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Abstract
We consider exact deterministic mixed-integer programming (MIP) reformulations
of distributionally robust chance-constrained programs (DR-CCP) with random right-
hand sides overWasserstein ambiguity sets. The existingMIP formulations are known
to have weak continuous relaxation bounds, and, consequently, for hard instances
with small radius, or with large problem sizes, the branch-and-bound based solution
processes suffer from large optimality gaps even after hours of computation time. This
significantly hinders the practical application of the DR-CCP paradigm. Motivated by
these challenges, we conduct a polyhedral study to strengthen these formulations.
We reveal several hidden connections between DR-CCP and its nominal counterpart
(the sample average approximation), mixing sets, and robust 0–1 programming. By
exploiting these connections in combination, we provide an improved formulation
and two classes of valid inequalities for DR-CCP. We test the impact of our results
on a stochastic transportation problem numerically. Our experiments demonstrate the
effectiveness of our approach; in particular our improved formulation and proposed
valid inequalities reduce the overall solution times remarkably. Moreover, this allows
us to significantly scale up the problem sizes that can be handled in such DR-CCP
formulations by reducing the solution times from hours to seconds.

Keywords Distributionally robust · Chance constraints · Mixing sets · Wasserstein
ambiguity
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1 Introduction

We consider the following chance-constrained program (CCP)
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min
x

c�x (CCP)

s.t. P
∗[ξ /∈ S(x)] ≤ ε,

x ∈ X ,

where c ∈ R
L is a cost vector,X ⊂ R

L is a compact domain for the decision variables
x, S(x) ⊆ R

K is a decision-dependent safety set, ξ ∈ R
K is a random variable with

distribution P
∗, and ε ∈ (0, 1) is the risk tolerance for the random variable ξ falling

outside the safety set S(x).
CCP is one of the most common models to handle uncertainty in optimization.

Nevertheless, in practice, the distribution P
∗ in the chance constraint in (CCP) is

often unavailable to the optimizer. Instead, independent and identically distributed
(i.i.d.) samples {ξ i }i∈[N ], where [N ] := {1, . . . , N }, are drawn from P

∗, and P
∗ is

approximated using the empirical distribution PN on these samples. Such an approach
is known as the sample average approximation (SAA) of (CCP). Note that evaluating
P

∗[ξ /∈ S(x)] exactly is often difficult even when P
∗ is available. Consequently,

the SAA approach is often employed whenever the computation of P∗[ξ /∈ S(x)] is
expensive, even if P∗ is available. The SAA formulation of (CCP) is

min
x

c�x (SAA)

s.t.
1

N

∑

i∈[N ]
1(ξ i /∈ S(x)) ≤ ε,

x ∈ X ,

where 1(·) is the indicator function. For certain forms of safety sets S(·), (SAA) can
be reformulated as a mixed-integer program (MIP) and thus off-the-shelf optimization
solvers can be used to solve it.

While there are statistical guarantees for using (SAA) to approximate (CCP) [5,7,
24], the out-of-sample performance of the solution from (SAA) is quite sensitive to
the specific sample {ξ i }i∈[N ], and can result in high variance, particularly for small N .
In order to remedy this and regularize the out-of-sample performance of (SAA), one
can solve a distributionally robust chance-constrained program:

min
x

c�x (DR-CCP)

s.t. sup
P∈FN (θ)

P[ξ /∈ S(x)] ≤ ε,

x ∈ X ,

where FN (θ) is an ambiguity set of distributions on R
K that contains the empiri-

cal distribution PN , and θ is a parameter that governs the size of the ambiguity set,
and thereby the conservatism of (DR-CCP). For a recent comprehensive survey on
distributionally robust optimization problems, their properties, and exact and approx-
imate methods to solve them, we refer the reader to Rahimian and Mehrotra [30] and
references therein.
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Several types of ambiguity sets of probability distributions, such as those based on
moments, φ-divergences, unimodality, or support have been studied in the literature;
see e.g., [6,9,12,15,19,33]. More recently, the Wasserstein ambiguity set, that is, the
Wasserstein distance ball of radius θ around the empirical distribution PN , is shown
to possess particularly attractive statistical properties. The dual representation for the
worst-case probability P[ξ /∈ S(x)] under the Wasserstein ambiguity set P ∈ FN (θ)

is given in [4,10,27]. Various studies [8,13,32] exploit this dual representation to give
a deterministic non-convex reformulation of (DR-CCP). See also Hota et al. [13] for
reformulations based on the conditional value-at-risk (CVaR) inner approximation of
(DR-CCP) for several different types of safety sets.

For common linear forms of safety sets S(·), Chen et al. [8] and Xie [32] show that
(DR-CCP) underWasserstein ambiguity sets admits aMIP reformulation. Ji and Leje-
une [14] also explore MIP formulations of (DR-CCP) under Wasserstein ambiguity.
However, they impose additional structure on the support of ξ , thus their formulations
are different from Chen et al. [8] and Xie [32]. Such MIP reformulations pave the
path of using standard optimization solvers to formulate and solve these problems,
however, according to [8,32] these MIP reformulations are difficult to solve in certain
cases. Even for relatively small size problems with only a few hundred samples and
small radii, the resulting formulations still have a large optimality gap even after an
hour of computation time with a commercial solver.

1.1 Contributions

Motivated by these computational challenges, our focus in this paper is on developing
effective methods to solve the exact reformulation of (DR-CCP) for such hard cases.
In particular, we closely examine the MIP reformulations of (DR-CCP) with random
right-hand side uncertainty under Wasserstein ambiguity sets from Chen et al. [8]
and Xie [32]. We present theoretical results that have strong computational impact in
solving (DR-CCP).

We first exploit the close relationship between (DR-CCP) over Wasserstein ambi-
guity sets and its nominal counterpart (SAA) to identify an implied mixing set with a
cardinality constraint over the existing binary variables in the (DR-CCP) reformula-
tion,which enables the use of existing inequalities for such a set.We use the established
technique of quantile strengthening [23,25] to significantly reduce the big-M constants
of this mixing set, and then show how to adapt these to (DR-CCP). Our result also
shows that existingmixing inequalities for (SAA) can be readily applied to (DR-CCP).

We further analyze the formulation with reduced coefficients obtained from the
quantile strengthening. We exploit the conditional value-at-risk (CVaR) interpretation
for (DR-CCP) described by Xie [32] to bound key variables in the formulation. Using
these, we show that we can further improve our new formulation for (DR-CCP) by
eliminating a significant portion of constraints. Furthermore, the improved bounds
we establish on variables allow us to identify a specific substructure in our improved
formulation which arises in robust 0–1 programming [2]. Consequently, we show that
we can directly use results from Atamtürk [2] to describe a class of valid inequalities
for our improved formulation.
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644 N. Ho-Nguyen et al.

We then assess the computational impact of the improved formulation and the
new valid inequalities on solving (DR-CCP) on a class of stochastic transportation
problems.We observe that the improved formulation uniformly reduces solution times
by at least an order of magnitude for any radius, number of original decision variables
and number of scenarios. In the difficult small radius regime for N = 100 scenarios,
the original formulation cannot verify optimality within 1h, whereas our formulation
solves within seconds. For the most difficult instances with small Wasserstein radius
and N = 3000 scenarios, the improved formulation results in less than 0.8% average
optimality gap, whereas the original formulation cannot even find a feasible solution
for any of the tested instances.

To the best of our knowledge, our work is the first that examines these connections
between traditional SAA, mixing sets, and robust 0–1 programming in the context of
distributionally robust chance constraints, and demonstrates the huge computational
effectiveness of these approaches for the difficult instances. It is interesting to note
that distributionally robust optimization is a paradigm of modeling uncertainty that
does not require a complete knowledge of the distribution as in (SAA), but is also less
conservative than robust optimization that considers the worst-case realizations of
uncertain parameters, without any knowledge of their joint distribution. Nevertheless,
our analysis and computational results show that the formulations for distributionally
robust optimization can be significantly improved by employing its connections to
both SAA and robust optimization.

1.2 Outline

In Sect. 2, we provide a formal problem description and elaborate on the connec-
tions between the existing MIP models for (DR-CCP) and the safety set. In Sect. 3,
we explore the connection between (SAA) and (DR-CCP). We describe the mix-
ing structure in (SAA) and demonstrate its application to (DR-CCP). In Sect. 4, we
employ the CVaR representation of (DR-CCP) to reveal the substructure from robust
0–1 programming that is hidden in MIP reformulations of (DR-CCP). Using results
from Atamtürk [2], we provide valid inequalities resulting from this substructure. In
Sect. 5, we report our computational experience with the improved formulation and
the proposed inequalities on a class of stochastic transportation problems.

2 Problem formulation

We consider Wasserstein ambiguity sets FN (θ) defined as the θ -radius Wasserstein
ball of distributions on R

K around the empirical distribution PN . We will use the 1-
Wasserstein distance, based on a norm ‖ · ‖, between two distributions P and P′. This
is defined as follows:

dW (P,P′) := inf
�

{
E(ξ ,ξ ′)∼�[‖ξ − ξ ′‖] : � has marginal distributions P,P′} .

Then, the Wasserstein ambiguity set is

FN (θ) := {P : dW (PN ,P) ≤ θ} .
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Distributionally robust chance-constrained programs… 645

Given a decision x ∈ X and random realization ξ ∈ R
K , the distance from ξ to the

unsafe set is

dist(ξ ,S(x)) := inf
ξ ′∈RK

{‖ξ − ξ ′‖ : ξ ′ /∈ S(x)
}
. (1)

Throughout Sects. 2, 3 and 4, we assume that the sample {ξ i }i∈[N ], the risk tolerance
ε ∈ (0, 1) and the radius θ > 0 are fixed. As short-hand notation, we denote the
feasible regions of (SAA) and (DR-CCP) as follows:

XSAA(S) :=
⎧
⎨

⎩x ∈ X : 1

N

∑

i∈[N ]
1(ξ i /∈ S(x)) ≤ ε

⎫
⎬

⎭ , (2a)

XDR(S) :=
{
x ∈ X : sup

P∈FN (θ)

P[ξ /∈ S(x)] ≤ ε

}
. (2b)

Note that here the dependence on the safety set function S is made explicit, since the
relationship between existing formulations and our new valid inequalities depends on
the safety set.

Using tools from duality theory for Wasserstein distributional robustness [4,10],
Chen et al. [8] and Xie [32] give an extended formulation for the distributionally
robust chance constraint in (DR-CCP). Specifically, it was shown in [8, Theorem 3]
(see also [32, Proposition 1]) that when S(x) is open for each x ∈ X and θ > 0, we
have

XDR(S) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x ∈ X :

∃ t ≥ 0, r ≥ 0,

dist(ξ i ,S(x)) ≥ t − ri , i ∈ [N ],
ε t ≥ θ + 1

N

∑

i∈[N ]
ri

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

. (3)

(Note that a similar formulation holds when θ = 0, but we need to make the restriction
t > 0.) Therefore, the ability to model (DR-CCP) depends on the ability to model the
constraints dist(ξ i ,S(x)) ≥ t −ri . For a given set S(x), let int S(x) denote its interior
and clS(x) denote its closure. Also, note that Gao and Kleywegt [10, Proposition 3]
show

sup
P∈F(θ)

P[ξ /∈ int S(x)] = sup
P∈F(θ)

P[ξ /∈ S(x)] = sup
P∈F(θ)

P[ξ /∈ clS(x)],

and dist(ξ , int S(x)) = dist(ξ ,S(x)) = dist(ξ , clS(x)). Therefore, (3) holds regard-
less of whether S(x) is open or closed. With this in mind, in what follows, we express
S(x) as an open set, for convenience.

The classical literature on CCP typically considers two types of safety sets which
are defined by linear inequalities and are known to admit exact MIP reformulations:
individual chance constraints with left-hand side (LHS) uncertainty and joint chance
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constraints with right-hand side (RHS) uncertainty. In this paper, we consider only
joint chance constraints with RHS uncertainty, which have safety set and distance
function given by

S(x) :=
{
ξ : b�

p ξ + dp − a�
p x > 0, p ∈ [P]

}
, (4a)

dist(ξ ,S(x)) = max

{
0, min

p∈[P]
b�
p ξ + dp − a�

p x

‖bp‖∗

}
, (4b)

for given ap ∈ R
K ,bp ∈ R

L and dp ∈ R for all p ∈ [P]where ‖ ·‖∗ is the dual norm.
Chen et al. [8, Proposition 2] show that, in this case, (DR-CCP) can be reformulated
as

min
z,r,t,x

c�x (5a)

s.t. z ∈ {0, 1}N , t ≥ 0, r ≥ 0, x ∈ X , (5b)

ε t ≥ θ + 1

N

∑

i∈[N ]
ri , (5c)

M(1 − zi ) ≥ t − ri , i ∈ [N ], (5d)

b�
p ξ i + dp − a�

p x

‖bp‖∗
+ Mzi ≥ t − ri , i ∈ [N ], p ∈ [P], (5e)

where M is a sufficiently large positive constant. In particular, for joint chance con-
straints with RHS uncertainty, we have

XDR(S) = {x ∈ X : (5b)–(5e)} . (6)

3 Connection with the nominal chance constraint andmixing sets

Our first idea to strengthen the MIP reformulations of distributionally robust CCPs
originates from the following simple observation between the relation of the empirical
probability distribution and the Wasserstein ambiguity set.

When the radius θ of theWasserstein ambiguity setFN (θ) is 0, (DR-CCP) coincides
with (SAA) sinceFN (0) = {PN }. In general, asFN (0) ⊆ FN (θ) for any θ ≥ 0, (SAA)
is a relaxation of (DR-CCP), i.e., we have

XDR(S) ⊆ XSAA(S).

When the safety set is defined as S(x) = {ξ : s(x, ξ) ≥ 0} for a continuous function
s(·), Ruszczyński [31] shows that (SAA) can be reformulated as the following MIP:

min
z,r,t,x

c�x (7a)
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s.t. z ∈ {0, 1}N , x ∈ X , (7b)
∑

i∈[N ]
zi ≤ εN�, (7c)

s(x, ξ i ) + Mzi ≥ 0, i ∈ [N ], (7d)

where M is a sufficiently large positive constant. Inequalities (7c) and (7d) are often
referred to as the knapsack (or cardinality) constraint and the big-M constraints,
respectively. Then, when the safety set S(x) is given by S(x) = {ξ : s(x, ξ) > 0}, (7)
provides a relaxation of (DR-CCP). Therefore, by solving (7), one can provide a lower
bound on the optimum value of (DR-CCP). Note that the safety set (4) can be written
in this form by defining s(·) appropriately.

The formulation (7) for (SAA) is well-studied in the literature, and many
classes of valid inequalities for the formulation have been developed; see e.g.,
[1,16,17,20,22,23,25,34,35]. In fact, we develop a more direct connection between
formulation (7) and (DR-CCP) so that we can apply techniques for solving (7) directly
to (DR-CCP). It is clear that inequalities of the form (7c)–(7d) can be added to theMIP
formulation (5) of (DR-CCP) to obtain a stronger formulation. In turn, this implies
that the reformulation can be further strengthened by the inequalities developed for
strengthening (7). If we do this naïvely, we would add (7c)–(7d) to (5) with new binary
variables z′ ∈ {0, 1}N . Our first key result is that the same binary variables z from
the MIP formulation (5) can be used to define (7c)–(7d). This then means that we can
strengthen these formulations without adding any additional binary variables.

3.1 Strengthening the formulation by the nominal chance constraint

We now verify that the SAA inequalities for the joint chance constraint of (2b) can
be used to strengthen the formulation (5). Given S(x) defined by (4), consider the
following MIP formulation

min
x,z,r,t

c�x (8a)

s.t. (z, r, t, x) satisfies (5b)–(5e), (8b)
∑

i∈[N ]
zi ≤ εN�, (8c)

b�
p ξ i + dp − a�

p x

‖bp‖∗
+ Mzi ≥ 0, i ∈ [N ], p ∈ [P], (8d)

where M is a sufficiently large positive constant. (Note that in this formula-
tion, the inequality (8c) is equivalent to (7c).) We can write constraints (8d)

in the form (7d): individually sp(x, ξ i ) := b�
p ξ i+dp−a�

p x
‖bp‖∗ or jointly s(x, ξ) :=

minp∈[P]
{
b�
p ξ i+dp−a�

p x
‖bp‖∗

}
.More importantly, (8c) and (8d) share the same set of binary
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variables as the other constraints in (5). We next argue that this MIP formulation (8)
is an exact reformulation of (DR-CCP) with a safety set S(x) from (4).

Theorem 1 When the safety set S is defined as in (4), formulation (8) is an exact
reformulation of (DR-CCP), i.e.,

XDR(S) = {x ∈ X : (8b)–(8d)} . (9)

Proof By (6), it is sufficient to show that

{x ∈ X : (5b)–(5e)} = {x ∈ X : (8b)–(8d)} .

By (8b), we know that the set on the right-hand side is contained in the set on the
left-hand side. Let us show that the reverse direction also holds. To this end, take a
vector x ∈ X satisfying (5b)–(5e) with some z, r, t . For ease of notation, we define

s(x, ξ i ) := minp∈[P]
{
b�
p ξ i+dp−a�

p x
‖bp‖∗

}
. We claim that (x, z̄, r, t) satisfies (8b)–(8d)

where z̄ ∈ {0, 1}N is a vector such that z̄i = 1 if and only if s(x, ξ i ) < 0 for all
i ∈ [N ]. Since M is sufficiently large so that s(x, ξ i ) + M ≥ 0, it is clear that x, z̄
satisfy (8d). Next, we observe that (x, z̄, r, t) satisfies (5d) and (5e), which can be
equivalently rewritten as

min
{
s(x, ξ i ) + Mzi , M(1 − zi )

} ≥ t − ri , i ∈ [N ].

By the choice of z̄ and M , we have min
{
s(x, ξ i ) + Mz̄i , M(1 − z̄i )

}
is equal to 0 if

s(x, ξ i ) < 0, and it is equal to s(x, ξ i ) otherwise. Hence,

min
{
s(x, ξ i ) + Mz̄i , M(1 − z̄i )

} ≥ min
{
s(x, ξ i ) + Mzi , M(1 − zi )

}

for any zi ∈ {0, 1}. This implies that (x, z̄, r, t) satisfies (5d) and (5e) as they are sat-
isfied already by (x, z, r, t). To finish the proof, it remains to show that z̄ satisfies (8c).
Since θ > 0, we obtain from (5c) that t > 0. This implies that ri

t ≥ 0. We claim
that ri

t ≥ z̄i for all i ∈ [N ]. As ri
t ≥ 0, we have ri

t ≥ z̄i holds when z̄i = 0. When
z̄i = 1, by rearranging (5d) we get rit ≥ 1 = z̄i . Since

ri
t ≥ z̄i for all i ∈ [N ], it follows

from (5c) that εN ≥ ∑
i∈[N ]

ri
t ≥ ∑

i∈[N ] z̄i , implying in turn that
∑

i∈[N ] z̄i ≤ εN�,
as required. ��
Remark 1 Chen et al. [8] argue that there is a finite value of M for the validity of (5).
Essentially, we need to choose an appropriate value of M so that (5d)–(5e) correctly
represent the constraint dist(ξ i ,S(x)) ≥ t −ri . When b�

p ξ i +dp −a�
p x < 0 for some

p ∈ [P], we have dist(ξ i ,S(x)) = 0 by (4) and thus dist(ξ i ,S(x)) ≥ t − ri becomes

0 ≥ t − ri . As long as
b�
p ξ i+dp−a�

p x
‖bp‖∗ + M ≥ 0 holds for all x ∈ X , (5d)–(5e) can

capture this situation by setting zi = 1. Similarly, (5d)–(5e) can represent the case
when b�

p ξ i + dp − a�
p x ≥ 0 for all p ∈ [P] if M ≥ b�

p ξ i + dp − a�
p x for all x ∈ X ,

p ∈ [P]. So, setting
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M := max
x∈X , p∈[P]

⎧
⎨

⎩

∣∣∣b�
p ξ i + dp − a�

p x
∣∣∣

‖bp‖∗

⎫
⎬

⎭ (10)

ensures that the constraints (8d) are indeed valid. ��

3.2 Mixing substructure

Although (8) is already stronger than (5) due to the additional constraints (8d)–(8c), we
can further strengthen this formulation by adding more valid inequalities originating
from these constraints. To this end, for any fixed p, the constraints (8d)–(8c) give rise
to the following substructure:

Qp :=

⎧
⎪⎨

⎪⎩
(x, z) ∈ X × {0, 1}N :

sp(x, ξ i ) + Mzi ≥ 0, i ∈ [N ],
∑

i∈[N ]
zi ≤ εN�

⎫
⎪⎬

⎪⎭
. (11)

So, one can generate valid inequalities for the formulation (8) by finding inequalities
of the form μ�x + π�z ≥ β that are valid for the mixed-integer set Qp in (11).
Luedtke et al. [25] and Luedtke [23] introduce a procedure of generating inequalities
that are valid for Qp. In order to make our paper self-contained, we next explain this
procedure.

Given a fixed linear function μ�x, we solve the following single scenario subprob-
lem for each scenario i ∈ [N ]

h̄i (μ) := min
{
μ�x : sp(x, ξ i ) ≥ 0, x ∈ X̄

}
, (12)

where X ⊆ X̄ ⊆ R
L . Then μ�x ≥ h̄i (μ) holds for (x, z) ∈ Qp with zi = 0. Having

computed the values h̄i (μ) for i ∈ [N ], we sort them in non-decreasing order.Without
loss of generality, we may assume that

h̄N (μ) ≥ h̄N−1(μ) ≥ · · · ≥ h̄1(μ).

For ease of notation, let

k := εN�.

Notice that because
∑

i∈[N ] zi ≤ k is also enforced in Qp, by the pigeonhole principle
there must exist i ∈ {N − k, N − k + 1, . . . , N } with zi = 0. In turn, this implies that
μ�x ≥ h̄N−k(μ) because h̄i (μ) ≥ h̄N−k(μ) for all i ≥ N − k. In summary, we have
just argued that μ�x ≥ h̄i (μ) holds if zi = 0 and that μ�x ≥ h̄N−k(μ) is satisfied
always, in particular, when zi = 1 for i ∈ [N ]. Equivalently,

μ�x + (
h̄i (μ) − h̄N−k(μ)

)
zi ≥ h̄i (μ) (13)
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is valid. In fact, inequalities (13) for i ≤ N −k are redundant becauseμ�x ≥ h̄i (μ) is
implied by μ�x ≥ h̄N−k(μ) if i ≤ N − k. Because inequalities (13) share a common
linear function μ�x but each one has a distinct integer variable, the mixing procedure
of Günlük and Pochet [11], can be applied to obtain stronger inequalities. For any
J = { j1, . . . , j�} with N ≥ j1 ≥ · · · ≥ j� ≥ N − k+1, themixing inequality derived
from J and (13) is

μ�x +
∑

i∈[�]

(
h̄ ji (μ) − h̄ ji+1(μ)

)
z ji ≥ h̄ j1(μ), (14)

where j�+1 := N − k. The mixing inequalities of the form (14) are equivalent to
the star inequalities by Atamtürk et al. [3]. The inequalities (14) are the strongest
possible ones that can be generated from (13) in that the convex hull of solutions
(x, z) ∈ R

L × {0, 1}N satisfying (13) is described by (14) [3,11,16].

Consider any p ∈ [P]. For sp(x, ξ i ) := 1
‖bp‖∗

(
b�
p ξ i + dp − a�

p x
)
as in (8), we

can take − 1
‖bp‖∗ ap for μ. For this choice of μ, the value of h̄i (μ) from the single

scenario subproblem (12) with X̄ = R
L is precisely

min
x

{
− a�

p

‖bp‖∗
x : 1

‖bp‖∗

(
b�
p ξ i + dp − a�

p x
)

≥ 0

}
= −b�

p ξ i + dp

‖bp‖∗
.

So, assuming −b�
p ξ N ≥ · · · ≥ −b�

p ξ1 and letting

qp := −b�
p ξ N−k

(qp is the (k + 1)-th largest value), the inequalities μ�x ≥ h̄N−k(μ) and (13) for
μ = − 1

‖bp‖∗ ap correspond to

−qp + dp − a�
p x

‖bp‖∗
≥ 0, (15a)

b�
p ξ i + dp − a�

p x

‖bp‖∗
+ −b�

p ξ i − qp

‖bp‖∗
zi ≥ 0, i ∈ [N ]. (15b)

Moreover, the mixing inequalities (14) obtained from (13) have the following form:

b�
p ξ j1 + dp − a�

p x

‖bp‖∗
+

∑

i∈[�]

−b�
p ξ ji + b�

p ξ ji+1

‖bp‖∗
z ji ≥ 0 (16)

where N ≥ j1 ≥ · · · ≥ j� ≥ N − k + 1 and j�+1 := N − k.
The number of mixing inequalities (16) is exponential, but they can be separated

in O(N log N ) time [11,16].
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Notice that the inequalities (13)–(16) are big-M-free; the coefficients of the binary
variables and the right-hand sides depend only on sp(x, ξ i ). This is important for

practical purposes. In particular, when M is larger than
−b�

p ξ i−qp
‖bp‖∗ , the constraints (8d)

are dominated by the inequalities (15b), and thus, by (16).

3.3 Reducing big-M values

In Sect. 3.2, we argued that letting qp be the (k + 1)-th largest value amongst
{−b�

p ξ i }i∈[N ], the inequalities (15) are valid for (8), and based on this we gener-
ate the mixing inequalities (16). In fact, we can replace the big-M in (5e) with its
strengthened version from (15b) to obtain a new formulation:

min
z,r,t,x

c�x (17a)

s.t. (z, r, t, x) satisfies (5b)–(5d) and (5c), (17b)

b�
p ξ i + dp − a�

p x

‖bp‖∗
+ −b�

p ξ i − qp

‖bp‖∗
zi ≥ t − ri , i ∈ [N ], p ∈ [P]. (17c)

Theorem 2 Formulation (17) is an exact reformulation of (DR-CCP) where the safety
set is given by (4).

Proof By Theorem 1, (5) with (8c) is an exact reformulation. Hence, we need to argue
that reducing the big-M value in (5e) to obtain (17c) keeps the formulation valid.
To this end, it suffices to argue that constraints (5d) and (17c) correctly represent

dist(ξ i ,S(x)) ≥ t − ri for i ∈ [N ]. Let i ∈ [N ]. If minp∈[P]
{
b�
p ξ i+dp−a�

p x
‖bp‖∗

}
≥ 0,

we can set zi = 0 and we obtain dist(ξ i ,S(x)) = minp∈[P]
{
b�
p ξ i+dp−a�

p x
‖bp‖∗

}
. In this

case, (5d) becomes redundant and (17c) represents dist(ξ i ,S(x)) ≥ t−ri . On the other
hand, if we set zi = 1, then (5d) is 0 ≥ t − ri and (17c) becomes redundant. However,
dist(ξ i ,S(x)) ≥ t − ri is less restrictive on (x, r, t) than 0 ≥ t − ri , so at optimality,

there is at least one solution such that zi = 0 whenever minp∈[P]
{
b�
p ξ i+dp−a�

p x
‖bp‖∗

}
≥ 0,

hence dist(ξ i ,S(x)) ≥ t − ri is correctly represented.

If minp∈[P]
{
b�
p ξ i+dp−a�

p x
‖bp‖∗

}
< 0, then dist(ξ i ,S(x)) = 0 and we must have zi = 1

by (15b). Since zi = 1, (17c) and (5d) respectively become

t − ri ≤ b�
p ξ i + dp − a�

p x

‖bp‖∗
+ −b�

p ξ i − qp

‖bp‖∗
= −qp + dp − a�

p x

‖bp‖∗
t − ri ≤ 0.

By (15a) we know that
−qp+dp−a�

p x
‖bp‖∗ ≥ 0 so the first inequality is weaker than the

second, hence we have dist(ξ i ,S(x)) = 0 ≥ t − ri as required. ��
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In contrast to (5e), the inequality (17c) is big-M-free. During our computational
study summarized in Sect. 5, we observed that the coefficients of the variables z in
(17c) are significantly smaller than the big-M value computed from Remark 1.

4 Improved formulation and valid inequalities from robust 0–1
programming

In this section, we study, in closer detail, the set of constraints from (17c). By appealing
to the conditional value-at-risk interpretation for (DR-CCP), we prove a bound on t .
Consequently, we uncover another hidden structure related to robust 0–1 programming
with a budget uncertainty set. This allows us to derive a new class of valid inequalities.

For a given p ∈ [P], recall the definition of qp being the (k + 1)-th largest value

amongst
{
−b�

p ξ i

}

i∈[N ] where k := εN�. We also define hi,p := −b�
p ξ i−qp

‖bp‖∗ and

u p := −qp+dp−a�
p x

‖bp‖∗ − t . The constraints (17c) can be cast as the mixed-integer set

Rp :=
{
(u p, r, z) ∈ R × R

N+ × {0, 1}N : u p + ri ≥ hi,p(1 − zi ), i ∈ [N ]
}

.

In fact, a similar mixed-integer set has been studied in the context of robust 0–1
programming by Atamtürk [2]:

R+ :=
{
(u, r, z) ∈ R+ × R

N+ × {0, 1}N : u + ri ≥ hi (1 − zi ), i ∈ [N ]
}

,

where h1, . . . , hN are assumed to all be positive. The main difference between Rp

and R+ is that u p is unrestricted in Rp but is non-negative in R+, and some hi,p may
be negative or zero in Rp, but all hi are positive in R+. We refer to the set R+ as the
robust 0–1 set, since it originates from the robust counterpart of a 0–1 program whose
objective vector belongs to a “budget uncertainty set”. In Atamtürk [2], the binary
variables in R+ correspond to the original decision variables of the 0–1 program.

The fact that Rp is so similar to R+ may seem surprising at first, yet is less so if
we consider the conditional value-at-risk (CVaR) interpretation for the Wasserstein
robust chance constraint. More precisely, Xie [32, Corollary 1] gives the following
alternate version of (3):

XDR(S) =
{
x ∈ X : θ

ε
+ CVaR1−ε (− dist(ξ ,S(x));PN ) ≤ 0

}
(18a)

=
⎧
⎨

⎩x ∈ X : θ

ε
+ max

y∈B
1

εN

∑

i∈[N ]
(− dist(ξ i ,S(x)))yi ≤ 0

⎫
⎬

⎭ (18b)

where CVaR1−ε(v(ξ);PN ) := min
t

⎧
⎨

⎩t + 1

εN

∑

i∈[N ]
max{0, v(ξ i ) − t}

⎫
⎬

⎭ , (18c)
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B :=
⎧
⎨

⎩y : 1

N

∑

i∈[N ]
yi = ε, 0 ≤ y ≤ 1

⎫
⎬

⎭ . (18d)

Note that (18b) comes from the dual interpretation of the CVaR, see e.g., [28, (3)]. In
particular, B has exactly the same structure as the budget uncertainty set studied in
Atamtürk [2].

We now further exploit the CVaR interpretation (18a) of (3) so that we can cast
Rp exactly in the same form as R+. Specifically, we show that u p ≥ 0 is a valid
inequality for (17), which will then allow us to eliminate constraints with negative
hi,p. Consequently, this allows us to directly apply the valid inequalities derived for
R+ fromAtamtürk [2] to Rp. We first provide a bound on the value of the t-variable in
(3) (which then translates to a boundon the t-variables for all subsequent formulations).

Lemma 1 Let k := εN� and fix any x ∈ XDR(S). Then there exists (r, t) such that t is
equal to the (k+1)-th smallest value amongst {dist(ξ i ,S(x))}i∈[N ] and the constraints
of (3) are satisfied.

Proof Recall that the CVaR of a random variable v(ξ) from (18c), where ξ ∼ PN , has
two equivalent primal and dual optimization representations:

CVaR1−ε(v(ξ);PN ) = max
y∈B

1

εN

∑

i∈[N ]
v(ξ i )yi (19a)

= min
r,t ′

⎧
⎨

⎩t ′ + 1

εN

∑

i∈[N ]
ri : ri ≥ v(ξ i ) − t ′, i ∈ [N ], r ≥ 0

⎫
⎬

⎭ ,

(19b)

where B is defined in (18d).Without loss of generality, assume thatwe have an ordering
v(ξ1) ≥ · · · ≥ v(ξ N ). It is easy to check that a primal-dual optimal pair for (19) is
given by

yi =

⎧
⎪⎨

⎪⎩

1, i = 1, . . . , k

εN − k, i = k + 1

0, i > k + 1

t ′ = v(ξ k+1)

ri = max
{
0, v(ξ i ) − t ′

}
,

as y ∈ B and r ≥ 0, and

1

εN

∑

i∈[N ]
v(ξ i )yi = t ′ + 1

εN

∑

i∈[N ]
ri .

Now take v(ξ i ) = − dist(ξ i ,S(x)) for each i ∈ [N ], and recall that we assume
v(ξ1) = − dist(ξ1,S(x)) ≥ · · · ≥ v(ξ N ) = − dist(ξ N ,S(x)). Let (r, t ′) be the
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optimal solution to the CVaR formulation (19b) specified above with t ′ = v(ξ k+1) =
− dist(ξ k+1,S(x)), ri = max{0, v(ξ i ) − t ′} for all i ∈ [N ]. Since x ∈ XDR(S), we
know from (18a) that

θ

ε
+ CVaR1−ε (− dist(ξ ,S(x));PN ) ≤ 0 �⇒ θ + 1

N

∑

i∈[N ]
ri ≤ −εt ′.

Now take t = −t ′ = dist(ξ k+1,S(x)) ≥ 0, andnotice that ri = max
{
0, v(ξ i ) − t ′

} =
max

{
0, t − dist(ξ i ,S(x))

}
for all i ∈ [N ], so the constraints in (3) are satisfied. ��

The main result for this section is to show that u p ≥ 0 is valid for (17) for each
p ∈ [P].
Proposition 1 Suppose that θ > 0. Consider an arbitrary x ∈ XDR(S). There exists
(r, t, z) such that (x, r, t, z) satisfies (17b)–(17c) and that for every p ∈ [P],

u p = −qp + dp − a�
p x

‖bp‖∗
− t ≥ 0.

Proof For convenience, for each p ∈ [P], denote gi,p(x) := b�
p ξ i+dp−a�

p x
‖bp‖∗ and

g∗
p(x) := −qp+dp−a�

p x
‖bp‖∗ . With these definitions, the distance function from (4) is

dist(ξ i ,S(x)) = max

{
0, min

p∈[P] gi,p(x)
}

.

Without loss of generality, assume that dist(ξ1,S(x)) ≤ · · · ≤ dist(ξ N ,S(x)), and
denote d∗(x) := dist(ξ k+1,S(x)) to be the (k + 1)-smallest distance value.

By Lemma 1, take (r, t) to be a solution that satisfies t = d∗(x), ri =
max

{
0, t − dist(ξ i ,S(x))

}
, and set zi = 1 when minp∈[P] gi,p(x) < 0, otherwise

zi = 0 for each i ∈ [N ]. It is straightforward to check that (x, r, t, z) satisfies
(17b), so we focus on (17c). If zi = 0, then since dist(ξ i ,S(x)) ≥ t − ri and
dist(ξ i ,S(x)) = minp∈[P] gi,p(x), (17c) holds. If zi = 1, then dist(ξ i ,S(x)) = 0,
and ri = t , so t − ri = 0, hence (17c) reduces to (15a).

It remains to show that for every p ∈ [P], 0 ≤ u p = g∗
p(x) − t = g∗

p(x) − d∗(x),
i.e., d∗(x) ≤ g∗

p(x) holds. Note that by definition of −qp, g∗
p is the (k+1)-th smallest

value amongst {gi,p(x)}i∈[N ]. Focusing on the definition of d∗(x) := dist(ξ k+1,S(x)),
we consider two cases.

If minp∈[P] gk+1,p(x) ≤ 0, then d∗(x) = t = 0. But, then we cannot have εt ≥ θ +
1
N

∑
i∈[N ] ri , since θ > 0 and r ≥ 0. Thus, we cannot have minp∈[P] gk+1,p(x) ≤ 0.

Now consider minp∈[P] gk+1,p(x) > 0. Then, for any i ≥ k + 1 and p ∈ [P], we
have

0 < min
p∈[P] gk+1,p(x) = d∗(x) ≤ dist(ξ i ,S(x)) = min

p′∈[P]
gi,p′(x) ≤ gi,p(x),
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where the second inequality follows from the fact that i ≥ k + 1 and the assumption
that dist(ξ1,S(x)) ≤ · · · ≤ dist(ξ N ,S(x)), and the last equation follows from the fact
that 0 < dist(ξ i ,S(x)). Based on this relation, then there are at least N − k indices i
such that gi,p(x) ≥ d∗(x), and thus we must have g∗

p(x) ≥ d∗(x). This completes the
proof. ��

We can now explicitly impose the constraint u p ≥ 0 into the formulation for
(DR-CCP). When we do this, the constraint u p + ri ≥ hi,p(1 − zi ) corresponding
to any indices i, p such that hi,p ≤ 0 becomes redundant since the left-hand side of
this constraint is non-negative, and its right-hand side is non-positive. Based on this,
in our improved formulation, we define the following index sets:

[N ]p :=
{
i ∈ [N ] : −b�

p ξ i > qp
}

, p ∈ [P].

Then, hi,p > 0 if and only if i ∈ [N ]p. Our proposed formulation is as follows:

min
z,r,t,x

c�x (20a)

s.t. (z, r, t, x) satisfies (5b)–(5d) and (8c), (20b)

b�
p ξ i + dp − a�

p x

‖bp‖∗
+ −b�

p ξ i − qp

‖bp‖∗
zi ≥ t − ri , i ∈ [N ]p, p ∈ [P], (20c)

−qp + dp − a�
p x

‖bp‖∗
≥ t, p ∈ [P]. (20d)

Theorem 3 Formulation (20) is an exact reformulation of (DR-CCP) where the safety
set is given by (4).

Proof The correctness of (20) follows from the above discussion. ��
Remark 2 The size of each index set [N ]p is at most k = εN�, so (20) reduces
the number of constraints of (17) by at least ((1 − ε)N − 1)P . This is particularly
significant when ε is small (e.g., 0.1) and N , P are large. ��
Note that similar bounding and scenario elimination strategies using the VaR interpre-
tation are shown to be effective in multivariate CVaR-constrained optimization and
risk-averse Markov decision processes [18,21,26,29].

Importantly, via the constraints (20c) and (20d), we can re-define the mixed-integer
set Rp to have the exact same structure as R+:

Rp :=
{
(u p, r, z) ∈ R+ × R

N+ × {0, 1}N : u p + ri ≥ hi,p(1 − zi ), i ∈ [N ]p
}

,

where it is understood that u p = −qp+dp−a�
p x

‖bp‖∗ − t . Atamtürk [2, Theorem 1] proposes

a class of valid inequalities for R+, which we adapt to obtain valid inequalities for
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Rp. To do this, we let Np be the size of each [N ]p and define an ordering [N ]p ={
( j, p) ∈ N : j ∈ [Np]

}
as follows:

h(Np,p),p ≥ · · · ≥ h(1,p),p.

Proposition 2 For any p ∈ [P] and J = { j1, . . . , jm} satisfying m ≥ 1, Np ≥ j1 ≥
· · · ≥ jm ≥ 1, the following inequality is valid for (20):

−qp + dp − a�
p x

‖bp‖∗
− t +

∑

i∈[m]
r( ji ,p) ≥

∑

i∈[m]
(h( ji ,p),p − h( ji+1,p),p)(1 − z( ji ,p))(21)

where h( jm+1,p),p := 0.

Proof This follows immediately from Atamtürk [2, Theorem 1]. ��
We refer to the inequalities (21) as the path inequalities.

Remark 3 Atamtürk [2] gives an O(N 2
p) = O(εN�2)-time separation algorithm

for (21), which is based on finding a shortest path in an acyclic graph. Atamtürk
[2, Theorems 1 and 2] also proves that inequalities (21) are sufficient to describe the
convex hull of R+ and are facet-defining. ��

5 Computational study

In this section, we assess the numerical performance of our improved formulation (20)
of (DR-CCP) and valid inequalities from Sects. 3 and 4.

All experiments are conducted on an Intel Core i5 3GHz processor with 6 cores
and 32GB memory. Each experiment was in single-core mode, and five experiments
were run in parallel. For each model, we set the CPLEX time limit to be 3600s.

CPLEX 12.9 is used as the MIP solver. Valid inequalities from Sects. 3 and 4 are
separated and added via the CPLEX user-cut callback feature. Since using a user-
cut callback function is known to affect various internal CPLEX dynamics (such as
dynamic search, aggressiveness of CPLEX presolve and cut generation procedures,
etc.), in order to do a fair comparison, we include an empty user-cut callback function
(that does not separate any user cuts) whenever we test a formulation which does not
employ cuts, e.g., basic formulation from the literature, i.e., from Chen et al. [8]. We
have also conducted tests under the default CPLEX settings without the empty user
cut callback to confirm that our overall conclusions do not change under the default
settings. Our preliminary tests indicated that separating a large number of inequalities
throughout the branch-and-cut tree slows down the search process, so we separate our
inequalities only at the root node.

Themaximumvalue of θ atwhich (DR-CCP) is feasible can be computed by solving
a variant of (5), that is, with the same set of constraints (5b)–(5e) but treating θ as a
variable to be maximized. We first describe our test instances in Sect. 5.1 and then
discuss the performance of our proposed approaches in Sect. 5.2.
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5.1 Test instances

Weconsider the distributionally robust chance-constrained formulation of a transporta-
tion problem from Chen et al. [8]. This is the problem of transshipping a single good
from a set of factories [F] to a set of distribution centers [D] to meet their demands
while minimizing the transportation cost. Each factory f ∈ [F] has an individual
production capacity m f , each distribution center d ∈ [D] faces a random demand
ξd from the end customers, and transshipping one unit of the good from factory f to
distribution center incurs a cost c f d . Given N samples

{
ξ i = (ξid)d∈[D] : i ∈ [N ]} of

ξ , this problem is given by

min c�x (22a)

s.t. P

⎡

⎣
∑

f ∈[F]
x f d ≥ ξd , ∀d ∈ [D]

⎤

⎦ ≥ 1 − ε, P ∈ F(θ), (22b)

∑

d∈[D]
x f d ≤ m f , f ∈ [F], (22c)

x f d ≥ 0, f ∈ [F], d ∈ [D]. (22d)

Here, (22b) is a joint chance constraint with right-hand side uncertainty, so (22) can
be reformulated as in (5).

We use the same random instance generation scheme from Chen et al [8]. We
generate instances with F ∈ {5, 10} factories and D ∈ {50, 100} distribution centers
whose locations are chosen uniformly at random from the Euclidean plane [0, 10]2.
We set the transportation cost c f d to the Euclidean distance between factory f ∈ [F]
and distribution center d ∈ [D]. We obtain the scenarios by sampling for the demand
vector ξ from a uniform distribution supported on [0.8μ, 1.2μ], where the expected
demand μd of any distribution center d ∈ [D] is chosen uniformly at random from
[0, 10]. The capacity m f of each factory f ∈ [F] is drawn uniformly from [0, 1] at
first, but the capacities are scaled later so that the total capacity

∑
f ∈[F] m f equals

3
2 maxi∈[N ]

{∑
d∈[D] ξid

}
. For each instance, we test ten different values θ1 < · · · <

θ10 for the Wasserstein radius. As in Chen et al.[8], we set θ1 = 0.001. For the other
values, we compute the maximum value θmax of θ such that (5) is feasible and set
θ j = j−1

10 θmax for j = 2, . . . , 10. We have empirically found that the value θmax is
between 0.1 and 0.35 for our instances, so θ2 is between 0.01 and 0.035 and thus
greater than θ1 = 0.001. We fix the risk tolerance ε to be 0.1. Lastly, we select M to
be

M := max

⎧
⎨

⎩
∑

f ∈[F]
m f − min

i∈[N ],d∈[D] {ξid} , max
i∈[N ],d∈[D] {ξid}

⎫
⎬

⎭ , (23)

which is sufficiently large (see Remark 1). For each problem parameter combination,
we generate 10 random instances and report the average statistics.
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As noted in Chen et al. [8], there is no need to specify which norm ‖ · ‖ to use in (5)
and (8) when reformulating (22) because the random right-hand side inside (22b)
contains a single random variable with coefficient 1 so that all ‖bp‖∗ in (5) and (8)
equal 1 in the instances generated.

5.2 Performance analysis

In this section, we summarize our experiments with radius θ = θ1, . . . , θ10 and the
number of samples N = 100, 1000, 3000. We compare the following five formula-
tions:

Basic: the basic formulation (5) given by Chen et al. [8] with the big-M
value computed as in Remark 1,

Improved: the improved formulation (20),
Mixing: the improved formulation (20) with the mixing inequalities (16),

Path: the improved formulation (20) with the path inequalities (21), and
Mixing+Path: the improved formulation (20) with both mixing (16) and path

inequalities (21).

In Tables 1 and 3, the following statistics are reported:

Time(Gap): the average solution time (in seconds measured externally from
CPLEX by C++) of the instances that were solved to optimality,
and, in parentheses, the average of the final optimality gap of the
instances that were not solved to optimality within the CPLEX time
limit. The optimality gap is computed as (UB − LB)/LB ∗ 100
whereUB and LB respectively are the objective values of the best
feasible solution and the best lower bound value at the correspond-
ing time of the solution process. A ‘*’ in a Time or Gap entry
indicates that either no instance was solved to optimality or all
instances were solved to optimality within the CPLEX time limit
so that there were no instances for measuring the corresponding
statistic.
We also report in this column the number of instances solved to opti-
mality within the CPLEX time limit, s, and the number of instances
for which a feasible solution was found f . Since for most cases, we
observed that s = f = 10, we add [s/ f ] in front of the Time(Gap)
statistic only when s < 10 or f < 10.
A ‘n/a’ entry for the Time(Gap) statistic denotes when no feasible
solution was found in any of the 10 instances.

Cuts: the average number of cuts added for Mixing, Path, and
Mixing+Path. For Mixing+Path, the ‘Cuts’ are broken down
into the number of mixing inequalities and the number of path
inequalities added respectively.

In Tables 2 and 4, the following statistics are reported:

R.time: the average time spent (in seconds measured externally from
CPLEX by C++) at the root node of the branch-and-bound tree
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over all instances. A ‘n/a’ entry indicates that no feasible solution
was found in any of the 10 instances within the CPLEX time limit.

R.gap: the final optimality gap at the root node of the branch-and-bound
tree. A ‘n/a’ entry indicates that no solution was found in any of
the 10 instances within the CPLEX time limit.

The results in all tables highlight that when the radius θ is small, the result-
ing problems are much harder to solve. This was also reported in Chen et al.
[8].

When N = 100, F = 5, D = 50, and θ = θ1, Table 1 shows that Basic
does not finish within the CPLEX time limit of 3600s for any of the 10 randomly
generated instances and terminates with a 1.16% optimality gap, on average. In
contrast, Improved solves all instances to optimality in under 5 s on average. In
fact, Improved is so effective that it does not leave much room for improvement
for the additional valid inequalities in Mixing, Path and Mixing+Path, and
the separation of the valid inequalities results in a slight increase in the solution
time in most cases. Nevertheless, the latter three formulations solve all instances
to optimality in under 9 s on average. When θ ≥ θ2, Basic solves all instances
to optimality in under 27 s on average, but all other formulations solve in under
0.06 s on average. In “Appendix 1”, we provide supplementary results that show
that the mixing and path inequalities are very effective when added to Basic, but
Improved without any valid inequalities performs better than Basic with these
inequalities.

To test the scalability of our proposed approaches with respect to the number of
scenarios, in Table 1, we also report the performance of the five formulations on
instances with N = 1000 and N = 3000, respectively for F = 5, D = 50.
In the out-of-sample tests for these instances reported in [8], for N = 1000, the
authors state the difficulty of solving the problem to proven optimality and report
their results with a not necessarily optimal solution obtained after a couple of minutes
of computing. Our results in Table 1 show that our proposed formulation provides
provably optimal solutions within less than a minute in all instances but those with
θ1. Furthermore, as indicated in Table 1, we can scale up the number of scenar-
ios even further. In the experiments with N = 3000, we observe that even for the
largest value of θ10, Basic was unable to solve any of the ten instances within the
CPLEX time limit, while all of the new formulations Improved, Mixing, Path
and Mixing+Path solved all instances to optimality for θ ≥ θ3 with an average
time of at most 20 s. For θ ≤ θ2, our new formulations did not manage to solve any
instances to optimality, but did reduce the average optimality gap to at most 0.8%.
In contrast, Basic failed to solve all instances for θ ≤ θ2, and in fact did not even
find a feasible solution within the time limit for many instances. For the instances
where a feasible solution was found, the gap remained quite large at ≈ 70% at termi-
nation.

We also test the scalability of variousmethodswith respect to the number of original
decision variables in the original problem. To this end, we let F = 10, D = 100
and report our results in Table 3 for N = 100, 1000, 3000. (Note that an increase
in D implies an increase in the dimension of the random data, which may in turn
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require an increase in sample size to ensure the same out-of-sample performance.)
Comparing Tables 1 and 3, we see that not surprisingly, the problems with a larger
number of original decision variables are harder to solve. Fewer instances can be solved
to optimality with Basic. In fact, Basic cannot even obtain a feasible solution
after an hour of computing for instances with F = 10, D = 100, N = 3000. In
contrast, Improved solves all instances to optimality in less than a minute except
for the ones with θ1 when N = 100, 1000 and with θ ≤ θ5 in the case of N =
3000. Indeed, we observe a very slight increase in solution times for our proposed
formulations in the case of F = 10, D = 100 in contrast to F = 5, D = 50, and
all trends reported for F = 5, D = 50 remain the same in the case of F = 10, D =
100.

Tables 1 and 3 also give us insight into the marginal effect of each class of
inequalities. We observe that mixing inequalities are only generated for θ = θ1
(plus a total of 3 inequalities across all instances when θ = θ2 and N = 100).
When the radius of the Wasserstein ball is small, the nominal region XSAA(S) is
a better approximation for the distributionally robust region XDR(S). Since mixing
inequalities are valid for XSAA(S), it is expected that they have stronger effects as
for smaller radius θ , thus the observed behavior is not surprising. As mentioned
above, when N = 100, the Improved formulation is already so effective that sep-
arating inequalities slightly increases solution times. However, when N = 3000,
F = 5 and D = 50, from Table 1, we see that while Improved is still quite
effective, and manages to reduce the gap to 0.78% for θ = θ1, separating the valid
inequalities reduces this further (0.52% for Mixing, 0.62% for Path, and 0.48% for
Mixing+Path). We see a similar phenomenon for θ = θ2, but only path inequal-
ities are separated. Similar observations can be made for N = 3000, F = 10,
D = 100.

Tables 2 and 4 provide further information on the performance of the formulations
at the root node of the branch-and-bound tree. From Table 2, we see that the root
gap of the new formulations Improved, Mixing, Path and Mixing+Path are
at most 0.8% on average for the most difficult regime θ = θ1, θ2 and N = 3000.
This is significantly better than the root gap of Basic. In fact, in our experiments,
we have observed that for these types of distributionally robust CCPs, the branch-and-
bound process is very ineffective in terms of reducing the remaining gap, with only a
small difference between root gap and final gap. This also highlights the importance
of starting off with very strong formulations. In fact, we observed that for θ ≥ θ2,
the gap threshold of 0.01% is achieved at the root node for our improved formula-
tions.

6 Conclusion

This paper studies in detail the formulation for distributionally robust chance-
constrained programs under Wasserstein ambiguity, focusing on the case of linear
safety sets with right-hand side uncertainty. We reveal a hidden connection with nom-
inal chance-constraints, and provide a class of valid inequalities which are exactly
the mixing inequalities for the nominal chance constraint. We also adapt the quantile
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strengthening technique to the distributionally robust setting, making one set of con-
straints (5e) in the original MIP formulation (5) big-M-free.We then exploit the CVaR
interpretation of the distributionally robust constraint (18a) to provide an improved
formulation (20) with significantly fewer constraints. Finally, we uncover a mixed-
integer substructure which has been studied in the context of robust 0–1 programming
Atamtürk [2], and provide second class of valid inequalities based on this connec-
tion.

Our computational results demonstrate the benefit of our improved formulation
and valid inequalities. Solution times are drastically reduced and larger problems can
now be solved in seconds, e.g., problems with thousands of scenarios (rather than
hundreds).

Acknowledgements This paper is in memory of Shabbir Ahmed, whose fundamental contributions on
mixing sets, chance-constrained programming and distributionally robust optimization we build upon. We
thank the two referees and the AE for their suggestions that improved the exposition. This research is
supported, in part, by ONR Grant N00014-19-1-2321, by the Institute for Basic Science (IBS-R029-C1),
Award N660011824020 from the DARPA Lagrange Program and NSF Award 1740707.

Supplementary Numerical Results

In Table 5 we report the performance of the basic formulation (5) when combined
with mixing (16) and path inequalities (21) for F = 5, D = 50, ε = 0.1. These results
highlight that mixing and path inequalities are indeed useful when applied to the basic
formulation, without all the other enhancements we propose.

We see that for N = 100, Basic+Mixing+Path solves all instances (and with
slightly quicker times on average) whereas Basic in Table 1 does not manage to
solve any instances for θ1. For N = 1000, we again see an improvement in the
number of instances solved when using the inequalities, but for larger θ8, θ9, θ10,
times are slightly slower. We believe this is due to the extra time required to solve
the larger LP relaxations as a result of adding cuts. For N = 3000, we now see that
Basic+Mixing+Path is unable to find a feasible integer solution within 1h for
a larger number of instances than Basic (we again believe this is due to larger LP
relaxations), but whenever it does, it often solves to optimality, which Basic never
does.

In contrast toImproved, there aremore cuts generated for Basic for all θ values.
Nevertheless, as expected, the performance achieved by Basic+Mixing+Path is
still worse than the performance of our improved formulation (20), with or without
inequalities.
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Table 5 Supplementary results for F = 5, D = 50, ε = 0.1

N θ Basic+Mixing+Path

Time(Gap) R.time R.gap Cuts

100 θ1 36.64(*) 2.77 0.30 116.0/386.2

θ2 0.61(*) 0.61 0.00 65.3/148.7

θ3 0.64(*) 0.64 0.00 59.5/128.5

θ4 0.53(*) 0.53 0.00 57.7/118.2

θ5 0.56(*) 0.56 0.00 57.1/107.9

θ6 0.53(*) 0.53 0.00 55.5/101.0

θ7 0.43(*) 0.43 0.00 54.0/97.8

θ8 0.46(*) 0.46 0.00 53.2/96.9

θ9 0.51(*) 0.51 0.00 52.7/95.6

θ10 0.48(*) 0.48 0.00 51.7/92.4

1000 θ1 [0/9] *(0.45) 2532.66 0.45 1047.7/3462.8

θ2 272.45(*) 272.45 0.00 320.0/1081.3

θ3 142.32(*) 142.32 0.00 220.2/620.2

θ4 125.95(*) 125.95 0.00 196.1/570.2

θ5 111.84(*) 111.84 0.00 186.4/521.6

θ6 106.86(*) 106.86 0.00 172.4/499.5

θ7 100.38(*) 100.38 0.00 162.2/461.5

θ8 103.55(*) 103.55 0.00 155.5/496.6

θ9 109.29(*) 109.29 0.00 144.7/464.5

θ10 107.14(*) 107.14 0.00 136.5/462.2

3000 θ1 [0/0] n/a n/a n/a n/a

θ2 [0/0] n/a n/a n/a n/a

θ3 [0/0] n/a n/a n/a n/a

θ4 [3/6] 3334.13(0.02) 3464.71 0.01 425.2/1091.0

θ5 [4/6] 3364.70(0.03) 3440.82 0.01 368.2/1120.7

θ6 [3/3] 3116.18(*) 3116.18 0.00 320.3/1188.0

θ7 [2/2] 3304.96(*) 3304.96 0.01 292.0/912.0

θ8 [1/2] 3189.13(0.03) 3381.76 0.01 232.0/1176.0

θ9 [2/2] 3300.93(*) 3300.93 0.00 200.0/1134.0

θ10 [7/7] 2585.16(*) 2585.16 0.00 205.1/1429.6
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