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Abstract
While semidefinite programming (SDP) problems are polynomially solvable in theory,
it is often difficult to solve large SDP instances in practice. One technique to address
this issue is to relax the global positive-semidefiniteness (PSD) constraint and only
enforce PSD-ness on smaller k × k principal submatrices—we call this the sparse
SDP relaxation. Surprisingly, it has been observed empirically that in some cases this
approach appears to produce bounds that are close to the optimal objective function
value of the original SDP. In this paper, we formally attempt to compare the strength
of the sparse SDP relaxation vis-à-vis the original SDP from a theoretical perspective.
In order to simplify the question, we arrive at a data independent version of it, where
we compare the sizes of SDP cone and the k-PSD closure, which is the cone of
matrices where PSD-ness is enforced on all k × k principal submatrices. In particular,
we investigate the question of how far a matrix of unit Frobenius norm in the k-PSD
closure can be from the SDP cone. We provide two incomparable upper bounds on
this farthest distance as a function of k and n. We also provide matching lower bounds,
which show that the upper bounds are tight within a constant in different regimes of k
andn.Other than linear algebra techniques,we extensively use probabilisticmethods to
arrive at these bounds. One of the lower bounds is obtained by observing a connection
between matrices in the k-PSD closure and matrices satisfying the restricted isometry
property.
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982 G. Blekherman et al.

1 Introduction

1.1 Motivation

Semidefinite programming (SDP) relaxations are an important tool to provide dual
bounds for many discrete and continuous non-convex optimization problems [35].
These SDP relaxations have the form

min 〈C, X〉
s.t. 〈Ai , X〉 ≤ bi ∀i ∈ {1, . . . ,m}

X ∈ Sn+,

(1)

where C and the Ai ’s are n × n matrices, 〈M, N 〉 := ∑
i, j Mi j Ni j , and Sn+ denotes

the cone of n × n symmetric positive semidefinite (PSD) matrices:

Sn+ = {X ∈ R
n×n | X = XT , x�Xx ≥ 0, ∀x ∈ R

n}.

In practice, it is often computationally challenging to solve large-scale instances
of SDPs due to the global PSD constraint X ∈ Sn+. One technique to address this
issue is to consider a further relaxation that replaces the PSD cone by a larger one
§ ⊇ Sn+. In particular, one can enforce PSD-ness on (some or all) smaller k × k
principal submatrices of X , i.e., we consider the problem

min 〈C, X〉
s.t. 〈Ai , X〉 ≤ bi ∀i ∈ {1, . . . ,m}

selected k × k principal submatrices of X ∈ Sk+.

(2)

We call such a relaxation the sparse SDP relaxation.
One reason why these relaxations may be solved more efficiently in practice

is that we can enforce PSD constraints by iteratively separating linear constraints.
Enforcing PSD-ness on smaller k × k principal submatrices leads to linear constraints
that are sparser, an important property leveraged by linear programming solvers that
greatly improves their efficiency [3,7,17,29,32]. This is an important motivation for
using sparse SDP relaxations [4,18,28]. (This is also the motivation for studying
approximations of polytopes [20], convex hulls of integer linear programs [19,21,32],
and integer programming formulations [22] by sparse linear inequalities.) This is our
reason for calling the relaxation obtained by enforcing the SDP constraints on smaller
k × k principal submatrices of X as the sparse SDP relaxation.

It has been observed that sparse SDP relaxations not only can be solved much more
efficiently in practice, but in some cases they produce bounds that are close to the
optimal value of the original SDP. See [4,18,28] for successful applications of this
technique for solving box quadratic programming instances, and [26,30] for solving
the optimal power flow problem in power systems.
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Sparse PSD approximation of the PSD cone 983

Despite their computational success, theoretical understanding of sparse SDP relax-
ations remains quite limited. In this paper, we initiate such theoretical investigation.
Ideally we would like to compare the objective function values of (1) and (2), but
this appears to be a very challenging problem. Therefore, we consider a simpler data-
independent question, where we ignore the data of the SDP and the particular selected
principal submatrices, to arrive at the following:

How close to the PSD cone Sn+ do we get when we only enforce PSD-ness on k × k
principal submatrices?

To formalize this question,webegin bydefining the k-PSDclosure, namelymatrices
that satisfy all k × k principal submatrices PSD constraints.

Definition 1 (k-PSD closure) Given positive integers n and k where 2 ≤ k ≤ n, the
k-PSD closure Sn,k is the set of all n × n symmetric real matrices where all k × k
principal submatrices are PSD.

It is clear that the k-PSD closure is a relaxation of the PSD cone (i.e., §n,k ⊇ Sn+
for all 2 ≤ k ≤ n) and is an increasingly better approximation as the parameter
k increases, i.e., we enforce that larger chunks of the matrix are PSD (in particular
§n,n = Sn+). The SOCP relaxation formulated in [30] is equivalent to using the k-PSD
closure with k = 2 to approximate the PSD cone. Our definition is a generalization of
this construction.

It is worth noting that the dual cone of Sn,k is the set of symmetric matrices with
factor width k, defined and studied in [8,27]. In particular, the set of symmetric matri-
ces with factor width 2 is the set of scaled diagonally dominant matrices [8,33], i.e.,
symmetric matrices A such that DAD is diagonally dominant for some positive diag-
onal matrix D. Note that [2] uses scaled diagonally dominant for constructing inner
approximation of the SDP cones for use in solving polynomial optimization problems.

1.2 Problem setup

We are interested in understanding howwell the k-PSD closure approximates the PSD
cone for the different values of k and n. To measure this approximation we would like
to consider the matrix in the k-PSD closure that is farthest from the PSD cone. We
need to make two choices here: the norm to measure this distance and a normalization
method (since otherwise there is no upper bound on the distance between matrices in
the PSD cone and the k-PSD closure).

We will use the Frobenius norm ‖ · ‖F for both purposes. That is, the distance
between a matrix M and the PSD cone is measured as distF (M,Sn+) = infN∈§n+‖M −
N‖F , and we restrict our attention to matrices in k-PSD closure with Frobenius norm
equal to 1. Thus we arrive at the (normalized) Frobenius distance between the k-PSD
closure and the PSD cone, namely the largest distance between a unit-norm matrix M
in §n,k and the cone Sn+:
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984 G. Blekherman et al.

distF (Sn,k,Sn+) = sup
M∈Sn,k , ‖M‖F=1

distF (M,Sn+)

= sup
M∈Sn,k , ‖M‖F=1

inf
N∈Sn+

‖M − N‖F .

Note that since the origin belongs to Sn+ this distance is at most 1.
The rest of the paper is organized as follows: Sect. 2 presents all our results and

Sect. 3 concludes with some open questions. Then Sect. 4 presents additional notation
and background results needed for proving the main results. The remaining sections
present the proofs of the main results.

2 Our results

In order to understand how well the k-PSD closure approximates the PSD cone we
present:

• Matching upper and lower bounds on distF (Sn,k,Sn+) for different regimes of k.
• Show that a polynomial number of k × k PSD constraints are sufficient to provide
a good approximation (in Frobenius distance) to the full k-PSD closure (which
has

(n
k

) ≈ ( en
k

)k such constraints).

We present these result in more details in the following subsections.

2.1 Upper bounds

First we show that the distance between the k-PSD closure and the SDP cone is at
most roughly ≈ n−k

n . In particular, this bound approximately goes from 1 to 0 as the
parameter k goes from 2 to n, as expected.

Theorem 1 For all 2 ≤ k < n we have

distF (Sn,k,Sn+) ≤ n − k

n + k − 2
. (3)

The idea for obtaining this upper bound is the following: given any matrix M
in the k-PSD closure Sn,k , we construct a PSD matrix M̃ by taking the average of
the (PSD) matrices obtained by zeroing out all entries of M but those in a k × k
principal submatrix; the distance between M and M̃ provides an upper bound on
distF (Sn,k,Sn+). The proof of Theorem 1 is provided in Sect. 5.

It appears that for k close to n this upper bound is not tight. In particular, our next
upper bound is of the form ( n−k

n )3/2, showing that the gap between the k-PSD closure
and the PSD cone goes to 0 as n − k → n at a faster rate than that prescribed by the
previous theorem. In particular, for k = n − c for a constant c, Theorem 1 gives an
upper bound of O

( 1
n

)
whereas the next Theorem gives an improved upper bound of

O
(

1
n3/2

)
.
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Sparse PSD approximation of the PSD cone 985

Theorem 2 Assume n ≥ 97 and k ≥ 3n
4 . Then

distF (Sn,k,Sn+) ≤ 96

(
n − k

n

)3/2

. (4)

It is easy to verify that for sufficiently large r if k > rn, then the upper bound given
by Theorem 2 dominates the upper bound given by Theorem 1.

The proof of Theorem 2 is more involved than that of Theorem 1. The high-level
idea is the following: Using Cauchy’s Interlace Theorem for eigenvalues of hermitian
matrices,wefirst verify that everymatrix inSn,k has atmost n−k negative eigenvalues.
Since the PSD cone consists of symmetric matrices with non-negative eigenvalues,
it is now straightforward to see that the distance from a unit-norm matrix M ∈ Sn,k

to Sn+ is upper bounded by the absolute value of the most negative eigenvalue of M
times

√
n − k. To bound a negative eigenvalue −λ of M (where λ ≥ 0), we consider

an associated eigenvector v ∈ R
n and randomly sparsify it to obtain a random vector

V that has at most k non-zero entries. By construction we ensure that V ≈ v, and
that V remains almost orthogonal to all other eigenvectors of M . This guarantees that
V�MV ≈ −λ+ “small error”. On the other hand, since only k entries of V are non-
zero, it guarantees that V�MV only depends on a k × k submatrix of M , which is
PSD by the definition of the k-PSD closure; thus, we have V�MV ≥ 0. Combining
these observations we get that λ ≤ “small error”. This eigenvalue bound is used to
upper bound the distance from M to the PSD cone. A proof of Theorem 2 is provided
in Sect. 6.

We briefly comment on extensions of the results of Theorems 1 and 2 when the
distance is measured in other norms. More generally, consider:

distN1,N2(Sn,k,Sn+) := supM∈Sn,k ,‖M‖N1=1infN∈Sn+‖M − N‖N2 ,

where ‖ · ‖N1 and ‖ · ‖N2 are two given matrix norms. We call N1 the normalizing
norm and N2 the distance-measuring norm.

The proof of Theorem 1 uses two properties of the norms: (i) the normalizing norm
and the distance-measuring norm are the same and (ii) this norm does not change if
all off-diagonal terms of the matrix are negated. A class of matrix norms where (ii)

holds is element-wise norms, i.e., a norm of the form ‖A‖ =
(∑

i, j |Ai j |p
) 1

p
. Thus,

Theorem 1 may be more generally stated as:

distN ,N (Sn,k,Sn+) ≤ n − k

n + k − 2
,

where N is an element-wise norm.
The proof of Theorem2, as discussed above, uses two key arguments: (i) the number

of negative eigenvalues can be bounded by n− k for matrices in Sn,k and (ii) the most
negative eigenvalue of matrices in Sn,k with Frobenius norm 1 is at most 96(n−k)

n3/2
in absolute value. Therefore, as pointed out by an anonymous reviewer, Theorem 2
easily generalizes to the case where the distance-measuring norm is any other unitarily
invariant matrix norm (thus, a norm depending entirely on the eigenvalues). As an
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986 G. Blekherman et al.

example, consider the Schatten p-norm ‖A‖Sp := (∑n
i=1 σi (A)p

) 1
p where σi (A) is

the i th singular value of A. Then, we obtain the following result:

distF,Sp (Sn,k,Sn+) ≤ 96(n − k)(n − k)1/p

n3/2
, for all k ≥ 3

4
n, n ≥ 97.

2.2 Lower bounds

We next provide lower bounds on distF (Sn,k,Sn+) that show that the upper bounds
presented inSect. 2.1 are tight for various regimes of k. Thefirst lower bound, presented
in the next theorem, is obtained by a simple construction of an explicit matrix in the
k-PSD closure that is far from being PSD. Its proof is provided in Sect. 7.

Theorem 3 For all 2 ≤ k < n, we have

distF (Sn,k,Sn+) ≥ n − k
√

(k − 1)2 n + n(n − 1)
. (5)

Notice that for small values of k the above lower bound is approximately ≈ n−k
n

which matches the upper bound from Theorem 1. For very large values of k. i.e.
k = n − c for a constant c, the above lower bound is approximately ≈ c

n3/2
which

matches the upper bound by Theorem 2.
Now consider the regime where k is a constant fraction of n. While our upper

bounds give distF (Sn,k,Sn+) = O(1), Theorem 3 only shows that this distance is at
least �( 1√

n
), leaving open the possibility that the k-PSD closure provides a sublinear

approximation of the PSD cone in this regime. Unfortunately, our next lower bound
shows that this is not that case: the upper bounds are tight (up to a constant) in this
regime.

Theorem 4 Fix a constant r < 1
93 and let k = rn. Then for all k ≥ 2,

distF (Sn,k,Sn+) >

√
r − 93r2√
162r + 3

,

which is independent of n.

For this construction we establish a connection with the Restricted Isometry Prop-
erty (RIP) [12,13], a very important notion in signal processing and recovery [14,15].
Roughly speaking, these are matrices that approximately preserve the �2 norm of
sparse vectors. The details of this connection and the proof of Theorem 4 are provided
in Sect. 8.
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Sparse PSD approximation of the PSD cone 987

2.3 Achieving the strength ofSn,k by a polynomial number of PSD constraints

In practice one is unlikely to use the full k-PSD closure, since it involves enforcing the
PSD-ness for all

(n
k

) ≈ ( en
k

)k principal submatrices. Is it possible to achieve the upper
bounds mentioned above while enforcing PSD-ness on fewer principal submatrices?

2.3.1 Deterministic approach

For a subset I ⊆ [n] of size k and a symmetricmatrixM , letMI be thematrixwherewe
zero out all the rows and columns of M except the ones belonging to I . As we discuss
after the proof of Theorem 1, the bound in (3) is obtained by estimating the distance
between a given matrix M in Sn,k and the PSD matrix M̃ , which is the average of

(n
k

)

(PSD)matricesMI corresponding to every k-element subset I of [n].Nowsuppose that
we have a collection of k × k principal submatrices (and the corresponding collection
I of k-subsets of [n]) with the property that every off-diagonal entry appears in exactly
the same number of principal submatrices in the collection. It is then straightforward
to show that the average of the matrices MI , where I is in the above collection, is the
same as the average M̃ taken over all

(n
k

)
principal submatrices. In other words, the

upper bound (3) can be achieved by any collection of k× k principal submatrices with
the above property.

This property is formally capturedby thenotionof 2-designs:Recall that a collection
D of k-subsets of [n] (called blocks) is called a 2-design (also called a balanced
incomplete block design or BIBD) if every pair of elements in [n] belongs to the same
number of blocks, denoted λ. It follows that every element of [n] belongs to the same
number of blocks, denoted r . Let b be the total number of blocks. From the discussion
above, b principal submatrices corresponding to a 2-design is sufficient to give a bound
of (3). For background on block designs we refer to [31], (Chapters 1 and 2).

It is known from the work of Wilson [34],(Corollary A and B) that, a 2-design
with b = n(n − 1) exists for all sufficiently large values of n, although to the best
of our knowledge no explicit construction is known. (Wilson’s theorem gives a much
more general statement for existence of 2-designs). Therefore, for almost all n we
can achieve the strength of bound (3) while only using n(n − 1) submatrices. Fisher’s
inequality states that b ≥ n, so we need to enforce PSD-ness of at least n minors if
we use a 2-design. A 2-design is called symmetric if b = n. Bruck-Ryser-Chowla
Theorem [10,16] gives necessary conditions on b, k and λ, for which a symmetric
2-designs exist, and this is certainly a limited set of parameters. Nevertheless, sym-
metric 2-designs may be of use in practice, as they give us the full strength of (3)
while enforcing PSD-ness of only n k × k submatrices. Some important examples of
symmetric 2-designs are finite projective planes (symmetric 2-designs with λ = 1),
biplanes (λ = 2) and Hadamard 2-designs.

2.3.2 Randomized approach

Another way to achieve the bound in (3) is to randomly select k × k principal subma-
trices. We show that the upper bound given by (3) can also be achieved within factor
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988 G. Blekherman et al.

1 + ε and probability at least 1 − δ by randomly sampling O
(
n2

ε2
ln n

δ

)
of the k × k

principal submatrices.

Theorem 5 Let Sn denote the set of real symmetric matrices. Let 2 ≤ k ≤ n − 1.
Consider ε, δ > 0 and let

m := 12n(n − 1)2

ε2(n − k)2k
ln

2n2

δ
∈ O

(
n2

ε2
ln

n

δ

)

.

LetI = (I1, . . . , Im) be a sequence of randomk-sets independently uniformly sampled
from all subsets of {1, . . . , n} of size k, and define §I as the set of symmetric matrices
satisfying thePSDconstraints for the principal submatrices indexed by the Ii ’s, namely

§I := {M ∈ Sn : MIi is PSD, ∀i ∈ [m]}.

Then with probability at least 1 − δ we have

distF (§I ,Sn+) ≤ (1 + ε)
n − k

n + k − 2
.

Remark 1 Since the zeromatrix is PSD, by definitionwe always have distF (§I ,Sn+) ≤
1. So in order for the bound given by Theorem 5 to be of interest, we need (1 +
ε) n−k

n+k−2 ≤ 1, which means ε ≤ 2k−2
n−k . Plugging this into m, we see that we need

at least 3n(n−1)2

k(k−1)2
ln 2n2

δ
= Õ( n

3

k3
) samples to obtain a nontrivial upper bound on the

distance.

3 Conclusion and open questions

In this paper, we have been able to provide various upper and lower bounds on
distF (Sn,k,Sn+). In two regimes our bounds on distF (Sn,k,Sn+) are quite tight. These
are: (i) k is small, i.e., 2 ≤ k ≤ √

n and (ii) k is quite large, i.e., k = n − c where c is
a constant. These are shown in the first two rows of Table 1. When k/n is a constant,
we have also established upper and lower bounds on distF (Sn,k,Sn+) that are inde-
pendent of n. However, our upper and lower bounds are not quite close when viewed
as a function of the ratio k/n. Improving these bounds as a function of this ratio is an
important open question.

We also showed that instead of selecting all minors, only a polynomial number of
randomly selected minors realizes upper bound (3) within factor 1+ε with high prob-
ability. An important question in this direction is to deterministically and strategically
determine principal submatrices to impose PSD-ness, so as to obtain the best possible
bound for (2) As discussed earlier, such questions are related to exploring 2-designs
and perhaps further generalizations of results presented in [25].
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Sparse PSD approximation of the PSD cone 989

Table 1 Bounds on distF (Sn,k ,Sn+) for some regimes

Regime Upper bound Lower bound

(small k) 2 ≤ k ≤ √
n n−k

n (Simplified from Thm 1) 1√
2
n−k
n (Simplified from Thm 3)

(large k) k ≥ n − c 96
( c
n
)3/2 (Simplified from Thm 2) 1√

2
c

n3/2
(Simplified from Thm 3)

(n ≥ 97, k ≥ 0.75n)

(k/n is a constant) k = rn Constant, independent of n Constant, independent of n

(r < 1
93 ) 1 − r (Simplified from Thm 1)

√
r−93r2

5 (Simplified from Thm 4)

4 Notation and preliminaries

The support of a vector is the set of its non-zero coordinates, and we call a vector
k-sparse if its support has size at most k. We will use [n] to denote the set {1, . . . , n}.
A k-set of a set A is a subset B ⊂ A with |B| = k. We also use

([n]
k

)
to denote the set

of all k-sets of [n]. Given any vector x ∈ R
n and a k-set J ⊂ [n] we define xJ ∈ R

k

as the vector where we remove the coordinates whose indices are not in J . Similarly,
for a matrix M ∈ R

n×n and a k-set J ⊂ [n], we denote the principal submatrix of M
corresponding to the rows and columns in J by MJ .

4.1 Linear algebra

Given any n × n matrix A = [ai j ] its trace (the sum of its diagonal entries) is denoted
as Tr(A). Recall that Tr(A) is also equal to the sum of all eigenvalues of A, counting
multiplicities. Given a symmetric matrix A, we use λ1(A) ≥ λ2(A) ≥ . . . to denote
its eigenvalues in non-increasing order.

We remind the reader that, a real symmetric n × n matrix M is said to be PSD if
x�Mx ≥ 0 for all x ∈ R

n , or equivalently all of its eigenvalues are non-negative. We
also use the notation that A � B if A − B is PSD.

We next present the famous Cauchy’s Interlace Theorem which will be important
for obtaining an upper bound on the number of negative eigenvalues of matrices in
Sn,k . A proof can be found in [23].

Theorem 6 (Cauchy’s Interlace Theorem) Consider an n×n symmetric matrix A and
let AJ be any of its k × k principal submatrix. Then for all 1 ≤ i ≤ k,

λn−k+i (A) ≤ λi (AJ ) ≤ λi (A).

4.2 Probability

These following concentration inequalities will be used throughout, and can be found
in [9].
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Theorem 7 (Markov’s inequality) Let X be a non-negative random variable. Then for
all a ≥ 1,

Pr(X ≥ aE(X)) ≤ 1

a
.

Theorem 8 (Chebyshev’s inequality) Let X be a random variable with finite mean
and variance. Then for all a > 0,

Pr(|X − E(X)| ≥ a) ≤ Var(X)

a2
.

Theorem 9 (Chernoff bound) Let X1, . . . , Xn be i.i.d. Bernoulli random variables,
with Pr(Xi = 1) = E(Xi ) = p for all i . Let X = ∑n

i=1 Xi and μ = E(X) = np.
Then for any 0 < δ < 1,

Pr
(|X − μ| > δμ

) ≤ 2 exp

(

− μδ2

3

)

.

5 Proof of Theorem 1: averaging operator

Consider a matrix M in the k-PSD closure §n,k with ‖M‖F = 1. To upper bound its
distance to the PSD cone we transform M into a “close by” PSD matrix M̃ .

The idea is clear: since all k × k principal submatrices of M are PSD, we define M̃
as the average of these minors. More precisely, for a set I ⊆ [n] of k indices, let MI

be the matrix where we zero out all the rows and columns of M except those indexed
by indices in I ; then M̃ is the average of all such matrices:

M̃ := 1
(n
k

)
∑

I∈([n]
k )

MI .

Notice that indeed since the principal submatrix MI is PSD, MI is PSD as well: for
all vectors x ∈ R

n , x�MI x = xI MI xI ≥ 0. Since the average of PSD matrices is
also PSD, we have that M̃ is PSD, as desired.

Moreover, notice that the entries of M̃ are just scalings of the entries ofM , depending
on how many terms of the average are not zeroed out:

1. Diagonal terms: These are scaled by the factor

(n
k

) − (n−1
k

)

(n
k

) = k

n
,

that is, M̃ii = k
n Mii for all i ∈ [n].
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2. Off-diagonal terms: These are scaled by the factor

(n
k

) − (2
(n−1

k

) − (n−2
k

)
)

(n
k

) = k(k − 1)

n(n − 1)
,

that is, M̃i j = k(k−1)
n(n−1)Mi j for all i �= j .

To even out these factors, we define the scaling α := 2n(n−1)
k(n+k−2) and consider αM̃ .

Now we have that the difference between M and αM̃ is a uniform scaling (up to
sign) of M itself: (M − αM̃)i i = (1 − α k

n ) Mii = − n−k
n+k−2 Mii , and (M − αM̃)i j =

(1 − α
k(k−1)
n(n−1) ) Mi j = n−k

n+k−2 Mi j for i �= j . Therefore, we have

distF (M,Sn+) ≤ ‖M − αM̃‖F = n − k

n + k − 2
‖M‖F = n − k

n + k − 2
.

Since this holds for all unit-norm matrix M ∈ §n,k , this upper bound also holds for
distF (§n,k,Sn+). This concludes the proof of Theorem 1.

6 Proof of Theorem 2: randomized sparsification

Let M ∈ §n,k be a matrix in the k-PSD closure with ‖M‖F = 1. To prove Theorem 2,
we show that the Frobenius distance from M to the PSD cone is at most O

(
( n−k

n )3/2
)
.

We assume that M is not PSD, otherwise we are done, and hence it has a negative
eigenvalue. We write M in terms of its eigendecomposition: Let −λ1 ≤ −λ2 ≤ . . . ≤
−λ� and μ1, . . . , μn−� be the negative and non-negative eigenvalues of M , and let
v1, . . . , v� ∈ R

n and w1, . . . , wn−� ∈ R
n be orthonormal eigenvectors relative to

these eigenvalues. Thus

M = −
∑

i≤�

λiv
i (vi )� +

∑

i≤n−�

μiw
i (wi )�. (6)

Notice that since ‖M‖F = 1 we have

∑

i≤�

λ2i +
∑

i≤n−�

μ2
i = 1. (7)

We first relate the distance from M to the PSD cone to its negative eigenvalues.

6.1 Distance to PSD cone and negative eigenvalues

We start with the following general observation.
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Proposition 1 Suppose M is a symmetric n×n matrixwith � ≤ n negative eigenvalues.
Let −λ1 ≤ −λ2 ≤ · · · ≤ −λ� < 0 and μ1, . . . , μn−l ≥ 0 be the negative and non-
negative eigenvalues of M. Then

distF (M,Sn+) =
√
√
√
√

�∑

i=1

λ2i .

Proof Let V be the orthonormal matrix that diagonalizes M , i.e.,

V�MV = D := diag(−λ1, . . . ,−λ�, μ1, . . . , μn−�).

It is well-known that the Frobenius norm is invariant under orthonormal transforma-
tion. Therefore, for any N ∈ Sn+ we have

distF (M, N ) = ‖M − N‖F = ‖V�(M − N )V ‖F = distF (D, V�NV ).

Since N ∈ Sn+ iff V�NV ∈ Sn+, we see that distF (M,Sn+) = distF (D,Sn+). So we

only need to show that the latter is
√∑�

i=1 λ2i .
Let D+ = diag(0, . . . , 0, μ1, . . . , μn−�)beobtained from D bymaking all negative

eigenvalues zero. Then

‖D − D+‖F =
√
√
√
√

n∑

i=1

n∑

i=1

(D − D+)2i j =
√
√
√
√

�∑

i=1

λ2i .

It then suffices to show that D+ is the PSD matrix closest to D. For that, let N be any
PSD matrix. Then Nii = e�

i Nei ≥ 0 for all i , where ei is the standard unit vector on
i th coordinate. Thus we have

‖D − N‖F =
√
√
√
√

�∑

i=1

(Nii + λi )2 +
n∑

i=�+1

(μi−� − Nii )2 +
n∑

i=1

∑

j �=i

N 2
i j ≥

√
√
√
√

�∑

i=1

λ2i .

This concludes the proof. ��
In addition, Cauchy’s Interlace Theorem gives an upper bound on the number of

negative eigenvalues of matrices in Sn,k .

Proposition 2 Any A ∈ Sn,k has at most n − k negative eigenvalues.

Proof Let J be any k-subset of [n]. Since A ∈ Sn,k we have that AJ is PSD, so in
particular λk(AJ ) ≥ 0. Thus, by Theorem 6 the original matrix A also has λk(A) ≥ 0,
and so the first k eigenvalues of A are nonnegative. ��

Using Propositions 1 and 2, given any symmetric matrix M ∈ Sn,k we can get an
upper bound on distF (M,Sn+) using its smallest eigenvalue.
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Proposition 3 Consider a matrix M ∈ Sn,k with smallest eigenvalue −λ1 < 0. Then

distF (M,Sn+) ≤ √
n − k · λ1.

Proof Letting−λ1, . . . ,−λ� be the negative eigenvalues ofM , we have from Proposi-

tion 1 that distF (M,Sn+) =
√∑�

i=1 λ2i ≤ √
�·λ1, since−λ1 is the smallest eigenvalue.

Since � ≤ n − k, because of Proposition 2, we obtain the result. ��

6.2 Upper bounding �1

Given the previous proposition, fix throughout this section a (non PSD) matrix M ∈
Sn,k with smallest eigenvalue −λ1 < 0. Our goal is to upper bound λ1.

The first observation is the following: Consider a symmetric matrix A and a set of
coordinates I ⊆ [n], and notice that for every vector x ∈ R

n supported in I we have
x�Ax = x�

I AI xI . Thus, the principal submatrix AI is PSD iff for all vectors x ∈ R
n

supported in I we have x�Ax ≥ 0. Applying this to all principal submatrices gives a
characterization of the k-PSD closure via k-sparse test vectors.

Observation 1 A symmetric real matrix A belongs to §n,k iff for all k-sparse vectors
x ∈ R

n we have x�Ax ≥ 0.

Using this characterization, and the fact that M ∈ §n,k , the idea to upper bound λ1
is to find a vector v̄ with the following properties (informally):

1. v̄ is k-sparse
2. v̄ is similar to the eigenvector v1 relative to λ1
3. v̄ is almost orthogonal to the eigenvectors of M relative to its non-negative eigen-

values.

Such vector gives a bound on λ1 because using the eigendecomposition (6)

0
Obs(1)≤ v̄�M v̄ = −

∑

i≤�

λi 〈vi , v̄〉2 +
∑

i≤n−�

μi 〈wi , v̄〉2 � −λ1 + “small error”,

and hence λ1 � “small error”.
We show the existence of such k-sparse vector v̄ via the probabilistic method by

considering a random sparsification of v1. More precisely, define the random vector
V ∈ R

n as follows: in hindsight set p := 1 − 2(n−k)
n , which is always at least 1

2
due to our assumption in Theorem 2 that k ≥ 3n

4 , and let V have independent entries
satisfying

Vi =

⎧
⎪⎨

⎪⎩

v1i if (v1i )
2 > 2/n,

v1i
p with probability p if (v1i )

2 ≤ 2
n ,

0 with probability 1 − p if (v1i )
2 ≤ 2

n .
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994 G. Blekherman et al.

The choice of p guarantees that V is k-sparse with good probability.

Lemma 1 V is k-sparse with probability at least 1
2 .

Proof Let m be the number of entries in v1 with (v1i )
2 ≤ 2

n . Since ‖v1‖2 = 1 we have
m ≥ n

2 . By the randomized construction, the number of coordinates of value 0 in V is
lower bounded by a binomial random variable B withm trials and success probability
1 − p. Using the definition of p we have the expectation

EB = m(1 − p) ≥ n

2
· 2(n − k)

n
= n − k;

since n − k is integer we have �EB� ≥ n − k. Moreover, it is known that the median
of a binomial distribution is at least the expectation rounded down to the nearest
integer [24], hence Pr(B ≥ �EB�) ≥ 1

2 . Chaining these observations we have

Pr
(
# of coordinates of value 0 in V ≥ n − k

) ≥ Pr
(
B ≥ n − k

) ≥ Pr
(
B ≥ �EB�) ≥ 1

2
.

In other words, our randomized vector V is k-sparse with probability at least 1
2 . ��

Next, we show that with good probability V and v1 are in a “similar direction”.

Lemma 2 With probability > 1 − 1
6 we have 〈V , v1〉 ≥ 1

2 .

Proof To simplify the notation we use v to denote v1. By definition of V , for each
coordinate we have E[Vivi ] = v2i , and hence E〈V , v〉 = ‖v‖22 = 1.

In addition, let I be the set of coordinates i where v2i ≤ 2
n . Then for i /∈ I we

have Var(Vivi ) = 0, and for i ∈ I we have Var(Vivi ) = v2i Var(Vi ) ≤ 2
n Var(Vi ).

Moreover, since p ≥ 1
2 (implied by the assumption k ≥ 3n

4 ) we have by construction
Vi ≤ vi

p ≤ 2vi , and hence

Var(Vi ) ≤ EV 2
i ≤ 2viEVi = 2v2i .

So using the independence of the coordinates of V we have

Var〈V , v〉 =
∑

i∈I
Var(Vivi ) ≤ 4

n

∑

i

v2i = 4

n
.

Then by Chebyshev’s inequality we obtain that

Pr

(

〈V , v〉 ≤ 1

2

)

≤ Pr

(

|〈V , v〉 − 1| ≥ 1

2

)

≤ 16

n
.

Since n ≥ 97, this proves the lemma. ��
Finally, we show that V is almost orthogonal to the eigenvectors of M relative to

non-negative eigenvalues.
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Lemma 3 With probability ≥ 1 − 1
3 we have

∑
i≤n−� μi 〈V , wi 〉2 ≤ 24(n−k)

n3/2
.

Proof Again we use v to denote v1. Define the matrix M := ∑
i≤n−� μiwiw

�
i , so we

want to upper bound V�MV . Moreover, let 
 = V − v; since v and the wi ’s are
orthogonal we have Mv = 0 and hence

V�MV = vMv + 2
�Mv + 
�M
 = 
�M
, (8)

so it suffices to upper bound the right-hand side.
For that, notice that 
 has independent entries with the form


i =

⎧
⎪⎨

⎪⎩

0 if v2i > 2
n ,

vi (1−p)
p with probability p if v2i ≤ 2

n ,

−vi with probability 1 − p if v2i ≤ 2
n .

So E[
i
 j ] = E
iE
 j = 0 for all i �= j . In addition E
2
i = 0 for indices where

v2i > 2
n , and for other indices

E
2
i ≤ v2i (1 − p)2

p
+ v2i (1 − p) = v2i

1 − p

p
≤ 2(1 − p)

np
.

Using these we can expand E[
T M
] as

E[
T M
] = E

[ ∑

i, j

Mi j
i
 j

]

=
∑

i, j

Mi j E[
i
 j ] =
n∑

i=1

Mii E
2
i

≤ 2(1 − p)

np
Tr(M)

= 4(n − k)

n2 p
Tr(M), (9)

where the last equation uses the definition of p.
Since the μi ’s are the eigenvalues of of M , we can therefore bound the trace as

Tr(M) =
∑

i≤n−�

μi ≤ √
n − � ·

√ ∑

i≤n−�

μ2
i

≤ √
n − � ≤ √

n,

where the first inequality follows from thewell-known inequality that ‖u‖1 ≤ √
n‖u‖2

for all u ∈ R
n and the second inequality comes from (7). Further using the assumption

that p ≥ 1
2 , we get from (9) that

E[
T M
] ≤ 8(n − k)

n3/2
.
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Finally, since all the eigenvalues μi of M are non-negative, this matrix is PSD and
hence the random variable 
�M
 is non-negative. Markov’s inequality then gives
that

Pr

(


�M
 ≥ 24(n − k)

n3/2

)

≤ Pr

(


�M
 ≥ 3E[
�M
]
)

≤ 1

3
.

This concludes the proof of the lemma. ��
With these properties of V we can finally upper bound the absolute value of the

most negative eigenvalue of M .

Lemma 4 λ1 ≤ 96(n−k)
n3/2

.

Proof We take the union bound over Lemmas 1–3. In other words, the probability
that V fails at least one of the properties in above three lemmas is strictly less than
1
2 + 1

6 + 1
3 = 1. Therefore, with strictly positive probability V satisfies all these

properties. That is, there is a vector v̄ ∈ R
n that is k-sparse, has 〈v̄, v1〉 ≥ 1

2 and
∑

i≤n−� μi 〈v̄, wi 〉2 ≤ 24(n−k)
n3/2

. Then usingObservation 1 and the eigendecomposition
(6)

0
Obs(1)≤ v̄�M v̄ = −

∑

i≤�

λi 〈v̄, vi 〉2 +
∑

i≤n−�

μi 〈v̄, wi 〉2 ≤ −λ1

4
+ 24(n − k)

n3/2
.

Reorganizing the terms proves the lemma. ��

6.3 Concluding the proof of Theorem 2

Plugging the upper bound on λ1 from Lemma 4 into Proposition 3 we obtain that

distF (M,Sn+) ≤ 96

(
n − k

n

)3/2

.

Since this holds for all unit-norm M ∈ §n,k , we have that distF (§n,k,Sn+) also satisfies
the same upper bound. This concludes the proof.

7 Proof of Theorem 3: a specific family of matrices in §n,k

To prove the lower bounds on distF (Sn,k,Sn+)we construct specific families of matri-
ces in Sn,k with Frobenius norm 1, and then lower bound their distance to the PSD
cone.

For the first lower bound in Theorem 3, we consider the construction where all
diagonal entries are the same, and all off-diagonal ones are also the same. More
precisely, given scalars a, b ≥ 0 we define the matrix
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G(a, b, n) := (a + b)In − a11�, (10)

where In is the n × n identity matrix, and 1 is the column vector with all entries equal
to 1. In other words, all diagonal entries of G(a, b, n) are b, and all off-diagonal ones
are −a.

The parameter a will control how far this matrix is from PSD: for a = 0 it is PSD,
and if a is much bigger than b it should be “far” from the PSD cone. We then directly
compute its eigenvalues, as well as its Frobenius distance to the PSD cone.

Proposition 4 The eigenvalues of G(a, b, n) are b− (n − 1)a with multiplicity 1, and
b + a with multiplicity n − 1.

Proof Let {v1, . . . , vn} be an orthonormal basis of Rn such that
√
nv1 = 1. Then we

can rewrite G(a, b, n) as

G(a, b, n) = (a + b)
n∑

i=1

vi (vi )� − nav1(v1)�

= (
b − (n − 1)a

)
v1(v1)� + (a + b)

n∑

i=2

vi (vi )�.

This gives a spectral decomposition of G(a, b, n), so it has the aforementioned set of
eigenvalues. ��

The next two corollaries immediately follow from Proposition 4.

Corollary 1 If a, b ≥ 0, then G(a, b, n) ∈ Sn,k iff b ≥ (k − 1)a. In particular, since
§n,n = Sn+, G(a, b, n) ∈ Sn+ iff b ≥ (n − 1)a.

Proof Note that every k × k principal submatrix of G(a, b, n) is just the matrix
G(a, b, k), which belongs to Sk+ iff b − (k − 1)a ≥ 0, since a, b ≥ 0. ��
Corollary 2 If a, b ≥ 0, then distF (G(a, b, n),Sn+) = max{(n − 1)a − b, 0}.
Proof If b ≥ (n − 1)a, then G(a, b, n) ∈ Sn+ from first corollary, so
distF (G(a, b, n),Sn+) = 0 by definition.

If b < (n − 1)a, then G(a, b, n) has only one negative eigenvalue b − (n − 1)a.
Thus using Proposition 1 we get distF (G(a, b, n),Sn+) = (n − 1)a − b. ��

To conclude the proof of Theorem 3, let ā = 1√
(k−1)2n+n(n−1)

and b̄ = (k − 1)ā.

From Corollary 1 we know that G(ā, b̄, n) belongs to the k-PSD closure Sn,k , and it
is easy to check that it has Frobenius norm 1. Then using Corollary 2 we get

distF (§n,k,Sn+) ≥ distF (G(ā, b̄, n),Sn+) = (n − k)ā = n − k
√

(k − 1)2n + n(n − 1)
.

This concludes the proof.
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8 Proof of Theorem 4: RIP construction when k = O(n)

Again, to prove the lower bound distF (§n,k,Sn+) ≥ cst for a constant cst we will
construct (randomly) a unit-normmatrix M in the k-PSD closure §n,k that has distance
at least cst from the PSD cone Sn+; we will use its negative eigenvalues to assess
this distance, via Proposition 1. Motivation for connection with RIP property. Before
presenting the actual construction, we give the high-level idea of how the RIP property
(Definition 2 below) fits into the picture. For simplicity, assume k = n/2. (The actual
proof will not have this value of k). The idea is to construct a matrix M where about
half of its eigenvalues take the negative value − 1√

n
, with orthonormal eigenvectors

v1, v2, . . . , vn/2, and rest take a positive value 1√
n
, with orthonormal eigenvectors

w1, w2, . . . , wn/2). This normalization makes ‖M‖F = �(1), so the reader can just
think of M being unit-norm, as desired. In addition, from Proposition 1 this matrix

is far from the PSD cone: distF (M,Sn+) �
√(

1√
n

)2 · n
2 = cst . So we only need to

guarantee that M belongs to the k-PSD closure; for that we need to carefully choose
its positive eigenspace, namely the eigenvectors w1, w2, . . . , wn/2.

Recall that from Observation 1, M belongs to the k-PSD closure iff x�Mx for all
k-sparse vectors x ∈ R

n . Letting V be the matrix with rows v1, v2, . . . , and W the
matrix with rows w1, w2, . . ., the quadratic form x�Mx is

x�Mx = − 1√
n

∑

i

〈vi , x〉2 + 1√
n

∑

i

〈wi , x〉2 = − 1√
n
‖V x‖22 + 1√

n
‖Wx‖22.

Since the rows of V are orthonormal we have ‖V x‖22 ≤ ‖x‖22. Therefore, if we could
construct thematrix W so that for all k-sparse vectors x ∈ R

n we had ‖Wx‖22 ≈ ‖x‖22,
we would be in good shape, since we would have

x�Mx � − 1√
n
‖x‖22 + 1√

n
‖x‖22 � 0 for all k-sparse vectors x, (11)

thusM would be (approximately) in the k-PSD closure. This approximate preservation
of norms of sparse vectors is precisely the notion of the Restricted Isometry Property
(RIP) [12,13].

Definition 2 (RIP) Given k < m < n, an m × n matrix A is said to be (k, δ)-RIP if
for all k-sparse vectors x ∈ R

n , we have

(1 − δ)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δ)‖x‖22.

This definition is very important in signal processing and recovery [12–15], and
there has been much effort trying to construct deterministic [5,11] or randomized [6]
matrices satisfying given RIP guarantees.

123



Sparse PSD approximation of the PSD cone 999

The following theorem in [6] provides a probabilistic guarantee for a random
Bernoulli matrix to have the RIP.

Theorem 10 ((4.3) and (5.1) in [6], see also [1]) Let A be an m × n matrix where
each entry is independently ±1/

√
m with probability 1/2. Then A is (k, δ)-RIP with

probability at least

1 − 2

(
12

δ

)k

e−(
δ2/16−δ3/48

)
m . (12)

Proof ofTheorem4Afterwehaveobserved the above connection betweenmatrices
in Sn,k and RIP matrices, in the actual proof we adopt a strategy that does not “flow”
exactly as described above but is easier to analyze. We will: 1) selectW , a RIP matrix
by selecting parameters m and δ and applying Theorem 10; 2) use it to construct a
matrix M ∈ Sn,k ; 3) rescale the resulting matrix so that its Frobenius norm is 1, and;
4) finally compute its distance from Sn+ and show that this is a constant independent
of n.

Actual construction of M . Set m = 93k and δ = 0.9. Then we can numerically
verify that whenever k ≥ 2, the probability (12) is at least 0.51 > 1

2 . Then let W be a
random m × n matrix as in Theorem 10, and define the matrix

M := −(1 − δ)I + W�W .

First observe that M has a large relative distance to the PSD cone and with good
probability belongs to the k-PSD closure.

Lemma 5 The matrix M satisfies the following:

1. With probability at least 0.51, M ∈ §n,k

2. distF (M,Sn+) ≥ √
n − m (1 − δ).

Proof WheneverW is (k, δ)-RIP, bydefinition, for all k-sparse x wehave x�W�Wx =
‖Wx‖2 ≥ (1− δ)x�x . Therefore x�Mx ≥ 0 for all k-sparse x , and hence M ∈ Sn,k

by Observation 1. This gives the first item of the lemma.
For the second item, notice that all vectors in the kernel ofW , which has dimension

n−m, are eigenvectors of M with eigenvalue−(1−δ). So the negative eigenvalues of
M include at least n−m copies of−(1−δ), and the result follows from Proposition 1.

��
Now we need to normalize M , and for that we need to control its Frobenius norm.

Lemma 6 With probability at least 1
2 , ‖M‖2F ≤ 2nδ2 + 2n(n−1)

m .

Proof Notice that the diagonal entries of W�W equal 1, so

‖M‖2F =
n∑

i=1

M2
i i +

∑

i, j∈[n],i �= j

M2
i j = nδ2 +

∑

i, j∈[n],i �= j

(W�W )2i j .
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We upper bound the last sum. Let the columns of W be C1, . . . ,Cn , and denote by
Xi j = 〈Ci ,C j 〉 the i j-th entry ofW�W . Notice that when i �= j , Xi j is the sum ofm

independent random variables Ci
�C

j
� that take values {− 1

m , 1
m } with equal probability,

where � ranges from 1 to m. Therefore,

EX2
i j = Var(Xi j ) =

m∑

�=1

Var(Ci
�C

j
� ) = m

1

m2 = 1

m
.

This gives that

E ‖M‖2F = nδ2 + n(n − 1)

m
.

Since ‖M‖2F is non-negative, from Markov’s inequality ‖M‖2F ≤ 2E ‖M‖2F with
probability at least 1/2. This gives the desired bound, concluding the proof.

Taking a union bound over Lemmas 5 and 6, with strictly positive probability the
normalized matrix M

‖M‖F belongs to §n,k and has

distF

(
M

‖M‖F ,Sn+
)

≥
√
n − m (1 − δ)

√
2n(n − 1)/m + 2nδ2

≥
√
n − m (1 − δ)

√
2n2/m + 2nδ2

.

The first inequality comes from the fact that Sn+ is a pointed convex cone, and for any
constant a > 0 we have distF (aM,Sn+) = adistF (M,Sn+). Thus, there is a matrix
with such properties.

Now plugging in k = rn,m = 93k, δ = 0.9, the right hand side is at least
√
r−93r2√
162r+3

.
This concludes the proof of Theorem 4.

9 Proof of Theorem 5

The idea of the proof is similar to that of Theorem 1 (in Sect. 5), with the following
difference: Given a unit-norm matrix M ∈ §I , we construct a matrix M̃ by averaging
over the principal submatrices indexed by only the k-sets in I instead of considering
all k-sets, and upper bound the distance from M to the PSD cone by distF (M, αM̃).
Then we need to provide a uniform upper bound on distF (M, M̃) that holds for all
M’s simultaneously with good probability (with respect to the samples I). This will
then give an upper bound on distF (§I ,Sn+).

Recall that I = (I1, . . . , Im) is a sequence of independent uniform samples from
the k-sets of [n]. As defined in Sect. 5, let MI be the matrix where we zero out all the
rows and columns of M except those indexed by indices in I . Let TI be the (random)
partial averaging operator, namely for every matrix M ∈ R

n×n

TI(M) := 1

|I|
∑

I∈I
MI .
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As we showed in Sect. 5 for the full average M̃ := T([n]
k )(M), the first observation

is that if M ∈ §I , that is, all principal submatrices {MI }I∈I are PSD, then the partial
average TI(M) is also PSD.

Lemma 7 If M ∈ §I , then TI(M) is PSD.

Proof This is straightforward, since each MI is PSD.

Consider a unit-normmatrix M . Nowwe need to upper bound distF (M, α TI(M)),
for a scaling α, in a way that is “independent” of M . In order to achieve this goal,
notice that (TI(M))i j = fi j Mi j , where fi j is the fraction of sets in I that contain
{i, j}. Then it is not difficult to see that the Frobenius distance between M and TI(M)

can be controlled using only these fractions { fi j }, since the Frobenius norm of M is
fixed to be 1.

The next lemmamakes this observation formal. Since the fractions { fi j } are random
(they depend on I), the lemma focuses on the typical scenarios where they are close
to their expectations.

Notice that the probability that a fixed index i belongs to I� is k
n , so the fraction fii

is k
n in expectation. Similarly, the expected value of fi j is

k(k−1)
n(n−1) when i �= j . In other

words, the expectation of TI(M) is M̃ .

Lemma 8 Consider ε ∈ [0, 1) and let γ := k(n−k)
2n(n−1) . Consider a scenario where I

satisfies the following for some ε ∈ [0, 1):
1. For every i ∈ [n], the fraction of the sets in I containing i is in the interval[ k

n − εγ, k
n + εγ

]
.

2. For every pair of distinct indices i, j ∈ [n], the fraction of the sets in I containing

both i and j is in the interval
[
k(k−1)
n(n−1) − εγ,

k(k−1)
n(n−1) + εγ

]
.

Then there is a scaling α > 0 such that for all matrices M ∈ R
n×n we have

distF (M, α TI(M)) ≤ (1 + ε)
n − k

n + k − 2
‖M‖F .

Proof As in Sect. 5, let M̃ = T([n]
k )(M) be the full average matrix. Recall that M̃ii =

f̃ i i Mii for f̃ i i = k
n , and M̃i j = f̃ i j Mi j for f̃ i j = k(k−1)

n(n−1) when i �= j . Also let

α := 2n(n−1)
k(n+k−2) . Finally, define 
 := M̃ − TI(M) as the error between the full and

partial averages.
From triangle inequality we have

‖M − α TI(M)‖F ≤ ‖M − α M̃‖F + α ‖
‖F .

Moreover, in Sect. 5 we proved the full average bound ‖M −α M̃‖F ≤ n−k
n+k−2‖M‖F .

Moreover, from our assumptions we have fi j ∈ [ f̃ i j − εγ, f̃ i j + εγ ] for all i, j ,
and hence |
i j | ≤ εγ |Mi j |; this implies the norm bound ‖
‖F ≤ εγ ‖M‖F . Putting
these bounds together in the previous displayed inequality gives
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‖M − α TI(M)‖F ≤
(

n − k

n + k − 2
+ εαγ

)

‖M‖F = (1 + ε)
n − k

n + k − 2
‖M‖F .

This concludes the proof. ��
Finally, we use concentration inequalities to show that the “typical” scenario

assumed in the previous lemma holds with good probability.

Lemma 9 With probability at least 1 − δ and the parameter m given in Theorem 5,
the sequence I is in a scenario satisfying the assumptions of Lemma 8.

Proof As stated in Lemma 8, we only need that for all entries i, j the fraction fi j
deviates from its expectation by at most +εγ , with failure probability at most δ. From
union bound, this can be achieved if for each entry, the probability that the deviation
of its fraction fi j fails to be within [−εγ, εγ ] is at most δ

n2
. Now we consider both

diagonal and off-diagonal terms:

1. Diagonal terms fii : For each k−set sample I , let XI be the indicator variable that
is 0 if i /∈ I , and 1 if i ∈ I . Notice that they are independent, with expectation k

n .
Let X = ∑

I∈I XI be the sum of these variables.
From definition of fii we have X = fiim, where m is the total number of samples.
From Chernoff bound, have that

Pr

( ∣
∣
∣
∣ fii − k

n

∣
∣
∣
∣ > ε

(n − k)k

2n(n − 1)

)

= Pr

( ∣
∣
∣
∣X − mk

n

∣
∣
∣
∣ > εm

(n − k)k

2n(n − 1)

)

≤ 2 exp

(

− ε2(n − k)2km

12n(n − 1)2

)

≤ δ

n2

as long as

m ≥ 12n(n − 1)2

ε2(n − k)2k
ln

2n2

δ
.

2. Off-diagonal terms fi j : Similar to first case, now for each k−set sample I , let XI be
the indicator variable that is 1 if {i, j} ⊂ I , and 0 otherwise. Now the expectation
of each XI becomes k(k−1)

n(n−1) . Again let X = ∑
i∈I XI .

Using same argument as above, X = fi jm. From Chernoff bound we get

Pr

( ∣
∣
∣
∣ fi j − k(k − 1)

n(n − 1)

∣
∣
∣
∣ > ε

(n − k)k

2n(n − 1)

)

= Pr

( ∣
∣
∣
∣X − mk(k − 1)

n(n − 1)

∣
∣
∣
∣ > εm

(n − k)k

2n(n − 1)

)

≤ 2 exp

(

− ε2(n − k)2km

12n(n − 1)(k − 1)

)

≤ δ

n2
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as long as

m ≥ 12n(n − 1)(k − 1)

ε2(n − k)2k
ln

2n2

δ
.

Since we chose m large enough so it satisfies both of these cases, taking a union
bound over all i, j’s we get that the probability that any of the fi j ’s is +εγ more than
their expectations is at most δ. This concludes the proof. ��

Combining this with Lemma 8, we conclude the proof of Theorem 5.
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