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Abstract
In a first contribution, we revisit two certificates of positivity on (possibly non-
compact) basic semialgebraic sets due to Putinar and Vasilescu (C R Acad Sci Ser
I Math 328(6):495–499, 1999). We use Jacobi’s technique from (Math Z 237(2):259–
273, 2001) to provide an alternative proof with an effective degree bound on the sums
of squares weights in such certificates. As a consequence, it allows one to define
a hierarchy of semidefinite relaxations for a general polynomial optimization prob-
lem. Convergence of this hierarchy to a neighborhood of the optimal value as well as
strong duality and analysis are guaranteed. In a second contribution, we introduce a
new numerical method for solving systems of polynomial inequalities and equalities
with possibly uncountably many solutions. As a bonus, one can apply this method to
obtain approximate global optimizers in polynomial optimization.

Keywords Nonnegativity certificate · Putinar’s Positivstellensatz · Basic
semialgebraic set · Sums of squares · Polynomial optimization · Semidefinite
programming ·Moment-SOS hierarchy · Uniform denominators · Polynomial
systems

Mathematics Subject Classification 90C22 · 65H04

1 Introduction

This paper is concerned with polynomial optimization on non-compact semialgebraic
sets. Its spirit and main motivation is to voluntarily avoid the big-ball trick which
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reduces the problem to the compact case. The big-ball “trick” is to simply assume that
the global minimum is attained in some a priori known ball BM centered at zero of
radius M > 0 potentially large. Therefore, by adding this additional constraint to the
definition of the feasible set, one is back to the compact case.

Why? This “trick” has definitely some merit since in some practical applications
such an M can be sometimes determined with ad-hoc arguments. However, it is not
satisfactory from amathematical point of view. Indeed after one has found aminimizer
x� ∈ BM , one is still left with the question: Is really x� a global minimizer? Was M
chosen sufficiently large? In other words, in doing so one does not obtain an certificate
that x� is a global minimizer. As wewill see, the challenge is to adapt some certificates
of positivity on non-compact sets already available in the literature, to turn them into
a practical algorithm.

Background Deciding nonnegativity of a polynomial is an important and attractive
problem throughout history of the development of real algebraic geometry. In his
famous and seminal work [16], Hilbert characterized all cases where nonnegative
polynomials are sums of squares (SOS) of polynomials and later Blekherman showed
in [4] that there are significantly more nonnegative polynomials than SOS. In 1927,
Artin proved in [1] that every nonnegative polynomial can be decomposed as a sum
of squares of rational functions, thereby solving Hilbert’s 17th problem. Namely, f
is nonnegative if and only if σD f = σN for some SOS polynomials σN and σD �= 0.
Later on, certificates of positivity on a general semialgebraic set have been proposed
by Stengle [58] (see also Krivine [23]). A basic semialgebraic set S(g, h) can be
written as

S(g, h) := { x ∈ R
n : g j (x) ≥ 0, j = 1, . . . ,m; ht (x) = 0, t = 1, . . . , l

}
,

(1.1)
where n is the dimension of the ambient space and (g j , ht ) are polynomials. Stengle
and Krivine rely on a tool from real algebraic geometry called preordering

P (g, h) :=
⎧
⎨

⎩

∑

α∈{0,1}m
σαg

α1
1 . . . gαm

m +
l∑

t=1
φt ht : σα ∈ Σ [x] , φt ∈ R [x]

⎫
⎬

⎭
, (1.2)

associated with the polynomials (g j , ht ). Here R[x] denotes the ring of real poly-
nomials and Σ[x] ⊂ R[x] stands for the set of SOS polynomials. Krivine-Stengle’s
Positivstellensatz (or representation) states that

f ≥ 0 on S(g, h) ⇔ ∃q1, q2 ∈ P(g, h), s ∈ N : q1 f = f 2s + q2 (1.3)

f > 0 on S(g, h) ⇔ ∃q1, q2 ∈ P(g, h) : q1 f = 1+ q2. (1.4)

Notice that the above representations involve a multiplier q1 for f as well as cross-
products of the g j ’s in (1.2). In 1993, Putinar [45] refined a result of Schmüdgen [54]
for certificates of positivity on a basic semi algebraic set (1.1) assumed to be compact
plus an Archimedean assumption, described below. It avoids a multiplier for f and no
cross-product of the g j ’s. Namely, Putinar’s Positivstellensatz states that f is positive
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on S(g, h) if f belongs to the set

Q (g, h) :=
⎧
⎨

⎩
σ0 +

m∑

j=1
σ j g j +

l∑

t=1
φt ht : σ j ∈ Σ [x] , φt ∈ R [x]

⎫
⎬

⎭
. (1.5)

The set Q(g, h) is called the quadratic module associated with the polynomials
(g j , ht ).

SOS for optimization.More recently and since the pioneer works of Lasserre [24] and
Parrilo [43], SOS-based certificates of nonnegativity have now become a powerful
tool in polynomial optimization and control. In the unconstrained case, let f � :=
infx∈Rn f (x). If f − f � (≥ 0 on R

n) is an SOS polynomial then f � can be obtained
by solving a single semidefinite program (SDP). However in general f − f � is an
SOS of rational functions, which yields:

f � = sup
λ,σN ,σD

{λ : σD ( f − λ) = σN ; σN , σD ∈ Σ[x] ; σD(0) = 1 } (1.6)

By fixing in advance a bound d on the degree of σD , one may solve (1.6) by SDP
combined with bisection search on λ and increase of d when no solution exists. The
normalization constraint σD(0) = 1 ensures that neither σD nor σN is the zero poly-
nomial. In the constrained case, let S(g, h) in (1.1) be compact and assume with
no loss of generality that the so-called Archimedean assumption holds, namely that
L − ‖x‖22 belongs to Q (g, h) for some L > 0. This can be automatically ensured
by setting gm(x) = L − ‖x‖22. Under this assumption, the second author pro-
vides in [24] a so-called moment-SOS hierarchy of semidefinite relaxations based
on Putinar’s representation, yielding a non-decreasing sequence of lower bounds on
f � := minx∈S(g,h) f (x), which converges to f �. Convergence is finite for generic
constraints S(g, h) due to [39] and a numerical procedure from [15] allows one to
extract global minimizers from an optimal solution of the (exact) semidefinite relax-
ation in the hierarchy. It relies on the flat extension condition of Curto and Fialkow
[8,30]. In the above-mentioned frameworks, compactness of S(g, h) is crucial.

Related works on SOS approximations of nonnegative polynomials Blekherman’s
result [4] states that for a fixed degree, the cone of nonnegative polynomials is way
larger than the cone of SOS polynomials. This is in contrast with the denseness result
from [3, Theorem 5], which establishes that the cone of SOS polynomials is dense
in the space of polynomials being nonnegative on [−1, 1], for the l1-norm of coef-
ficients, defined by ‖ f ‖1 = ∑α | fα| (whenever one writes f = ∑α fαxα in the
standard canonical basis of monomials). Other denseness results from [25,29] are
based on perturbations of nonnegative polynomials to obtain SOS certificates. In [25],
Lasserre states that any given nonnegative polynomial f can be approximated by a
sequence ( fε)ε of SOS polynomials given by

fε := f + ε

rε∑

k=0

n∑

j=1
x2kj /(k!), ε > 0,
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for some rε ∈ N, so that ‖ fε − f ‖1 → 0, as ε ↓ 0. Similarly, Lasserre and Netzer
prove in [29] that every polynomial f being nonnegative on the unit box [0, 1]n can
be approximated in l1-norm by a sequence of SOS

frε := f + ε

⎛

⎝1+
n∑

j=1
x2rj

⎞

⎠ , ε > 0.

Provided that r is large enough, one has ‖ frε − f ‖1 → 0, as ε ↓ 0. Jibetean and Lau-
rent [21] compute tight upper bounds for the unconstrained polynomial optimization
problem f � := minx∈Rn f (x) based on the perturbed problem f �

ε := inf x∈Rn f (x)+
ε
∑n

j=1 x
2d+2
j and SDP relaxations over the gradient ideal (see also [41]). Besides

their theoretical aspects, these approximation results allow one to interpret some para-
doxical behaviors (due to numerical roundoff errors) observed while relying on SDP
relaxations for polynomial optimization. Such behavior occurs for instance while
extracting the minimizers of Motzkin’s polynomial f = (x21 + x22 − 1)x21 x

2
2 + 1/27

with the algorithmic procedure from [15]. Motzkin’s polynomial is globally non-
negative but does not belong to the SOS cone. However, the perturbed polynomial
f̃ = f + ε(1+ x61 + x62) is an SOS for small ε > 0. This implies that an SDP solver
can find an approximation of the optimal value of f for a sufficiently high order of
relaxation, and that one can extract the global minimizers of f . In fact [28], an SDP
solver performs “robust optimization” in the following sense: instead of solving the
original optimization problem with nominal criterion f , the solver considers a per-
turbed criterion which lies in a ball of small radius ε and center f . In [37], the authors
explain a similar paradox occurring in a noncommutative setting.

As shown in [34], the user can also introduce perturbations to compensate the
numerical uncertainties added by the solver. This perturbation/compensation scheme
is the main ingredient of the hybrid numeric-symbolic algorithm from [34], designed
to compute exact rational SOS decompositions for polynomials lying in the interior
of the SOS cone.

The non-compact case There have been several attempts to provide a hierarchy of
semidefinite relaxations when S(g, h) is not compact. In [20] the authors consider
polynomial optimization problems with non-compact set in the special case where
S(g ∪ {c − f }, h) satisfies theArchimedian assumption.Later on,Dickinson andPovh
[11] obtain a certificate for homogeneous polynomials positive on the intersection of
the nonnegative orthant with a basic semialgebraic cone. This latter one generalizes
Pólya’s result [44], which states that one can always multiply a homogeneous polyno-
mial positive on the nonnegative orthant by some power of (x1 + · · · + xn) to obtain
a polynomial with nonnegative coefficients. Reznick proves in [49] that any positive
definite form can be multiplied by a large enough power of ‖x‖22 to become a sum of
powers of linear forms (which is in particular an SOS polynomial). For this specific
class of nonnegative polynomials, Reznick’s result provides a suitable decomposition
into SOS of rational functions, which can be practically computed via SDP. Reznick’s
result was generalized in [53], where Scheiderer proves that one can replace ‖x‖22 by
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an even power of any strictly positive polynomial. An interesting related result is the
Positivstellensatz [47] of Putinar and Vasilescu. Let us define

S(g) := {x : g j (x) ≥ 0, j = 1, . . . ,m} andQ (g) :=
⎧
⎨

⎩
σ0 +

m∑

j=1
σ j g j : σ j ∈ Σ[x]

⎫
⎬

⎭
.

Theorem 1 (Putinar–Vasilescu [47, Corollary 4.3 and 4.4]) Let θ ∈ R[x] be the
quadratic polynomial x �→ θ(x) := 1 + ‖x‖22, and denote by p̃ ∈ R[x, xn+1]
the homogeneous polynomial associated with p ∈ R[x], defined by x �→ p̃(x) :=
xdeg(p)n+1 p(x/xn+1).

1. Let f ∈ R[x] such that f̃ > 0 on R
n+1\{0}. Then θk f ∈ Σ[x] for some k ∈ N.

2. Let f , g1, . . . , gm ∈ R[x] satisfy the following two conditions:

(a) f = f0 + f1 such that deg( f0) < deg( f1) and f̃1 > 0 on Rn+1\{0};
(b) f > 0 on S(g).

Then θ2k f ∈ Q(g) for some k ∈ N.

As a consequence, they also obtain:

Corollary 1 (Putinar–Vasilescu [47, Final remark 2]) Let θ := 1+ ‖x‖22.
1. Let f ∈ R[x]2d be such that f ≥ 0 on R

n. Then for all ε > 0, there exists k ∈ N

such that θk( f + εθd) ∈ Σ[x].
2. Let f ∈ R[x] such that f ≥ 0 on S(g). Let d ∈ N such that 2d > deg( f ). Then

for all ε > 0, there exists k ∈ N such that θ2k( f + εθd) ∈ Q(g).

Marshall [36, Corollary 4.3] states a slightly more general result but with no explicit
d, and Schweighofer [55, Corollary 6.3] provides a new algebraic proof of Marshall’s
result. To summarize, for every polynomial f nonnegative on a general basic semial-
gebraic set S(g), one obtains the following representation result: for a given ε > 0,
there exist a nonnegative integer k and SOS polynomials σ0, σ1, . . . , σm , such that

f + εθd = σ0 + σ1g1 + · · · + σmgm
θk

. (1.7)

Although this representation is theoretically attractive, their previous proofs are not
constructive and do not provide any explicit algorithm, especially in polynomial opti-
mization. The underlying reason is that there is no degree bounds on the SOS weights
σ0, . . . , σm . Therefore, checking membership of θk( f + εθd) in Q(g) is still a chal-
lenge. If one fixes a degree k which is not large enough then onewould have to increase
the degree of the σ j ’s forever without getting an answer. This restriction comes from
the proof techniques used by Putinar and Vasilescu, Marshall, and Schweighofer used
in [36,47] and [55], respectively. The main idea of Putinar and Vasilescu is to localize
the ring of polynomials by allowing inverses of ‖(x, xn+1)‖22 and then to use Cassier’s
technique for separating two convex cones of rational functions. Marshall proves
Corollary 1 by applying a generalized Jacobi-Prestel criterion. Schweighofer’s proof
for representation (1.7) is based on the relationship between the subring of bounded
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elements and the subring of arithmetically bounded elements, together withMonnier’s
conjecture. The main point of Schweighofer’s theorem in [55] is that the multiplier
θk can be replaced by a power of any “quickly growing” polynomial which does not
even have to be an SOS. Another deep theorem of this sort is the one of Scheiderer in
[53]. From their proofs, it is possible but difficult to find degree bounds for the SOS
weights σ j with respect to the input polynomial data f , g j .

Degree bounds of SOS weights Recent work by Lombardi, Perucci and Roy [33] pro-
vides degree bounds in a quite general situation. The best degree bounds for Hilbert’s
17th problem in three homogeneous variables are actually due to Hilbert’s original
1893 paper [16]. Some lower bounds for Hilbert’s 17th problem (quite far away from
the upper bounds) were proved in [5] by Blekherman, Gouveia and Pfeiffer. Hilbert’s
1893 result and sharp degree bounds for projective curves (i.e., curves defined by
homogeneous polynomials) were proved in [6] by Blekherman, Smith and Velasco.
Contribution As already mentioned, our approach is to treat the non-compact case
frontally and avoid the big-ball trick. Our contribution is threefold:

I. In Sect. 3 we first provide an alternative proof of (1.7), with an explicit degree
bound on the SOS weights, by relying on Jacobi’s technique in the proof of [18, The-
orem 7]; this is crucial as it has immediate implications on the algorithmic side. More
precisely, the degrees of SOS weights σ j are bounded above by k+ d −deg(g j )/2�.
First, one transforms the initial polynomials to homogeneous forms, then one relies on
Putinar’s Positivstellensatz for the compact case, and finally one transforms back the
obtained forms to dehomogenized polynomials. As a consequence, with ε > 0 fixed,
arbitrary, this degree bound allows us to provide hierarchies (ρi

k(ε))k∈N, i = 1, 2, 3 for
unconstrained polynomial optimization (m = 0 and i = 1, see Sect. 4.1) as well as for
constrained polynomial optimization (m ≥ 1 and i = 2, 3, see Sect. 4.2). Computing
each ρi

k(ε) boils down to solving a single SDP, with strong duality property. For k
sufficiently large, ρi

k(ε) becomes an upper bound for the optimal value f � of the cor-
responding polynomial optimization problem (POP) minx∈S(g) f (x). If this problem
has an optimal solution x�, the gap between ρi

k(ε) and f � is at most εθ(x�)d . The
related convergence rates are also analyzed in these sections.

II. In Sect. 4.3, we provide a new algorithm to find a feasible solution in the set
S(g, h) defined in (1.1). The idea is to include appropriate additional spherical equal-
ity constraints ϕt := ξt − ‖x − at‖22, t = 0, . . . , n, in S(g, h) so that the system
S(g, h ∪ {ϕ0, . . . , ϕn}) has a unique real solution. The nonnegative reals (ξt )t=0,...,n
are computed with an adequate moment-SOS hierarchy. Moreover, this solution might
be extracted in certain cases by checking whether some (moment) matrix satisfies a
flat extension condition.

III. Finally we use this method to approximate a global minimizer of f on S(g, h).
Namely, we fix ε > 0 small and find a point in S(g ∪ {ρi

k(ε)− f }, h). This procedure
works in certain cases, even if the set of minimizers is infinite. This is in deep contrast
with the extraction procedure of [15] (via some flat extension condition) which works
only for finite solution sets. Assuming that the set of solutions is finite, one may
compare our algorithm with the procedure from [15] as follows. On the one hand, the
latter extraction procedure provides global optimizers, provided that one has solved an
SDP-relaxation with sufficiently large “k” (so as to get an appropriate rank condition).
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On the other hand, our algorithm that adds spherical equality constraints “divides”
the problem into n + 1 SDP relaxations with additional constraints but with smaller
order “k” (which is the crucial parameter for the SDP solvers). Numerical examples
are provided in Sect. 5 to illustrate the difference between these two strategies.

For clarity of exposition, most proofs are postponed to Sect. A.

Comparison to other methods for solving POPs on non-compact semialgebraic sets
We consider the general POP f � = inf{ f (x) : x ∈ S(g, h)} where S(g, h) are
unbounded.

1. In [19,20], Jeyakumar et al. solve a POPs on an unbounded semialgebraic set after
checking the coercivity of f on S(g, h) and as well as the Archimedeanness of
S(g ∪ {c − f }, h) for some c ≥ f (x̄) with x̄ ∈ S(g, h). In particular, [19] uses
the polynomial optimization solver SparsePOP developed by Waki [61] which
exploits a structured sparsity of f , g and h. However checking these conditions
can be difficult. Our method which solves SDPs for the hierarchy (ρi

k(ε))k∈N
avoids checking coercivity and Archimedean assumptions.

2. Demmel et al. [10,41] provide two representations of polynomials positive (resp.
nonnegative) on S(g, h) for solving POPs on unbounded domains. They state that
f can be represented as an SOS of polynomials modulo the KKT ideal on S(g, h)

if the minimal value of f on S(g, h) is attained at some KKT point and assuming
that one of the following conditions holds:

(a) f > 0 on S(g, h);
(b) f ≥ 0 on S(g, h) and the KKT ideal is radical.

This method is restricted to the case of global minimums satisfyingKKT condition
and testing if f belongs to the related KKT preorder requires a large number of
SOSweights. Moreover, checking the radical property of the KKT ideal is difficult
in general. Our method goes beyond these restrictions by only testing membership
of the perturbation of θk f in the truncation of Q(g, h), even if the KKT condition
is not satisfied. Reader may have a look at Ha and Pham [60, §3.3] with the same
comparison as to Demmel et al. [10].

3. Schweighofer [56] extends Nie et al. [41] (S(g, h) = R
n) to the case that f is

bounded from below but does not necessarily attain a minimum. Schweighofer’s
gradient tentacles method replaces the gradient variety by larger semialgebraic
sets. Here we assume that f attains its minimum and compute an approximation
of the optimal value f � as well as an approximation of some minimum x�.

4. Greuet et al. [14] provide a probabilistic algorithm for solving POP on a real
algebraic set S(g, h) = V (h). They can extract a solution under the following
assumptions: 〈h〉 is radical, V (h) is equidimensional of dimension d > 0 and V (h)

has finitely many singular points. When h generates an ideal with co-dimension
c, the assumptions in Greuet et al. can be checked by verifying that the ideal and
the minors of size c+1 of the related Jacobian matrix are of dimension at most
0. To do this, they consider the intersection with a generic hyperplan and check
that the resulting complex polynomial system has no solution. This latter step can
be performed with efficient algorithms. We emphasize that our method does not
require such assumptions on 〈h〉 and V (h).
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5. In [40], Nie proposes a hierarchy of tight semidefinite relaxations for a POP on a
(possibly non-compact) basic semialgebraic set. The idea is to replace theLagrange
multipliers in the constraint qualification condition by polynomials. Under certain
assumptions (which hold generically) stated in [40, Theorem 3.3], Nie’s hierarchy
has finite convergence if the minimum value of the POP is achieved at a critical
point (the point satisfies the constraint qualification condition). Moreover there
are many additional affine and semidefinite constraints in his relaxations [40,
(3.8)–(3.9)]. By comparison, our hierarchy involves a smaller number of affine
and semidefinite constraints while ensuring the convergence to a value in the
neighborhood of the minimal value of the POP without any assumption, even if
the minimum is not a critical point.

2 Notation, definitions and preliminaries

In this section, we introduce notation and basic facts about polynomial optimization
and the moment-sums-of-squares (moment-SOS) hierarchy. With x = (x1, . . . , xn),
let R[x] stands for the ring of real polynomials and let Σ[x] ⊂ R[x] be the subset
of SOS polynomials. Let us note R[x]t and Σ[x]t the respective restrictions of these
two sets to polynomials of degree at most t and 2t . Given α = (α1, . . . , αn) ∈ N

n ,
we note |α| := α1 + · · · + αn . Let (xα)α∈Nn be the canonical basis of monomials for
R[x] (ordered according to the graded lexicographic order) and vt (x) be the vector
of monomials up to degree t , with length s(t) = (n+tn

)
. A polynomial f ∈ R[x]t is

written as f (x) = ∑|α|≤t fα xα = fT vt (x), where f = ( fα) ∈ R
s(t) is its vector

of coefficients in the canonical basis. A polynomial f is homogeneous of degree t
if f (λx) = λt f (x) for all x ∈ R

n and each λ ∈ R. Equivalently, a homogeneous
polynomial can be written as f = ∑|α|=t fαxα . The degree-t homogenization f̃ of
f ∈ R[x]t is a homogeneous polynomial of degree t in n + 1 variables, defined
by f̃ (x, xn+1) = xtn+1 f (x/xn+1). A positive form is a nonnegative homogeneous
polynomial which is positive everywhere except at the origin.

Moment and localizing matrix For a given real-valued sequence y = (yα)α∈Nn , let us
define the Riesz linear functional Ly : R[x] → R by:

f �→ Ly( f ) :=
∑

α

fα yα, ∀ f ∈ R[x].

We say that a real infinite (resp. finite) sequence (yα)α∈Nn (resp. (yα)α∈Nn
t
) has a rep-

resenting measure if there exists a finite Borel measureμ such that yα =
∫
Rn xαdμ(x)

is satisfied for every α ∈ N
n (resp. α ∈ N

n
t ). In this case, (yα)α∈Nn is called be the

moment sequence of μ. Next, given y = (yα)α∈Nn and d ∈ N
∗, the moment matrix

Md(y) of degree d associated to y is the real symmetric matrix of size s(d) defined by
Md(y) := (yα+β)α,β∈Nn

d
. Let g = ∑γ gγ xγ ∈ R[x]. The localizing matrix Md(gy)

of degree d associated with y and g is the real symmetric matrix of the size s(d)

given by Md(gy) = (
∑

γ gγ yγ+α+β)α,β∈Nn
d
. We next recall an important result of
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[45], which is crucial for convergence of the moment-SOS hierarchy provided in the
sequel.

Theorem 2 (Putinar [45]) Given g1, . . . , gm, h1, . . . , hl ∈ R[x], let S(g, h) ⊂ R
n be

as in (1.1) and Q(g, h) ⊂ R[x] be as in (1.5). Assume that there exists L > 0 such
that L − ‖x‖22 ∈ Q(g, h) (Archimedean condition).

(i) If a polynomial f ∈ R[x] is positive on S(g, h) then f ∈ Q(g, h).
(ii) A real sequence y = (yα)α∈Nn has a representingmeasureμon S(g, h) if Md(y) �

0, Md(g j y) � 0, j = 1, . . . ,m, and Md(ht y) = 0, t = 1, . . . , l, for all d ∈ N.

The moment-SOS hierarchy Let S(g, h) ⊂ R
n be as in (1.1) and Q(g, h) ⊂ R[x] be

as in (1.5) and assume that Q(g, h) is Archimedean. Consider the POP:

f � := min { f (x) : x ∈ S(g, h)} , (2.8)

known to be challenging as it is NP hard in general [31]. One may rewrite (2.8) as:

f � = sup {λ ∈ R : f − λ > 0 on S(g, h)} , (2.9)

and by invoking Theorem 2(i), f � = sup{λ ∈ R : f − λ ∈ Q(g, h)}. For each d ∈ N,
let:

ρd := sup {λ ∈ R : f − λ ∈ Qd(g, h)} , d ∈ N, (2.10)

where Qd(g, h) stands for the truncated quadratic module of order d:

Qd(g, h) :=
⎧
⎨

⎩

m∑

j=0
σ j g j +

l∑

t=1
φt ht : σ j ∈ Σ[x]d−u j , φt ∈ R[x]2d−2wt

⎫
⎬

⎭
,

with u j := deg(g j )/2� and wt := deg(ht )/2�. For each fixed d, problem (2.10) is
a reinforcement of (2.9) and so ρd ≤ f � for all d. It also turns out that (2.8) can also
be written as:

f � = inf
μ∈M(S(g,h))

∫

S(g,h)

f dμ, (2.11)

whereM(S(g, h)) is the set of all finite Borel measures supported on S(g, h). Let us
denote by RN

n
the set of all real sequences ordered by Nn . With y = (yα)α∈Nn ∈ R

N
n

being the moment sequence of a measure μ, one has:

f � = min
{
Ly( f ) : y ∈ R

N
n
has a representing measure in M(S(g, h))

}
, (2.12)

and by Theorem 2(ii):

f � = min
y∈RN

Ly( f )

s.t. Md(g j y) � 0, ∀d ∈ N,

Md (ht y) = 0, ∀d ∈ N,

y0 = 1.

(2.13)
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Let dmin := max{deg( f )/2�, u j , wt }. For every fixed d ≥ dmin, consider the finite
truncation of the above problem:

τd := min
y∈Rs(2d)

Ly( f )

s.t. Md−u j (g j y) � 0,
Md−wt (ht y) = 0,
y0 = 1.

(2.14)

Then (2.14) is a semidefinite relaxation of (2.13) and (2.10) is the dual of (2.14).
Moreover, strong duality holds according to Josz and Henrion [22]. Therefore, one
has ρd = τd ≤ f � for all d. This primal-dual sequence of semidefinite programs
(2.14)-(2.10) is the so-called moment-SOS hierarchy for optimization (also known as
“Lasserre’s hierarchy”), and

f � = lim
d→∞ ρd = lim

d→∞ τd .

For more details on the moment-SOS hierarchy, the interested reader is referred to
[24].

Complexity of Putinar’s Positivstellensatz Let cn(α) := |α|!
α1!...αn ! for each α ∈ N

n . We
note ‖h‖max := max

α
{|hα|/cn(α)}, for a given h ∈ R[x]. The convergence rate of the

sequence (ρd)d∈N relies on the following result.

Theorem 3 (Nie–Schweighofer [42]) Assume that ∅ �= S(g, h) ⊂ (−1, 1)n is
Archimedean and f � > 0. Then there exists C > 0 depending on g and h such
that for d ∈ N and

d ≥ C exp

((
deg( f )2ndeg( f )

(
f �
)−1 ‖ f ‖max

)C)
,

one has f ∈ Qd(g, h).

Extraction of global minimizers Assume that the optimal value τd is reached for a
solution y� and that this solution satisfies the flat extension condition, that is:

rank
(
Md
(
y�
)) = rank

(
Md−w

(
y�
))

,

for some d ≥ w := max{ui , w j }. Let r := rank(Md(y�)) and let δa stands for the
Dirac measure at point a ∈ R

n . Then τd = f � and there exist x ( j) ∈ R
n and λ j ≥ 0,

j = 1, . . . , r , with
∑r

j=1 λ j = 1 such that and the sequence y� has the representing r -

atomic measure μ =∑r
j=1 λ jδx ( j) . The support of μ is the set {x ( j) : j = 1, . . . , r},

which belongs to the set of all minimizers of the original problem (2.8). Henrion and
Lasserre [15] provide a numerical algorithm to extract the r atoms corresponding to
the support of the atomic measure μ.
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3 Representation theorems

In this section we provide two exact representations of globally nonnegative poly-
nomials and polynomials nonnegative on basic semialgebraic sets (not necessarily
compact). The representations are obtained thanks to a perturbation argument as well
as existing representations for positive definite forms. Let θ := 1+ ‖x‖22. We denote
by Sn−1 the unit sphere in Rn . For each h ∈ R[x], let

δ(h) := sup
{
h(x) : x ∈ S

n−1}

inf
{
h(x) : x ∈ Sn−1

} .

For later use recall the following theorem.

Lemma 1 (Reznick [49, Theorem 3.12]) Suppose that p ∈ R[x] is a positive definite
form of degree 2d, for some d ∈ N. Then for k ∈ N and

k ≥ 2nd(2d − 1)

4 log 2
δ(p)− n + 2d

2
,

one has ‖x‖2k2 p ∈ Σ[x]k+d .
In [49, Theorem 3.12], Reznick guarantees that the SOS decomposition of ‖x‖2k2 p is
actually a sum of powers of linear forms.

3.1 Globally nonnegative polynomials

Let us note ‖h‖1 := ∑α |hα| for a given h ∈ R[x]. The following result provides a
representation of globally nonnegative polynomials.

Theorem 4 Let f ∈ R[x]2d be nonnegative on R
n. Then for every ε > 0, for kε ∈ N

and

kε ≥ 2(n + 1)d(2d − 1)

4 log 2
(ε−1‖ f ‖1 + 1)− n + 1+ 2d

2
,

one has
θkε

(
f + εθd

)
∈ Σ[x]kε+d . (3.15)

Proof The proof consists of three steps:

1. Associate a positive definite form to the globally nonnegative polynomial f .
2. Use Reznick’s representation from Lemma 1 to get a representation of this homo-

geneous form.
3. Transform back the homogeneous polynomial together with its representation to

the original polynomial.

Let f̃ = x2dn+1 f (x/xn+1) be the degree 2d homogenization of f . Since f is globally

nonnegative, f̃ is nonnegative on R
n+1. Let ε > 0 be fixed. We claim that

f̃ + ε‖(x, xn+1)‖2d2 ∈ R
[
x, xn+1

]
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is positive definite, i.e., is homogeneous and positive on Rn+1\{0Rn+1}. Since

‖(x, xn+1)‖2d2 =
(
x21 + · · · + x2n + x2n+1

)d
,

the polynomial ‖(x, xn+1)‖2d2 is homogeneous of degree 2d on R
n+1. From this and

since f̃ is homogeneous of degree 2d, f̃ + ε‖(x, xn+1)‖2d2 is homogeneous of degree
2d. For every (x, xn+1) ∈ R

n+1\{0Rn+1}, ‖(x, xn+1)‖2 > 0. From this and since f̃ is
nonnegative on R

n+1,

f̃ (x, xn+1)+ ε‖(x, xn+1)‖2d2 > 0,

for all (x, xn+1) ∈ R
n+1\{0Rn+1}. In addition, it is not hard to show that

inf
{
f̃ (x, xn+1)+ ε‖(x, xn+1)‖2d2 : (x, xn+1) ∈ S

n
}
≥ ε

and

sup
{
f̃ (x, xn+1)+ ε‖(x, xn+1)‖2d2 : (x, xn+1) ∈ S

n
}

≤ sup{ f̃ (x, xn+1) : (x, xn+1) ∈ S
n} + ε

≤ ‖ f̃ ‖1 + ε.

Thus, δ( f̃ + ‖.‖2d2 ) ≤ (‖ f̃ ‖1 + ε)/ε = (‖ f ‖1 + ε)/ε. From this and by applying
Lemma 1 with p = f̃ + ε‖(x, xn+1)‖2d2 , for kε ∈ N and

kε ≥ 2(n + 1)d(2d − 1)

(4 log 2)
(ε−1‖ f ‖1 + 1)− n + 1+ 2d

2
,

there exists σ̃ε ∈ Σ[x, xn+1]kε+d such that

‖(x, xn+1)‖2kε

2

(
f̃ + ε‖ (x, xn+1) ‖2d2

)
= σ̃ε.

By replacing xn+1 by 1, one has

θkε

(
f + εθd

)
= σ̃ε(x, 1).

Let us note σε(x) := σ̃ε(x, 1), for every x ∈ R
n . Since σ̃ε ∈ Σ[x, xn+1]kε+d , it

follows that σε ∈ Σ[x]kε+d , yielding the desired result. ��
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3.2 Polynomials nonnegative on a basic semialgebraic set

We recall the definition of the truncated quadratic module of order d associated with
S(g):

Qd(g) :=
⎧
⎨

⎩
σ0 +

m∑

j=1
σ j g j : σ0 ∈ Σ[x]d , σ j ∈ Σ[x]d−ui

⎫
⎬

⎭
,

where u j := deg(g j )/2�, j = 1, . . . ,m. For every h ∈ R[x], let us define

d1(h) := 1+ �deg(h)/2� and d2(h) := deg(h)/2�.

The following result provides a degree bound for the SOS weights of [46, Theorem
1].

Theorem 5 Let g = {g1, . . . , gm} ⊂ R[x] and f ∈ R[x] such that f is nonnegative
on S(g). Let ε > 0 and d ∈ N be such that at least one of the following two conditions
is satisfied:

(i) d ≥ d1( f );
(ii) d ≥ d2( f ) and gm := f + λ for some real λ ≥ 0.

Then there exist kε ∈ N such that

θkε

(
f + ε θd

)
∈ Qkε+d(g). (3.16)

The detailed proof of Theorem 5 relies on Jacobi’s technique in his proof of [18,
Theorem 7] and is postponed to Appendix A.1. This proof consists of three steps:

1. Associate a homogeneous polynomial f̃ to the polynomial f .
2. Use Putinar’s Positivstellensatz (Theorem 2 (i)) to obtain a representation of f̃ .
3. Transform back the representation of f̃ to obtain a representation of f .

Remark 1 Theorem 5 is an extension of Putinar’s Positivstellensatz to (possibly) non-
compact sets S(g), and so does not require the Archimedean condition. The price to
pay for such an extension is the presence of the multiplier θkε in front of f and the
perturbation term ε θd . Note that (ii) involves a tighter bound for d, compared to (i),
since d1( f ) ≥ d2( f ). The counterpart is that (ii) requires to include the additional
constraint f + λ ≥ 0, for some λ ≥ 0.

Complexity of Putinar–Vasilescu’s Positivstellensatz For each h ∈ R[x]2l , we denote
‖h‖max,l := max

α
{|hα|/cn+1(α, 2l − |α|)}. Let us recall cn(α) := |α|!

α1!...αn ! for each
α ∈ N

n . By relying on Nie–Schweighofer’s result (Theorem 3) after the homoge-
nization trick, it is straightforward to analyze the complexity of Putinar–Vasilescu’s
Positivstellensatz:

123



456 N. H. A. Mai et al.

Proposition 1 Assume that all assumptions of Theorem 5 hold and 0Rn ∈ S(g). Then
there exists C > 0 depending on g such that for all kε ∈ N satisfying

kε ≥ C exp

⎛

⎝
(

4d+1d2(n + 1)2d
(

ε−1‖ f ‖max,d + max
ᾱ∈Nn+1

d

cn+1(ᾱ)

cn+1(2ᾱ)

))C⎞

⎠− d,

one has θkε
(
f + ε θd

) ∈ Qkε+d(g).

The proof of Proposition 1 is postponed to Appendix A.2.

Discussion about the ε parameter The (arbitrary small) positive parameter ε in The-
orems 4 and 5 ensures the positivity of polynomials over the respective considered
domainRn or S(g), excluding the origin in the homogenized representations. However
these representations can still hold, even when ε = 0, as illustrated in the following
two examples:

Example 1 (i) Motzkin’s polynomial f = x41 x
2
2 + x21 x

4
2 + 1 − 3x21 x

2
2 is globally

nonnegative but not SOS. However, θ f is SOS since

θ f = 2
( 1
2 x

3
1 x2 + 1

2 x1x
3
2 − x1x2

)2 + (x21 x2 − x2
)2 + (x1x22 − x1

)2

+ 1
2

(
x31 x2 − x1x2

)2 + 1
2

(
x1x32 − x1x2

)2 + (x21 x22 − 1
)2

.

(ii) Let f = (x21 + x22
)
x21 x

2
2−3x21 x

2
2 and g = x21+x22−4. It is not hard to show that f

is nonnegative on the non-compact set S(g). Moreover, f = 1
4 x

2
1 x

2
2

(
x21 + x22

)+
3
4 x

2
1 x

2
2g. Thus, θ

0 f ∈ Q3 (g).

However, the certificate (3.15) for global nonnegativity with ε = 0 is not true in
general, as shown in the following lemma.This is due to the fact that anySOSmultiplier
for Delzell’s polynomial must have a zero at the “bad point”, so one can not find any
globally positive multiplier.

Lemma 2 The nonnegative dehomogenized Delzell’s polynomial [9]:

f = x41 x
2
2 + x42 x

2
3 + x21 x

4
3 − 3x21 x

2
2 x

2
3 + x83

satisfies that θk f /∈ Σ[x] for all k ∈ N.

Proof Assume by contradiction that θK f ∈ Σ[x] for some K ∈ N. Note that n = 3
here. We denote by f̃ the degree 8 homogenization of f , i.e.,

f̃ = x24

(
x41 x

2
2 + x42 x

2
3 + x21 x

4
3 − 3x21 x

2
2 x

2
3

)
+ x83 .

Then ‖(x, xn+1)‖2K2 f̃ ∈ Σ[x, xn+1]. As shown in [50, §6], it is impossible. This
contradiction yields the conclusion. ��
The certificate (3.16) for global nonnegativity on basic semialgebraic sets with ε = 0
is also not true in general, as shown in the following lemma:

123



Positivity certificates and polynomial optimization on… 457

Lemma 3 With n = 1, let f = x and g = {x3,−x3}. Then f = 0 on S(g) = {0}. It
follows that f is nonnegative on S(g), but:

(i) θk f /∈ Q(g) for all k ∈ N and;
(ii) for every ε > 0, θk( f +εθ) ∈ Qk+1(g) for all k ∈ Nwith k ≥ max{2, ε−2/4−1}.
Proof We will show statement (i). Assume by contradiction that there exists k ∈ N

such that θk f ∈ Q(g). Then there exists q j (x) ∈ R[x], j = 0, . . . , r such that

θk f =
m∑

j=1
q j (x)

2 + q0(x)x
3.

Assume that q j (x) = a j + b j x + x2d j (x), where a j , b j ∈ R and d j ∈ R[x],
j = 1, . . . , r . From this and since θk = 1+ x2e(x) for some e ∈ R[x], one has

(
1+ x2e(x)

)
x =

r∑

j=1
a2j + 2

r∑

j=1
a jb j x + x2 p(x),

for some q ∈ R[x]. By comparing coefficients of monomials 1 and x in the two sides
of the above equality,

∑r
j=1 a2j = 0 and 2

∑r
j=1 a jb j = 1. It implies that a j = 0,

j = 1, . . . , r , and 2
∑r

j=1 a jb j = 1. It follows that 0 = 1. It is impossible.

Let us prove the statement (ii). Let ε > 0 and k ∈ N, k ≥ 2. Since θk = 1+ kx2 +
x4e(x) for some e ∈ R[x]2k−4, one has

θk ( f + εθ) =
(
1+ kx2 + x4e(x)

) (
ε + x + εx2

)
= ε + x + ε(k + 1)x2 + x3q(x),

for some q ∈ R[x]2k−2. Assume that k ≥ ε−2/4− 1. Then

θk( f + εθ) = ε − 1

4ε(k + 1)
+
(
x
√

ε(k + 1)+ 1

2
√

ε(k + 1)

)2
+ x3q(x) ∈ Qk+1(g).

��
From Lemmas 2 and 3, we conclude that the strict positivity of the ε parameter is

necessary in general although the certification with ε = 0 may happen in many cases.
When the certificate (3.15) with ε = 0 occurs, one has the following remark about

the exponent of θ in (3.15).

Remark 2 If n = 2, there does not exist a fixed K ∈ N such that for all nonnegative
f ∈ R[x]6 , θK f is SOS. Indeed, assume by contradiction that there exists such
a K . Then, the degree 6 homogenization f̃ of f would be a positive ternary sextic
such that ‖(x, xn+1)‖2K2 f̃ is SOS. By using [51, Theorem 1] and the fact that the
homogeneous Motzkin’s polynomial is a positive ternary sextic which is not SOS, we
obtain a contradiction.
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In (3.15)with ε = 0, themultiplier θkε can be replacedwith other SOSmultipliers; see,
e.g., Leep-Starr’s polynomial [32, Example 2]. With the multiplier θ := x21 + x22 + x23
and the homogenized Delzell’s polynomial D, Schabert provides in [52, Example 4.4]
the exact SOS decomposition of the product Θ(x1, x2, x3)D(x1, x2, x3, x4).

4 Polynomial optimization

In this section, we exploit the two representations from Theorem 4 and Theorem 5
to construct new hierarchies of semidefinite programs for POPs of the form f � =
inf{ f (x) : x ∈ Ω} where Ω = R

n for the unconstrained case and Ω = S (g) for the
constrained case (with no compactness assumption), respectively. Instead of solving
the original problem, we are rather interested in the perturbed problem:

f �
ε := inf{ f (x)+ ε θ(x)d : x ∈ Ω}, (4.17)

where ε > 0 is fixed, θ(x) := 1 + ‖x‖22, and 2d ≥ deg ( f ). Now, assume that the
optimal value f � of the original problem is attained at some x� ∈ Ω . It is not difficult
to show that if Ω is unbounded, the polynomial f + ε θd is coercive on Ω , i.e.

lim
x∈Ω, ‖x‖2→∞

(
f (x)+ εθ(x)d

)
= ∞,

(see more in [2]). Indeed, it is due to the fact that f is bounded from below by f � onΩ

and θ(x)d →∞ as ‖x‖2 →∞. Thus, the optimal value f �
ε of the perturbed problem

(4.17) is always attained at some global minimizer x�
ε even ifΩ is non-compact. Then:

f � + ε θ(x�)d = f (x�)+ ε θ(x�)d

≥ f �
ε = f

(
x�
ε

)+ ε θ
(
x�
ε

)d ≥ f
(
x�
ε

) ≥ f �.

Thus, f � ∈ [ f �
ε − ε θ(x�)d , f �

ε ], i.e., f �
ε is a perturbation of f � and the gap between

both of them is at most ε θ(x�)d . Next, observe that:

f �
ε = sup

{
λ ∈ R : f + ε θd − λ ≥ 0 on Ω

}

= sup
{
λ ∈ R : θk

(
f + ε θd − λ

) ≥ 0 on Ω
}
, k ∈ N.

The following hierarchies are based on the simple idea of replacing constraint “θk( f +
εθd − λ) ≥ 0 on Ω” by relaxed constraint “θk( f + εθd − λ) is in the truncated
quadratic module associated with Ω”.

4.1 Unconstrained case

Given f ∈ R[x]2d , let us consider the following problem:

f � := inf
x∈Rn

f (x). (4.18)
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In the sequel, we assume that f � > −∞ and let ε > 0 be fixed. Consider the hierarchy
of semidefinite programs indexed by k ∈ N:

τ 1k (ε) := inf Ly
(
θk
(
f + εθd

))

s.t. y = (yα)α∈Nn
2(d+k) ⊂ R,

Mk+d(y) � 0,
Ly
(
θk
) = 1.

(4.19)

Theorem 6 For every k ∈ N, the dual of (4.19) reads:

ρ1
k (ε) := sup

{
λ ∈ R : θk

(
f − λ+ εθd

)
∈ Σ[x]k+d

}
. (4.20)

The following statements hold:

1. The sequence (ρ1
k (ε))k∈N is monotone non-decreasing.

2. Assume that f � in (4.18) is attained at x� ∈ R
n. Then there exists K ∈ N such that

f � ≤ ρ1
k (ε) ≤ f �+ ε θ(x�)d for all k ≥ K. In particular, K is upper bounded by

O(ε−1) as ε ↓ 0.

Proof 1. Let k ∈ N and fix ε̄ > 0, arbitrary. By (4.20), there exists a real λ̄ such that

ρ1
k (ε)− ε̄ ≤ λ̄ and θk

(
f − λ̄+ εθd

)
∈ Σ[x]k+d .

Since θ ∈ Σ[x]1, θk+1( f − λ̄+ εθd) ∈ Σ[x]k+d+1. By (4.20), ρ1
k+1(ε) ≥ λ̄ ≥

ρ1
k (ε)− ε̄. This implies that ρ1

k+1(ε) ≥ ρ1
k (ε).

2. By (4.18), f − f � is nonnegative. By Theorem 4, there exists K ∈ N and K =
O(ε−1) as ε ↓ 0 such that

θK
(
f − f � + εθd

)
∈ Σ[x]K+d .

Let k ≥ K be fixed. Since θ ∈ Σ[x]1, one has

θk
(
f − f � + εθd

)
= θK+(k−K )

(
f − f � + εθd

)
∈ Σ[x]k+d .

By (4.20), f � ≤ ρ1
k (ε). Thus, f

� ≤ ρ1
k (ε) for all k ≥ K . Let k ∈ N and fix ε̄ > 0,

arbitrary. By (4.20), there exists a real λ̄ such that

ρ1
k (ε)− ε̄ ≤ λ̄ and θk

(
f − λ̄+ εθd

)
∈ Σ[x]k+d .

It follows that f − λ̄+ εθd ≥ 0 on R
n . From this,

f � + εθ
(
x�
)d = f

(
x�
)+ εθ

(
x�
)d ≥ λ̄ ≥ ρ1

k − ε̄.

This implies f � + εθ(x�)d ≥ ρ1
k (ε), the desired result. ��
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We guarantee strong duality for previous primal-dual problems:

Proposition 2 Let k ∈ N. Then τ 1k (ε) = ρ1
k (ε). Moreover, if τ 1k (ε) > −∞ then the

optimal value ρ1
k (ε) is attained.

Proof By Slater’s constraint qualification [7, §5.2.3], it suffices to show that (4.19)
admits a strictly feasible solution. Let us denote by μ the measure with density
χ[0,1]nθ−k with respect to the Lebesgue measure, where χA is the characteristic func-
tion of a given set A ⊂ R

n . Set yα :=
∫
xαdμ for all α ∈ N

n . We claim that yα ∈ R

for all α ∈ N
n , Ly(θ

k) = 1 and Mk+d(y) � 0. Indeed, for all α ∈ N
n

|yα| = |∫ xαχ[0,1]nθ−kdx | = |∫[0,1]n xαθ−kdx |
≤ ∫[0,1]n |x1|α1 . . . |xn|αnθ−kdx ≤ 1,

since θ−k ≤ 1. Thus, yα ∈ R for all α ∈ N
n . In addition,

Ly

(
θk
)
=
∫

θkχ[0,1]nθ−kdx =
∫

[0,1]n
dx = 1.

Let p ∈ R
s(d+k)\{0} be fixed. We state that pT Md+k(y)p > 0. Assume by contra-

diction that pT Md+k(y)p ≤ 0. One has

0 ≥ pT Md+k(y)p =
∫
pT vd+kvTd+k pdμ

= ∫ pT vd+kvTd+k pχ[0,1]nθ−kdx =
∫
[0,1]n

(
pT vd+k

)2
θ−kdx ≥ 0.

It follows that pT vd+k = 0 on [0, 1]n , thus p = 0 yielding a contradiction. From this,
(yα)α∈Nn

d+k is a feasible solution of (4.19) with Mk+d(y) � 0. By strong duality, the
conclusion follows. ��

4.2 Constrained case

Consider the following problem:

f � := inf
x∈S(g)

f (x), (4.21)

where f ∈ R[x], g = {g1, . . . , gm} ⊂ R[x]. Assume that S(g) �= ∅ and f � > −∞.
Denote u j := deg(g j )/2�, j = 0, 1, . . . ,m. Let ε > 0 be fixed.
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4.2.1 Unknown lower bound

Let d := �deg( f )/2�+1 and consider the hierarchy of semidefinite programs indexed
by k ∈ N:

τ 2k (ε) := inf Ly
(
θk
(
f + εθd

))

s.t. y = (yα)α∈Nn
2(d+k) ⊂ R,

Mk+d (y) � 0,
Mk+d−u j

(
g j y
) � 0, j = 1, . . . ,m,

Ly
(
θk
) = 1.

(4.22)

Theorem 7 For every k ∈ N, the dual of (4.22) reads:

ρ2
k (ε) := sup

{
λ ∈ R : θk

(
f − λ+ ε θd

)
∈ Qk+d(g)

}
. (4.23)

The following statements hold:

1. The sequence (ρ2
k (ε))k∈N is monotone non-decreasing.

2. Assume that problem (4.21) has an optimal solution x�. Then there exists K ∈ N

such that f � ≤ ρ2
k (ε) ≤ f � + ε θ(x�)d for all k ≥ K. In particular, K is upper

bounded by C exp
(
O(ε−1)C

)− d as ε ↓ 0, for some C > 0 depending on g.

The proof of Theorem 7 relies on Theorem 5 (i) and is similar to Theorem 6. The
upper bound on K is based on Proposition 1.

We guarantee strong duality for previous primal-dual problems:

Proposition 3 There exists K ∈ N such that τ 2k (ε) = ρ2
k (ε) for all k ≥ K. Moreover,

if τ 2k (ε) > −∞, the optimal value ρ2
k (ε) is attained.

The proof of Proposition 3 is postponed to Appendix A.3.

Remark 3 If S(g) has nonempty interior then strong duality holds for all orders k of the
primal-dual problems (4.22)–(4.23). Indeed, by constructing a sequence of moments
from the Lebesgue measure on an open ball contained in S(g), one can find a strictly
feasible solution of (4.22) and then apply Slater’s constraint qualification [7, § 5.2.3].

4.2.2 Known lower bound

Assume that gm := f − f for some real f ≤ f � and let d := deg( f )/2�. We

then obtain the same conclusion as Theorem 7 with replacing here τ 2k (ε) and ρ2
k (ε)

by τ 3k (ε) and ρ3
k (ε), respectively. The proof relies on Theorem 5 (ii) and is similar to

Theorem 6. Note that here gm = ( f − f �)+ ( f � − f ) with f − f � ≥ 0 on S(g) and
f � − f ≥ 0. The upper bound on K is also based on Proposition 1.
The next proposition states that strong duality is guaranteed for each relaxation

order k.

Proposition 4 Let k ∈ N. Then τ 3k (ε) = ρ3
k (ε). Moreover, if τ 3k (ε) > −∞ then the

optimal value ρ3
k (ε) is attained.
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The proof of Proposition 4 is postponed to Appendix A.4.

Remark 4 A lower bound f of problem (4.21) can be obtained by solving the following
SDP:

sup
{
λ ∈ R : θk ( f − λ) ∈ Qk+d(g)

}
, k ∈ N.

Assume that we know a lower bound f of problem (4.21). By adding the inequal-
ity constraint f − f ≥ 0 in S(g), we obtain the same semialgebraic set, i.e.
S(g ∪ { f − f }) = S(g). Thus, the two problems inf{ f (x) : x ∈ S(g)} and
inf{ f (x) : x ∈ S(g ∪ { f − f })} are identical and the primal-dual SDP relaxations

with values ρ3
k (ε) and τ 3k (ε) of the latter one satisfy strong duality for each relaxation

order k.

General case Since g j ≥ 0 on S(g) and −g j ≥ 0 on S(g) is equivalent to g j = 0 on
S(g), S(g) can be rewritten as S(g, h)with g = {g1, . . . , gm} is the set of polynomials
involved in the inequality constraints and h = {h1, . . . , hl} is the set of polynomials
involved in the equality constraints; in addition,Rn = S({0},∅). Consider the general
POP:

f � := inf
x∈S(g,h)

f (x), (4.24)

with f � ∈ R and define

(d, i) =
⎧
⎨

⎩

(deg( f )/2�, 1) if S(g, h) = R
n,

(1+ �deg( f )/2�, 2) if S(g, h) �= R
n and lower bound f is unknown,

(deg( f )/2�, 3) otherwise and set gm := f − f .

For fixed ε > 0, one considers the following SDP relaxation of POP (4.24)

τ ik (ε) := inf Ly
(
θk
(
f + εθd

))

s.t. y = (yα)α∈Nn
2(d+k) ⊂ R,

Mk+d−u j

(
g j y
) � 0, j = 0, . . . ,m,

Mk+d−wt (ht y) = 0, t = 1, . . . , l,
Ly
(
θk
) = 1,

(4.25)

where g0 := 1, u j = deg(g j )/2�, wt = deg(ht )/2�. Its dual is the semidefinite
program:

ρi
k(ε) := sup

{
λ ∈ R : θk

(
f − λ+ εθd

)
∈ Qk+d(g, h)

}
(4.26)

The zero-duality gap between SDP (4.25) and SDP (4.26) is guaranteed for large
enough k.

Remark 5 The condition τ ik (ε) > −∞ is always satisfied whenever k is sufficently
large. Indeed by weak duality, when ε is fixed and k is sufficiently large then τ ik (ε) ≥
ρi
k(ε) ≥ f � > −∞. However, when k is small, τ ik (ε) = −∞ may happen.
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Let us now assume that the POP (4.24) has an optimal solution x�. Then ρi
k(ε) ∈

[ f �, f � + εθ(x�)d ] when ε > 0 is fixed and k is sufficiently large. Moreover,
the gap between ρi

k(ε), and f � is at most ε θ(x�)d . Therefore, ρi
k(ε) is indeed an

approximation of f �. In practice, (ρi
k(ε))k∈N often converges to the optimal value

f �
ε := min{ f (x)+ ε θ(x)d : x ∈ S(g, h)} after finitely many steps (see Sect. 5).

Remark 6 (i) The term θd in both (4.25) and (4.26) can be replaced by ϕd(x, 1)
where ϕd : Rn+1 → R is a positive form of degree 2d. For instant, one can select
ϕd(x, 1) = x2d1 + · · · + x2dn + 1.

(ii) Let r ∈ N be fixed. For every k divisible by 2r , the term θk appearing in both (4.25)
and (4.26) can be replaced by ψr (x, 1)k/(2r) where ψr : Rn+1 → R is a coercive
positive formof degree 2r . For instant, one can selectψr (x, 1) = x2r1 +· · ·+x2rn +1.

Relation between classical optimality conditions and nonnegativity certificatesWhen
ρi
k(0) = f �, the constraint qualification conditions hold at x�.

Proposition 5 Assume that ρi
k(0) = f � for some k ∈ N, i.e., there exists σ j ∈ Σ[x],

j = 0, . . . ,m and φt ∈ R[x], t = 1, . . . , l such that θk( f − f �) = σ0+∑m
j=1 σ j g j+

∑l
t=1 φt ht . Then the constraint qualification conditions hold at x�:

1. σ j (x�) ≥ 0 and g j (x�) ≥ 0, for all j = 1 . . . ,m;
2. σ j (x�) g j (x�) = 0, for all j = 1, . . . ,m;
3. θ (x�)k∇ f (x�) =∑m

j=1 σ j (x�)∇g j (x�)+∑l
t=1 φt (x�)∇ht (x�).

The proof of Proposition 5 is similar to [26, Theorem 7.4].
If we take an arbitrary small ε > 0 then ρi

k(ε) is arbitrary close to f � for large
enough k. However, if one sets ε = 0, the statement “ρi

K (0) = f � for some K ∈ N”
is not true in general as stated in the following proposition:

Proposition 6 If the first order optimality condition fails at a global minimizer of
problem (4.24), then ρi

k(0) < f � for all k ∈ N.

The proof of Proposition 6 is similar to [39, Proposition 3.4].
By applying Proposition 6 to POP min{x : x3 = 0}, we obtain the statement (i)

of Lemma 3. Indeed, the first order optimality condition fails at the global minimizer
0 of this problem. Therefore, the positivity of ε ensures convergence of (ρi

k(ε))k∈N to
the neighborhood [ f �, f �+εθ(x�)d ] of the optimal value f �. We also conjecture that
ρi
K (0) = f � for some K ∈ Nwhen some classical optimality conditions hold at every

global minimizer of (4.24). In many cases, ρi
K (0) = f � with K = 0, 1 when the KKT

conditions hold (see Example 1 and [38, Example 4.4] with xn = 1). However, the
KKT conditions are not enough for this conjecture due to the fact that the minimizer
x� = (0, 0, 0) of dehomogenized Delzell’s polynomial in Lemma 2 satisfies the KKT
conditions and ρi

k(0) < f � for all k ∈ N in this case.

Reducing the non-compact case to a compact case Consider the POP: f � :=
inf{ f (x) : x ∈ S(g, h)} where the feasible set S(g, h) is possibly non-compact,
and the associated perturbed POP: f �

ε := inf{ f (x) + εθ(x)d : x ∈ S(g, h)} with
fixed ε > 0. Here one assumes that f � is attained at x� and 2d > deg( f ). As in
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Sect. 4, f � ∈ [ f �
ε − ε θ(x�)d , f �

ε ]. Suppose that a point x̄ in S(g, h) is known. It is
not hard to show that f + εθd is coercive and therefore with C := f (x̄) + εθ(x̄)d ,
the set S({C − f − εθd}) is compact. Moreover,

f �
ε = inf

{
f (x)+ εθ(x)d : x ∈ S

(
g ∪ {C − f − εθd}, h

)}
. (4.27)

Note that the quadratic module associated with the constraint set of POP (4.27) is
Archimedean and so f �

ε can be approximated as close as desired by the Moment-SOS
hierarchy. This approach is similar in spirit to that of [20]. However, determining a
point x̄ in S(g, h) is not easy in general. The hierarchy (4.26) relying on Putinar–
Vasilescu’s Positivstellensatz goes beyond this restriction.

In a different way, if one relies on the big ball trick, we consider the following POP,
for all ε > 0:

f̂ ∗ε := inf
{
f (x) : x ∈ S

(
g ∪ {1− ε‖x‖22}, h

)}
. (4.28)

Obviously, one has f̂ ∗ε ↓ f � as ε ↓ 0. The quadratic module associated with the
constraint set of POP (4.28) is Archimedean and f �

ε can be approximated by the
Moment-SOS hierarchy:

ρk(ε) := sup
{
λ ∈ R : f − λ ∈ Q

(
g ∪ {1− ε‖x‖22}, h

)}
, k ∈ N, ε > 0. (4.29)

Thus the SOS weight of 1 − ε‖x‖22 appears in the SOS decomposition of f − λ.
However, the hierarchy (4.26) relying on Putinar–Vasilescu’s Positivstellensatz does
not require such SOSweight in the decomposition of f −λ, but requires a perturbation
εθd and a multiplier θk .

4.3 Global optimizers

In this section we introduce a new method to find an approximation of a feasible
point of a basic semialgebraic set S(g, h) as defined in (1.1). We then apply this
method to obtain an approximation of a global minimizer x� associated to f � =
min{ f (x) : x ∈ S(g, h)} via finding a feasible solution of S(g ∪ {ρi

k(ε)− f }, h).

Remark 7 Let ε > 0 be fixed and k ∈ N be sufficiently large such that ρi
k(ε)is

an upper bound of f �. Let x� be a global minimizer of f on S(g, h) and let x̄ ∈
S(g ∪ {ρi

k(ε)− f }, h). Then x̄ ∈ S(g, h) and f � ≤ f (x̄) ≤ ρi
k(ε) ≤ f � + εθ(x�)d .

Let us consider an arbitrary small ε > 0. The difference between ρi
k(ε) and f � will

be as close as desired to εθ(x�)d for large enough k. Assume that the solution set
S(g ∪ { f � − f }, h) is finite and denote by y�

ε an optimal solution of SDP (4.25).
In practice, when k is sufficiently large, y�

ε satisfies numerically the flat extension
condition defined in Sect. 2. One may then use the algorithm of Henrion and Lasserre
[15] to extract numerically the support of a representing measure for y�

ε which may
include global minimizers of f � = min{ f (x) : x ∈ S(g, h)} (see the same extraction
in [21, §3.2]). However we cannot guarantee the success of this extraction procedure
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Fig. 1 Illustration of Lemma 4

a0a1

a2
x

S(g, h)

in theory because the set S(g ∪ {ρi
k(ε)− f }, h) may not be zero dimensional when

ρi
k(ε) > f �. For example, if f = ‖x‖22 and S(g, h) = R

n , S(g ∪ {ρi
k(ε)− f }, h)

is a closed ball centered at the origin with radius ρi
k(ε)

1/2. The following method
aims at overcoming this issue from both theoretical and algorithmic sides. For further
application cases of the flat moment criterion, we refer the interested reader to the
framework from [48], which is based on altering the bottom right part of the moment
matrix.

The Adding-Spherical-Constraints method (ASC) For a ∈ R
n and r ≥ 0, let B(a, r)

(resp. ∂B(a, r)) be the closed ball (resp. sphere) centered at a with radius r , i.e.,

B(a, r) = {x ∈ R
n : ‖x − a‖2 ≤ r

} (
resp. ∂B(a, r) = {x ∈ R

n : ‖x − a‖2 = r
})

.

The following result provides an efficientway to find a sequence of additional spherical
equality constraints for a given semialgebraic set such that (i) the resulting set is a
singleton (i.e. it contains a single real point), and (ii) this point is solution of a non-
singular system of linear equations.

Lemma 4 Assume that S(g, h) �= ∅. Let (at )t=0,1,...,n ⊂ R
n such that at − a0, t =

1, . . . , n are linearly independent inRn. Let us define the sequence (ξt )t=0,1,...,n ⊂ R+
as follows:

⎧
⎨

⎩

ξ0 := min
{‖x − a0‖22 : x ∈ S(g, h)

}
,

ξt := min
{‖x − at‖22 : x ∈ S

(
g, h ∪ {ξ j − ‖x − a j‖22 : j = 0, . . . , t − 1

})}
,

t = 1, . . . , n.

(4.30)
Then there exists a unique real point x� in S(g, h ∪ {ξt − ‖x − at‖22 : t = 0, . . . , n})
which satisfies the non-singular linear system of equations

(at − a0)
T x� = −1

2

(
ξt − ξ0 − ‖at‖22 + ‖a0‖22

)
, t = 1, . . . , n. (4.31)

The proof of Lemma 4 is postponed to Appendix A.5.
Geometrically speaking, we find a sequence of spheres ∂B(at , ξ

1/2
t ), t = 0, . . . , n,

such that the intersection between these spheres and S(g, h) is the singleton {x�}
(see Fig. 1). Next, we use Lasserre’s hierarchy to compute the optimal values ξt ,
t = 0, . . . , n of problem (4.30).
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Theorem 8 Assume that S(g, h)∩B(0, L1/2) �= ∅ for some L > 0. Let (at )t=0,1,...,n ⊂
R
n such that at − a0, t = 1, . . . , n, are linearly independent in R

n. Assume that the
Moment-SOS hierarchies associated with the following POPs:

⎧
⎨

⎩

ξ0 := min
{‖x − a0‖22 : x ∈ S

(
g ∪ {L − ‖x‖22

}
, h
)}

,

ξt := min
{‖x − at‖22 : x ∈ S

(
g, h ∪ {ξ j − ‖x − a j‖22 : j = 0, . . . , t − 1})} ,

t = 1, . . . , n,

(4.32)
have finite convergence, and let w := max{u j , wq , 1}. For every k ∈ N, consider the
following semidefinite programs:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

η0k := inf
y∈Rs(2(k+w))

Ly
(‖x − a0‖22

)

s.t. Mk+w−u j

(
g j y
) � 0,

Mk+w−1
((
L − ‖x‖22

)
y
) � 0,

Mk+w−wq

(
hq y
) = 0,

y0 = 1,
ηtk := inf

y∈Rs(2(k+w))
Ly
(‖x − at‖22

)

s.t. Mk+w−u j

(
g j y
) � 0,

Mk+w−wq (hq y) = 0,

Mk+w−1
((

η
j
k − ‖x − a j‖22

)
y
)
= 0, j = 0, . . . , t − 1,

y0 = 1,
t = 1, . . . , n.

(4.33)
Then there exists K ∈ N such that for all k ≥ K, ηtk = ξt , t = 0, . . . , n. Moreover,
there exist t ∈ {0, . . . , n} and K̃ ∈ N such that for all k ≥ K̃ , the solution y of SDP
(4.33) with value ηtk satisfies the flat extension condition, i.e., rank (Mk+w (y)) =
rank (Mk (y)). In addition, y has a representing rank (Mk (y))-atomic measure μ and
supp (μ) ⊂ S (g, h).

The proof of Theorem 8 is postponed to Appendix A.6.

Remark 8 The Moment-SOS hierarchy of each POP (4.32) has finite convergence
when one of the following conditions is satisfied:

1. (Lasserre [26, Theorem 7.5]) The ideal 〈h〉 := {∑ j ψ j h j : ψ j ∈ R[x]} is real
radical, and the second-order sufficient condition holds at every global minimizer
of each POP in (4.32).

2. (Lasserre et al. [27, Proposition 1.1] and [26, Theorem 6.13]) The real variety
V (h) (= S(∅, h)) is finite.

Remark 9 In the final conclusion of Theorem 8, when y has a representing
rank(Mk(y))-atomic measure μ, we may use the extraction algorithm from [15] to
obtain the atomic support of μ.

Based on Theorem 8, Algorithm 1 below finds a feasible point in a nonempty (possibly
non-compact) semialgebaric set S (g, h).
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Algorithm 1 PolySys
Input: S(g, h) �= ∅, (at )t=0,1,...,n ⊂ R

n such that at − a0, t = 1, . . . , n are linearly
independent, ε > 0 and k ∈ N.
Output: x̄ . Begin with t := 0 and do:

1. Solve SDP (4.26) with f = ‖x‖22 to obtain ρi
k(ε). Set L := ρi

k(ε) and go to step 2.
2. Solve SDP (4.33) to obtain ηtk and an associated solution y.

(a) If t ≤ n and rank (Mk+w(y)) = rank (Mk(y)), i.e., y has a representing
measure μ, extract supp(μ) from y by using the algorithm from [15]. Take
x̄ ∈ supp(μ) and stop.

(b) If t ≤ n and rank (Mk+w(y)) �= rank (Mk(y)), set t := t + 1 and do again
step 2.

(c) If t = n + 1, stop.

Proposition 7 Let the assumptions of Theorem 8 hold. For k sufficiently large, Algo-
rithm 1 terminates and x̄ ∈ S(g, h).

Proof The proof follows from Theorem 8 and Remark 9. ��
In Algorithm 1, step 1 computes the radius L1/2 of the ball B(0, L1/2) which has

non-empty intersection with S(g, h). Then step 2 checks the flat extension condition
and extracts the solution x̄ .

Remark 10 At step 2 in Algorithm 1, for k sufficiently large, the rank of the moment
matrix rank(Mk+w(y)) decreases to one when t goes from 0 to n. Indeed, for each
t between 0 and n, we replace the semialgebraic set S(g, h) by its intersection with
the t spheres ∂B(a j , ξ

1/2
j ), j = 0, . . . , t − 1. This intersection includes the support

of the measure with moments y. Since S(g, h) ∩ ⋂n
j=0 ∂B(a j , ξ

1/2
j ) = {x�}, this

support converges to {x�} when t goes from 0 to n. Thus for large enough k, the
solution y of SDP (4.33) with value ηnk has a representing measure supported on
x� = (ye1, . . . , yen ). Here ei , i = 1, . . . , n is canonical basis of Rn .

The decrease of themomentmatrix rank inAlgorithm1 for the kissing number problem
with g1 = x21+x22+x23+x24−2x1x3−2x2x4−1, h1 = x21+x22−1 and h2 = x23+x24−1
is illustrated in Table 1. Here ei , i = 1, . . . , 4 is the canonical basis of R4. In this
example, rank(M1(y)) decreases from 5 to 1 when t goes from 0 to 4 and M1(y)
fulfills the flat extension condition at from t = 3.

Remark 11 ASC can be used to find an approximation of a real point in S(g, h) even
if S(g, h) is positive dimensional. This is illustrated later on by our numerical exper-
iments from Sect. 5 (see the polynomial systems corresponding to Id 6, 7, 8 and 13).

Obtaining a minimizer by using the ASC method We rely on the following
algorithm to find the value ρi

k(ε) of SDP (4.26), which approximates f � =
min{ f (x) : x ∈ S(g, h)}, together with an approximation x̄ of a minimizer x� for
this problem.

Algorithm 2 PolyOpt
Input: f , S(g, h) �= ∅, ε > 0 and k ∈ N.
Output: ρi

k(ε) and x̄.
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Table 1 Decrease of the moment matrix rank in Algorithm 1

t at ηt0 rank(M1(y)) rank(M0(y)) x̄

0 0R4 2.0000 5 1 −
1 e1 1.0000 3 1 −
2 e2 2.9997 3 1 −
3 e3 1.9998 1 1 (0.9999, 0.0001, 0.5028,−0.8611)
4 e4 1.3089 1 1 (1.0000, 0.0002, 0.4968, 0.8329)

1. Solve SDP (4.26) to obtain ρi
k(ε).

2. Compute x̄ in S(g ∪ {ρi
k(ε)− f }, h) by using Algorithm 1 and stop.

Proposition 8 If POP f � := inf{ f (x) : x ∈ S(g, h)} admits an optimal solution at
x�, then for k large enough, Algorithm 2 terminates and f � ≤ ρi

k(ε) ≤ f �+ εθ(x�)d .
Moreover, for k large enough, x̄ ∈ S(g, h) and f � ≤ f (x̄) ≤ f � + εθ(x�)d if the
assumption of Theorem 8 holds for S(g ∪ {ρi

k(ε)− f }, h).

In practice, one performs Algorithm 2 several times by updating k := k + 1 until
one obtains x̄ in S(g ∪ {ρi

k(ε)− f }, h). Obviously, one has f � + εθ(x�)d ≥ ρi
k(ε) ≥

f (x̄) ≥ f �.

5 Examples

In this section, we report results obtained after solving some instances of POP (4.24)
with Algorithm 2. As before, let us note g = {g1, . . . , gm} and h = {h1, . . . , hl}
the sets of polynomials involved in the inequality constraints and the equality con-
straints, respectively. In particular, the resulting set S(g, h) is unbounded for all
examples. The experiments are performed with both MATLAB R2018a/Yalmip and
Julia 1.1.1/JuMP to model the semidefinite optimization problems and Mosek 8.0 to
solve these problems. The codes for Algorithm 1 (PolySys) andAlgorithm 2 (PolyOpt)
can be downloaded from the link: https://github.com/maihoanganh. In these codes, we
always set a0 := 0Rn and a1, . . . , an as the canonical basis of Rn . We use a desktop
computer with an Intel(R) Pentium(R) CPUN4200@1.10GHz and 4.00GB of RAM.
The input data given in Table 2 include examples of unconstrained and constrained
POPs. The corresponding output data, the exact results and timings are given in Table
3. In these tables, the SOS hierarchy (4.26) is solved by optimizationmodels in Yalmip
(Y) and JuMP (J). The symbol “−” in a column entry indicates that the calculation
did not finish in a couple of hours.

Id 1–5 are unconstrained POPs. Id 6–12 are POPs with inequality constrains, Id
13–18 are POPs with equality constraints and Id 19–25 are POPs with both inequality
and equality constraints. Id 8, 11 and 12 correspond to examples from Jeyakumar et al.
[19,20]. Id 9 and 10 are selected from Demmel et al. [10]. Id 13-17 come from Greuet
et al. [14]. Id 23, 24 and 25 are POPs constructed from some inequalities issued from
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Table 2 Examples of POPs

Id Reference Input data

1 Motzkin f = x21 x
2
2 (x21 + x22 − 1) g = ∅ h = ∅

2 Robinson f = x61 + x62 − x41 x
2
2 − x21 x

4
2 − x41 − x42 − x21 − x22 + 3x21 x

2
2

g = ∅ h = ∅
3 Choi–Lam f = x41 x

2
2 + x42 + x21 − 3x21 x

2
2 g = ∅ h = ∅

4 Lax–Lax f = x1x2x3 − x1(x2 − x1)(x3 − x1)(1− x1)− x2(x1 − x2)
(x3 − x2)(1− x2)− x3(x1 − x3)(x2 − x3)(1− x3)
− (x1 − 1)(x2 − 1)(x3 − 1) g = ∅ h = ∅

5 Delzell f = x41 x
2
2 + x42 x

2
3 + x21 x

4
3 − 3x21 x

2
2 x

2
3 + x83 g = ∅ h = ∅

6 Modified Motzkin f = (x21 + x22 − 3)x21 x
2
2 g = {x21 + x22 − 4} h = ∅

7 [17, Example 4.3] f = x41 + x42 + x43 − 4x1x
3
3 g = {1− x41 + 1

2 x
4
2 − x43 }

h = ∅
8 [20, Example 3.1] f = x21 + 1 g = {1− x22 , x22 − 1/4} h = ∅
9 [10, Example 4.5] f = x21 + x22 g = {x21 − x1x2 − 1, x21 + x1x2 − 1, x22 − 1}

h = ∅
10 [10, Example 4.4] f = − 4

3 x
2
1 + 2

3 x
2
2 − 2x1x2 g = {x22 − x21 ,−x1x2} h = ∅

11 [19, §5.2] f = 1+
8∑

j=2
((x j − x2j−1)

2 + (1− x2j )) g = {x1, . . . , x8}
h = ∅

12 [19, §5.3] f = 1+
3∑

l=1
((x2l − x22l−1)2 + (1− x2l−1)2 + 90(x22l+2 −

x2l+1)2 + (x2l+1 − 1)2 + 10(x2l
+ x2l+2 − 2)2 + 1

10 (x2l − x2l+2)2) g = {x1, . . . , x8} h = ∅
13 [14, Example A.2] f = (x21 + x22 − 2)(x21 + x22 ) g = ∅

h = {(x21 + x22 − 1)(x1 − 3)}
14 [14, Example A.5] f = x61 + x62 + x63 + 3x21 x

2
2 x

2
3 − x21 (x42 + x43 )− x22 (x43 + x41 )

− x23 (x41 + x42 ) g = ∅ h = {x1 + x2 + x3 − 1}
15 [14, Example A.6] f = x1x2x3x4 − x1(x2 − x1)(x3 − x1)(x4 − x1)

− x2(x1 − x2)(x3 − x2)(x4 − x2)− x3(x2 − x3)(x1 − x3)
(x4 − x3)− x4(x2 − x4)(x3 − x4)(x1 − x4) g = ∅
h = {x1, x2 − x3, x3 − x4}

16 [14, Example A.4] f = (x1 + 1)2 + x22 g = ∅ h = {x31 − x22 }

17 [14, Example A.8] f = 1
6

5∑

j=1
(x2j + x2j+5) g = ∅

h = {x6 − 1, x j+6 − x j+5 − 1
6 (x2j+5 − x j ) : j = 1, . . . , 4}

18 Self made f = x61 + x22 g = ∅ h = {(x21 + x22 )(1− x1x2)
2}

19 [13, Example 2] f = x21 + x22 + x23 + x24
g = { 18 − x4}h = {x1 + x2 + x3 + x4 − 1}

20 Self made f = x31 − x22 g = {x1, x2} h = {(x1x2 + 1)(x1 − x2)
2}
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Table 2 continued

Id Reference Input data

21 Self made f = x41 − 3x2 g = {x1, x2} h = {(x2 − x21 )(2x21 − x2)}
22 AM-GM inequality f = x1 + x2 + x3 g = {x1, x2, x3} h = {x1x2x3 − 1}
23 [57, USSR Olimpiad 1989] f = (x1 + x2)(x2 + x3)

g = {x1, x2, x3}h = {x1x2x3(x1 + x2 + x3)− 1}
24 [12, IMO 1990] f = x1(x1 + x2 + x3)(x1 + x3 + x4)(x1 + x2 + x4)+ x2(x1 + x2

+ x3)(x2 + x3 + x4)(x1 + x2 + x4)+ x3(x1 + x2 + x3)(x1 + x3
+x4)(x3+x2+x4)+x4(x4+x2+x3)(x1+x3+x4)(x1+x2+x4)
− 1

3 (x1 + x2 + x3)(x1 + x3 + x4)(x1 + x2 + x4)(x2 + x3 + x4) g
= {x1, x2, x3, x4} h = {x1x2 + x2x3 + x3x4 + x4x1 − 1}

25 [12, IMO 2000] f = −(x1x2−x2+1)(x2x3−x3+1)(x3x1−x1+1) g = {x1, x2, x3}
h = {x1x2x3 − 1}

Mathematics competitions mentioned in [12,57], yielding non-compact POPs with
known optimal values and optimizers.

Even though the sets of minimizers associated to Id 6, 7, 8 and 13 are positive
dimensional, we can still extract a single approximate optimal solution by using our
ASC algorithm. Note that ASC computes a real point x̄ in S(g ∪ {ρi

k(ε)− f }, h)

which is an outer approximation of {x� ∈ S(g, h) : f (x�) = f �} for k sufficiently
large.

In Table 3, Algorithm 2 terminates at some order k ≤ 5 for all POPs except Id
16. Note that for Id 16, the global minimum does not satisfy the KKT conditions.
Thus the method of Demmel et al. [10,41] and Nie’s [40] cannot be used to solve
this POP. Moreover, the convergence rate of (ρi

k(ε))k∈N in Id 16 is very poor when
ε ≤ 10−5. We overcome this issue by fixing k, multiplying ε by 10, and solving again
the relaxations. The computational cost that we must pay here is due to the largest gap
ε θ(x�)d between ρi

k(ε) and f �. This behavior is illustrated in Table 4.
In Id 18, even if the ideal 〈h〉 is not radical and V (h) is not equidimensional (the

assumptions required to apply the framework in [14] are not guaranteed) our ASC
method can still extract one solution of the problem.

For Id 21, we can improve the quality of the approximation ρi
k(ε) of the optimal

value f � by fixing k = 1, dividing ε by 10, and solving again the relaxations. This is
illustrated in Table 5.

We emphasize that we can customize the ε parameter for different purposes. On
the one hand, one increases ε to improve the convergence speed of the sequence
(ρi

k(ε))k∈N to the neighborhood [ f �, f � + εθ(x�)d ] of f � (see Table 4). On the other
hand, one decreases ε to improve the accuracy of the approximate optimal value ρi

k(ε)

and the approximate optimal solution x̄ (see Table 5).
Our numerical benchmarks also show that modeling in JuMP is faster and provides

more accurate outputs than modeling in Yalmip. In particular, the JuMP implementa-
tion is the only one which provides solutions for Id 11, 12, 17 and 23.

Let us now denote by kε the smallest nonnegative integer such that ρi
kε

(ε) ≥ f �,

for each ε > 0. The graph of the function ε−1 �→ kε on (0, 100] for Id 9 and Id 16 is
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Table 4 Numerical experiments for Id 16 with various values of ε

ε ρi5(ε) x̄ Time (s)

10−4 Y: 0.9492 J: 0.9778 J: − Y: − Y: 4.47 J: 2.02

10−3 Y: 0.9528 J: 0.9783 J: − Y: − Y:4.62 J: 1.59

10−2 Y: 0.9550 J: 0.9884 J: − Y: − Y: 4.45 J: 1.29

10−1 Y: 1.0479 J: 1.0774 (0.0000, 0.0000) Y: 17.64 J: 3.76

Table 5 Numerical experiments for Id 21 with various values of ε

ε ρi1(ε) x̄ Time (s)

10−6 Y: −8.2078 J: −8.9392 Y: (1.4525, 4.2199) J: (1.6593, 5.5069) Y: 8.46 J: 3.10

10−7 Y: −8.4889 J: −8.9935 Y: (1.5116, 4.5701) J: (1.7086, 5.8387) Y: 8.34 J: 2.61

10−8 Y: −8.4915 J: −8.9968 Y: (1.5122, 4.5739) J: (1.7158, 5.8873) Y: 8.37 J: 2.70

10−9 Y: −7.9335 J: −8.9949 Y: (1.4026, 3.9346) J: (1.7113, 5.8572) Y: 8.30 J: 2.54

Fig. 2 Plot of the complexity
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Id 9
Id 16

illustrated in Fig. 2. Here Id 9 (resp. Id 16) is an example of POP such that the global
minimums satisfy the KKT condition (resp. do not satisfy the KKT condition). We
can experimentally compare the complexity of Algorithm 2 in both cases. For Id 9, the
function seems to increase as slowly as a constant function, which is in deep contrast
with Id 16, where the function increases more quickly and seems to have a step-wise
linear growth. Theorem7 states that kε has an upper boundwhich is exponential in ε−1,
i.e., kε ≤ C exp

(
O(ε−1)C

)− d as ε−1 →∞. This is an open question to guarantee
that kε ≤ O(ε−N ) as ε ↓ 0 for some N > 0 in the constrained case. Another open
questions are whether and how the KKT condition affects the convergence rate of
(ρi

k(ε))k .
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6 Conclusion

In this paper, we have established new proofs for two representations of globally
nonnegative polynomials and polynomials nonnegative on semialgebraic sets based on
the homogeneous representations in [47,49]. Then we rely on these representations to
convert them into a practical numerical scheme for approximating the globalminimum.
We provide converging hierarchies of semidefinite relaxations for unconstrained and
constrained polynomial optimization problems.

We have also introduced a method based on adding spherical constraints (ASC) to
solve systems of polynomial equalities and inequalities, and to obtain global solutions
of polynomial optimization problems as well.

In view of the practical efficiency of ASC, a topic of further investigation is to
provide a more detailed comparison with other methods for solving polynomial sys-
tems. Another direction of research is to derive a sparse variant of Putinar–Vasilescu’s
Positivstellensatz in order to improve the scalability of our optimization framework.
For this, we cannot directly rely on existing sparse polynomial optimization tech-
niques by [61] since the perturbation term is not sparse. One possible workaround
is to rely on a sparse variant of Reznick’s Positivstellensatz [35], involving sparse
uniform denominators.

We currently need the assumption that the infimum of a given POP is attained to
guarantee convergence of our hierarchy of relaxations to a value in a neighborhood
of this infimum. It raises the open question of convergence to the infimum in the case
where it is not attained.
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0004-01 (T-COPS project) and by the FMJHProgram PGMO (EPICS project) (Grant number P-2019-0038)
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(POEMA) as well as from the AI Interdisciplinary Institute ANITI funding, through the French “Investing
for the Future PIA3” program under the Grant agreement n◦ANR-19-PI3A-0004.

A Appendix

A.1 Proof of Theorem 5

Jacobi [18, Theorem 7] proves another result of Putinar and Vasilescu [47, Theorem
4.2], which states that if f , g1, . . . , gm are polynomials of even degree and f̃ > 0 on
S({g̃1, . . . , g̃m})\{0}, then θk f ∈ Q(g) for k large enough,where h̃ is the homogeniza-
tion of given polynomial h. The idea of Jacobi is to apply Putinar’s Positivstellensatz
for the fact that f̃ > 0 on the intersection of S({g̃1, . . . , g̃m})with the unit sphere. Our
proof for Theorem 5 replaces f̃ here by the perturbation of f̃ and replaces the unit
sphere by a sphere with an arbitrary radius L1/2. This will have a direct implication
on the complexity analysis derived in Proposition 1.
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Proof 1. Let us prove the conclusion under condition (i). For every h ∈ R[x], we
define by ĥ the degree 2d1(h) homogenization of h, i.e.,

ĥ (x, xn+1) = x2d1(h)
n+1 h (x/xn+1) . (1.34)

where d1(h) := 1+ �deg(h)/2�. Let ε > 0 be fixed. Let f̃ be the degree 2d homoge-
nization of f . Then f̃ + ε‖(x, xn+1)‖2d2 is a homogeneous polynomial of degree 2d.
Let ĝ := {ĝ1, . . . , ĝm} and L > 0. We will show that

f̃ + ε‖(x, xn+1)‖2d2 ≥ εLd on S
(
ĝ,
{
L − ‖(x, xn+1)‖22

})
. (1.35)

Let (y, yn+1) ∈ S(ĝ, {L − ‖(x, xn+1‖22}) be fixed. By (1.34), one has

y
2d1(g j)
n+1 g j (y/yn+1) = ĝ j (y, yn+1) ≥ 0, j = 1, . . . ,m. (1.36)

We consider the following two cases:

– Case 1: yn+1 �= 0. For j = 1, . . . ,m, by (1.36) and since y
2d1(g j)
n+1 > 0,

g j (y/yn+1) ≥ 0. It implies that y/yn+1 ∈ S (g). By assumption, f (y/yn+1) ≥
0. From this, f̃ (y, yn+1) = y2dn+1 f (y/yn+1) ≥ 0. From this and since

‖(y, yn+1)‖22 = L , f̃ (y, yn+1)+ ε‖(y, yn+1)‖2d2 ≥ εLd .
– Case 2: yn+1 = 0. By definition of d1( f ), xn+1 divides f̃ so f̃ (y, yn+1) = 0.
From this and since ‖(y, yn+1)‖22 = L ,

f̃ (y, yn+1)+ ε‖(y, yn+1)‖2d2 = εLd .

Thus, (1.35) holds. It is not hard to show that S(ĝ ∪ {L − ‖(x, xn+1)‖22}) satisfies the
Archimedean condition. From this and by applying Theorem 2 (i),

f̃ + ε‖(x, xn+1)‖2d ∈ Q
(
ĝ,
{
L − ‖(x, xn+1)‖22

})
.

Then there exist ψ j ∈ Σ[x, xn+1], j = 0, 1, . . . ,m and ϕ ∈ R[x, xn+1] such that

f̃ + ε‖(x, xn+1)‖2d2 = ψ0 +
m∑

j=1
ψ j ĝ j +

(
L − ‖(x, xn+1)‖22

)
ϕ.

Let (z, zn+1) ∈ R
n+1\{0}. By replacing (x, xn+1) in the last equality by L1/2 (z,zn+1)

‖(z,zn+1)‖2
and the fact that f̃ + ε‖(x, xn+1)‖2d2 , ĝ1, . . . , ĝm are homogeneous polynomials of
degree 2d, 2d1 (g1) , . . . , 2d1 (gm) respectively, one has
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(
f̃ (z, zn+1)+ ε‖(z, zn+1)‖2d2

)
Ld‖(z, zn+1)‖−2d2

= ψ0

(
L1/2 (z, zn+1)

‖ (z, zn+1) ‖2
)

+
m∑

j=1
ψ j

(
L1/2 (z, zn+1)

‖ (z, zn+1) ‖
)
ĝ j (z, zn+1) Ld1(g j )‖ (z, zn+1) ‖−2d1(g j )

2 .

Set

K := max {2d, deg(ψ0), 2d1 (g1)+ deg (ψ1) , . . . , 2d1 (gm)+ deg (ψm) , 2+ 2deg(ϕ)/2�} .

Obviously, K is even. After multiplying the two sides of the last equality with
‖(z, zn+1)‖K , one has

(
f̃ (z, zn+1)+ ε‖(z, zn+1)‖2d2

)
Ld‖(z, zn+1)‖K−2d2

= ψ̄0 (z, zn+1)+
m∑

j=1
Ld1(g j)ψ̄ j (z, zn+1) ĝ j (z, zn+1),

where

ψ̄0 := ψ0

(
L1/2 (x, xn+1)

‖(x, xn+1)‖2
)
‖(x, xn+1)‖K2 ,

ψ̄ j := ψ j

(
L1/2 (x, xn+1)

‖(x, xn+1)‖2
)
‖(x, xn+1)‖K−2d1(g j )

2 , j = 1, . . . ,m.

Since (z, zn+1) ∈ R
n+1\{0} is arbitrary,

(
f̃ + ε‖(x, xn+1)‖2d2

)
Ld‖(x, xn+1)‖K−2d2 = ψ̄0 +

m∑

j=1
Ld1(g j )ψ̄ j ĝ j . (1.37)

Let j ∈ {0, . . . ,m} be fixed and set g0 := 1 and d1(g0) := 0. We will show that

ψ̄ j = s j + ξ j‖(x, xn+1)‖2, (1.38)

for some s j ∈ Σ[x, xn+1]K/2−d1(g j ) and ξ j ∈ R[x, xn+1]. By definition of K (K −
2d1(g j ) ≥ deg(ψ j ), j = 1, . . . ,m) and since ψ j is SOS, ψ̄ j =∑l

t=1 φ2
t with φt :=

ht+ pt‖(x, xn+1)‖2 for some ht ∈ R[x, xn]K/2−d1(g j ) and pt ∈ R[x, xn]K/2−d1(g j )−1.
Then
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ψ̄ j =
l∑

t=1

(
h2t + p2t ‖ (x, xn+1) ‖22

)
+ 2‖ (x, xn+1) ‖2

l∑

t=1
ht pt .

By setting s j :=∑l
t=1 (h2t + p2t ‖(x, xn+1)‖22) and ξ j := 2

∑l
t=1 ht pt , (1.38) follows.

By (1.37) and (1.38),

(
f̃ + ε‖(x, xn+1)‖2d2

)
Ld‖(x, xn+1)‖K−2d2

= s0 +
m∑

j=1
Ld1(g j)s j ĝ j + ‖ (x, xn+1) ‖2

m∑

j=1
Ld1(g j)ξ j ĝ j .

Note that ‖(x, xn+1)‖2 is not a polynomial. From the last equality and since
the right hand side is polynomial, the left hand side must be a polynomial, so∑m

j=1 Ld1(g j )ξ j ĝ j = 0. Thus,

(
f̃ + ε‖(x, xn+1)‖2d2

)
Ld‖(x, xn+1)‖K−2d2 = s0 +

m∑

j=1
Ld1(g j )s j ĝ j .

By setting kε := K/2 − d, s0 ∈ Σ[x, xn+1]kε+d , s j ∈ Σ[x, xn+1]kε+d−d1(g j ), j =
1, . . . ,m and Ld‖(x, xn+1)‖2kε

2 ( f̃ + ε‖(x, xn+1)‖2d2 ) = s0 +∑m
j=1 Ld1(g j )s j ĝ j . By

replacing xn+1 by 1, Ldθkε ( f + εθd) = s0(x, 1) +∑m
j=1 Ld1(g j )s j (x, 1)g j . Since

s0 ∈ Σ[x, xn+1]kε+d , s j ∈ Σ[x, xn+1]kε+d−d1(g j ), j = 1, . . . ,m, s0(x, 1) ∈
Σ[x]kε+d , s j (x, 1) ∈ Σ[x]kε+d−d1(g j ), j = 1, . . . ,m. Note that d1(g j ) ≥ d2(g j ) =
u j , j = 1, . . . ,m. Hence, θkε ( f + εθd) ∈ Qkε+d(g) by the definition of truncated
quadratic module.

2. Let us show the conclusion under condition (ii). We do a similar process as part
1 (under condition (i)). The difference is that ĥ here is defined as the degree 2d2(h)

(instead of 2d1(h)) homogenization of h ∈ R[x] and the proof for (1.35). To show
(1.35) in Case 2: yn+1 = 0 here, we rely on the constraint gm = f + λ for some
λ ≥ 0 (instead of d ≥ d1( f ) and that xn+1 divides f̃ ). More explicitly, we assume by
contradiction that

f̃ (y, yn+1)+ ε‖(y, yn+1)‖2d2 < εLd .

From this and since 0 ≤ ĝm(y, yn+1) = f̂ (y, 0),

ε‖(y, yn+1)‖2d2 ≤ 02d−2d2( f ) f̂ (y, 0)+ ε‖(y, yn+1)‖2d2
= y2d−2d2( f )n+1 f̂ (y, yn+1)+ ε‖(y, yn+1)‖2d2
= f̃ (y, yn+1)+ ε‖(y, yn+1)‖2d2 < εLd .

It follows that ‖(y, yn+1)‖22 < L = ‖(y, yn+1)‖22. It is impossible. Thus, f̃ (y, yn+1)+
ε‖(y, yn+1)‖2d2 ≥ εLd . ��
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A.2 Proof of Proposition 1

Proof Wekeep all the notation from the proof of Theorem5.Without loss of generality,
let us assume that L = 1/4. By (1.35), S(ĝ, {L − ‖(x, xn+1)‖22}) ⊂ (−1, 1)n+1 and

min{ f̃ + ε‖(x, xn+1)‖2d2 : (x, xn+1) ∈ S(ĝ, {L − ‖(x, xn+1)‖22})} ≥ 2−2dε.
(1.39)

By definition of ĝ and since 0Rn ∈ S(g), (0Rn , L1/2) ∈ S(ĝ, {L − ‖(x, xn+1)‖22}).
Thus, S(ĝ, {L − ‖(x, xn+1)‖22}) is nonempty. By definition of K ,

f̃ + ε‖(x, xn+1)‖2d2 ∈ QK/2(ĝ, {L − ‖(x, xn+1)‖22}).

Since ‖(x, xn+1)‖2d2 = ∑

ᾱ∈Nn+1
d

cn+1(ᾱ)(x, xn+1)2ᾱ , one has

‖ f̃ + ε‖(x, xn+1)‖2d2 ‖max ≤ ‖ f̃ ‖max + ε‖‖(x, xn+1)‖2d2 ‖max

= ‖ f̃ ‖max + εmax{cn+1(ᾱ)/cn+1(2ᾱ) : ᾱ ∈ N
n+1
d }.

Note that f̃ =∑α fαxαx2d−|α|n+1 , so ‖ f̃ ‖max = ‖ f ‖max,d . Thus,

‖ f̃ + ε‖(x, xn+1)‖2d2 ‖max ≤ ‖ f ‖max,d + εmax{cn+1(ᾱ)/cn+1(2ᾱ) : ᾱ ∈ N
n+1
d }.
(1.40)

From these and using Theorem 3, one can choose

K

2
≥ C exp

((
4d+1d2(n + 1)2d

(
ε−1‖ f ‖max,d +max

{
cn+1(ᾱ)

cn+1(2ᾱ)
: ᾱ ∈ N

n+1
d

}))C)

,

for some C > 0. The right hand side of this inequality comes from (1.39), (1.40) and
the fact that the function t �→ c exp (btc) with positive constants b and c is increasing
on [0,∞). By setting kε = K/2− d, the conclusion follows. ��

A.3 Proof of Proposition 3

Proof We denote by P and P� feasible set and optimal solutions set for the moment
SDP (4.22), respectively. We claim that P is nonempty. Indeed, with z being the
moment sequence of the 1-atomic measure θ(x̄)−1δx̄ for some x̄ ∈ S(g), it is not
hard to check that the truncation of z is a feasible solution of (4.22). By setting
C := Lz(θ

k( f + εθd)), P� is also the set of optimal solutions for
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τ 2k (ε) = inf Ly(θ
k( f + εθd))

s.t. y = (yα)α∈Nn
2(d+k) ⊂ R,

Ly(θ
k( f + εθd)) ≤ C,

Mk+d−u j (g j y) � 0, j = 0, . . . ,m,

Ly(θ
k) = 1,

(1.41)

with g0 = 1. Denote by P̄ the feasible set of (1.41). Note that P̄ is nonempty since the
truncation of z is also a feasible solution of (1.41). We will prove that P̄ is bounded.
By definition of θ , θr =∑α∈Nn

r
Cr

αx
2α for all r ∈ N, where Cr

α ≥ 1 for all α ∈ N
n
r .

Since f − f � ≥ 0 on S(g), by Theorem 5, there exists K ∈ N such that

θK
(
f − f � + ε

2
θd
)
∈ QK+d(g).

Note that K depends only on f , g and ε. Assume that k ≥ K . Since θk−K ∈ Σ[x]k−K ,
one has

θk
(
f − f � + ε

2
θd
)
= θk−K θK

(
f − f � + ε

2
θd
)
∈ Qk+d(g).

Then there exist G j � 0, j = 1, . . . ,m such that

θk
(
f − f � + ε

2
θd
)
=

m∑

j=0
vTk+d−u j

G jvk+d−u j g j =
m∑

j=0
trace(G jvd+k−u j v

T
d+k−u j

g j ).

Let y ∈ P̄ . From these and since Mk+d−u j (g j y) � 0,

Ly

(
θk
(
f − f � + ε

2
θd
))

=
m∑

j=0
trace(G jMd+k−u j (g j y)) ≥ 0.

Thus, for every β ∈ N
n
k+d ,

ε

2
y2β ≤ ε

2
Ck+d

β y2β ≤ ε

2

∑

α∈Nn
k+d

Ck+d
α y2α = ε

2

∑

α∈Nn
k+d

Ck+d
α Ly(x

2α)

= ε

2
Ly(θ

k+d) ≤ ε

2
Ly(θ

k+d)+ Ly

(
θk
(
f − f � + ε

2
θd
))

= Ly(θ
k( f + εθd))− f �Ly(θ

k) ≤ C − f �,

since every element y2α on the diagonal of the positive semidefinite matrix Mk+d(y)
is nonnegative. Thus, y2β ≤ 2(C − f �)ε−1 for every β ∈ N

n
k+d . Since Mk+d(y) � 0,

|yα+β | ≤ y2β ≤ 2(C − f )ε−1 for all α, β ∈ N
n
k+d . This implies that ‖y‖2 is bounded

by 2(C − f )ε−1
√
s(2(d + k)). Since the objective function of (1.41) is linear and the

feasible set of (1.41) is closed and bounded, the set P� of optimal solutions of (1.41) is
nonempty and bounded. By using Trnovska’s result [59, Corrollary 1], ρ2

k (ε) = τ 2k (ε),
yielding the desired conclusion. ��
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A.4 Proof of Proposition 4

Proof We do a similar process as the proof of Proposition 3. The difference is the
bound of y here obtained by the inequality constraint gm = f − f ≥ 0 in stead of
Positivstellensatz. Thus, we do not need k sufficient large here. More explicitly, one
has ‖y‖2 ≤ (C − f )ε−1

√
s(2(d + k)), since for every β ∈ N

n
k+d ,

εy2β ≤ εCk+d
β y2β ≤ ε

∑

α∈Nn
k+d

Ck+d
α y2α = ε

∑

α∈Nn
k+d

Ck+d
α Ly(x2α)

≤ ε
∑

α∈Nn
k+d

Ck+d
α Ly(x2α)+ ∑

α∈Nn
k

Ck
αLy(x2αgm)

= εLy(θ
k+d)+ Ly(θ

k( f − f )) = Ly(θ
k( f + εθd))− f L y(θ

k)

≤ C − f .

A.5 Proof of Lemma 4

Proof Let us show that (ξt )t=0,...,n is real sequence. Obviously, ξt ≥ 0, t = 0, . . . , n.
Set rt = ξ

1/2
t , t = 0, . . . , n. Then

{
r0 = d(a0, S(g, h)) ≥ 0,
rt = d(at , S(g, h) ∩ ∂B(a0, r0) ∩ · · · ∩ ∂B(at−1, rt−1)) ≥ 0, t = 1, . . . , n,

(1.42)
where d(a, A) := inf{‖x − a‖2 : x ∈ A} for a ∈ R

n and A ⊂ R
n . It is sufficient to

prove that rt is real, t = 0, . . . , n. It is easy to see that S(g, h) is closed and S(g, h) is
nonempty by assumption. From this, r0 is nonnegative real and S(g, h) ∩ ∂B(a0, r0)
is also closed and nonempty. It implies that r1 is nonnegative real and

S(g, h) ∩ ∂B(a0, r0) ∩ ∂B(a1, r1)

is also closed and nonempty. By induction, for t ∈ {0, . . . , n}, rt is nonnegative real
and

S(g, h) ∩ ∂B(a0, r0) ∩ · · · ∩ ∂B(at , rt )

is closed and nonempty. Thus,

S
(
g, h ∪ {ξt − ‖x − at‖22 : t = 0, . . . , n}

)

= S(g, h) ∩ ∂B(a0, r0) ∩ · · · ∩ ∂B (an, rn) �= ∅.

Let x� ∈ S(g, h ∪ {ξt − ‖x − at‖22 : t = 0, . . . , n}). Then x� ∈ ∂B (a0, r0) ∩ · · · ∩
∂B(an, rn). It follows that ‖x� − at‖22 = r2t = ξt , t = 0, . . . , n. For t = 1, . . . , n,

ξt − ξ0 = ‖x� − at‖22 − ‖x� − a0‖22 = −2(at − a0)
T x� + ‖at‖22 − ‖a0‖22.
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It implies (4.31). Denote

A =
⎛

⎝
(a1 − a0)T

. . .

(an − a0)T

⎞

⎠ and b = −1

2

⎛

⎝
ξ1 − ξ0 − ‖a1‖22 + ‖a0‖22

. . .

ξn − ξ0 − ‖an‖22 + ‖a0‖22

⎞

⎠ .

The system (4.31) can be rewritten as Ax� = b. Since a j − a0, j = 1, . . . , n are
linearly independent in R

n , A is invertible. Hence, x� is determined uniquely by
x� = A−1b. ��

A.6 Proof of Theorem 8

Proof We will prove by induction that for t ∈ {0, . . . , n},

∃Kt ∈ N : ∀k ≥ Kt , ∀ j ∈ {0, . . . , t}, η
j
k = ξ j . (1.43)

For t = 0, (4.33) is the SDP relaxation of order k + w of

ξ0 = min
{
‖x − a0‖22 : x ∈ S

(
g ∪ {L − ‖x‖22}, h

)}
.

By assumption, (η0k )k∈N finitely converges to ξ0, i.e. there exist K0 ∈ N such that
η0k = ξ0 for all k ≥ K0. It follows that (1.43) is true for t = 0. Assume that (1.43) is
true for t = T , i.e.

∃KT ∈ N : ∀k ≥ KT , ∀ j ∈ {0, . . . , T }, η
j
k = ξ j . (1.44)

We will show that (1.43) is true for t = T + 1. By (4.33) and (1.44), for all k ≥ KT ,

ηT+1k = inf
y∈Rs(2(k+w))

Ly
(‖x − aT+1‖22

)

s.t. Mk+w−u j

(
g j y
) � 0,

Mk+w−wq

(
hq y
) = 0,

Mk+w−1
((

ξ j − ‖x − a j‖22
)
y
) = 0, j = 0, . . . , T ,

y0 = 1

is the SDP relaxation of order k + w of problem

ξT+1 = min
{
‖x − at‖22 : x ∈ S

(
g, h ∪

{
ξ j − ‖x − a j‖22, j = 0, . . . , T

})}
.

By assumption, (ηT+1k )k≥KT finitely converges to ξT+1, i.e. there exist KT+1 ≥ KT

such that ηT+1k = ξT+1 for all k ≥ KT+1. It follows that (1.44) is true for t = T + 1.
Thus, (1.44) is true for t = 0, . . . , n. For t = n, there exists K = Kn ∈ N such that
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for all k ≥ K , ηtk = ξt , t = 0, . . . , n. Let k ≥ K be fixed. Let y be the solution of
problem

ηnk := inf
y∈Rs(2(k+w))

Ly
(‖x − an‖22

)

s.t. Mk+w−u j

(
g j y
) � 0,

Mk+w−wq

(
hq y
) = 0,

Mk+w−1
((

ξ j − ‖x − a j‖22
)
y
) � 0, j = 0, . . . , n − 1,

y0 = 1,

which is the SDP hierarchy relaxation of order k + w of problem

ξn = min
{
‖x − an‖22 : x ∈ S

(
g, h ∪

{
ξ j − ‖x − a j‖22 : j = 0, . . . , n − 1

})}
.

We will prove that this latter problem has a unique minimizer x�. Set ĥ := h ∪ {ξ0 −
‖x − a0‖22}. Then
⎧
⎨

⎩

ξ0 = min{‖x − a0‖22 : x ∈ S(g, ĥ)},
ξt = min{‖x − at‖22 : x ∈ S(g, ĥ ∪ {ξ j − ‖x − a j‖22 : j = 0, . . . , t − 1})},

t = 1, . . . , n.

By Lemma 4 (with S(g, h) := S(g, ĥ)), there exists x� such that

S
(
g, h ∪

{
ξ j − ‖x − a j‖22 : j = 0, . . . , n

})

= S
(
g, ĥ ∪

{
ξ j − ‖x − a j‖22 : j = 0, . . . , n

})
= {x�

}
. (1.45)

Let a be a minimizer of the above POP with value ξn . Then

a ∈ S(g, h ∪ {ξ j − ‖x − a j‖22 : j = 0, . . . , n − 1}),

and ‖a − an‖22 = ξn . It follows that

a ∈ S(g, h ∪ {ξ j − ‖x − a j‖22 : j = 0, . . . , n}).

From this and by (1.45), a = x�. Since the above POP with optimal value ξn has a
unique minimizer x� and its Lasserre’s hierarchy has finite convergence, the solution
y of the SDP with optimal value ηnk must have a representing 1-atomic measure μ

supported on x�. Then y satisfies the flat extension condition when k is large enough
and supp(μ) = {x�} ⊂ S(g, h). The conclusion follows. ��
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