈ Hi

y, 0 ≤ i ≤ k}.
(7)

Remark that when applying the proximal oracles, it is not necessary to use the most
recent iterate xk as the proximal center. Neither is it necessary to use the gradients
of the coupling term (namely the A�x and Ay terms) at the current iterate. Instead,
the algorithm class allows the usage of the combination of any points in the historical
search space. We shall also remark that the algorithm class in Definition 2.1 does not
necessarily need to update x and y at the same time, because setting xk+1 = xk or
yk+1 = yk also satisfies Definition 2.1. Thus this algorithm class also includes the
methods that alternatingly update x and y. Below is a sample algorithm in this class.

Example 2.1 (Algorithm 3 in [9]) Initialize with γ = 1
Lxy

√
μy
μx

, σ = 1
Lxy

√
μx
μy

, and

θ = Lxy
2
√

μxμy+Lxy
. Set x̃0 = x0. Then the algorithm proceeds as

⎧⎪⎨
⎪⎩
yk+1 = proxσ g(y

k + σ A� x̃ k)
xk+1 = proxγ f (x

k − γ Ayk+1)

x̃ k+1 = xk+1 + θ(xk+1 − xk).

(8)

It can be observed that this algorithm takes the alternating order of update, by slightly
manipulating the index, it can be written in the form of (7) in Definition 2.1. The

complexity of this method is O
(√

L2xy
μxμy

· ln
(
1
ε

))
.

2.3 Pure first-order algorithm class

In constrast to the previous section, here we consider the more general problem class
F(Lx , Ly, Lxy, μx , μy):

min
x

max
y

F(x, y).
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908 J. Zhang et al.

For such problems, we refer to the algorithm class as the pure first-order methods,
meaning that there is no proximal oracle in the design of algorithms in this class.

Definition 2.2 (Pure first-order algorithm class) In each iteration, the sequence
{(xk, yk)}k=0,1,... is generated so that (xk, yk) ∈ Hk

x × Hk
y , with H0

x = Span{x0},
H0

y = Span{y0}, and
{
Hk+1

x := Span{xi ,∇x F(x̃ i , ỹi ) : ∀x̃ i ∈ Hi
x , ỹ

i ∈ Hi
y, 0 ≤ i ≤ k}

Hk+1
y := Span{yi ,∇y F(x̃ i , ỹi ) : ∀x̃ i ∈ Hi

x , ỹ
i ∈ Hi

y, 0 ≤ i ≤ k}. (9)

Similar to our earlier comments on the proximal algorithm class, in this class of
algorithms the gradients at any combination of points in the historical search space
are allowed. The algorithm class also includes the methods that alternatingly update
between x and y, or even the double loop algorithms that optimize one side until certain
accuracy is achieved before switching to the other side. At that level of generality, it
indeed accommodates many updating schemes. To illustrate this point, let us present
below some sample algorithms in this class.

The first example is a double loop scheme, in which the primal function �(x) is
optimized approximately. Specifically, let y∗(x) = argmax

y
F(x, y), by Danskin’s the-

orem, ∇�(x) = ∇x F(x, y∗(x)); see e.g. [6,34]. Therefore, one can apply Nesterov’s
accelerated gradient method to minimize�(x). The double loop scheme performs this
procedure approximately.

Example 2.2 (Double loop schemes, [35]) Denote α1 =
√

μx
L�,x

and α2 =
√

μy
L y
, where

L�,x = Lx + L2
xy

μy
is the Lipschitz constant of ∇�(x) (see [35]). Given (x0, y0) and

define x̄0 = x0, the double loop scheme works as follows:

{
xk+1 = x̄ k − 1

L�,x
∇x F(x̄ k, yk)

x̄ k+1 = xk+1 + 1−√
α2

1+√
α2

(xk+1 − xk)
for k = 0, 1, ..., T1,

where the point yk is generated by an inner loop of accelerated gradient iterations

⎧⎨
⎩

wt+1 = w̄t + 1
Ly

∇y F(x̄ k, w̄t )

w̄t+1 = wt+1 + 1−√
α1

1+√
α1

(wt+1 − wt )
for t = 0, 1, ..., T2 and w0 = w̄0 = yk−1.

Then, set yk := wT2+1 to be the last iterate of the inner loop.

For simplicity, we have applied a specific scheme of acceleration [29] which does
not work for nonstrongly-convex problems. In principle, the FISTA scheme can also
be used. For this scheme, with properly chosen T1 and T2, the iteration complexity

O
(√

Lx
μx

+ L2xy
μxμy

·
√

Ly
μy

ln2
(
1
ε

))
is achievable.
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In the following, we also list examples of several single loop algorithms, including
the gradient descent-ascent method (GDA), the extra-gradient (EG) method [17] (a
special case of mirror-prox algorithm [24]), and the accelerated dual extrapolation
(ADE) [30].

Example 2.3 (Single loop algorithms) Let L = max{Lx , Ly, Lxy}, μ = min{μx , μy}.
Given the initial solution (x0, y0), the algorithms proceed as follows:

(GDA)

{
xk+1 = xk − η1∇x F(xk, yk)

yk+1 = yk + η1∇y F(xk, yk)

(EG)

{
x̃ k+1 = xk − η2∇x F(xk, yk)

ỹk+1 = yk + η2∇y F(xk, yk)
and

{
xk+1 = xk − η2∇x F(x̃ k+1, ỹk+1)

yk+1 = yk + η2∇y F(x̃ k+1, ỹk+1)

(ADE)

⎧⎨
⎩
xk+1 = xk − η3

(
μ

L+μ
∇x F(xk, yk) + L

L+μ
∇x F(x̃ k+1, ỹk+1)

)
yk+1 = yk + η3

(
μ

L+μ
∇y F(xk, yk) + L

L+μ
∇y F(x̃ k+1, ỹk+1)

)

where η1 = O
(

μ

L2

)
, η2 = O ( 1

L

)
, η3 = O ( 1

L

)
. The iterative points (x̃ k+1, ỹk+1) in

(ADE) are the same as that in (EG), except that η2 is replaced by η3.

The original update of (ADE) algorithm is rather complex since it involves the handling
of constraints. In the unconstrained case, it can be simplified to the current form, which
is a mixture of (GDA) and (EG). The corresponding iteration complexity bounds are

O
(
L2

μ2 ln
( 1

ε

))
for (GDA), and O

(
L
μ
ln
( 1

ε

))
for both (EG) and (ADE).

2.4 General deterministic algorithm classes without linear span structure

Although all the reviewed first-order methods satisfy the linear span property in the
proximal algorithm class in Definition 2.1 and the pure first-order algorithm class
in Definition 2.2, this does not exclude the possibility of the deriving an algorithm
that does not satisfy the linear span property. Therefore, we also define the general
deterministic proximal algorithm class and the general deterministic pure first-order
algorithm class as follows, whose iteration complexity lower bound can be generalized
from their linear span counterpart through the technique of adversary rotation.

Definition 2.3 (General proximal algorithm class) Consider the problem (3) in
the problem class B(Lxy, μx , μy), denote θ = (Lxy, μx , μy) as the corre-
sponding problem parameters. Let algorithm A belong to the general proxi-
mal algorithm class. Then A consists of a sequence of deterministic mappings
{(A1

x ,A1
y,A1

u,A1
v), (A2

x ,A2
y,A2

u,A2
v)...} such that the iterate sequence

{(xk, yk)}k=0,1,... and the output sequence {(x̃ k, ỹk)}k=0,1,... are generated by

{
(xk, x̃ k) := Ak

x

(
θ; x0, Ay0, ..., xk−1, Ayk−1;proxγk f (u

k)
)
,

(yk, ỹk) := Ak
y

(
θ; y0, A�x0, ..., yk−1, A�xk−1;proxσk g(v

k)
)
,

(10)
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910 J. Zhang et al.

where uk = Ak
u(θ; x0, Ay0, ..., xk−1, Ayk−1), vk = Ak

v(θ; y0, A�x0, ..., yk−1,

A�xk−1), and (x0, y0) is any given initial solution.

One remark is that the input of the proximal mapping proxγk f (·) is constructed with
other inputs to theAk

x , i.e., there could be another deterministicmappingAk
u to generate

a vector uk = Ak
u(θ; x0, Ay0, ..., xk−1, Ayk−1) and then proxγk f (u

k) is passed to the
mappingAk

x . ThisAk
u does not need to be linear. The situation for v

k andAk
v is similar.

Similar to the general proximal algorithm class, the general pure first-order algorithm
class is defined as follows.

Definition 2.4 (General pure first-order algorithm class) Consider the problem (1)
in the problem class F(Lx , Ly, Lxy, μx , μy), denote θ = (Lx , Ly, Lxy, μx , μy) as
the corresponding problem parameters. Let algorithm A belong to the general pure
first-order algorithm class. Then A consists of a sequence of deterministic mappings
{A1

x ,A1
y,A2

x ,A2
y, ...} such that the iterate sequence {(xk, yk)}k=0,1,... and the output

sequence {(x̃ k, ỹk)}k=0,1,... are generated by

{
(xk, x̃ k) := Ak

x

(
θ; x0,∇x F(x0, y0), ..., xk−1,∇x F(xk−1, yk−1)

)
,

(yk, ỹk) := Ak
y

(
θ; y0,∇y F(x0, y0), ..., yk−1,∇y F(xk−1, yk−1)

)
,

(11)

given any initial solution (x0, y0).

A remark is that the gradients ∇x F(·, ·) and ∇y F(·, ·) actually do not need to be
taken on the previous iterates {(x0, y0), (x1, y1), ..., (xk−1, yk−1)}. Similar to the
proximal case, they can also be taken on some other {(u0k−1, v

0
k−1), (u

1
k−1, v

1
k−1), ...,

(uk−1
k−1, v

k−1
k−1)} that are generated by some mappings {(Ak−1,0

u ,Ak−1,0
v ), (Ak−1,1

u ,

Ak−1,1
v ), ..., (Ak−1,k−1

u ,Ak−1,k−1
v )}. The reason that we do not consider this more

general form is twofold. First, the simpler form in Definition 2.4 has already cov-
ered all the discussed algorithms. Second, this more general form actually shares the
same iteration complexity lower bound, despite the technical complications involved.
Therefore, in this paper we shall only include the gradients at the past iterates as the
input to the algorithm.

3 Lower bound for proximal algorithms

3.1 The worst-case instance

Let us construct the following bilinearly coupled min-max saddle point problem:

min
x

max
y

F(x, y) := μx

2
‖x‖2 + Lxy

2
x�Ay − μy

2
‖y‖2 − b�y (12)
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On lower iteration complexity bounds... 911

where b is a vector to be determined later, and the coupling matrix A (hence A2 and
A4) is defined as follows:

A =

⎛
⎜⎜⎜⎜⎜⎝

1
1 −1

1 −1
⋰ ⋰

1 −1

⎞
⎟⎟⎟⎟⎟⎠ , A2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1
−1 2 −1

−1
. . .

. . .

. . . 2 −1
−1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, A4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −3 1
−3 6 −4 1
1 −4 6 −4 1

. . .
. . .

. . .
. . .

. . .

1 −4 6 −4 1
1 −4 6 −4

1 −4 5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(13)
Note that A� = A and ‖A‖2 ≤ 2. Therefore (12) is an instance in the problem
class B(Lxy, μx , μy). It is worth noting that the example (12) is the same as that in
Proposition 2 of [13], which is a parallel work focused on pure first-order algorithm
class. Here, we use the same example to elaborate the lower bound of the proximal
methods over the general bilinear coupling class B(Lxy, μx , μy), as well as a warmup
for the discussion of more complex problem class F(Lx , Ly, Lxy, μx , μy).

Denote ei to be the i-th unit vector, which has 1 at the i-th component and 0
elsewhere. Then by direct calculation, one can check that A2 satisfies the following
zero-chain property (see Chapter 2 of [29]).

Proposition 3.1 (Zero-chain property) For any vector v ∈ R
n, if v ∈ Span{ei : i ≤ k}

for some 1 ≤ k ≤ n − 1, then A2v ∈ Span{ei : i ≤ k + 1}.
This means that if v only has nonzero elements at the first k entries, then A2v will
have at most one more nonzero entry at the (k + 1)-th position.

For problem (12), the proximal operators in (7) can be written explicitly:

proxγi f (x̂i − γi Aỹi ) = argmin
x

μx

2
‖x‖2 + 1

2γi

∥∥∥∥x − (x̂i − γi Lxy

2
Aỹi )

∥∥∥∥
2

= 1

1 + γiμx
x̂i − γi Lxy

2(1 + γiμx )
Aỹi

∈ Span{x̂i , Aỹi }. (14)

Similarly, for the y block, we also have

proxσi g(ŷi + σi A
� x̃i ) = ŷi − σi b

1 + σiμy
+ σi Lxy

2(1 + σiμx )
Ax̃i ∈ Span{ŷi , Ax̃i , b}. (15)

Let us assume the initial point to be x0 = y0 = 0 (H0
x = H0

y = {0}) without loss of
generality. Directly substituting (14) and 15 into Definition (2.1) yields

{
H1

x ⊆ Span{0}
H1

y ⊆ Span{b}

{
H2

x ⊆ Span{Ab}
H2

y ⊆ Span{b}

{
H3

x ⊆ Span{Ab}
H3

y ⊆ Span{b, A2b}

{
H4

x ⊆ Span{Ab, A3b}
H4

y ⊆ Span{b, A2b} . . .

We formally summarize this observation below:
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912 J. Zhang et al.

Lemma 3.2 For problem (12), for any k ∈ N, if the iterates are generated so that
(xk, yk) ∈ Hk

x × Hk
y , with Hk

x and Hk
y defined by (2.1), then based on (14) and (15)

the search subspaces satisfy

Hk
x ⊆

{
{0}, k = 1

Span
{
A2i (Ab) : 0 ≤ i ≤ ⌊ k

2

⌋− 1
}
, k ≥ 2

and Hk
y ⊆ Span

{
A2i b : 0 ≤ i ≤

⌈
k

2

⌉
− 1

}
.

3.2 Lower bounding the duality gap

Let us lower bound the dual gap, which is upper bounded by the whole duality gap.
To achieve this, let us first write down the dual function of problem (12) as

�(y) = min
x

F(x, y) = −1

2
y�

(
L2
xy

4μx
· A2 + μy · I

)
y − b�y. (16)

For this μy-strongly concave dual function, we can characterize the optimal solution
y∗ directly by its KKT condition ∇�(y∗) = 0. However, the exact solution y∗ does
not have a simple and clear form, so we choose to characterize it by an approximate
solution ŷ∗.

Lemma 3.3 (Approximate optimal solution) Let us assign the value of b as b :=
− L2

xy
4μx

e1. Denote α := 4μxμy

L2
xy

, and let q = 1
2

(
(2 + α) −√

(2 + α)2 − 4
)

∈ (0, 1)

be the smallest root of the quadratic equation 1 − (2 + α)q + q2 = 0. Then, an
approximate optimal solution ŷ∗ can be constructed as

ŷ∗
i = qi

1 − q
for i = 1, 2, ..., n. (17)

The approximation error can be bounded by

‖ŷ∗ − y∗‖ ≤ qn+1

α(1 − q)
, (18)

where ŷ∗
i is the i-th element of ŷ∗. Note that q < 1 and the lower bound is dimension-

independent, hencewe are free to choose n tomake the approximation error arbitrarily
small.

Proof First, let us substitute the value of b into the KKT system ∇�(y∗) = 0, by
slight rearranging and scaling the terms, we get

(
A2 + 4μxμy

L2
xy

I

)
y∗ = −4μx

L2
xy

b.
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Using the definition of α and b, the equation becomes

(A2 + α I )y∗ = e1.

Substituting the formula of A2 in (13), we expand the above equation as

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(1 + α)y∗
1 − y∗

2 = 1

−y∗
1 + (2 + α)y∗

2 − y∗
3 = 0

...

−y∗
n−2 + (2 + α)y∗

n−1 − y∗
n = 0

−y∗
n−1 + (2 + α)y∗

n = 0.

(19)

By direct calculation, we can check that ŷ∗ satisfies the first n − 1 equations of the
KKT system (19). The last equation, however, is violated, but with a residual of size
qn+1/(1 − q). In details,

{
(A2 + α · I )ŷ∗ = e1 + qn+1

1−q · en
(A2 + α · I )y∗ = e1.

This indicates that ŷ∗−y∗ = qn+1

1−q ·(A2+α I )−1en .Note thatα−1 I � (A2+α I )−1 � 0,
we have the approximation error bounded by (18). ��

Note that in Lemma 3.3, we have chosen b ∝ e1. By the zero-chain property in
Proposition 3.1 and Lemma 3.2, we can verify that the subspaces H2k−1

y and H2k
y

satisfy

H2k−1
y ,H2k

y ⊆ Span{b, A2b, ..., A2(k−1)b} = Span{e1, e2, ..., ek}. (20)

This implies that for both y2k and y2k−1, the only possible nonzero elements are thefirst
k ones, which again implies that the lower bound of ‖y2k−y∗‖2 and ‖y2k−1−y∗‖2 will
be similar. For simplicity, we only discuss this lower bound for y2k . The counterpart for
y2k−1 can be obtained in a similar way. Therefore, we have the following estimations.

Lemma 3.4 Assume k ≤ n
2 and n ≥ 2 logq

(
α

4
√
2

)
. Then

‖y2k − y∗‖2 ≥ q2k

16
‖y0 − y∗‖2 (21)

where y0 = 0 is the initial solution.

Proof By the subspace characterization (20), we have

‖y2k − ŷ∗‖ ≥
√√√√ n∑

j=k+1

(ŷ∗
j )
2 = qk

1 − q

√
q2 + q4 + · · · + q2(n−k) ≥ qk√

2
‖ŷ∗‖ = qk√

2
‖y0 − ŷ∗‖,
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914 J. Zhang et al.

where the last inequality is due to the fact that q < 1, k ≤ n
2 , and y0 = 0. If we choose

n to be large enough, then ŷ∗ and y∗ can be made arbitrarily close to each other. Hence
we can transform the above inequality to (21). More details of this derivation can be
found in Appendix A. ��

Using Lemma 3.4 and (6), it is then straightforward to lower bound the duality gap
by

	(x2k, y2k) ≥ q2k · μy‖y∗ − y0‖2
32

.

Summarizing, below we present our first main result.

Theorem 3.5 Let the positive parameters μx , μy > 0 and Lxy > 0 be given. For any
integer k, there exists a problem instance from B(Lxy, μx , μy) of form (12), with n ≥
max

{
2 logq

(
μxμy√
2L2

xy

)
, 4k

}
, where A ∈ R

n×n as defined in (13), and b = − L2
xy

4μx
e1.

For such a problem instance, any approximate solution (x̃ k, ỹk) ∈ Hk
x ×Hk

y generated
by the proximal algorithm class under the linear span assumption (7) satisfies

max
y

F(x̃ k , y) − min
x

F(x, ỹk) ≥ qk · μy‖y∗ − y0‖2
32

and ‖ỹk − y∗‖2 ≥ qk · ‖y∗ − y0‖2
16

,

(22)

where q = 1 + 2μxμy

L2
xy

− 2

√(
μxμy

L2
xy

)2

+ μxμy

L2
xy

.

Proposition 3.6 Under the same set of assumptions of Theorem 3.5, if we require the
duality gap to be bounded by ε, the number of iterations needed is at least

k ≥ ln

(
μy‖y∗ − y0‖2

32ε

)
/ ln(q−1) = �

⎛
⎝
√

L2
xy

μxμy
· ln

(
1

ε

)⎞⎠ . (23)

The proof of Proposition 3.6 is in Appendix B.

3.3 The general proximal algorithm class

Note that Theorem 3.5 is derived for the proximal algorithm class with the linear
span assumption, in this section, we will apply the orthogonal invariance technique,
introduced in [25], to generalize the result of Theorem 3.5 to the general proximal
algorithm class without the linear span assumption.

Consider the bilinear problem class B(Lxy, μx , μy) and the corresponding worst

case problem (12) with F(x, y) = μx
2 ‖x‖2 + Lxy

2 x�Ay − μy
2 ‖y‖2 − b�y, where A

and b are defined in accordance with Theorem 3.5. We define the orthogonally rotated
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On lower iteration complexity bounds... 915

problem as

min
x

max
y

FU ,V (x, y) := F(Ux, V y) = μx

2
‖x‖2+ Lxy

2
x�U�AV y−μy

2
‖y‖2−b�V y,

(24)
where U , V are two orthogonal matrices. Therefore, it is clear that FU ,V ∈
B(Lxy, μx , μy). Let (x∗, y∗) be the saddle point of F(x, y), then it is clear that the sad-
dle point of FU ,V (x, y) is (x̄∗, ȳ∗) = (U�x∗, V�y∗). Consequently, the lower bound
for the general proximal algorithm class is characterized by the following theorem.

Theorem 3.7 Let A be any algorithm from the general proximal algorithm class
decribed in Definition 2.3. We assume the dimension n is sufficiently large for sim-
plicity. For any integer k, then there exist orthogonal matrices U , V s.t. FU ,V ∈
B(Lxy, μx , μy), when applyingA to FU ,V with initial solution (x0, y0) = (0, 0), the
iterates and output satisfies

{(x0, y0), ..., (xk, yk)} ⊆ U�H4k−1
x × V�H4k−1

y and

(x̃ k, ỹk) ∈ U�H4k+1
x × V�H4k+1

y ,

where Hi
x ,Hi

y are defined by Lemma 3.2. Consequenty, by Theorem 3.5,

‖ỹk − V�y∗‖2 ≥ q4k+2

16
‖y∗ − y0‖2

where q is given in Theorem 3.5. As a result, it takes �

(√
L2
xy

μxμy
· log ( 1

ε

))
iterations

to output a solution with O(ε) duality gap.

For the proof of this theorem, we only need to construct the orthogonal matrices
U , V such that when the algorithm A is applied to FU ,V , the subspace inclu-
sion argument {(x0, y0), ..., (xk, yk)} ⊆ U�H4k−1

x × V�H4k−1
y and (x̃ k, ỹk) ∈

U�H4k+1
x × V�H4k+1

y holds. As a result,

‖ỹk − V�y∗‖2 = ‖V ỹk − y∗‖2 ≥ min
y∈H4k+1

y

‖y − y∗‖2 ≥ q4k+2

16
‖y∗ − y0‖2.

With this argument, the latter results follow directly from the discussion of Theorem
3.5. The proof of this theorem is presented in Appendix C.

3.4 Tightness of the bound

We claim the tightness of the derived lower bound by the following remark.

Remark 3.8 (Tightness of the bound) Consider the algorithm defined in Example 2.1,

from [9,10]. The achieved upper complexity bound is O
(√

L2
xy

μxμy
· ln ( 1

ε

))
, and it

123



916 J. Zhang et al.

matches our lower bound. This means that our lower bound (23) is tight and the
algorithm defined in Example 2.1 is an optimal algorithm in the proximal algorithm
class in Definition 2.1.

4 Lower bound for pure first-order algorithms

4.1 The worst-case instance

In this section, we consider the lower complexity bound for the pure first-order method
without any proximal oracle. In this case, only the gradient information can be used to
construct the iterates and produce the approximate solution output. Similar as before,
we still consider the bilinearly coupled problems:

min
x

max
y

F(x, y) := 1

2
x�(Bx A

2+μx I )x+ Lxy

2
x�Ay− 1

2
y�(By A

2+μy I )y−b�y

(25)
where b is a vector whose value will be determined later. The coefficients Bx :=
Lx−μx

4 , By := Ly−μy
4 and the coupleingmatrix A is defined by (13). Note that ‖A‖2 ≤

2 and ‖A‖22 ≤ 4, we can check that problem (25) is an instance from the problem class
F(Lx , Ly, Lxy, μx , μy). This time the subspacesHk

x ’s andHk
y’s are generated by the

following gradients:

{
∇x F(x, y) = (Bx A2 + μx I )x + Lxy

2 Ay,

∇y F(x, y) = −(By A2 + μy I )y + Lxy
2 Ax − b.

Following Definition 2.2, by letting x0 = y0 = 0 we have

{
H1

x ⊆ Span{0}
H1

y ⊆ Span{b}

{
H2

x ⊆ Span{Ab}
H2

y ⊆ Span{b, A2b}

{
H3

x ⊆ Span{Ab, A2(Ab)}
H3

y ⊆ Span{b, A2b, A4b} . . .

By induction, we get the general structure of these subspaces.

Lemma 4.1 For problem (25) and for any k ∈ N, if the iterates are generated so that
(xk, yk) ∈ Hk

x × Hk
y , withHk

x and Hk
y defined by (2.2), then we have

Hk
x ⊆

{
{0}, k = 1

Span
{
A2i (Ab) : 0 ≤ i ≤ k − 2

}
, k ≥ 2

and Hk
y ⊆ Span

{
A2i b : 0 ≤ i ≤ k − 1

}
.

Different from the discussion of last section, this time it is more convenient to deal
with the primal function instead of the dual one. By partially maximizing over y we
have

�(x) := max
y

F(x, y) = 1

2
x�(Bx A

2 + μx I )x
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+ L2
xy

8

(
Ax − 2b

Lxy

)�
(By A

2 + μy I )
−1
(
Ax − 2b

Lxy

)
,

which is μx -strongly convex. Therefore, the primal optimal solution x∗ is completely
characterized by the optimality condition ∇�(x∗) = 0. However, the solution of
this system cannot be computed exactly. Instead, we shall construct an approximate
solution x̂∗ to the exact solution x∗.

Lemma 4.2 (Root estimation) Consider a quartic equation

1 − (4 + α)x + (6 + 2α + β)x2 − (4 + α)x3 + x4 = 0, (26)

where the constants are given by

α = L2
xy

4Bx By
+ μx

Bx
+ μy

By
, β = μxμy

Bx By
. (27)

As long as Lx > μx > 0, and Ly > μy > 0. Then the constants 0 < α, β < +∞ are
well-defined positive real numbers. For this quartic equation, it has a real root x = q
satisfying

1−
⎛
⎝1

2
+ 1

2
√
2

√
Lx

μx
+ L2

xy

μxμy
+ Ly

μy

⎞
⎠

−1

< q < 1−
⎛
⎝1

2
+ 1

2

√
L2
xy

μxμy
+ Lx

μx
+ Ly

μy
− 1

⎞
⎠

−1

.

(28)

The proof of this lemma is presented inAppendixD.With this lemma,we can construct
the approximate solution x̂∗ as follows.

Lemma 4.3 (Approximate optimal solution) Let α, β be defined according to (27), let
q be a real root of quartic equation (26) satisfying (28). Let us define a vector b̂ with
elements given by

b̂1 := (2+α+β)q−(3+α)q2+q3, b̂2 := q−1, and b̂k = 0, for 3 ≤ k ≤ n,

(29)
and then assign b = 2Bx By

Lxy
A−1b̂. Then an approximate solution x̂∗ is constructed as

x̂∗
i = qi for i = 1, 2, ..., n. (30)

The approximation error can be bounded by

‖x̂∗ − x∗‖ ≤ 7 + α

β
· qn . (31)

Note that q < 1 and the lower bound is dimension-independent, hence we are free to
choose n to make the approximation error arbitrarily small.
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918 J. Zhang et al.

The proof of this lemma is parallel to that of Lemma 3.3, but is more involved; the
detailed proof is in Appendix E.

Note that in this case, the vector Ab ∝ b̂ ⊂ Span{e1, e2}. By the zero-chain property
in Proposition 3.1, the subspace Hk

x described in Lemma 4.1 can be calculated by
induction

Hk
x ⊂ Span{e1, e2, ..., ek} for k ≥ 2. (32)

Parallel to Lemma 3.4, we have the following lemma, whose proof is in Appendix F.

Lemma 4.4 Assume k ≤ n
2 and n ≥ 2 logq

(
β

4
√
2(7+α)

)
+ 2. Then

‖xk − x∗‖2 ≥ q2k

16
‖x∗ − x0‖2 (33)

where x0 = 0 is the initial solution.

Consequently, the duality gap is lower bounded by

	(xk, yk) ≥ μx

2
‖xk − x∗‖2 ≥ q2k · μx‖x0 − x∗‖2

32
.

Summarizing, we present our second main result in the following theorem.

Theorem 4.5 Let positive parameters μx , μy > 0 and Lx > μx , Ly > μy, Lxy > 0
be given. For any integer k, there exists a problem instance inF(Lx , Ly, Lxy, μx , νy)

of form (25), with n ≥ max
{
2 logq

(
7+α
β

)
, 2k

}
, the constants α, β as in (27), the

matrix A ∈ R
n×n as in (13), the vector b = 2Bx By

Lxy
A−1b̂ where b̂ as in (29). For

this problem, any approximate solution (x̃ k, ỹk) ∈ Hk
x × Hk

y generated by first-order
algorithm class (9) satisfies

max
y

F(x̃ k, y) − min
x

F(x, ỹk) ≥ q2k · μx‖x∗ − x0‖2
32

and

‖x̃ k − x∗‖2 ≥ q2k · ‖x∗ − x0‖2
16

, (34)

where q satisfying (28) is a root of the quartic equation (26).

Remark 4.6 As a result, if we require the duality gap to be bounded by ε, then the
number of iterations needed is at least

k ≥ 1

2
ln

(
μx‖x∗ − x0‖2

32ε

)
/ ln(q−1) = �

⎛
⎝
√

Lx

μx
+ L2

xy

μxμy
+ Ly

μy
· ln

(
1

ε

)⎞⎠ .

(35)
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4.2 The general pure first-order algorithm class

Consider the problem class F(Lx , Ly, Lxy, μx , μy), we define the orthogonally
rotated problem as

min
x

max
y

FU ,V (x, y) := 1

2
x�(BxU

�A2U+μx I )x+ Lxy
2

x�U�AV y− 1

2
y�(ByV

�A2V+μy I )y−b�V�y
(36)

where A, b, Bx , By are defined in accordance with Theorem 4.5 and U , V are two
orthogonal matrices. Therefore, it is clear that FU ,V ∈ F(Lx , Ly, Lxy, μx , μy). Let
(x∗, y∗) be the saddle point of F(x, y), then it is clear that the saddle point of
FU ,V (x, y) is (x̄∗, ȳ∗) = (U� x̄∗, V� ȳ∗). Consequently, the lower bound for the
general proximal algorithm class is characterized by the following theorem.

Theorem 4.7 Let A be any algorithm from general pure first-order algorithm class
described in Definition 2.4. We assume the dimension n is sufficiently large for sim-
plicity. For any integer k, then there exist orthogonal matrices U , V s.t. FU ,V ∈
F(Lx , Ly, Lxy, μx , μy), when applying A to FU ,V with initial solution (x0, y0) =
(0, 0), the iterates and output satisfies

{(x0, y0), ..., (xk , yk)} ⊆ U�H2k
x × V�H2k

y and

(x̃ k, ỹk) ∈ U�H2k+1
x × V�H2k+1

y ,

where Hi
x ,Hi

y are defined by Lemma 4.1. Consequenty, by Theorem 3.5,

‖x̃ k −U�x∗‖2 ≥ q4k+2

16
‖x∗ − x0‖2

where q is defined in Theorem4.5. As a result, it takes�

(√
Lx
μx

+ L2
xy

μxμy
+ Ly

μy
· ln ( 1

ε

))
iterations to output a solution with O(ε) duality gap.

The proof of this theorem is completely parallel to that of Theorem 3.7. We only
need to construct the orthogonal matrices U , V such that {(x0, y0), ..., (xk, yk)} ⊆
U�H2k

x × V�H2k
y and (x̃ k, ỹk) ∈ U�H2k+1

x × V�H2k+1
y hold, whose proof follows

exactly the same proof procedure of Theorem 3.7. Then argue that

‖x̃ k −U�x∗‖2 = ‖U x̃k − x∗‖2 ≥ min
x∈H2k+1

x

‖x − x∗‖2 ≥ q4k+2

16
‖x∗ − x0‖2.

The latter results follow Theorem 4.5 and we omit the proof.

4.3 Tightness of the bound

In this section, we discuss the tightness of this bound. Currently, to the best of our
knowledge, there does not exist a pure first-order algorithm that can achieve the lower
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complexity boundprovided in (35). Therefore,whether anoptimal algorithmexists that
can match this bound or the bound can be further improved remains an open problem.
However, we shall see below that (35) under several special parameter regimes is
indeed a tight bound.

Case 1 F(Lx , Ly, Lxy, μx , μy) For this general class, define L = max{Lx , Ly,

Lxy}. A near optimal upper bound of

O
(√

Lx

μx
+ L · Lxy

μxμy
+ Ly

μy
· ln

(
1

ε

))

is obtained in [38], which almost matches our lower bound.
Case 2 F(Lx , Ly, 0, μx , μy) In this case Lxy = 0, meaning that variables x

and y are decoupled. Problem (1) becomes two independent convex problems with
condition numbers Lx

μx
and Ly

μy
respectively. In this case (35) is reduced to

�

(√
Lx

μx
ln

(
1

ε

)
+
√

Ly

μy
ln

(
1

ε

))
.

This is matched by running two independent Nesterov’s accelerated gradient methods
[29].

Case 3 F(L, L, L, μ, μ) In this case Lx = Ly = Lxy = L , μx = μy = μ. Then
(35) is reduced to

�

(
L

μ
ln

(
1

ε

))
.

The extra-gradient algorithm (EG) and the accelerated dual extrapolation algorithm
(ADE) introduced in Example 2.3 have achieved this bound; see e.g. [23,30].

Case 4 F(Lx ,O(1) ·μy, Lxy, μx , μy) In this case Ly = O(1) ·μy , meaning that
one side of the problem is easy to solve. Then, (35) is reduced to

�

⎛
⎝
√

Lx

μx
+ L2

xy

μxμy
· ln

(
1

ε

)⎞⎠ .

For the double loop algorithm defined in Example 2.2, when we set the inner loop

iteration to be T2 = O
(√

Ly
μy

ln
( 1

ε

)) = O (
ln
( 1

ε

))
, and the outer loop iteration to be

T1 = O
(√

L�,x
μx

ln
( 1

ε

)) = O
(√

Lx
μx

+ L2
xy

μxμy
· ln ( 1

ε

))
. Then, an upper bound of

T1T2 = O
⎛
⎝
√

Lx

μx
+ L2

xy

μxμy
· ln2

(
1

ε

)⎞⎠
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can be guaranteed. It is tight up to a logarithmic factor.
Case 5 F(L, L, L, μx , μx ) In this case Lx = Ly = Lxy = L . Then (35) is

reduced to

�

(√
L2

μxμy
ln

(
1

ε

))
.

This bound has been achieved by [19] up to a logarithmic factor.

5 Reduction to lower bounds for convex-concave problems

Note that in the previous sections, we consider the strongly-convex and strongly-
concave problem classesB(Lxy, μx , μy) andF(Lx , Ly, Lxy, μx , μy), whereμx > 0
and μy > 0. In this section, we show how our iteration complexity lower bounds
provided in Theorem 3.5 and 4.5 can be reduced to the problem classes with μx =
μy = 0. Similar reduction can also be done for the case where μx > 0, μy = 0, but
is omitted in this paper.

5.1 Lower bound for pure first-order algorithm class

Unlike the strongly-convex and strongly-concave saddle point problems, the saddle
point of the general convex-concave problem may not always exist. Therefore, we
define a new problem class with bounded saddle point solution as follows.

Definition 5.1 (Problem classF0(Lx , Ly, Lxy, Rx , Ry))We say a function F belongs
to the class F0(Lx , Ly, Lxy, Rx , Ry) as long as: (i). F ∈ F(Lx , Ly, Lxy, 0, 0). (ii).
The solution to (x∗, y∗) = argmin

x
argmax

y
F(x, y) exists, and‖x∗‖ ≤ Rx ,‖y∗‖ ≤ Ry .

For this problem class, we have the following lower bound result, as a corollary of
Theorem 4.7.

Corollary 5.2 Consider applying the general first-order algorithm class defined by
(2.2) to the problem class F0(Lx , Ly, Lxy, Rx , Ry). For any ε > 0, there exists a
problem instance Fε(x, y) ∈ F0(Lx , Ly, Lxy, Rx , Ry), such that

�

⎛
⎝
√

Lx R2
x

ε
+ Lxy Rx Ry

ε
+
√

Ly R2
y

ε

⎞
⎠ (37)

iterations are required to reduce the duality gap to ε.

Proof We start the reduction by the following scaling argument. First, for any ε > 0,
let F̂ε ∈ F(Lx , Ly, Lxy, μx , μy) be the worst-case instance described by Theorem
4.7. For our purpose, we choose

μx = 64ε/R2
x and μy = 64ε/R2

y .
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Then by direct computation, we know that the following scaled problem satisfies

Fε(x, y) := aF̂ε(cx, dy) ∈ F(ac2Lx , ad
2Ly, acdLxy, ac

2μx , ad
2μy).

We skip the parameter b since it is already used in the construction of the
worst case instance F̂ε . Denote (x̂∗, ŷ∗) = minx maxy F̂ε(x, y) and (x∗, y∗) =
minx maxy Fε(x, y). Let us set

c = ‖x̂∗‖
Rx

, d = ‖ŷ∗‖
Ry

, and a = min{c−2, d−2}.

Then we have x∗ = Rx x̂∗
‖x̂∗‖ and y∗ = Ry ŷ∗

‖ŷ∗‖ , and the Lipschitz constants of Fε satisfy

that ac2Lx ≤ Lx , ad2Ly ≤ Ly , and acdLxy ≤ Lxy . Therefore, we know

Fε ∈ F(ac2Lx , ad
2Ly, acdLxy, ac

2μx , ad
2μy) ∩ F0(Lx , Ly, Lxy, Rx , Ry).

Note that purely scaling the variables and the function does not change the worst-
case nature of this problem. That is, Fε is still the worst-case problem instance of
the function class F(ac2Lx , ad2Ly, acdLxy, ac2μx , ad2μy) and the lower bound of
Theorem 4.5 is valid for this specific instance. Therefore, to get the duality gap less
than or equal to ε, the number of iteration k is lower bounded by

k ≥ �

⎛
⎝
√
ac2Lx

ac2μx
+ a2c2d2L2

xy

ac2μx · ad2μy
+ ad2Ly

ad2μy
· ln

(
ac2μx‖x∗ − x0‖2

32ε

)⎞⎠
(i)= �

((√
Lx R2

x

ε
+ Lxy Rx Ry

ε
+
√

Ly R2
y

ε

)
· ln

(
2ac2

))
(38)

where (i) is because x0 = 0, ‖x∗‖ = Rx , and μx = 64ε/R2
x . Therefore, as long as

we can show that ln
(
2ac2

) ≥ �(1), then the corollary is proved. However, since the
details are rather technical, we shall provide a proof of ln

(
2ac2

) ≥ ln 2 in Appendix
G. ��
As a remark, by setting Ly = 0, the lower bound (37) implies the result derived in
[33]. When Lx = Ly = Lxy = L , the lower bound (37) implies the result derived
in [25]. The reduction for the general pure first-order algorithm class defined by (2.4)
without the linear span assumption can also be done in a similar manner and is omitted
for succinctness.

5.2 Lower bound for proximal algorithm class

Like Definition 5.1, we define a new bilinear problem class with bounded saddle point
solution as follows.

123



On lower iteration complexity bounds... 923

Definition 5.3 (Problem class B0(Lxy, Rx , Ry)) We say a function F belongs to
the function class B0(Lxy, Rx , Ry) as long as: (i). F ∈ B(Lxy, 0, 0). (ii). Solution
(x∗, y∗) = argmin

x
argmax

y
F(x, y) exists, and ‖x∗‖ ≤ Rx , ‖y∗‖ ≤ Ry .

For this problem class, we have the following lower bound result, as a corollary of
Theorem 3.7.

Corollary 5.4 Consider applying the general first-order algorithm class defined by
(2.2) to the problem class B0(Lxy, Rx , Ry). For any ε > 0, there exists an instance
Fε(x, y) ∈ B0(Lxy, Rx , Ry), such that

�

(
Lxy Rx Ry

ε

)
(39)

iterations are required to reduce the duality gap to ε.

Remark 5.5 The lower bound in Corollary 5.2 is tight. An optimal algorithm is derived
in [9,10].

The reduction can be done in a similar way as in Corollary 5.2, but is much simpler.
The details are omitted here.

6 Conclusion

In this paper, we establish the lower complexity bound for the first-order methods in
solving strongly convex and strongly concave saddle point problems. Different from
existing results, we discuss the problem in the most general parameter regime. For the
bilinear coupling problem classB(Lxy, μx , μy) and for both proximal algorithm class
(7) with linear span assumption and the general proximal algorithm class (10) without
linear span assumption, a tight lower bound is established. For general coupling prob-
lem class F(Lx , Ly, Lxy, μx , μy) and for both the pure first-order algorithm class
(9) with linear span assumption and the general pure first-order algorithm class (11)
without the linear span assumption, a lower bound has been established. Under various
special parameter regimes, tight upper-bounds can be developed. In the most general
setting of themin-max framework, a near optimal algorithmhas been discovered,while
the optimal algorithm that exactly matches the lower bound has yet to be discovered.
Finally, we also show that our result implies several exisiting lower bounds for general
convex-concave problems through proper scaling of the worst-case instance, which
indicates the generality of our results.

Acknowledgements We thank the two anonymous reviewers for their insightful suggestions on orthogonal
invariance argument for breaking the linear span assumption and the suggestion on applying scaling to
obtain lower bounds for general convex-concave problems.
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A Proof of lemma 3.4

By the subspace characterization (20), we have

‖y2k − ŷ∗‖ ≥
√√√√ n∑

j=k+1

(ŷ∗
j )
2 = qk

1 − q

√
q2 + q4 + · · · + q2(n−k)

≥ qk√
2
‖ŷ∗‖ = qk√

2
‖y0 − ŷ∗‖,

where the last inequality is due to the fact that q ≤ 1, k ≤ n
2 and y0 = 0. Note that by

Lemma 3.3, if we require n ≥ 2 logq
(

α

4
√
2

)
, then we can guarantee that

‖ŷ∗−y∗‖ ≤ qn+1

α(1 − q)
≤ q

n
2

α
·qk · q

(1 − q)
≤ 1

4
· q

k

√
2
‖y0− ŷ∗‖ for ∀1 ≤ k ≤ n/2,

(40)

where the last inequality is due to q
n
2

α
≤ 1

4
√
2
and q/(1− q) ≤ ‖y0 − ŷ∗‖. Therefore,

we have

‖y2k − y∗‖2 ≥ (‖y2k − ŷ∗‖ − ‖ŷ∗ − y∗‖)2
≥ ‖y2k − ŷ∗‖2 − 2‖y2k − ŷ∗‖‖ŷ∗ − y∗‖
≥ min

t

{
t2 − 2‖ŷ∗ − y∗‖t : t ≥ δk := qk√

2
‖y0 − ŷ∗‖

}
= δk(δk − 2‖ŷ∗ − y∗‖)
≥ 1

2
δ2k = q2k

4
‖y0 − ŷ∗‖2, (41)

where the fourth line is due to thatd(t2−2‖ŷ∗−y∗‖t)/dt = 2(t−‖ŷ∗−y∗‖) ≥ 0when
t ≥ δk . Hence the quadratic function is monotonically increasing in the considered
interval. In addition, we also have

‖y0 − y∗‖ ≤ ‖y0 − ŷ∗‖ + ‖ŷ∗ − y∗‖ ≤ ‖y0 − ŷ∗‖ + qn

α
· q

1 − q

≤ (1 + qn/α)‖y0 − ŷ∗‖ ≤ 2‖y0 − ŷ∗‖,

where the third inequality is due to that ‖y0 − ŷ∗‖ ≥ ŷ∗
1 = q/(1 − q). For the

last inequality, if α ≥ 1, then qn/α < 1; if α ≤ 1, then qn/α ≤ α/32 ≤ 1 since

n ≥ 2 logq
(

α

4
√
2

)
. Combining the above two inequalities, the desired bound (21)

follows.
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B Proof of proposition 3.6

Here we only prove the last inequality of (23). Due to the fact that (ln(1+ z))−1 ≥ 1/z
for ∀z > 0, we know

(ln(q−1))−1 = (ln(1 + (1 − q)/q))−1 ≥ q

1 − q

=
1 + 2μxμy

L2
xy

− 2

√(
μxμy

L2
xy

)2

+ μxμy

L2
xy

2

√(
μxμy

L2
xy

)2

+ μxμy

L2
xy

− 2μxμy

L2
xy

=

√(
μxμy

L2
xy

)2

+ μxμy

L2
xy

− μxμy

L2
xy

2μxμy

L2
xy

= 1

2

√
L2
xy

μxμy
+ 1 − 1

2
,

= �

⎛
⎝
√

L2
xy

μxμy

⎞
⎠

which completes the proof.

C Proof of theorem 3.7

Before proceeding the proof, let us first quote a lemma from [33].

Lemma C.1 [Lemma 3.1, [33]] Let X � X̄ � R
p be two linear subspaces. Then for

any x̄ ∈ R
p, there exists an orthogonal matrix � ∈ R

p×p s.t. �x = x,∀x ∈ X and
� x̄ ∈ X̄ .

Note that for an orthogonal matrix �, if �x = x , then we also have ��x = x . Now
let us start our proof of Theorem 3.7.

Proof To prove this theorem, we only need to show

{(x0, y0), ..., (xk, yk)} ⊆ U�H4k−1
x × V�H4k−1

y and

(x̃ k, ỹk) ∈ U�H4k+1
x × V�H4k+1

y .

We separate the proof into two parts.
Part I. There exist orthogonal matrices Û , V̂ s.t. whenA is applied to the rotated

instance FÛ ,V̂ , {(x0, y0), ..., (xk, yk)} ⊆ Û�H4k−1
x × V̂�H4k−1

y .
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Let θ = (Lxy, μx , μy) be the set of algorithmic parameters. To prove the result, let
us construct the worst-case function FU ,V in a recursive way.
Case k = 1: Let us define U0 = V0 = I . When A is applied to the function FU0,V0 ∈
B(Lxy, μx , μy), the iterate sequence is (x00 , y

0
0 ) = (0, 0) and

{
u10 = A1

u(θ; x00 ,U�
0 AV0y00 ), (x10 , x̃

1
0) = A1

x (θ; x00 ,U�
0 AV0y00 ,proxγ1 f (u

1
0)),

v10 = A1
v(θ; y00 , V�

0 AU0x00 ), (y10 , ỹ
1
0) = A1

y(θ; y00 , V�
0 AU0x00 ,proxσ1g(v

1
0)).

By Lemma C.1, there exists orthogonal matrices �0
x and �0

y such that �0
x x

1
0 ∈ H3

x =
Span{Ab}, �0

y y
1
0 ∈ H3

y = Span{b, A2b}, and �0
yb = (�0

y)
�b = b. That is

x10 ∈ U�
1 H3

x , and y10 ∈ V�
1 H3

y, V1b = V�
1 b = b, (42)

where U1 = U0�
0
x and V1 = V0�0

y .
Now we prove that when we apply the algorithm A to FU1,V1 , the generated

iterates {(x01 , y01 ), (x11 , y11)} satisfy that (x01 , y
0
1 ) = (0, 0) and (x11 , y

1
1) = (x10 , y

1
0).

That is, the first two iterates generated by A is completely the same for FU0,V0
and FU1,V1 . The reason is because u11 = A1

u(θ; x01 ,U�
1 AV1y01 ) = A1

u(θ; 0, 0) =
A1

u(θ; x00 ,U�
0 AV0y00 ) = u10, therefore

(x11 , x̃
1
1) = A1

x (θ; x01 ,U�
1 AV1y

0
1 ,proxγ1 f (u

1
1))

= A1
x (θ; 0, 0,proxγ1 f (u

1
1))

= A1
x (θ; x00 ,U�

0 AV0y
0
0 ,proxγ1 f (u

1
0))

= (x10 , x̃
1
0).

Through similar argument, we know (y11 , ỹ
1
1) = (y10 , ỹ

1
0). Therefore, (42) indicates

that
x11 ∈ U�

1 H3
x , and y11 ∈ V�

1 H3
y, V1b = V�

1 b = b ∈ V�
1 H3

y . (43)

Case k = 2. For the ease of the readers to follow, we perform one extra step of
discussion for k = 2, before presenting the construction on general k.

For the problem instance FU1,V1 , the iterates generated by A are (x01 , y
0
1 ) = (0, 0)

and

{
u11 = A1

u(θ; x01 ,U�
1 AV1y01 ), (x11 , x̃

1
1 ) = A1

x (θ; x01 ,U�
1 AV1y01 ,proxγ1 f (u

1
1)),

v11 = A1
v(θ; y01 , V�

1 AU1x01 ), (y11 , ỹ
1
1 ) = A1

y(θ; y01 , V�
1 AU1x01 ,proxσ1g(v

1
1)).{

u21 = A2
u(θ; x01 ,U�

1 AV1y01 , x
1
1 ,U

�
1 AV1y11 ), (x21 , x̃

2
1 ) = A2

x (θ; x01 ,U�
1 AV1y01 , x

1
1 ,U

�
1 AV1y11 ,proxγ2 f (u

2
1)),

v21 = A2
v(θ; y01 , V�

1 AU1x01 , y
1
1 , V

�
1 AU1x11 ), (y21 , ỹ

2
1 ) = A2

y(θ; y01 , V�
1 AU1x01 , y

1
1 , V

�
1 AU1x11 ,proxσ2g(v

2
1)).
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Note that x11 ∈ U�
1 H3

x � U�
1 H5

x � U�
1 H7

x and {y11 , b} � V�
1 H3

y � V�
1 H5

y �

V�
1 H7

y . Therefore, there exist orthogonal matrices �1
x and �1

y such that

{
�1
x x = (�1

x )
�x = x, ∀x ∈ U�

1 H5
x , �1

x x
2
1 ∈ U�

1 H7
x ,

�1
y y = (�1

y)
�y = y, ∀y ∈ V�

1 H5
y, �1

y y
2
1 ∈ V�

1 H7
y .

(44)

Now, let us define

U2 = U1�
1
x and V2 = V1�

1
y .

Nowwe prove that ifA is applied to FU2,V2 , the generated iterates {(x02 , y02 ), (x12 , y12),
(x22 , y

2
2 )} satisfy (x02 , y

0
2 ) = (0, 0), (x12 , y

1
2) = (x11 , y

1
1), and (x22 , y

2
2 ) = (x21 , y

2
1 ). The

argument for (x12 , y
1
2) = (x11 , y

1
1) is almost the same as that of the case k = 1. We

only provide the proof for (x22 , y
2
2 ) = (x21 , y

2
1 ).

Next, we need to show u22 = u21, which can be proved by arguing that all the
inputs to A2

u are the same for both u22 and u21. First, it is straightforward that x01 =
0 = x02 ,U

�
1 AV1y01 = 0 = U�

2 AV2y02 . By previous argument x12 = x11 . Finally,
consider the last input U�

2 AV2y12 , because y12 = y11 ∈ V�
1 H3

y � V�
1 H5

y , we have

�1
y y

1
2 = y12 = y11 ∈ V�

1 H3
y . Then V2y12 = V1�1

y y
1
2 ∈ V1V�

1 H3
y = H3

y . Therefore

U�
1 AV2y12 ∈ U�

1 AH3
y = U�

1 H5
x and

U�
2 AV2y

1
2 = �1

xU
�
1 AV2y

1
2 = U�

1 AV2y
1
2 = U�

1 AV1�
1
y y

1
2 = U�

1 AV1y
1
1 .

Consequently,

u22 = A2
u(θ; x02 ,U�

2 AV2y
0
2 , x

1
2 ,U

�
2 AV2y

1
2 ) = A2

u(θ; x01 ,U�
1 AV1y

0
1 , x

1
1 ,U

�
1 AV1y

1
1 ) = u12

and

(x22 , x̃
2
2 ) = A2

x (θ; x02 ,U�
2 AV2y

0
2 , x

1
2 ,U

�
2 AV2y

1
2 ,proxγ2 f (u

2
2))

= A2
x (θ; x01 ,U�

1 AV1y
0
1 , x

1
1 ,U

�
1 AV1y

1
1 ,proxγ2 f (u

2
1))

= (x21 , x̃
2
1 ).

Through a similar argument, we have (y22 , ỹ
2
2 ) = (y21 , ỹ

2
1 ). By (43) and (44), we have

{x02 , x12 , x22 } ∈ U�
2 H7

x and {b, y02 , y12 , y22 } ∈ V�
2 H7

y . (45)

Case k. Suppose we already have orthogonal matrices Uk−1, Vk−1, such that whenA
is applied to FUk−1,Vk−1 , we have

{x0k−1, x
1
k−1, · · · , xk−1

k−1 } ∈ U�
k−1H4k−5

x and {b, y0k−1, y
1
k−1, · · · , yk−1

k−1 } ∈ V�
k−1H4k−5

y . (46)
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Again, by Lemma C.1, there exist orthogonal matrices �k−1
x and �k−1

y , such that

{
�k−1
x x = (�k−1

x )�x = x, ∀x ∈ U�
k−1H4k−3

x , �k−1
x xkk−1 ∈ U�

k−1H4k−1
x ,

�k−1
y y = (�k−1

y )�y = y, ∀y ∈ V�
k−1H4k−3

y , �k−1
y ykk−1 ∈ V�

k−1H4k−1
y .

(47)

Now we define that

Uk = Uk−1�
k−1
x and Vk = Vk−1�

k−1
y .

Therefore, similar to our previous discussion, we only need to argue that when A
is applied to FUk ,Vk , the generated iterates {(x0k , y0k ), (x1k , y1k ), · · · , (xkk , y

k
k )} satisfy

(xik, y
i
k) = (xik−1, y

i
k−1) for i = 0, 1, ..., k. We prove this argument by induc-

tion. First, it is straightforward that (x0k , y
0
k ) = (0, 0) = (x0k−1, y

0
k−1). Suppose

(xik, y
i
k) = (xik−1, y

i
k−1) holds for i = 0, 1, ..., j − 1 ≤ k − 1, now we prove

(x j
k , y j

k ) = (x j
k−1, y

j
k−1), which is almost identical to the case k = 2.

For any i ∈ {0, 1, ..., j − 1}, let us show U�
k−1AVk−1yik−1 = U�

k AVk yik . Because
yik = yik−1 ∈ V�

k−1H4k−5
y � V�

k−1H4k−3
y , we have �k−1

y yik = yik = yik−1 ∈
V�
k−1H4k−5

y . Then Vk yik = Vk−1�
k−1
y yik ∈ Vk−1V�

k−1H4k−5
y = H4k−5

y . Therefore

U�
k−1AVk y

i
k ∈ U�

k−1AH4k−5
y = U�

k−1H4k−3
x and

U�
k AVk y

i
k = (�k−1

x )�U�
k−1AVk y

i
k = U�

k−1AVk y
i
k = U�

k−1AVk−1�
k−1
y yik = U�

k−1AVk−1y
i
k−1,

for 0 ≤ i ≤ j − 1. Consequently,

uik = Ai
u(θ; x0k ,U�

k AVk y
0
k , ..., x

i−1
k ,U�

k AVk y
i−1
k )

= Ai
u(θ; x0k−1,U

�
k−1AVk−1y

0
k−1, ..., x

i−1
k−1,U

�
k−1AVk−1y

i−1
k−1)

= uik−1

and

(xik, x̃
i
k) = Ai

x (θ; x0k ,U�
k AVk y

0
k , ..., x

i−1
k ,U�

k AVk y
i−1
k ,proxγi f (u

i
k))

= A2
x (θ; x0k−1,U

�
k−1AVk−1y

0
k−1, ..., x

i−1
k−1,U

�
k−1AVk−1y

i−1
k−1,proxγi f (u

i
k−1))

= (xik−1, x̃
i
k−1).

Through a similar argument, we have (yik, ỹ
i
k) = (yik−1, ỹ

i
k−1). By induction, we know

(yik, ỹ
i
k) = (yik−1, ỹ

i
k−1) for i = 0, 1, ..., k. Consequently, we have

{x0k , x1k , · · · , xkk } ∈ U�
k H4k−1

x and {b, y0k , y1k , · · · , ykk } ∈ V�
k H4k−1

y . (48)

By setting Û = Uk and V̂ = Vk , we prove the result for Part I.
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Part II. There exist orthogonal matrices U , V such that when A is applied to
the rotated instance FU ,V , {(x0, y0), ..., (xk, yk)} ⊆ U�H4k−1

x × V�H4k−1
y , and

(x̃ k, ỹk) ∈ U�H4k+1
x × V�H4k+1

y .

Given the result of Part I, and let {(x0k , y0k ), ..., (xkk , ykk )} and (x̃ kk , ỹ
k
k )begenerated by

A when applied to FÛ ,V̂ = FUk ,Vk . Therefore, by Lemma C.1, there exist orthogonal
matrices P, Q such that

{
Px = P�x = x, ∀x ∈ U�

k H4k−1
x , Px̃kk ∈ U�

k H4k+1
x ,

Qy = Q�y = y, ∀y ∈ V�
k H4k−1

y , Qỹkk ∈ V�
k H4k+1

y .
(49)

Define U = Uk P , and V = VkQ. Let {(x0, y0), ..., (xk, yk)} and the output (x̃ k, ỹk)
be generated by A when applied to FU ,V . Then following the same line of argument
of Case k, Part I, we have

(xi , yi ) = (xik, y
i
k), for i = 0, 1, ..., k and (x̃ k, ỹk) = (x̃ kk , ỹ

k
k ).

Therefore, combining (49), we complete the proof of Part II. ��

D Proof of lemma 4.2

For the ease of analysis, let us perform a change of variable r := (1− q)−1. Then the
quartic equation (26) can be transformed to

f (r) := 1 + αr + (β − α)r2 − 2βr3 + βr4 = 0 (50)

Although the quartic equation does have a root formula, it is impractical to use the
formula for the purpose of lower iteration complexity bound. Instead, we will provide
an estimation of a large enough lower bound of r , which corresponds to lower bound
on q.

First, we let r̄ = 1
2 +

√
α
β

+ 1
4 . Then f (r̄) = 1 > 0.

Second, we let r = 1
2 +

√
α
2β + 1

4 . Then,

f (r) = β

(
− α2

4β2 + 1

β

)

= β

4

⎛
⎝−

(
L2
xy

4μxμy
+ Bx

μx
+ By

μy

)2

+ 4Bx By

μxμy

⎞
⎠

= β

4

⎛
⎝−

(
L2
xy

4μxμy

)2

− L2
xy

2μxμy
·
(
Bx

μx
+ By

μy

)
−
(
Bx

μx
− By

μy

)2
⎞
⎠

< 0.
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Together with the fact that f (r̄) = 1 > 0, by continuity we know there is a root r
between

(
r , r̄

)
, where

r = 1

2
+
√

α

2β
+ 1

4
= 1

2
+ 1

2
√
2

√
L2
xy

μxμy
+ Lx

μx
+ Ly

μy

and

r̄ = 1

2
+
√

α

β
+ 1

4
= 1

2
+ 1

2

√
L2
xy

μxμy
+ Lx

μx
+ Ly

μy
− 1

This further implies

1 − r−1 < q < 1 − r̄−1,

which proves this lemma.

E Proof of lemma 4.3

First, by setting ∇�(x∗) = 0, we get

(Bx A
2 + μx I )x

∗ + L2
xy

4
A(By A

2 + μy I )
−1
(
Ax∗ − 2b

Lxy

)
= 0. (51)

Note that matrix A is invertible, with

A−1 =

⎛
⎜⎜⎜⎝

1
1 1

⋰ ⋰

...

1 1 · · · 1

⎞
⎟⎟⎟⎠

Therefore, by the interchangability of A(By A2 + μy I ) = (By A2 + μy I )A, we can
take the inverse and get (By A2 +μy I )−1A−1 = A−1(By A2 +μy I )−1. Left multiply
by A and right multiply by A for both sides we get the interchangablity of

A(By A
2 + μy I )

−1 = (By A
2 + μy I )

−1A.

Applying this on equation (51) and multiplying both sides by 1
Bx By

(By A2 +μy I ), we
can equivalently write the optimality condition as

(A4 + αA2 + β I )x∗ = b̂ (52)

where

α = L2
xy

4Bx By
+ μx

Bx
+ μy

By
, β = μxμy

Bx By
, and b̂ = Lxy

2Bx By
Ab.
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The values of matrices A2 and A4 can be found in (13). For the ease of discussion,
we may also write equation (52) in an expanded form as:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(2 + α + β)x∗
1 − (3 + α)x∗

2 + x∗
3 = b̂1

− (3 + α)x∗
1 + (6 + 2α + β)x∗

2 − (4 + α)x∗
3 + x∗

4 = b̂2
x∗
k−2 − (4 + α)x∗

k−1 + (6 + 2α + β)x∗
k − (4 + α)x∗

k+1 + y∗
k+2 = b̂k for 3 ≤ k ≤ n − 2

x∗
n−3 − (4 + α)x∗

n−2 + (6 + 2α + β)x∗
n−1 − (4 + α)x∗

n = b̂n−1

x∗
n−2 − (4 + α)x∗

n−1 + (5 + 2α + β)x∗
n = b̂n .

(53)

Because q ∈ (0, 1) is a root to the quartic equation 1− (4+ α)q + (6+ 2α + β)q2 −
(4 + α)q3 + q4 = 0, and our approximate solution x̂∗ is constructed as x̂∗

i = qi . By
direct calculation one can check that the first n−2 equations are satisfied and the last 2
equations are violated with controllably residuals. Indeed, for the (n − 1)-th equation
the violation is of the order qn+1, and for the n-th equation the violation is of the order
| − qn + (4 + α)qn+1 − qn+2|. Similar to the arguments for (18), we have

β‖x̂∗ − x∗‖ ≤ ‖(A4 + αA2 + β I )(x̂∗ − x∗)‖ ≤ (7 + α)qn .

That is, ‖x̂∗ − x∗‖ ≤ 7+α
β

· qn , which completes the proof.

F Proof of lemma 4.4

By the subspace characterization (32), we have

‖xk − x̂∗‖ ≥ qk
√
q2 + · · · + q2(n−k) ≥ qk√

2
‖x̂∗ − x0‖, for ∀1 ≤ k ≤ n/2.

When we set k ≤ n
2 and n ≥ 2 logq

(
β

4
√
2(7+α)

)
+ 2, by (31) we also have

‖x̂∗ − x∗‖ ≤ qn(7 + α)/β ≤ qk

4
√
2
q ≤ 1

4
· qk√

2
‖x̂∗ − x0‖.

Therefore, similar to (41), we also have

‖xk − x∗‖2 ≥ q2k

16
‖x∗ − x0‖2 (54)

which proves the lemma.
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G Proof of ln(2ac2) = Ä(1)

Proof Note that a = min{c−2, d−2}, if c−2 ≤ d−2, then ac2 = 1. Consequently,

ln
(
2ac2

)
= ln 2 = �(1).

However, when c−2 ≥ d−2, the situation is more complicated. In this case,

ac2 = c2

d2
= R2

y

R2
x

· ‖x̂∗‖2
‖ŷ∗‖2 ,

where x̂∗ and ŷ∗ is the solution to the unscaled worst-case instance F̂ε ∈
F(Lx , Ly, Lxy, μx , μy). For the ease of discussion, let us take the dimension n is
sufficiently large so that we can view the approximate solution constructed in Lemma
4.3 as the exact solution. Therefore, we have{

x̂∗(i) = qi , i = 1, ..., n

(μy I + By A2)ŷ∗ = Lxy
2 Ax̂∗ − b,

where q is defined by Theorem 4.5 and the second equality is due to the first-order
stationary condition. Note that equation (51) also provides that

(Bx A
2 + μx I )x̂

∗ + L2
xy

4
A(By A

2 + μy I )
−1
(
Ax̂∗ − 2b

Lxy

)
= 0.

Combining the above two relations, we have

ŷ∗ = (μy I + By A
2)−1(

Lxy

2
Ax̂∗ − b)

= − 2

Lxy
A−1(Bx A

2 + μx I )x̂
∗

= −2Bx

Lxy
Ax̂∗ − 128ε

Lxy R2
x
A−1 x̂∗.

Substituting the specific forms of A and A−1, we have

ŷ∗(i) =
⎧⎨
⎩

− 2Bx
Lxy

qn − 128ε
Lxy R2

x
qn, i = 1

− 2Bx
Lxy

qn+1−i (1 − q) − 128ε
Lxy R2

x
qn+1−i 1−qi

1−q , i ≥ 2.

Therefore, we have

‖ŷ∗‖2 ≤
(
2Bx

Lxy
+ 128ε

Lxy R2
x

)2

q2n +
(
2Bx

Lxy
(1 − q) + 128ε

Lxy R2
x (1 − q)

)2 n∑
i=1

q2i .
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For ease of discussion, the following simplifications are made. First, we omit the q2n

term since q < 1 and n is sufficiently large. Second, note that Lemma 4.2 indicates
that 1 − q = �(ε), the term 2Bx

Lxy
(1 − q) = O(ε) and the term 128ε

Lxy R2
x (1−q)

= �(1).

Thus we also omit the 2Bx
Lxy

(1 − q) term which is significantly smaller. Therefore, we
can write

‖ŷ∗‖2 ≤
(

128ε

Lxy R2
x (1 − q)

)2 n∑
i=1

q2i =
(

128ε

Lxy R2
x (1 − q)

)2

‖x̂∗‖2.

As a result,

ac2 = R2
y

R2
x

· ‖x̂∗‖2
‖ŷ∗‖2 ≥ L2

xy R
2
y R

2
x (1 − q)2

1282ε2
.

In Lemma 4.2, we also have a lower bound of 1 − q as

1 − q >

⎛
⎝1

2
+ 1

2

√
L2
xy

μxμy
+ Lx

μx
+ Ly

μy
− 1

⎞
⎠

−1
(i)
>

128ε

Lxy Rx Ry

where (i) is because we have omitted the terms of smaller magnitude. Therefore,

ln
(
2ac2

)
≥ ln

(
2L2

xy R
2
y R

2
x

1282ε2
· 1282ε2

L2
xy R

2
x R

2
y

)
= ln (2) = �(1).

Thus we complete the proof. ��
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