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Abstract
This paper proposes an accelerated proximal point method for maximally monotone
operators. The proof is computer-assisted via the performance estimation problem
approach. The proximal point method includes various well-known convex optimiza-
tion methods, such as the proximal method of multipliers and the alternating direction
method of multipliers, and thus the proposed acceleration has wide applications.
Numerical experiments are presented to demonstrate the accelerating behaviors.
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1 Introduction

A fundamental tool for finding a root of a monotone operator is the proximal point
method [46,59]. The monotone operator theory is particularly of interest, since it is
closely related to convex functions and convex minimization [7,14,60]. For example,
the proximal point method is useful when solving ill-conditioned problems or dual
problems. In particular, the augmented Lagrangian method (i.e., the method of mul-
tipliers) [36,56] and the alternating direction method of multipliers (ADMM) [26,27]
are instances of the proximal point method applied to dual problems [23,24,58].

To improve the efficiency of the proximal point method, accelerating its
worst-case rate has been of interest both in theory and in applications (see e.g.,
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[1,3,6,15,29,34,43]). In specific, inspired by Nesterov’s fast gradient method [51,52],
Güler [34] accelerated the worst-case rate of the proximal point method for con-
vex minimization with respect to the cost function. This yields the fast rate O(1/i2)
where i denotes the number of iterations, compared to the O(1/i) rate of the proxi-
mal point method. However, this acceleration has not been theoretically generalized
to the monotone inclusion problem, and only somewhat empirical accelerations, e.g.,
via the relaxation and the inertia (i.e., an implicit version of the heavy ball method
[55], or equivalently, Nesterov’s and Güler’s accelerating technique [34,51,52]) in
[1,3,6,15,29], have been studied. Therefore, this paper studies accelerating the worst-
case rate of the proximal point method with respect to the fixed-point residual
for maximally monotone operators. This provides the fast O(1/i2) rate, which
improves upon the rate O(1/i) of the proximal point method [9,32]. The proof is
computer-assisted via the performance estimation problem (PEP) approach [21] and
its extensions [20,22,31,32,37–41,61,65–67].

Under the additional strong monotonicity condition, the proximal point method has
a linear rate in terms of the fixed-point residual [59], while the proposed acceleration
is not guaranteed to have such a linear rate. Therefore, this paper further employs
a restarting technique (e.g., [50, Section 11.4], [53, Section 5.1]) under the strong
monotonicity condition. This has a linear rate, and is faster than the proximal point
method for some practical cases.

The proposed acceleration of the proximal pointmethod haswide applications. This
provides an acceleration to the proximal method of multipliers [58], the Douglas–
Rachford splitting method [19,44], and ADMM [26,27]. The proposed result also
applies to a preconditioned proximal point method such as the primal–dual hybrid
gradient (PDHG) method [11,13,25,35], (i.e., a preconditioned ADMM), yielding an
accelerated PDHG method. This paper then shows that the proposed acceleration
applies to a forward method for cocoercive operators. Existing works on accelerating
the forward method can be found, for example, in [2,45].

Section 2 reviews maximally monotone operators, the proximal point method and
its known accelerations. Section 3 studies the PEPwith respect to the fixed-point resid-
ual for monotone inclusion problems. Section 4 proposes a new accelerated proximal
point method using the PEP. Section 5 considers a restarting technique to yield a lin-
ear rate, under the additional strongly monotone assumption. Section 6 applies the
proposed acceleration to well-known instances of the proximal point method, such
as the proximal method of multipliers, the PDHG method, the Douglas–Rachford
splitting method, and ADMM. Section 6 also provides numerical experiments. Sec-
tion 7 presents that the proposed approach also accelerates the forward method for
cocoercive operators, and Sect. 8 concludes.

2 Problem andmethod

2.1 Monotone inclusion problem

LetH be a real Hilbert space equipped with inner product 〈·, ·〉, and associated norm
|| · ||. A set-valued operator M : H → 2H is monotone if
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〈x − y, u − v〉 ≥ 0 for all (x, u), ( y, v) ∈ gra M, (1)

where gra M:={(x, u) ∈ H × H : u ∈ Mx} denotes the graph of M. A monotone
operator M is maximally monotone if there exists no monotone operator A : H →
2H such that gra A properly contains gra M. Let M(H) be the class of maximally
monotone operators on H. In addition, a set-valued operator M : H → 2H is
μ-strongly monotone for μ ∈ R++, if

〈x − y, u − v〉 ≥ μ||x − y||2 for all (x, u), ( y, v) ∈ gra M. (2)

Let Mμ(H) be the class of maximally and μ-strongly monotone operators on H.
Also, define B(H,G) = {L : H → G | L is linear and bounded} for a real Hilbert
space G equipped with inner product 〈·, ·〉, and let L∗ ∈ B(G,H) be the adjoint of
L ∈ B(H,G) that satisfies 〈Lx, y〉 = 〈x, L∗ y〉 for all x ∈ H and y ∈ G.

This paper considers the monotone inclusion problem:

Find x ∈ H subject to 0 ∈ Mx, (3)

where M ∈ M(H) (or M ∈ Mμ(H)). This includes convex problems and convex–
concave problems; a subdifferential ∂ f of a closed proper convex function f : H →
R∪{∞} is maximally monotone [48]. LetF(H) be the class of closed proper convex
functions onH.

We assume that the optimal set X∗(M):={x ∈ H : 0 ∈ Mx} is nonempty.
We also assume that the distance between an initial point x0 and some optimal point
x∗ ∈ X∗(M) is bounded as

||x0 − x∗|| ≤ R for a constant R > 0. (4)

2.2 Proximal point method and its worst-case rates

Proximal point method was first introduced to convex optimization by Martinet [46],
which is based on the proximal mapping by Moreau [49]. The method was later
extended to monotone inclusion problem by Rockafellar [59]. The proximal point
method for maximally monotone operators includes the augmented Lagrangian [36,
56], the proximal method of multipliers [58], the Douglas–Rachford splitting method
[19,44], and the alternating direction method of multipliers (ADMM) [26,27], so
studying its worst-case convergence behavior and acceleration is important, which is
of main interest in this paper.

The proximal mapping [49] (or the resolvent operator) of an operator M is defined
as

JM := (I + M)−1, (5)

where I : H → H is an identity operator, i.e., I(x) = x for all x ∈ H. The
resolvent operator JM is single-valued and firmly nonexpansive for M ∈ M(H)
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[47]. The proximal point method [46,59] generates a sequence {xi } by iteratively
applying the resolvent operator with a positive real number λ as below.

Proximal Point Method

Input: M ∈ M(H), x0 ∈ H, λ ∈ R++.

For i = 0, 1, . . .

xi+1 = JλM(xi ).

In [9, Proposition 8], the worst-case rate of the proximal point method with respect
to the fixed-point residual

||x − JλM(x)||2 (6)

was found to satisfy

||xi − xi−1||2 ≤ R2

i
(7)

for i ≥ 1. Very recently in [32], this was improved to

||xi − xi−1||2 ≤
(
1 − 1

i

)i−1 R2

i
, (8)

which is exact when dimH ≥ 2. Such exact worst-case with dimH = 2 given in
[32] will be visited at the end of Sect. 4. The bound (8) is asymptotically e-times
lower than (7), where e is Euler’s number. When we additionally assume the μ-strong
monotonicity, the proximal point method has a linear rate [7, Example 23.40] [59]

||xi+1 − xi ||2 ≤
(

1

1 + λμ

)2

||xi − xi−1||2 (9)

for i ≥ 1, which is exact considering the case Mx = μx with dimH = 1.
For a convex minimization of f ∈ F(H), [66, Conjecture 4.2] conjectures that the

proximal point method satisfies

||xi − xi−1||2 ≤ R2

i2
(10)

for i ≥ 1, which is faster than (8) for maximally monotone operators. In addition, the
O(1/i) worst-case rate of the proximal point method with respect to the cost function
was studied in [33, Theorem 2.1], and this was improved by a constant 2 in [66,
Theorem 4.1]
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Accelerated proximal point method for maximally monotone… 61

f (xi ) − f (x∗) ≤ R2

4λi
(11)

for i ≥ 1 and some x∗ ∈ X∗(∂ f ) with ||x0 − x∗|| ≤ R.

Remark 2.1 The results for the proximal point method can be applied to a precon-
ditioned proximal point method. Let L ∈ B(H,H) be invertible. Then, L∗ML is
maximally monotone for M ∈ M(H) [7, Proposition 23.25], and the corresponding
proximal point method is

x̃i+1 = JλL∗ML(x̃i ) = (I + λL∗ML)−1 x̃i . (12)

Introducing xi = Lx̃i and P = (LL∗)−1 yields the following equivalent precondi-
tioned proximal point method

xi+1 = (P + λM)−1Pxi . (13)

So, for example, the inequality (7) leads to the preconditioned fixed-point residual
bound for the preconditioned proximal point method

〈P(xi − xi−1), xi − xi−1〉 ≤ R2

i
(14)

for i ≥ 1, and for some x∗ ∈ X∗(M) with 〈P(x0 − x∗), x0 − x∗〉 ≤ R2. This is
particularly useful when considering the PDHGmethod [11,13,25], [35, Lemma 2.2],
which is an instance of a preconditioned proximal point method. We will revisit this
in Sect. 6.2.

2.3 Existing accelerations for proximal point method

This section reviews existing accelerations of proximal point method for convex min-
imization with respect to the cost function. To the best of our knowledge, there is no
other type of proximal point methods that guarantees accelerated worst-case rates.

For convex minimization, Güler [34] developed the following two accelerated ver-
sions, inspired by Nesterov’s fast gradient method [51,52]. The following is the first
accelerated version of the proximal point method in [34] which is an instance of FISTA
[8]. The original version in [34] includes some variation with an iteration-dependent
λi , rather than a fixed constant λ (see also [5] for choosing λi appropriate for further
acceleration). This paper focuses on a fixed constant λ, and we leave its extension to
a varying constant λi as future work.
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Güler’s First Accelerated Proximal Point Method in [34, Sec. 2]

Input: f ∈ F(H), x0 = y0 ∈ H, λ ∈ R++, t0 = 1.

For i = 0, 1, . . .

xi+1 = Jλ∂ f ( yi ),

ti+1 =
1 +

√
1 + 4t2i
2

,

yi+1 = xi+1 + ti − 1

ti+1
(xi+1 − xi ).

The sequence generated by the Güler’s first accelerated proximal point method
satisfies [34, Theorem 2.3], [8, Theorem 4.4]

f (xi ) − f (x∗) ≤ R2

2λt2i−1

≤ 2R2

λ(i + 1)2
(15)

for i ≥ 1 and for some x∗ ∈ X∗(∂ f ) with ||x0 − x∗|| ≤ R. The following is another
accelerated proximal point method by Güler [34], which the formulation is similar to
those of the optimized gradient methods [37,39,40].

Güler’s Second Accelerated Proximal Point Method in [34, Appendix]

Input: f ∈ F(H), x0 = y0 ∈ H, λ ∈ R++, t0 = 1.

For i = 0, 1, . . .

xi+1 = Jλ∂ f ( yi ),

ti+1 =
1 +

√
1 + 4t2i
2

,

yi+1 = xi+1 + ti − 1

ti+1
(xi+1 − xi ) + ti

ti+1
(xi+1 − yi ).

The sequence generated by Güler’s second accelerated proximal point method sat-
isfies [34, Theorem 6.1] for i ≥ 1

f (xi ) − f (x∗) ≤ R2

4λt2i−1

≤ R2

λ(i + 1)2
, (16)

which is twice smaller than (15).

2.4 Main contribution

To accelerate the worst-case rate of the proximal point method for maximally mono-
tone operators, the relaxation and the inertia (i.e., an implicit version of the heavy
ball method [55], or equivalently, Nesterov’s and Güler’s accelerating technique
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[34,51,52]) have been studied in [1,3,6,15,29].However, none of themguarantee accel-
erated rates. Therefore, the main contribution of this paper is to develop a method that
has a fast O(1/i2) rate with respect to the fixed-point residual, improving upon the
O(1/i) rate of the proximal point method in (7) and (8).

This paper considers the following general proximal point method with step coef-
ficients {hi+1,k+1}ik=0 for reusing previous and current updates {xk+1 − yk}ik=0. This
includes the proximal point method, the accelerated methods via the relaxation and
the inertia [1,3,6,15,29], and the proposed accelerated method.

General Proximal Point Method

Input: M ∈ M(H), y0 ∈ H, λ ∈ R++.

For i = 0, 1, . . .

xi+1 = JλM( yi ),

yi+1 = yi +
i∑

k=0

hi+1,k+1(xk+1 − yk).

This paper next uses the PEP approach to find the choice of {hi+1,k+1}ik=0 that
guarantees an accelerated rate. While the formulation of the general proximal point
method is inefficient in general, the proposed accelerated method with the specific
choice of {hi+1,k+1}ik=0 found by PEP has an efficient equivalent form. This form is
similar to the other accelerated methods with the relaxation and/or the inertia [1,3,6,
15,29].

3 Performance estimation problem for maximally monotone
operators

This section uses the performance estimation problem (PEP) approach [21,66,67] to
analyze the general proximal point method for maximally monotone operators, in
terms of the fixed-point residual (6). This was recently studied in [32] for the proximal
point method, providing the exact rate (8). The same authors [31] also used the PEP
to study the exact worst-case rate for the ergodic sequence of the (relaxed) proximal
point method for the variational inequalities. Similarly, [66] used PEP to analyze the
worst-case rate of the proximal point method for convex minimization in terms of the
fixed-point residual and the cost function, yielding (10) and (11), respectively.

Building upon [21,31,32,66,67], the worst-case rate of the general proximal point
method after N iterations for decreasing the fixed-point residual (6) under the initial
distance condition (4) can be computed by

max
M∈M(H)

max
x1,...,xN∈H,
y0,..., yN−1∈H,

x∗∈X∗(M)

1

R2 ||xN − yN−1||2

subject to xi+1 = JλM( yi ), i = 0, . . . , N − 1,
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yi+1 = yi +
i∑

k=0

hi+1,k+1(xk+1 − yk), i = 0, . . . , N − 2,

|| y0 − x∗||2 ≤ R2. (17)

This is an infinite-dimensional problem due to the constraint M ∈ M(H), which is
impractical to solve. PEP in [21] further introduced a series of steps that reformulate
such impractical problem into a tractable problem, which we apply to (17) step by
step below.

The first step is to reformulate the problem (17) into a finite-dimensional problem.
[61, Fact 1] implies that one can replace M ∈ M(H) in (17) by a set of inequality
constraints (1) forM ∈ M(H) on the finite number of pairs of points {x1, . . . , xN , x∗}
without strictly relaxing the problem (17). In specific, such constraints are

〈xi − x j , qi − q j 〉 ≥ 0, (18)

for all i, j ∈ {1, . . . , N , ∗}, with additional variables qi ∈ Mxi for i = 1, . . . , N and
q∗ = 0 ∈ Mx∗. Then the resulting equivalent problem of (17) is

max
x1,...,xN ,x∗∈H,
y0,..., yN−1∈H,

q1,...,qN∈H

1

R2 ||xN − yN−1||2

subject to 〈xi − x j , qi − q j 〉 ≥ 0, i < j = 1, . . . , N ,

〈xi − x∗, qi 〉 ≥ 0, i = 1, . . . , N ,

xi+1 = yi − λqi+1, i = 0, . . . , N − 1,

yi+1 = yi − λ

i∑
k=0

hi+1,k+1qk+1, i = 0, . . . , N − 2,

|| y0 − x∗||2 ≤ R2. (19)

Further removing xi and using the change of variables

gi :=
λ

R
qi , i = 1, . . . , N , (20)

simplify the problem (19) as

max
y0,..., yN−1,x∗∈H,

g1,...,gN∈H
||gN ||2

subject to
1

R
〈 yi−1 − Rgi − y j−1 + Rg j , gi − g j 〉 ≥ 0, i < j = 1, . . . , N ,

1

R
〈 yi−1 − Rgi − x∗, gi 〉 ≥ 0, i = 1, . . . , N ,

123



Accelerated proximal point method for maximally monotone… 65

yi+1 = yi − R
i∑

k=0

hi+1,k+1gk+1, i = 0, . . . , N − 2,

|| y0 − x∗||2 ≤ R2. (21)

As in [21,31,32,66,67], we next introduce the Gram matrix

Z =

⎡
⎢⎢⎢⎢⎢⎣

||g1||2 〈g1, g2〉 · · · 〈g1, gN 〉 1
R 〈g1, y0 − x∗〉

〈g1, g2〉 ||g2||2 · · · 〈g2, gN 〉 1
R 〈g2, y0 − x∗〉

...
...

. . .
...

...

〈g1, gN 〉 · · · ||gN ||2 1
R 〈gN , y0 − x∗〉

1
R 〈g1, y0 − x∗〉 · · · 1

R 〈gN , y0 − x∗〉 1
R2 || y0 − x∗||2

⎤
⎥⎥⎥⎥⎥⎦

(22)

to relax the problem as

max
Z∈SN+1+

tr{uNu�
N Z}

subject to tr{Ai, j (h)Z} ≤ 0, i < j = 1, . . . , N ,

tr{Bi (h)Z} ≤ 0, i = 1, . . . , N ,

tr{CZ} ≤ 1, (23)

where {ui }N+1
i=1 is the canonical basis of RN+1 and

⎧⎪⎨
⎪⎩
Ai, j (h):=(ui − u j ) � (ui − u j ) − (ui − u j ) � ∑ j−2

l=i−1

∑l
k=0 hl+1,k+1uk+1, i < j = 1, . . . , N ,

Bi (h):=uiu�
i − ui � uN+1 + ui � ∑i−2

l=0
∑l

k=0 hl+1,k+1uk+1, i = 1, . . . , N ,

C:=uN+1u�
N+1

with the outer product operator u � v:= 1
2 (uv� + vu�). If dimH ≥ N + 1, the

problems (17) and (23) are equivalent, based on the following lemma similar to [61,
Lemma 1].

Lemma 3.1 If dimH ≥ N + 1, then

Z ∈ SN+1+ ⇔ ∃ g1, g2, . . . , gN ,
1

R
( y0 − x∗) ∈ H

such that Z = expression of (22).

For simplicity in later analysis, we discard some constraints as

max
Z∈SN+1+

tr{uNu�
N Z}

subject to tr{Ai−1,i (h)Z} ≤ 0, i = 2, . . . , N ,

tr{BN (h)Z} ≤ 0,

tr{CZ} ≤ 1, (24)
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which does not affect the result in the paper, i.e., the optimal values of (23) and (24)
are found to be numerically equivalent for the method proposed in this paper. Finally,
we construct the associated Lagrangian dual of (24)

BD(h):= min
a2,...,aN ,bN ,c∈R

c (D)

subject to
N∑
i=2

ai Ai−1,i (h) + bN BN (h) + cC − uNu�
N � 0,

a2, . . . , aN , bN , c ≥ 0,

where a2, . . . , aN , bN , c are dual variables associated with the constraints of (24),
respectively. Then, for any given h for the general proximal point method, one can
compute its (upper bound of) worst-case fixed-point residual by numerically solv-
ing (D) using any SDP solver. For some choices of h as for the proximal point method
in [32], it might be possible to analytically solve (D); [32] analytically solved (D) for
the proximal point method yielding the rate (8). This paper provides another choice
of h that provides an analytical solution to (D) with an accelerated rate.

4 Accelerating the proximal point method for maximally monotone
operators

Using the dual problem (D), this section develops an accelerated version of the prox-
imal point method via PEP:

min
h

BD(h), (HD)

which is studied in [20–22,37–40] for certain classes of problems and methods. The
problem is non-convex but convex for the variables (a2, . . . , aN , bN , c) given h and
for the variables (c, h) given (a2, . . . , aN , bN ). Therefore, we used a variant of alter-
nating minimization that alternatively optimizes over (a2, . . . , aN , bN , c) given h and
over (c, h) given (a2, . . . , aN , bN ) to find a minimizer using a SDP solver [16,30].
Inspired by numerical results, the following lemma specifies a feasible point of (HD)
analytically. We do not have a guarantee that such point is a (unique) minimizer
of (HD).

Lemma 4.1 The following

hi,k =
{

− 2k
i(i+1) , i = 1, . . . , N − 1, k = 1, . . . , i − 1,

2i
i+1 , i = 1, . . . , N − 1, k = i,

(25)

ai = 2(i − 1)i

N 2 , i = 2, . . . , N , bN = 2

N
, c = 1

N 2 (26)

is a feasible point of (D) and (HD).
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Proof It is obvious that a2, . . . , aN , bN , c are nonnegative, so we are only left to show
the positive semidefinite condition in (D). Since

N∑
i=2

ai Ai−1,i (h) + bN BN (h) + cC − uNu�
N

=
N∑
i=2

2(i − 1)i

N 2

[
(ui−1 − ui ) � (ui−1 − ui )

−(ui−1 − ui ) �
(
2(i − 1)

i
ui−1 −

i−3∑
k=0

2(k + 1)

(i − 1)i
uk+1

)]

+ 2

N

[
uNu�

N − uN � uN+1 + uN �
N−2∑
l=0(

2(l + 1)

l + 2
ul+1 −

l−1∑
k=0

2(k + 1)

(l + 1)(l + 2)
uk+1

)]

+ 1

N 2 uN+1u�
N+1 − uNu�

N

=
N−1∑
i=2

[
2(i − 1)i

N 2 + 2i(i + 1)

N 2

(
1 − 2i

i + 1

)]
uiu�

i +
[
2(N − 1)N

N 2

+ 2

N
− 1

]
uNu�

N + 1

N 2 uN+1u�
N+1

+
N−1∑
i=2

[
2(i − 1)i

N 2

(
−2 + 2(i − 1)

i

)
+ 2i(i + 1)

N 2

2(i − 1)

i(i + 1)

]
ui−1 � ui

+
[
2(N − 1)

N

(
−2 + 2(N − 1)

N

)
+ 2

N

2(N − 1)

N

]
uN−1 � uN − 2

N
uN � uN+1

+
N−1∑
i=3

i−3∑
k=0

[
−2(i − 1)i

N 2

2(k + 1)

(i − 1)i
+ 2i(i + 1)

N 2

2(k + 1)

i(i + 1)

]
uk+1 � ui

+
N−3∑
k=0

[
−2(N − 1)N

N 2

2(k + 1)

(N − 1)N

+ 2

N

(
2(k + 1)

k + 2
−

N−2∑
l=k+1

2(k + 1)

(l + 1)(l + 2)

)]
uk+1 � uN

= uNu�
N + 1

N 2 uN+1u�
N+1 − 2

N
uN � uN+1

=
(
uN − 1

N
uN+1

)(
uN − 1

N
uN+1

)�
� 0,

the given point is a feasible point of (HD). ��
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Before providing the worst-case rate of the general proximal point method with h
in (25), we develop its efficient formulation below. This has a low computational cost
per iteration, comparable to that of the proximal point method. Note that this may not
be the only efficient form for h in (25).

Proposed Accelerated Proximal Point Method for Maximally Monotone Operators

Input: M ∈ M(H), x0 = y0 = y−1 ∈ H, λ ∈ R++.

For i = 0, 1, . . .

xi+1 = JλM ( yi ),

yi+1 = xi+1 + i

i + 2
(xi+1 − xi ) − i

i + 2
(xi − yi−1).

Proposition 4.1 The sequences {xi } and { yi } generated by the general proximal point
method with step coefficients {hi,k} in (25) are identical to the corresponding sequence
generated by the proposed accelerated proximal point method starting from the same
initial point.

Proof We use induction, and for clarity we use the notation x′
1, x

′
2, . . . and y′

0, y
′
1, . . .

for the general proximal point method with (25). It is obvious that x0 = y′
0 = y0,

x′
1 = x1 = y1, and we have

y′
1 = y′

0 + h1,1(x′
1 − y′

0) = x′
1 = y1.

Similarly, it is obvious that x′
2 = x2, and we have

y′
2 = y′

1 +
1∑

k=0

h2,k+1(x′
k+1 − y′

k) = y1 + 4

3
(x2 − y1) − 1

3
(x1 − y0)

= x2 + 1

3
(x2 − x1) − 1

3
(x1 − y0) = y2.

It is then also obvious that x′
3 = x3. Assuming x′

l = xl for l = 1, . . . , i + 1 and
y′
l = yl for l = 0, . . . , i , for some i ≥ 2, we have

y′
i+1 = y′

i +
i∑

k=0

hi+1,k+1(x′
k+1 − y′

k)

= yi + 2(i + 1)

i + 2
(xi+1 − yi ) +

i−1∑
k=0

(
− 2(k + 1)

(i + 1)(i + 2)

)
(xk+1 − yk)

= yi +
(
1 + i

i + 2

)
(xi+1 − yi ) + i

i + 2

i−1∑
k=0

(
−2(k + 1)

i(i + 1)

)
(xk+1 − yk)

= xi+1 + i

i + 2
(xi+1 − yi ) + i

i + 2
( yi + yi−1 − 2xi )

= xi+1 + i

i + 2
(xi+1 − xi ) − i

i + 2
(xi − yi−1) = yi+1,
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where the fourth equality uses

yi = yi−1 + 2i

i + 1
(xi − yi−1) +

i−2∑
k=0

(
−2(k + 1)

i(i + 1)

)
(xk+1 − yk)

= yi−1 + 2(xi − yi−1) +
i−1∑
k=0

(
−2(k + 1)

i(i + 1)

)
(xk+1 − yk).

��
The proposed accelerated method has the inertia term i

i+2 (xi+1 − xi ), similar
to Nesterov’s acceleration [51,52] and Güler’s methods [34]. However, the proposed
method also has a correction term− i

i+2 (xi − yi−1), which is essential to guarantee an
accelerated rate.Without such correction term, the acceleratedmethod can diverge, for
which we provide an example at the end of this section. We leave further understand-
ing the role of the proposed correction term as future work, possibly via a differential
equation perspective as in [64] for Nesterov’s acceleration. Note that a different cor-
rection term for Nesterov’s acceleration has been studied via the differential equation
analysis for convex minimization [4,63].

The following theorem provides an accelerated rate of the proposed method in
terms of the fixed-point residual.1

Theorem 4.1 Let M ∈ M(H) and let x0, y0, x1, y1, . . . ∈ H be generated by the
proposed accelerated proximal point method. Assume that ||x0 − x∗|| ≤ R for a
constant R > 0 and for some x∗ ∈ X∗(M). Then for any i ≥ 1,

||xi − yi−1||2 ≤ R2

i2
. (27)

Proof Using Lemma 4.1, the general proximal point method with h (25) satisfies

1

R2 ||xN − yN−1||2 ≤ BD(h) ≤ 1

N 2 . (28)

Since the iterates of the method are recursive and do not depend on a given N , the
bound (28) generalizes to the intermediate iterates of the method. By Proposition 4.1,
the proposed accelerated proximal point method also satisfies the bound (28), which
concludes the proof. ��

The bound (8) of the proximal point method was found to be exact in [32] by
specifying a certain operator M achieving the bound (8) exactly; that is, for given

1 The convergence of the fixed-point residual does not guarantee the convergence of the sequence of
the iterates {xi }. We leave analyzing the convergence of the sequence as future work, possibly based on
the convergence analysis in [10] for Nesterov’s fast gradient method [51,52] and FISTA [8] in convex
minimization.
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Fig. 1 Solving a worst-case monotone inclusion problem of the proximal point method with M (29) with
N = 100; (left) the fixed-point residual vs. iteration, (right) the trajectory of the iterates xi = [xi,1, xi,2]�
(markers are displayed every 5th iterations)

N ≥ 2, the proximal point method exactly achieves the bound (8) for the operator

M
[
u
v

]
= 1

λ
√
N − 1

[
0 1

−1 0

] [
u
v

]
, (29)

with an initial point x0 = [1 0]�. Such exact analysis is important since it reveals the
worst-case behavior of the iterates of the method. However, we were not able to show
that the bound (27) of the proposed method is exact, which we leave as future work.
Instead, we compared the behavior of the iterates of the proximal point method and its
accelerated variants on the operator M in (29). Figure 1 compares the proximal point
method, Güler’s first accelerated method with M instead of ∂ f (i.e., an instance of the
inertiamethod) and the proposed acceleratedmethod, with an initial point x0 = [1 0]�
and the optimal point x∗ = 0. Note that the Güler’s first method is almost equivalent
to the proposed accelerated method without the correction term − i

i+2 (xi − yi−1),
and this exhibits diverging behavior in Fig. 1. The figure illustrates that the correction
term greatly helps the iterates to rapidly converge by reducing the radius of the orbit
of the iterates, compared to other methods.

We further investigate the behavior of the proposed method for a convex–concave
saddle-point problem

min
u∈H1

max
v∈H2

φ(u, v), (30)

where H1 and H2 denote real Hilbert spaces equipped with inner product 〈·, ·〉, and
φ(·, v) ∈ F(H1), −φ(u, ·) ∈ F(H2), which we further study in Sects. 5 and 6.1. The
saddle subdifferential of φ,

[
∂uφ(u, v)

∂v(−φ(u, v))

]
, (31)
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is monotone [57]. The proposed accelerated method applied to (31) with xi :=(ui , vi )
and x∗:=(u∗, v∗) (see Sect. 6.1 for details) satisfies

φ(ui , v∗) − φ(u∗, vi ) ≤ ||u0 − u∗||2 + ||v0 − v∗||2
4λi

(32)

for any i ≥ 1. This is numerically conjectured by the PEP analysis in (19) with the
objective function 1

R ||xN − yN−1||2 and the inequality 〈xN − x∗, qN 〉 ≥ 0 in (19)
replaced by φ(uN , v∗) − φ(u∗, vN ) and 〈xN − x∗, qN 〉 ≥ φ(uN , v∗) − φ(u∗, vN ),
respectively.2

5 Restarting the accelerated proximal point method for strongly
monotone operators

For strongly monotone operators, the proximal point method has a linear rate (9),
whereas the proposed accelerated method is not guaranteed to have such a fast rate.
Technically, one should be able to find an accelerated method for strong monotone
operators via PEP, as we did for the monotone operators in the previous section.
However, the resulting PEP problem, a reminiscent of (HD), is much more difficult to
solve, and we leave it as future work. Instead, we consider a fixed restarting technique
in [50, Section 11.4], [53, Section 5.1] that restarts an accelerated method with a
sublinear rate every certain number of iterations to yield a fast linear rate, particularly
for M ∈ Mμ(H) in this section.

Suppose one restarts the proposed method every k (inner) iterations by initializing
the ( j + 1)th outer iteration x j+1,0 = y j+1,0 = y j+1,−1 by x j,k , where x j,l and
y j,l denote iterates at the j th outer iteration and lth inner iteration for j = 0, 1, . . .
and l = −1, 0, 1, . . . , k. Using the rate (27) (with R = ||x j,0 − x∗||) and the strong
monotonicity condition (2), we have

||x j,k − y j,k−1||2 ≤ ||x j,0 − x∗||2
k2

≤ 1

μ2k2
||Mx j,0||2 (33)

for j = 0, 1, . . .. Since 1
λ
(x j−1,k − y j−1,k−1) ∈ Mx j,0, we have a linear rate

||x j,k − y j,k−1||2 ≤ 1

λ2μ2k2
||x j−1,k − y j−1,k−1||2. (34)

For a given N = jk total number of steps, minimizing the overall rate with respect
to k yields an optimal choice of the restarting interval given by kopt ≈ e

λμ
, where e is

Euler’s number. The corresponding linear rate is O((eλμ/e)−2N ).

2 A convex–concave function φ satisfies φ(u∗, vN ) ≥ φ(uN , vN ) + 〈u∗ − uN , qu,N 〉 for qu,N ∈
∂uφ(uN , vN ) and −φ(uN , v∗) ≥ −φ(uN , vN ) + 〈v∗ − vN , −qv,N 〉 for −qv,N ∈ ∂v(−φ(uN , vN )).
Adding these two inequalities yields 〈xN − x∗, qN 〉 ≥ φ(uN , v∗) − φ(u∗, vN ), where xN :=(uN , vN )

and qN :=(qu,N ,−qv,N ).
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We further investigate the behavior of the restarting technique for a saddle-point
problem (30) with an assumption that φ is strongly-convex–strongly-concave, i.e.,
φ(·, v) − μ

2 || · ||2 ∈ F(H1) and −φ(u, ·) − μ
2 || · ||2 ∈ F(H2). The associated saddle

subdifferential (31) isμ-strongly monotone. For such case, using the rate (32), and the
inequalities φ(u∗, v∗) + μ

2 ||u − u∗||2 ≤ φ(u, v∗) and −φ(u∗, v∗) + μ
2 ||v − v∗||2 ≤

−φ(u∗, v), the proposed method with restarting every k iterations satisfies

φ(u j,k, v∗) − φ(u∗, v j,k) ≤ 1

2λμk
(φ(u j,0, v∗) − φ(u∗, v j,0)) (35)

for j = 0, 1, . . .. The associated optimal restarting interval is kφ
opt ≈ e

2λμ
, which is

twice smaller than kopt. The corresponding linear rate is also O((eλμ/e)−2N ), whereas
the proximal point method has the rate O((1 + λμ)−2N ) in (9). For any given posi-
tive μ, there is no positive λ that satisfies both kφ

opt(λ, μ) ≥ 1 and eλμ/e > 1 + λμ.
This contrasts with the fact that the worst-case rate of optimally restarting the pro-
posed method is not slower than that of the proximal point method. This implies that
the bounds (34) and (35) are not exact, and we leave finding their tight bounds as
future work. The numerical experiment below (and those in Sect. 6) suggests that the
restarting technique can perform better than the proximal point method.

We consider a toy problem that is a combination of the worst-case problems in
M(H) and Mμ(H) for the proximal point method:

M
[
u
v

]
=

(
1

λ
√
N − 1

[
0 1

−1 0

]
+

[
μ 0
0 μ

]) [
u
v

]
, (36)

which is the saddle subdifferential operator of φ(u, v) = μ
2 u

2+ 1
λ
√
N−1

uv− μ
2 v2. We

choose N = 100, λ = 1 andμ = 0.02. The optimal restarting intervals are kopt ≈ 136

and kφ
opt ≈ 68, and we run 200 iterations in the experiment, where restarting intervals

17, 34, 68, and 136 are considered. Figure 2 compares the proximal point method,
its accelerated variants, and the proposed accelerated method with restarting, with
an initial point x0 = [1 0]� and the optimal point x∗ = 0. Figure 2 presents that
the proximal point method has a linear rate that is faster than the proposed method
(with a sublinear rate), while the restarting greatly accelerates the proposed method
with a fast linear rate. Figure 2 also illustrates that the optimal restarting intervals
kopt and kφ

opt for strongly monotone operators and strongly-convex–strongly-concave
functions, respectively, are not optimal for this specific case. Examples in the next
section also present that the restarting can be useful even without strong monotonicity
(but possibly with local strong monotonicity).

6 Applications of the accelerated proximal point method

As mentioned earlier, the proximal point method for maximally monotone opera-
tors include various well-known convex optimization methods. These include the
augmented Lagrangian (i.e., the method of multipliers), the proximal method of mul-
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Fig. 2 Solving a strongly monotone inclusion problem with M (36); (left) the fixed-point residual versus
iteration, (right) the function residual versus iteration

tipliers, and ADMM. The augmented Lagrangian method is equivalent to the proximal
point method directly solving the dual convex minimization problem [58], so Güler’s
methods [34] already provide acceleration, whereas other instances of the proximal
point method have no known accelerations yet. Thus, this section introduces accelera-
tions to well-known instances of the proximal point method, which were not possible
previously to the best of our knowledge (under this paper’s setting).

6.1 Accelerating the proximal point method for convex–concave saddle-point
problem

This section considers a convex–concave saddle-point problem (30), where the associ-
ated saddle subdifferential operator (31) is monotone. [59] applied the proximal point
method on such operator to solve the convex–concave saddle-point problem, and this
section further applies the proposed acceleration to such proximal point method as
below.

Accelerated Proximal Point Method for Convex–Concave Saddle-Point Problem

Input: φ(·, v) ∈ F(H1), −φ(u, ·) ∈ F(H2), û0 ∈ H1, v̂0 ∈ H2,

x0 = y0 = y−1 = (û0, v̂0), λ ∈ R++.

For i = 0, 1, . . .

xi+1 = (ui+1, vi+1) = arg min
u∈H1

max
v∈H2

{
φ(u, v) + 1

2λ
||u − ûi ||2 − 1

2λ
||v − v̂i ||2

}
,

yi+1 = (ûi+1, v̂i+1) = xi+1 + i

i + 2
(xi+1 − xi ) − i

i + 2
(xi − yi−1).

One primary use of this accelerated method is the following convex–concave
Lagrangian problem

min
u∈H1

max
v∈H2

{L(u, v):= f (u) + 〈v, Au − b〉} , (37)

123



74 D. Kim

associated with the linearly constrained problem

min
u∈H1

f (u)

subject to Au = b, (38)

where A ∈ B(H1,H2) and b ∈ H2. The resulting method is called the proximal
method of multipliers in [58], and applying the proposed acceleration to this method
leads to below.

Accelerated Proximal Method of Multipliers

Input: φ(·, v) ∈ F(H1), −φ(u, ·) ∈ F(H2), û0 ∈ H1, v̂0 ∈ H2,

x0 = y0 = y−1 = (û0, v̂0), λ ∈ R++.

For i = 0, 1, . . .

ui+1 = arg min
u∈H1

{
L(u, v̂i ) + λ

2
||Au − b||2 + 1

2λ
||u − ûi ||2

}
,

xi+1 = (ui+1, v̂i + λ(Aui+1 − b)),

yi+1 = (ûi+1, v̂i+1) = xi+1 + i

i + 2
(xi+1 − xi ) − i

i + 2
(xi − yi−1).

Note that this method without the acceleration and the term 1
2λ ||u−ui ||2 reduces to

the augmented Lagrangianmethod. This method has an advantage over the augmented
Lagrangian method and its accelerated variants; the primal iterate ui+1 is uniquely
defined with a better conditioning.

Example 6.1 Weapply the accelerated proximalmethodofmultipliers to a basis pursuit
problem

min
u∈Rd1

||u||1
subject to Au = b, (39)

where A ∈ Rd2×d1 and b ∈ Rd2 . In the experiment, we choose d1 = 100, d2 = 20,
and randomly generated A. A true sparse utrue is randomly generated followed by a
thresholding to sparsify nonzero elements, and b is then given by Autrue. We run 100
iterations of the proximal method of multipliers and its variants with λ = 0.01 and
initial x0 = 0. Since the ui+1-update does not have a closed form, we used a sufficient
number of iterations to solve the ui+1-update using the strongly convex version of
FISTA [8] in [12, Theorem 4.10].

Figure 3 compares the proximal method of multipliers and its accelerated variants.
Similar to Fig. 1, Güler’s first accelerated version diverges, while the proposedmethod
has accelerating behavior, compared to the non-accelerated version. The proposed
method exhibits an oscillation in Fig. 3 (and a subtle oscillation in Fig. 1). This might
be due to high momentum, owing from the acceleration, discussed in [54]. So in Fig. 3
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Fig. 3 Solving a basis pursuit
problem (39); the fixed-point
residual versus iteration
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we heuristically restarted the method every 30 iterations to avoid such oscillation and
accelerate, as suggested in [54]. Developing an approach to appropriately choosing a
restarting interval or adaptively restarting the method as in [54] for such problem are
left as future work.3

6.2 Accelerating the primal–dual hybrid gradient method

This section considers a linearly coupled convex–concave saddle-point problem

min
u∈H1

max
v∈H2

{φ(u, v) ≡ f (u) + 〈Ku, v〉 −g(v)} , (40)

where f ∈ F(H1), g ∈ F(H2) and K ∈ B(H1,H2). One widely known method for
such problem is the primal–dual hybrid gradient (PDHG) method [11,25], which is
a preconditioned proximal point method (with λ = 1) for the saddle subdifferential
operator of φ (31) [13,35]. The associated preconditioner is

P =
[ 1

τ
I −K∗

−K 1
σ
I

]
, (41)

which is positive definite when τσ ||K ||2 < 1, where ||K || = sup||x||≤1 ||Kx||. As
mentioned in remark 2.1, we can directly apply our results to the PDHG method as
below.

3 We found that adaptively restarting the method when the fixed-point residual increases seems to be a
good option in practice.
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Accelerated PDHGMethod

Input: f ∈ F(H1), g ∈ F(H2), K ∈ B(H1,H2), û0 ∈ H1, v̂0 ∈ H2, τσ ||K ||2 < 1,

x0 = y0 = y−1 = (û0, v̂0).

For i = 0, 1, . . .

ui+1 = arg min
u∈H1

{
f (u) + 〈Ku, v̂i 〉 + 1

2τ
||u − ûi ||2

}

vi+1 = arg min
v∈H2

{
g(v) − 〈K (2ui+1 − ûi ), v〉 + 1

2σ
||v − v̂i ||2

}

xi+1 = (ui+1, vi+1)

yi+1 = (ûi+1, v̂i+1) = xi+1 + i

i + 2
(xi+1 − xi ) − i

i + 2
(xi − yi−1)

Corollary 6.1 Assume that 〈P(x0 − x∗), x0 − x∗〉 ≤ R2 for some x∗ ∈ X∗(M). The
PDHG method satisfies

〈P(xi − xi−1), xi − xi−1〉 ≤
(
1 − 1

i

)i−1 R2

i
,

and the proposed accelerated PDHG method satisfies

〈P(xi − yi−1), xi − yi−1〉 ≤ R2

i2
.

Example 6.2 We apply the accelerated PDHG method to the bilinear game problem

min
u∈Rd1

max
v∈Rd2

〈a, u〉+ 〈Ku, v〉− 〈b, v〉, (42)

where K ∈ Rd2×d1 , a ∈ Rd1 and b ∈ Rd2 . Themain part of the correspondingmethod
is as below:

ui+1 = ûi − τ(K∗v̂i + a)

vi+1 = v̂i + σ(K (2ui+1 − ûi ) − b). (43)

In the experiment, we choose d1 = 1000, d2 = 500, and amatrix K and vectors a, b
are randomly generated. We run 100 iterations of the PDHG method and its variants
with initial û0 = [10 · · · 10]�, v̂0 = [10 · · · 10]� and τ = σ = 0.99

||K || . Figure 4
plots the preconditioned fixed-point residual, where Güler’s first accelerated method
diverges. The PDHG method and its proposed accelerated variant are comparable in
this experiment, and heuristically restarting the accelerated method every 10 iterations
yields a big acceleration. While [11] found restarting (reinitializing) a relaxed PDHG
method not useful, our experiment suggests that restarting can be effective in some
practical cases.
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Fig. 4 Solving a bilinear game
problem (42) by a
preconditioned proximal point
method; the preconditioned
fixed-point residual versus
iteration. J̃ M,P :=(P + M)−1P
denotes the preconditioned
resolvent operator
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6.3 Accelerating the Douglas–Rachford splittingmethod

This section considers a monotone inclusion problem in a form

Find x ∈ H subject to 0 ∈ (M1 + M2)x (44)

for M1, M2 ∈ M(H), where JρM1 and JρM2 are more efficient than Jρ(M1+M2) for
a positive real number ρ. For such problem, the Douglas–Rachford splitting method
[19,44] that iteratively applies the operator

Gρ,M1,M2 :=JρM1◦(2JρM2 − I) + (I − JρM2) (45)

has been found to be effective in many applications including ADMM, which we
discuss in the next section.

In [24, Theorem4], theDouglas–Rachford operator (45)was found to be a resolvent
JMρ,M1,M2

of a maximally monotone operator

Mρ,M1,M2 :=G−1
ρ,M1,M2

− I . (46)

In other words, the Douglas–Rachford splitting method is an instance of the proximal
point method (with λ = 1) as

νi+1 = JMρ,M1,M2
(νi ) = Gρ,M1,M2(νi ) (47)

for i = 0, 1, . . .. Therefore, we can apply the proposed acceleration to the Douglas–
Rachford splitting method as below.

123



78 D. Kim

Accelerated Douglas–Rachford Splitting Method

Input: M1, M2 ∈ M(H), ν0 = η0 = η−1 ∈ H, ρ ∈ R++.

For i = 0, 1, . . .

νi+1 = Gρ,M1,M2(ηi )

ηi+1 = νi+1 + i

i + 2
(νi+1 − νi ) − i

i + 2
(νi − ηi−1)

Using (8) and (27), we have the following worst-case rates for the Douglas–
Rachford splitting method and its accelerated variant. Finding exact bounds for the
Douglas–Rachford splitting method and its variant is left as future work; [61] used
PEP to analyze the exact worst-case rate of Douglas–Rachford splitting method under
some additional conditions.

Corollary 6.2 Assume that ||ν0 − ν∗|| ≤ R for some ν∗ ∈ X∗(Mρ,M1,M2). The
Douglas–Rachford splitting method satisfies

||νi − ηi−1||2 ≤
(
1 − 1

i

)i−1 R2

i
, (48)

and the proposed accelerated Douglas–Rachford splitting method satisfies

||νi − ηi−1||2 ≤ R2

i2
. (49)

[23,24] illustrated that ADMM is equivalent to the Douglas–Rachford splitting
method on the dual problem, so we naturally develop an accelerated ADMM in the
next section and provide numerical experiment of the accelerated ADMM and thus
the accelerated Douglas–Rachford splitting method.

6.4 Accelerating the alternating directionmethod of multipliers (ADMM)

Let H1,H2,G be real Hilbert spaces equipped with inner product 〈·, ·〉. This section
considers a linearly constrained convex problem

min
x∈H1,z∈H2

f (x) + g(z)

subject to Ax + Bz = c, (50)

where f ∈ F(H1), g ∈ F(H2), A ∈ B(H1,G), B ∈ B(H2,G) and c ∈ G. Its dual
problem is

max
ν∈G

{− f ∗(−A∗ν) − g∗(−B∗ν) + 〈c, ν〉} , (51)
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where f ∗( y):= supx∈H1
{〈 y, x〉 − f (x)} and g∗( y):= supz∈H2

{〈 y, z〉−g(z)} are the
conjugate functions of f and g, respectively. The dual problem (51) is equivalent to
the following monotone inclusion problem

Find ν ∈ G subject to 0 ∈ −A∂ f ∗(−A∗ν) − B∂g∗(−B∗ν) − c. (52)

We next use the connection between ADMM for solving (50) and the Douglas–
Rachford splitting method for solving (52) in [17, Proposition 9] [60] to develop
an accelerated ADMM, using the accelerated Douglas–Rachford splitting method in
the previous section.

Denoting

M1:= − A∂ f ∗(−A∗·) − c and M2:= − B∂g∗(−B∗·) (53)

converts the problem (52) into a form of the monotone inclusion problem (44). Then
we use the following equivalent form of the accelerated Douglas–Rachford splitting
method to solve (44) with (53):

ζ i+1 = JρM2(ηi )

ξ i+1 = JρM1(2ζ i+1 − ηi )

νi+1 = ηi + (ξ i+1 − ζ i )

ηi+1 = νi+1 + i

i + 2
(νi+1 − νi ) − i

i + 2
(νi − ηi−1) (54)

for i = 0, 1, . . .. Replacing the resolvent operators of M1 and M2 in (53) by mini-
mization steps yields

zi+1 = argmin
z∈H2

{
g(z) + 〈ηi , Bz〉 +ρ

2
||Bz||2

}

ζ i+1 = ηi + ρBzi+1

x̃i+1 = argmin
x∈H1

{
f (x) + 〈ηi + 2ρBzi+1, Ax − c〉+ρ

2
||Ax − c||2

}

ξ i+1 = ηi + ρ(Ax̃i+1 − c) + 2ρBzi+1

νi+1 = ηi + ρ(Ax̃i+1 + Bzi+1 − c)

ηi+1 = νi+1 + i

i + 2
(νi+1 − νi ) − i

i + 2
(νi − ηi−1). (55)

By discarding ζ i and ξ i , and defining

ν̂i :=νi − ρ(Ax̃i − c) and η̂i :=ηi − ρ(Ax̃i − c), (56)

for i = 0, 1, . . ., we have

zi+1 = argmin
z∈H2

{
g(z) + 〈η̂i + ρ(Ax̃i − c), Bz〉 +ρ

2
||Bz||2

}
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= argmin
z∈H2

{
g(z) + 〈η̂i , Ax̃i + Bz − c〉 +ρ

2
||Ax̃i + Bz − c||2

}

x̃i+1 = argmin
x∈H1

{
f (x) + 〈ν̂i+1 + ρBzi+1, Ax − c〉 +ρ

2
||Ax − c||2

}

= argmin
x∈H1

{
f (x) + 〈ν̂i+1, Ax + Bzi+1 − c〉 +ρ

2
||Ax + Bzi+1 − c||2

}

ν̂i+1 = η̂i + ρ(Ax̃i + Bzi+1 − c)

η̂i+1 = ν̂i+1 + i

i + 2
(ν̂i+1 − ν̂i + ρA(x̃i+1 − x̃i ))

− i

i + 2
(ν̂i − η̂i−1 + ρA(x̃i − x̃i−1)). (57)

Then, replacing x̃i by xi+1 and reordering steps appropriately yield the following
accelerated version of ADMM, which reduces to the standard ADMM when we let
η̂i = ν̂i for i = 0, 1, . . ..

Accelerated Alternating Direction Method of Multipliers

Input: f ∈ F(H1), g ∈ F(H2), A ∈ B(H1,G), B ∈ B(H2,G), x0 ∈ H1, z0 ∈ H2, ν̂0 ∈ G, ρ ∈ R++ .

For i = 0, 1, . . .

xi+1 = arg min
x∈H1

{
f (x) + 〈ν̂i , Ax + Bzi − c〉+ ρ

2
||Ax + Bzi − c||2

}

η̂i =
⎧⎨
⎩

ν̂i i = 0, 1,

ν̂i + i−1
i+1 (ν̂i − ν̂i−1 + ρA(xi+1 − xi )) − i−1

i+1 (ν̂i−1 − η̂i−2 + ρA(xi − xi−1)), i = 2, 3, . . .

zi+1 = arg min
z∈H2

{
g(z) + 〈η̂i , Axi+1 + Bz − c〉+ ρ

2
||Axi+1 + Bz − c||2

}

ν̂i+1 = η̂i + ρ(Axi+1 + Bzi+1 − c)

Since

νi − ηi−1 = ν̂i − η̂i−1 − ρ(Axi+1 − Axi ) = ρ(Axi+1 + Bzi − c), (58)

we have the following worst-case rates with respect to the infeasibility for ADMM
and its accelerated version, using (8) and (27).

Corollary 6.3 Assume that ||ν̂0 + ρA(x0 − c) − ν∗|| ≤ R for some ν∗ ∈
X∗(Mρ,−A∂ f ∗(−A∗·)−c,−B∂g∗(−B∗·)). Alternating direction method of multipliers sat-
isfies

||Axi+1 + Bzi − c||2 ≤
(
1 − 1

i

)i−1 R2

ρ2i
, (59)

and the proposed accelerated alternating direction method of multipliers satisfies

||Axi+1 + Bzi − c||2 ≤ R2

ρ2i2
. (60)
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The bound (59) is e-times asymptotically smaller than the known rate for ADMM
in [17, Theorem 15], which originated from the bound (7). Finding exact bounds for
the ADMM and its proposed variant is yet left as future work.

Remark 6.1 Many existing rates for the (preconditioned) ADMMconsider the ergodic
sequences {x̄i } and { z̄i }, where x̄i := 1

i

∑i
l=1 xl and z̄i := 1

i

∑i
l=1 zl (see e.g., [11,13,

17,18]). In particular, in [17, Theorem 15], ADMM is found to satisfy

||Ax̄i+1 + Bz̄i − c||2 ≤ 16R2

ρ2i2
, (61)

which is faster than the rate of the nonergodic sequence {xi , zi } of ADMM in (59) and
is comparable to the rate of the proposed accelerated ADMM in (60). One should note
that the feasibility convergence of the ergodic sequence, as in (61), does not necessarily
imply the convergence of the fixed-point residual of the ergodic sequence, unlike (59)
and (60) for the nonergodic sequence. In addition, some numerical experiments in
[13] illustrate that the performance of the nonergodic sequence can be faster than that
of the ergodic sequence. We leave further understanding the rates of the ergodic and
nonergodic sequences of (preconditioned) ADMM and their relationship as future
work.

Remark 6.2 [11,13,28] proposed accelerated variants of (preconditioned) ADMM
under some additional conditions, while the proposed method does not require such
conditions.

Example 6.3 We apply the accelerated ADMM to the problem

min
x∈Rd1 ,z∈Rd2

1

2
||Hx − b||2 + γ ||z||1

subject to Dx − z = 0, (62)

with a positive real number γ , associated with the total-variation-regularized least-
squares problem

min
x∈Rd1

1

2
||Hx − b||2 + γ ||Dx||1, (63)

where H ∈ Rp×d1 , b ∈ Rp, and a matrix D ∈ Rd2×d1 is given as

D =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 −1 0 0 · · · 0
0 1 −1 0 · · · 0
...

. . .
. . .

. . .
. . .

...
...

. . . 0 1 −1 0
0 · · · · · · 0 1 −1

⎤
⎥⎥⎥⎥⎥⎥⎦

. (64)
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By letting f (x) = 1
2 ||Hx − b||2, g(z) = γ ||z||1, A = D, B = −I and c = 0, we

have the following accelerated ADMM method:

xi+1 = arg min
x∈Rd1

{
1

2
||Hx − b||2 + 〈ν̂i , Dx − zi 〉+ρ

2
||Dx − zi ||2

}

= (H�H + ρD�D)−1(D�(ρ zi − ν̂i ) + H�b)

η̂i =
{

ν̂i , i = 0, 1,

ν̂i + i−1
i+1 (ν̂i − ν̂i−1 + ρD(xi+1 − xi )) − i−1

i+1 (ν̂i−1 − η̂i−2 + ρD(xi − xi−1)), i = 2, 3, . . .

zi+1 = arg min
z∈Rd2

{
γ ||z||1 + 〈η̂i , Dxi+1 − z〉+ρ

2
||Dxi+1 − z||2

}

= S γ
ρ

(
Dxi+1 + 1

ρ
η̂i

)

ν̂i+1 = η̂i + ρ(Dxi+1 − zi+1), (65)

where the soft-thresholding operator is defined as Sτ (z):=max{|z| − τ, 0} � sign(z)
with the element-wise absolute value, maximum and multiplication operators, | · |,
max{·, ·} and �, respectively.

In the experiment, we choose d1 = 100, d2 = 99, p = 5, and a true vector xtrue
is constructed such that a vector Dxtrue has few nonzero elements. A matrix H is
randomly generated and a noisy vector b is generated by adding randomly generated
(noise) vector to Hxtrue. We choose the parameters γ = 3 and ρ = 0.05 in the
experiment.

Figure 5 illustrates the fixed-point residual of ADMM and its accelerated vari-
ants. Interestingly, ADMM has a rate comparable to the O(1/i2) rate of the proposed
method. This does not contradict with the theory, and we leave further investigating
the worst-case rate of ADMM under the Lipschitz continuity condition of∇ f ; similar
analysis but under different conditions can be found in [17,18]. Noticing the oscillat-
ing behavior of the proposed ADMM in Fig. 5, we heuristically restarted the proposed
method every 20 iterations, yielding a linear rate, without a strongmonotonicity condi-
tion.4 Restarting has been previously found useful for a different accelerated ADMM
in [28].

7 Accelerated forwardmethod for cocoercive operators

This section applies the proposed acceleration to a forward method, such as a gradient
method, for cocoercive operators. A single-valued operator M : H → H is β-
cocoercive for β ∈ R++ if

〈x − y, Mx − M y〉 ≥ β||Mx − M y||2 for all x, y ∈ H. (66)

4 Since ∇ f is Lipschitz continuous, the operator M1 = −D∂ f ∗(−D�·) in (53) for the problem (62) is
strongly monotone, but this is insufficient to guarantee a strong monotonicity of Mρ,M1,M2 (46) for the
problem (62).
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Fig. 5 Solving a
total-variation-regularized
least-squares problem (63); the
fixed-point residual versus
iteration

0 50 100 150 200
10-5

100

Let Cβ(H) be the class of β-cocoercive operators onH. For the β-cocoercive operator,
the following forward method (that iteratively applies the forward operator I − βM)
is guaranteed to converge weakly to a solution [7, Theorem 26.14].

Forward Method

Input: M ∈ Cβ(H), y0 ∈ H.

For i = 0, 1, . . .

yi+1 = (I − βM) yi .

An operator T : H → H is λ-cocoercive if and only if it is the Yosida approxi-
mation of index λ [7, Proposition 23.21]:

Mλ:=1

λ
(I − JλM) (67)

of a maximally monotone operator M : H → 2H. We thus have the following
equivalence between the resolvent (backward) operator of a maximally monotone
operator M and a forward operator of the corresponding cocoercive operator Mλ:

JλM = (I + λM)−1 = I − λMλ. (68)

Therefore, the results on the proximal point method and its accelerated variant for
monotone operators directly apply to the forward method and its accelerated variant
for cocoercive operators.

8 Conclusion

This paper developed an accelerated proximal point method for maximally monotone
operators, with respect to the fixed-point residual, using the computer-assisted perfor-
mance estimation problemapproach.Restarting techniquewas further employed under
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the strong monotonicity condition. The proposed acceleration was applied to various
instances of the proximal point method such as the proximal method of multipliers, the
primal–dual hybrid gradient method, the Douglas–Rachford splitting method, and the
alternating direction method of multipliers, yielding accelerations both theoretically
and practically. The acceleration was also applied to a forward method for cocoercive
operators.

We leave developing accelerations for more general or more specific classes of
problems or methods as future work, possibly via the performance estimation problem
approach; a comprehensive understanding of accelerations for the alternating direction
method of multipliers with respect to various performance measures under various
conditions are yet remain open.
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