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Abstract
In the present paper we derive a Pontryagin maximum principle for general nonlinear
optimal sampled-data control problems in the presence of running inequality state
constraints. We obtain, in particular, a nonpositive averaged Hamiltonian gradient
condition associated with an adjoint vector being a function of bounded variation. As
a well known challenge, theoretical and numerical difficulties may arise due to the
possible pathological behavior of the adjoint vector (jumps and singular part lying on
parts of the optimal trajectory in contactwith the boundary of the restricted state space).
However, in our case with sampled-data controls, we prove that, under certain general
hypotheses, the optimal trajectory activates the running inequality state constraints at
most at the sampling times. Due to this so-called bouncing trajectory phenomenon,
the adjoint vector experiences jumps at most at the sampling times (and thus in a finite
number and at precise instants) and its singular part vanishes. Taking advantage of
these informations, we are able to implement an indirect numerical method which we
use to solve three simple examples.
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1 Introduction

In mathematics a dynamical system describes the evolution of a point (usually called
the state of the system) in an appropriate space (called the state space) following an
evolution rule (called the dynamics of the system). Dynamical systems are of many
different natures (continuous versus discrete systems, deterministic versus stochastic
systems, etc.). A continuous system is a dynamical system in which the state evolves
in a continuous way in time (for instance, ordinary differential equations, evolution
partial differential equations, etc.), while a discrete system is a dynamical system in
which the state evolves in a discrete way in time (for instance, difference equations,
quantum differential equations, etc.). A control system is a dynamical system in which
a control parameter intervenes in the dynamics and thus influences the evolution of
the state. Finally an optimal control problem consists in determining a control which
allows to steer the state of a control system from an initial condition to some desired
target while minimizing a given cost and satisfying some constraints.

Context in optimal control theory. Established in [63] by Pontryagin, Boltyanskii,
Gamkrelidze and Mischenko at the end of the 1950s, the Pontryagin Maximum Prin-
ciple (in short, PMP) is a fundamental result in optimal control theory with numerous
theoretical and numerical applications. We refer to [21,48,49,55,69,70,73] and ref-
erences therein. The classical PMP gives first-order necessary optimality conditions
for continuous optimal control problems in which the dynamical system is described
by a general ordinary differential equation. Roughly speaking, the PMP ensures the
existence of an adjoint vector (also called costate) satisfying some terminal con-
ditions (called transversality conditions) such that the optimal control maximizes
the Hamiltonian function associated with the optimal control problem. As a well
known application, if the Hamiltonian maximization condition allows to express the
optimal control as a function of the augmented state-costate vector, then the PMP
induces the so-called indirect numerical method which consists in determining the
optimal control by numerically solving the boundary value problem satisfied by the
augmented state-costate vector via a shooting algorithm.1 Soon afterwards and even
nowadays, the PMP has been adapted to many situations, for control systems of differ-
ent natures and with various constraints. It is not our aim to give a state of the art here.
Nevertheless we precise that several versions of the PMP were derived for discrete
optimal control problems in which the dynamical system is described by a general
difference equation (see e.g., [10,46,50]). In these discrete versions of the PMP, the
Hamiltonian maximization condition does not hold in general (see a counterexample
in [10, Examples 10.1–10.4, pp. 59–62]) and has to be replaced by a weaker condition
known as the nonpositiveHamiltonian gradient condition (see e.g., [10, Theorem42.1,
p. 330]). This is due in particular to the fact that the method of needle-like perturba-
tions, used in classical continuous optimal control theory, cannot be adapted at the
discrete level.

1 The terminology indirect numerical method is opposed to the one of direct numerical method which
consists in a full discretization of the optimal control problem resulting into a constrained finite-dimensional
optimization problem that can be numerically solved from various standard optimization algorithms and
techniques.
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An important generalization of the PMP concerns state constrained optimal control
problems in which the state is restricted to a certain region of the state space. Indeed it
is often undesirable and even inadmissible in scientific and engineering applications
that the state crosses certain limits imposed in the state space for safety or practical rea-
sons. Many examples can be found in mechanics and aerospace engineering (e.g., an
engine may overheat or overload). We refer to [14,29,53,71,72] and references therein
for other examples. State constrained optimal control problems are also encountered
in management and economics (e.g., an inventory level may be limited in a produc-
tion model). We refer to [25,60,64,69] and references therein for other examples. A
first version of the PMP for optimal control problems with running inequality state
constraints was obtained by Gamkrelidze [42] (see also [63, Theorem 25, p. 311])
under some special assumptions on the structure of the optimal process. Later, these
assumptions were somewhat excluded by Dubovitskii and Milyutin in the seminal
work [37, Section 7, p. 37]. The contributions of Dubovitskii and Milyutin in the
development of the PMP, in the 1960s and later years, have been the subject of a
survey written by Dmitruk [31] in 2009. These contributions include, notably, general
Lagrange multiplier rules for abstract optimization problems and the so-called method
of v-change of time variable in view of generating needle-like variations by passing
to a smooth control system (see more details in [31, Section 4]). These approaches
have been revisited in a book of lectures on extremum problems written by Girsanov
[43] in 1972, and have been extended recently in a series of papers by Dmitruk and
Osmolovskii [33–36] with applications to various optimal control problems such as
with integral equations, with mixed state-control constraints, etc. Other methods have
been developed in the literature in order to establish versions of the PMP for state
constrained optimal control problems, such as the smoothly-convex structure of the
controlled system in [51], the application of the Ekeland variational principle in [73],
etc. A comprehensive survey [47] of this field of research has been given in 1995 by
Hartl, Sethi andVickson. Note that the PMP for optimal control problems ismore intri-
cate in the presence of running inequality state constraints because the adjoint vector
is (only) of bounded variation in general (while it is absolutely continuous in the state
unconstrained case). Therefore theoretical and numerical difficulties may arise due to
the possible pathological behavior of the adjoint vector which consists in jumps and
singular part lying on parts of the optimal trajectory in contact with the boundary of
the restricted state space. As a consequence a wide portion of the literature is devoted
to the analysis of the costate’s behavior and some constraint qualification conditions
have been established in order to ensure that the adjoint vector has no singular part
(see e.g., [8,14,31,47,52,59]). We briefly conclude this paragraph by mentioning that
the related theme of state constrained discrete optimal control problems has also been
investigated in the literature (see e.g., [30, Proposition 2, p. 13]).

The control of a system is very often assumed to be permanent in the literature,
in the sense that its value can be modified at any time. In the present paper we are
interested in sampled-data control systems in which the control is authorized to be
modified at only a finite number of fixed instants (called sampling times) and remains
frozen elsewhere. These systems have the peculiarity of presenting a mixed continu-
ous/discrete structure: the state evolves continuously with respect to time, while the
control evolves discretely with respect to time. Sampled-data controls are modelled
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by piecewise constant controls and have been considered in Engineering implemented
by digital controllers which have a finite precision (see e.g., [68,74]). They are used in
Automation, notably in model predictive control algorithms in which the control value
at each sampling time is chosen as the first value of a finite sequence of control values
optimizing the given cost on a fixed finite horizon (see e.g., [45]). Numerous texts
and articles have developed control theory for sampled-data control systems (see e.g.,
[1,3,4,40,44,54] and references therein). Recently Bourdin and Trélat have obtained
in [19] a version of the PMP for (state unconstrained) optimal sampled-data control
problems. In that framework, as in the case of discrete control systems (in which
needle-like variations are also absent), the usual Hamiltonian maximization condition
does not hold in general and has to be replaced by a weaker condition known as the
nonpositive averaged Hamiltonian gradient condition (see [19, Theorem 2.6, p. 62]).
We remark that (state unconstrained) optimal sampled-data control problems can be
formulated as finite-dimensional optimization problems since the control values (to
be optimized) are in finite number. We also emphasize that the PMP established in
[19, Theorem 2.6, p. 62] is valid in the more general setting of time scale calculus
which allows to encompass, in a single framework, continuous and discrete optimal
sampled-data and permanent control problems and to extend to more general time
structures. In particular, optimal sampled-data control problems on time scales are
infinite-dimensional optimization problems. As commented in details in [17, Sec-
tion 3.1], most of the standard methods used in classical optimal control theory in
order to derive the PMP fail within the general time scale setting (due to a lack of
convexity on the control perturbation parameters). As far as we know, the method
based on the Ekeland variational principle is the only one allowing to derive a PMP
in the general time scale setting.

Contributions of the present paper To the best of our knowledge, optimal sampled-data
control problems have never been investigated in the presence of state constraints. Our
first objective in the present paper is to bridge this gap in the literature by establishing
a PMP for general nonlinear optimal sampled-data control problems in the presence
of running inequality state constraints (see Theorem 3.1 in Sect. 3). Note that such
problems can be seen as semi-infinite-dimensional optimization problems since the
presence of running inequality state constraints imposes an infinite number of con-
straints (one at each instant of time). In this paper, in the same spirit as Bourdin and
Trélat in [19], our proof is based on the Ekeland variational principle.2 Similarly to the
PMP derived in [19, Theorem 2.6, p. 62] for state unconstrained optimal sampled-data
control problems, we obtain a first-order necessary optimality condition described by
a nonpositive averaged Hamiltonian gradient condition. Moreover, as in the case of
state constrained optimal permanent control problems, we find that the adjoint vector
is in general (only) of bounded variation. Therefore one would expect to encounter
the same difficulties as in the permanent control case when implementing an indirect
numerical method due to the possible jumps and singular part of the adjoint vector.
However, in our context of sampled-data controls, we find that the optimal trajectories
have a common behavior which allows us to overcome these difficulties. Precisely,

2 In particular we have opted for the use of the Ekeland variational principle in view of generalizations to
the general time scale setting in further research works.
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whenwe undertook studying optimal sampled-data control problems in the presence of
running inequality state constraints, we first numerically solved some simple problems
using direct methods. Notably we observed that, in each problem, the optimal trajec-
tory “bounces” against the boundary of the restricted state space, touching the state
constraint at most at the sampling times. This behavior constitutes the second major
focus of the present work and is referred to as the bouncing trajectory phenomenon.
We prove that, under certain general hypotheses, any admissible trajectory necessarily
bounces on the running inequality state constraints and, moreover, the rebounds occur
at most at the sampling times (and thus in a finite number and at precise instants). We
refer to Proposition 4.1 in Sect. 4 for details. Inherent to this behavior, the singular part
of the adjoint vector, associated with an optimal trajectory, vanishes and its disconti-
nuities are reduced to a finite number of jumps which occur exactly at the sampling
times. Taking advantage of these informations, we are able in Sect. 5 to implement an
indirect numericalmethodwhichwe use to numerically solve three simple examples of
optimal sampled-data control problems with running inequality state constraints. We
take this occasion to mention that a similar trajectory phenomenon has already been
observed in the literature on state constrained optimal permanent control problems.
Precisely, Milyutin provides an example in his doctoral dissertation [61] in 1966 (see
also [31, p. 940]) in which the optimal trajectory touches the state constraint a count-
ably infinite number of times before landing on it. As a consequence, in that example,
the corresponding adjoint vector admits a countably infinite number of jumps. This
example was also given independently by Robbins [66] in 1980.

Organization of the paper The present paper is organized as follows. Section 2 is dedi-
cated to notation and functional framework and gives a short recap on Cauchy-Stieltjes
problems which is required in order to state our main result. In Sect. 3 we first present
the optimal sampled-data control problem with running inequality state constraints
considered in this work (see Problem (OSCP)) accompanied by some terminology
and basic assumptions. The corresponding Pontryagin maximum principle is stated
thereafter (see Theorem 3.1) and a list of general comments follows. In Sect. 4 we give
heuristic descriptions and a sufficient condition for observing the bouncing trajectory
phenomenon. In Sect. 5 we propose an indirect method for numerically solving opti-
mal sampled-data control problems with running inequality state constraints based on
our main result and with the aid of the bouncing trajectory phenomenon. Then we
illustrate this method and highlight the bouncing trajectory phenomenon by numeri-
cally solving three simple examples. Finally Appendix A is devoted to technical tools
needed for the proof of Theorem 3.1 which is detailed right after in Appendix B.

2 Basics and recap about linear Cauchy–Stieltjes problems

This section is dedicated to basic notions and background that are required in order to
state our main result (see Theorem 3.1 in Sect. 3.2). In the whole section we consider
four fixed positive integers m, n, q, N ∈ N

∗ and T > 0 as being a fixed positive real
number. Section 2.1 below is devoted to the notations and the functional framework
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we will encounter all along the paper. Section 2.2 is dedicated to some recalls on
functions of bounded variation and on linear Cauchy-Stieltjes problems.

2.1 Notation and functional framework

In this paper we denote by:

– L1
n := L1([0, T ], R

n) the standard Lebesgue space of integrable functions defined
on [0, T ] with values in R

n , endowed with its usual norm ‖ · ‖L1
n
;

– L∞
n := L∞([0, T ], R

n) the standard Lebesgue space of essentially bounded func-
tions defined on [0, T ] with values in R

n , endowed with its usual norm ‖ · ‖L∞
n
;

– Cn := C([0, T ], R
n) the standard space of continuous functions defined on [0, T ]

with values in R
n , endowed with the usual uniform norm ‖ · ‖∞;

– ACn := AC([0, T ], R
n) the subspace of Cn of absolutely continuous functions.

In the sequel we consider an N -partition of the interval [0, T ], that is, let T :=
{ti }i=0,...,N be a (N + 1)-tuple such that

0 = t0 < t1 < · · · < tN−1 < tN = T .

We denote the set of all piecewise constant functions defined on [0, T ] with values in
R
m respecting the N -partition T by

PCT

m := {u ∈ L∞
m | ∀i = 0, . . . , N − 1, ∃ui ∈ R

m , u(t) = ui for a.e. t ∈ [ti , ti+1]}.

In this paper, as usual in the Lebesgue space L∞
m , two functions in PCT

m which are
equal almost everywhere on [0, T ] are identified. Precisely, if u ∈ PCT

m , then u is
identified to the function

u(t) =
{
ui if t ∈ [ti , ti+1), i = 0, . . . , N − 2,
uN−1 if t ∈ [tN−1, tN ],

for all t ∈ [0, T ].

2.2 Recalls on functions of bounded variation and on linear Cauchy–Stieltjes
problems

In this section we refer to standard references and books such as [5,22,23,41,75] and
to Appendices A.3 and A.4 for some more recalls. A function η : [0, T ] → R

q is said
to be of bounded variation on [0, T ] if

sup
{si }i

{∑
i

‖η(si+1) − η(si )‖Rq

}
< +∞,

where the supremum is taken over all finite partitions {si }i of the interval [0, T ]. Inwhat
follows we denote by BVq := BV([0, T ], R

q) the space of all functions of bounded
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variation on [0, T ]with values inR
q . Finally recall that the Riemann–Stieltjes integral

defined by

∫ T

0
ψ(τ) dη(τ) := lim

∑
i

(η(si+1) − η(si ))ψ(si ),

exists in R
n for all ψ ∈ Cn and all η ∈ BV1, where the limit is taken over all finite

partitions {si }i of the interval [0, T ] whose length tends to zero.
We now give a short recap on linear Cauchy–Stieltjes problems. Let A ∈

L∞([0, T ], R
n×n), B ∈ L∞

n and letC j ∈ Cn andη j ∈ BV1 for every j = 1, . . . , q.We
say that x ∈ L∞

n is a solution to the forward linear Cauchy–Stieltjes problem (FCSP)
given by

{
dx = (A × x + B) dt +∑q

j=1 C j dη j over [0, T ],
x(0) = x0,

(FCSP)

where x0 ∈ R
n is fixed, if x satisfies the integral representation

x(t) = x0 +
∫ t

0

(
A(τ ) × x(τ ) + B(τ )

)
dτ +

q∑
j=1

∫ t

0
C j (τ ) dη j (τ ),

for a.e. t ∈ [0, T ]. Similarly we say that p ∈ L∞
n is a solution to the backward linear

Cauchy–Stieltjes problem (BCSP) given by

{
−dp = (A × p + B) dt +∑q

j=1 C j dη j over [0, T ],
p(T ) = pT ,

(BCSP)

where pT ∈ R
n is fixed, if p satisfies the integral representation

p(t) = pT +
∫ T

t

(
A(τ ) × p(τ ) + B(τ )

)
dτ +

q∑
j=1

∫ T

t
C j (τ ) dη j (τ ),

for a.e. t ∈ [0, T ]. From usual contraction mapping techniques, one can easily prove
that Problems (FCSP) and (BCSP) both admit a unique solution. Moreover, from stan-
dard identifications in L∞

n , these solutions both belong to BVn and the above integral
representations are both satisfied for all t ∈ [0, T ]. We refer to [15, Appendices C
and D] and references therein for details.

We conclude this section with a last definition. A function η ∈ BVq is said to
be normalized if η(0) = 0Rq and η is right-continuous on (0, T ). We denote the
subspace of BVq of all normalized functions of bounded variation by NBVq :=
NBV([0, T ], R

q).
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3 Main result

This section is dedicated to the statement of our main result (see Theorem 3.1 in
Sect. 3.2). In Sect. 3.1 below, we introduce the general optimal sampled-data control
problem with running inequality state constraints considered in this work, and we fix
the terminology and assumptions used all along the paper. In Sect. 3.2 we state the
corresponding Pontryagin maximum principle and a list of comments follows.

3.1 A general optimal sampled-data control problemwith running inequality
state constraints

Let n, m, q, N ∈ N
∗ be four fixed positive integers. Let us fix a positive real number

T > 0, as well as an N -partition T = {ti }i=0,...,N of the interval [0, T ]. In the present
work we focus on the general optimal sampled-data control problem with running
inequality state constraints given by

minimize g(x(T )) +
∫ T

0
L(x(τ ), u(τ ), τ ) dτ,

subject to x ∈ ACn, u ∈ PCT
m,

ẋ(t) = f (x(t), u(t), t) for a.e. t ∈ [0, T ],
x(0) = x0,
h j (x(t), t) ≤ 0 for all t ∈ [0, T ] and all j = 1, . . . , q,

u(t) ∈ U for all t ∈ [0, T ].

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(OSCP)

In Problem (OSCP), x is called the state function (also called the trajectory) and u is
called the control function. A couple (x, u) is said to beadmissible for Problem (OSCP)
if it satisfies all its constraints. A solution to Problem (OSCP) is an admissible couple
(x, u) which minimizes the Bolza cost given by g(x(T )) + ∫ T0 L(x(τ ), u(τ ), τ ) dτ

among all admissible couples.
Throughout the paper we will make use of the following regularity and topology

assumptions:

– the function g : R
n → R, that describes theMayer cost g(x(T )), is of class C1;

– the function L : R
n × R

m × [0, T ] → R, that describes the Lagrange cost∫ T
0 L(x(t), u(t), t) dt , is continuous and of class C1 with respect to its first two
variables;

– the dynamics f : R
n × R

m × [0, T ] → R
n , that drives the state equation ẋ(t) =

f (x(t), u(t), t), is continuous and of class C1 with respect to its first two variables;
– the function h = (h j ) j=1,...,q : R

n × [0, T ] → R
q , that describes the running

inequality state constraints h j (x(t), t) ≤ 0, is continuous and of class C1 in its
first variable;

– the set U ⊂ R
m , that describes the control constraint u(t) ∈ U, is a nonempty

closed convex subset of R
m ;

– the initial condition x0 ∈ R
n is fixed.

123



Optimal sampled-data controls with running... 915

In the classical optimal control theory (see e.g., [21,24,49,63,69,70,73] and refer-
ences therein), the control u usually can be any function in L∞

m (with values in U).
In that case we say that the control is permanent in the sense that its value can be
modified at any time t ∈ [0, T ]. In the present paper, the control u is constrained to
be a piecewise constant function respecting the fixed N -partition T = {ti }i=0,...,N . In
other words, the value of the control u is authorized to be modified at most N − 1
times and at precise fixed instants. In that situation we say that the control is nonper-
manent. The standard terminology adopted in the literature is to say that the control u
in Problem (OSCP) is a sampled-data control (and the elements ti of T are called the
sampling times).

Control theory for sampled-data control systems has already been considered in
several texts (see e.g., [1,4,40,44,54]), often in the context of digital control. Optimal
sampled-data control problems have also been investigated in the literature (see e.g.,
[3,9,16,18–20])with general terminal constraints on x(0) and x(T ), free final time, free
sampling times, etc. To the best of our knowledge, running inequality state constraints
have never been investigated with sampled-data controls. Our aim in this paper is
to fill this gap in the literature, and thus we will essentially focus in the present
work on the running inequality state constraints h j (x(t), t) ≤ 0 in Problem (OSCP).
As a consequence, for the sake of simplicity, we took the decision not to consider
general terminal constraints in Problem (OSCP). Indeed we only consider the basic
case in which the initial condition x(0) = x0 is fixed and the final condition x(T ) is
free. Similarly we also chose to consider that the final time T > 0 and the partition
T = {ti }i=0,...,N are fixed. If the reader is interested in techniques allowing to handle
general terminal constraints, free final time, free sampling times, etc., we refer to the
references mentioned above.

Remark 3.1 Let (x, u) be an admissible couple of Problem (OSCP). From the state
equation and since u is a piecewise constant function, it is clear that x is not only
absolutely continuous but also piecewise smooth of class C1 over the interval [0, T ],
in the sense that x is of class C1 over each sampling interval [ti , ti+1].

Remark 3.2 Existence theorems for optimal permanent control problems with running
inequality state constraints can be found in a text by Clarke (see [27, Theorem 5.4.4,
p. 222]). Furthermore, existence theorems for related problems such as optimal per-
manent control problems with state constraints where the constraint is given as an
inclusion into a general subset of the state space can be found in works of Cesari
(see [24, Theorem 9.2.i, p. 311]) and Rockafellar (see [67, Theorem 2, p. 696]). A
Filippov-type theorem for the existence of a solution to Problem (OSCP) without
running inequality state constraints was derived in [19, Theorem 2.1, p. 61]. The
present work only focuses on necessary optimality conditions and thus it is not our
aim to discuss the extension of the previously mentioned result to the case with run-
ning inequality state constraints. Nevertheless we note that in the standard Filippov’s
theorem, as usually established for optimal permanent control problems, the controls
belong to the infinite-dimensional space L∞

m , while the sampled-data control frame-
work considered here can be seen as a finite-dimensional problem. This fundamental
difference could potentially lead to existence results in case of sampled-data controls
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916 L. Bourdin, G. Dhar

with relaxed assumptions with respect to the case of permanent controls, and thus it
constitutes an interesting challenge for forthcoming works.

Remark 3.3 We take this occasion to provide a (nonexhaustive) list of perspectives:

(i) In the context of unconstrained linear-quadratic problems, the authors of [20]
prove that optimal sampled-data controls converge pointwisely to the optimal
permanent controlwhen the lengths of sampling intervals tend uniformly to zero.
The convergence of the corresponding costs and the uniform convergence of the
corresponding states and costates are also derived. Since these phenomenons
are suggested to hold true in the numerical simulations presented in Sect. 5, an
interesting research perspective would be to extend these convergence results
to the context of the present work.

(ii) In the paper [16] the authors consider optimal sampled-data control problems
with free sampling times and obtain a corresponding necessary optimality condi-
tion which happens to coincide with the continuity of the Hamiltonian function.
It would be relevant to extend the scope of Problem (OSCP) to study optimal
sampling times in the presence of running inequality state constraints.

(iii) Several papers in the literature consider optimal permanent control problems
with constraints of different natures, for instancewith state constraints where the
constraint is given as an inclusion into a general subset of the state space (see e.g.,
[24,67]) or with mixed state-control constraints of the form h(x(t), u(t), t) ≤ 0
(see e.g., [33,47]). A possible challenge would be to extend the present work to
the previous mentioned contexts.

(iv) Last (but not least) a relevant research perspective would concern the extension
of the present paper to the more general framework in which the values of
the sampling times ti intervene explicitly in the cost to minimize and/or in the
dynamics. Let us take this occasion tomention the paper [6] in which the authors
derive Pontryagin-type conditions for a specific problem frommedicine that can
be written as an optimal sampled-data control problem in which the sampling
times ti are free and intervene explicitly in the expression of the dynamics. We
precise that, even in this very particular context, giving an expression of the
necessary optimality conditions in an Hamiltonian form still remains an open
mathematical question.

3.2 Pontryaginmaximum principle

The main objective of the present paper is to derive a Pontryagin maximum principle
for Problem (OSCP). Let us recall here that establishing a consensual version of the
Pontryagin maximum principle for optimal permanent control problems in the pres-
ence of running inequality state constraints still constitutes a wonderful mathematical
challenge. We refer to Introduction for a brief bibliographic recap and we refer to
[2,11–13,13,33,34,36,73] for recent contributions with various generalizations.

The novelty of the present work is to deal with nonpermanent controls, precisely,
with sampled-data controls. As usual in the literature we introduce the Hamiltonian
function H : R

n × R
m × R

n × R × [0, T ] → R associated with Problem (OSCP)
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defined by

H(x, u, p, p0, t) := 〈p, f (x, u, t)〉Rn + p0L(x, u, t),

for all (x, u, p, p0, t) ∈ R
n × R

m × R
n × R × [0, T ]. The main result of this article

is given by the following theorem.

Theorem 3.1 (Pontryagin maximum principle) Let (x, u) be a solution to Prob-
lem ((OSCP)). Then there exists a nontrivial couple (p0, η), where p0 ≤ 0 and
η = (η j ) j=1,...,q ∈ NBVq , such that the nonpositive averaged Hamiltonian gradient
condition

〈∫ ti+1

ti
∂2H(x(τ ), ui , p(τ ), p0, τ ) dτ, v − ui

〉
Rm

≤ 0, (1)

holds for all v ∈ U and all i = 0, . . . , N − 1, where the adjoint vector p ∈ BVn (also
called costate) is the unique solution to the backward linear Cauchy–Stieltjes problem
given by

{
−dp =

(
∂1 f (x, u, ·) × p + p0∂1L(x, u, ·)

)
dt −∑q

j=1 ∂1h j (x, ·) dη j over [0, T ],
p(T ) = p0∇g(x(T )).

(2)

Moreover the complementary slackness condition:

η j is monotonically increasing on [0, T ] and
∫ T

0
h j (x(τ ), τ ) dη j (τ ) = 0, (3)

is satisfied for each j = 1, . . . , q.

Appendices A and B are dedicated to the detailed proof of Theorem 3.1. A list of
comments is presented hereafter.

Remark 3.4 Thenontrivial couple (p0, η)provided inTheorem3.1,which corresponds
to a Lagrange multiplier, is defined up to a positive multiplicative scalar. In the normal
case p0 �= 0 it is usual to normalize the Lagrangemultiplier so that p0 = −1. The case
p0 = 0 is usually called the abnormal case. We observe that, if the running inequality
state constraints are never activated (that is, if h j (x(t), t) < 0 for all t ∈ [0, T ] and
all j = 1, . . . , q), then the case is normal. Outside of this trivial situation, sufficient
conditions ensuring normality is a difficult topic which has been widely developed in
the literature on constrained optimal control problems, mostly in case of permanent
controls (see e.g., [7,26,58,65] and references therein). To the best of our knowledge,
the extension of such results to the present sampled-data control setting is an open
challenge in the literature, and thus perspectives for further researchworks are possible
in that direction. Since it is not our aim in this paper to discuss this point in more depth,
wewill opt in practice (as in Examples 1, 2 and 3 in Sect. 5) for proofs by contradiction
in order to show that the case is normal.
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Remark 3.5 Our strategy inAppendicesA andB in order to proveTheorem3.1 is based
on the Ekeland variational principle [38] applied to an appropriate penalized functional
which requires the closedness of U in order to be defined on a complete metric set
(see details in Sect. B.1.1). The closedness of U is therefore a crucial assumption in
the current paper. On the other hand, the convexity of U is useful in order to consider
convex L∞-perturbations of the control for the sensitivity analysis of the state equation
(see Proposition A.4 in Sect. A.2). Nevertheless, the convexity of U can be removed
by considering the concept of stable U-dense directions (see e.g., [19]).

Remark 3.6 If there is no running inequality state constraint inProblem (OSCP), that is,
considering h j = −1 for all j = 1, . . . , q for example, then Theorem 3.1 recovers the
standard Pontryagin maximum principle for optimal sampled-data control problems
obtained for example in [18,19]. Let us recall that the Hamiltonian maximization
condition, which holds in case of permanent controls, is not true in general when
considering sampled-data controls, and has to be replaced by the nonpositive averaged
Hamiltonian gradient condition. This is due in particular to the fact that the method of
needle-like perturbations used in classical optimal permanent control theory cannot
be adapted to the sampled-data control context. We refer to the above references for a
detailed discussion about this feature.

Remark 3.7 The nonpositive averaged Hamiltonian gradient condition in Theorem 3.1
can be rewritten as

∫ ti+1

ti
∂2H(x(τ ), ui , p(τ ), p0, τ ) dτ ∈ NU[ui ]

for all i = 0, . . . , N − 1, where NU[ui ] stands for the classical normal cone to U at
the point ui ∈ U. We deduce that

ui = projU

(
ui +

∫ ti+1

ti
∂2H(x(τ ), ui , p(τ ), p0, τ ) dτ

)
,

for all i = 0, . . . , N − 1, where projU stands for the classical projection operator onto
U. In particular, ifU = R

m (that is, if there is no control constraint in Problem (OSCP)),
then the nonpositive averaged Hamiltonian gradient condition can be rewritten as

∫ ti+1

ti
∂2H(x(τ ), ui , p(τ ), p0, τ ) dτ = 0Rm ,

for all i = 0, . . . , N − 1.

Remark 3.8 Following the proof in Appendices A and B, one can easily see that The-
orem 3.1 is still valid for a couple (x, u) which is a solution to Problem (OSCP) in
(only) a local sense to be precised. For the ease of statement, we took the decision to
establish Theorem 3.1 for a couple (x, u) which is a solution to Problem (OSCP) in a
global sense.
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Remark 3.9 In the context of Theorem 3.1 and using the definition of the Hamiltonian,
note that the state equation can be written as

ẋ(t) = ∂3H(x(t), u(t), p(t), p0, t),

for a.e. t ∈ [0, T ], and that the adjoint equation can be written as

−dp = ∂1H(x, u, p, p0, ·) dt −
q∑
j=1

∂1h j (x, ·) dη j ,

over [0, T ].
Remark 3.10 It is frequent in the literature (see e.g., [73, Theorem 9.3.1]) to find the
adjoint vector p ∈ BVn written as the sum p = p1 + p2 where p1 ∈ ACn is the
unique solution to the backward linear Cauchy problem

{
ṗ1(t) = −∂1H(x(t), u(t), p(t), p0, t) for a.e. t ∈ [0, T ],
p1(T ) = p0∇g(x(T )),

and where p2 ∈ BVn is defined by

p2(t) := −
q∑
j=1

∫ T

t
∂1h j (x(τ ), τ ) dη j (τ ),

for all t ∈ [0, T ]. This decomposition easily follows from the integral representation
of the solutions to backward linear Cauchy-Stieltjes problem recalled in Sect. 2.2.

Remark 3.11 In the context of Theorem 3.1, note that the complementary slackness
condition implies that, for all j = 1, . . . , q, the function η j remains constant on any
open subinterval (τ1, τ2) ⊂ {t ∈ [0, T ] | h j (x(t), t) < 0} with τ1 < τ2. Denoting by
dη j the finite nonnegative Borel measure associated with η j (see Sect. A.3 for more
details), we deduce that

supp(dη j ) ⊂ {t ∈ [0, T ] | h j (x(t), t) = 0},

for all j = 1, . . . , q, where supp(dη j ) stands for the classical notion of support of the
measure dη j .

Remark 3.12 Note that the necessary optimality conditions of Theorem 3.1 are of
interest only when the running inequality state constraints are nondegenerate, in the
sense that ∂1h j (x(t), t) �= 0Rn whenever h j (x(t), t) = 0 for all j = 1, . . . , q. We
refer to [73, Remark (b), p. 330] for a similar remark in the classical case of permanent
controls.
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Remark 3.13 In the classical case of state unconstrained optimal permanent control
problems, the Pontryagin maximum principle induces an indirect numerical method
based on the resolution by a shooting method of the boundary value problem satisfied
by the augmented state-costate vector (see e.g., [70, pp. 170–171] for details). Recall
that:

(i) In the presence of state constraints, the indirect numericalmethod can be adapted.
However, some theoretical and numerical difficulties may appear due to the
possible pathological behavior of the adjoint vector (see Sect. 5 for more details).

(ii) The indirect numerical method has also been adapted to the case of (state uncon-
strained) optimal sampled-data control problems in [18,19], and also in case of
free sampling times in [16].

To the best of our knowledge, the indirect numerical method has never been adapted
to optimal sampled-data control problems in the presence of running inequality state
constraints. Our aim in Sect. 5 is to fill this gap in the literature by using the Pontryagin
maximum principle derived in Theorem 3.1. Of course, in the context of Theorem 3.1,
it might be possible that the adjoint vector p ∈ BVn is pathological and/or admits an
infinite number of discontinuities, but it will be shown in Sects. 4 and 5 that, under
certain (quite unrestrictive) hypotheses, the implementation of the indirect numerical
method is simplified due to the particular behavior of the optimal trajectory.

Remark 3.14 In this paper, as explained in Introduction, the proof of Theorem 3.1
is based on the Ekeland variational principle [38] in view of generalizations to the
general time scale setting in further research works. Let us note that an alternative
proof of Theorem 3.1 can be obtained by adapting a remarkable technique exposed in
the paper [32] by Dmitruk and Kaganovich that consists of mapping each sampling
interval [ti , ti+1] to the interval [0, 1] and by taking the values ui of the sampled-data
control to be additional parameters. Then, through the application of the Pontryagin
maximum principle for optimal permanent control problems with running inequality
state constraints (see e.g., [15, Theorem 1] and [73, Theorem 9.5.1, pp. 339–340]),
one obtains the adjoint equation (2) and complementary slackness condition (3) given
in Theorem 3.1. Moreover the application of a “Pontryagin maximum principle with
parameters” (see e.g, [17, Remark 5, p. 3790]) leads to a necessary optimality condition
written in integral form which coincides with the nonpositive averaged Hamiltonian
gradient condition (1).

4 Bouncing trajectory phenomenon

When we undertook to study optimal sampled-data control problems in the presence
of running inequality state constraints, one of our first actions was to numerically solve
some simple problems using a direct method (see Sect. 5 for some details on direct
methods in optimal control theory). On this occasion we observed that the optimal
trajectories returned by the algorithm had a common behavior with respect to the
running inequality state contraints. Precisely the optimal trajectories were “bouncing”
on them. We refer to Fig. 3 and Sect. 5 for some examples illustrating this observation
whichwe refer to as the bouncing trajectory phenomenon. Actually, when dealingwith
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sampled-data controls and running inequality state constraints, the bouncing trajectory
phenomenon concerns, not only the optimal trajectories, but all admissible trajectories.

In this section our aim is to give a detailed description of this newobservation (which
does not appear in general in the classical theory, that is, with permanent controls).
Precisely we will show that, under certain hypotheses, an admissible trajectory of
Problem (OSCP) necessarily bounces on the running inequality state constraints and,
moreover, the activating times occur at most at the sampling times ti (and thus in a
finite number and at precise instants). As detailed later in Sect. 5, this feature presents
some benefits from a numerical point of view.

In Sect. 4.1 below we initiate an heuristic discussion allowing to understand why,
usually, the admissible trajectories of Problem (OSCP) bounce on the running inequal-
ity state constraints and, moreover, at most at the sampling times ti . Then we provide
in Sect. 4.2 a mathematical framework and rigorous justifications which allow us to
specify a sufficient condition ensuring this behavior (see Proposition 4.1).

Throughout this section, for simplicity, we will assume that q = 1, that is,
there is only one running inequality state constraint in Problem (OSCP) denoted
by h(x(t), t) ≤ 0. Nevertheless the results and comments of this section can be
extended to multiple running inequality state constraints, that is, for q ≥ 2. Further-
more we will assume that the dynamics f and the running inequality state constraint
function h are of class C∞ in all variables. In particular note that any admissible tra-
jectory of Problem (OSCP) is thus piecewise smooth of class C∞, in the sense that it
is of class C∞ over each sampling interval [ti , ti+1].

4.1 Expected behavior of an admissible trajectory

We start this section by recalling some standard terminology from [47, p. 183] or [69,
p. 105]. Let x be an admissible trajectory of Problem (OSCP). An element t ∈ [0, T ]
is called an activating time if it satisfies h(x(t), t) = 0. An interval [τ1, τ2] ⊂ [0, T ],
with τ1 < τ2, is called a boundary interval if h(x(t), t) = 0 for all t ∈ [τ1, τ2]. Note
that any point of a boundary interval is an activating time, while the reverse is not
true in general. In what follows, we say that the trajectory x exhibits the bouncing
trajectory phenomenon if the set of activating times contains no boundary interval.

Our aim in this section is to give some heuristic descriptions (and illustrative figures)
of the main reason why a bouncing trajectory phenomenon is common when dealing
with sampled-data controls in the presence of running inequality state constraints
(see (i) below) and why, moreover, the activating times occur at most at the sampling
times ti only (see (ii) below). The mathematical framework and rigorous justifications
will be provided in Sect. 4.2.

(i) In the classical theory (that is, with permanent controls), a boundary interval
may correspond to a feedback control, that is, to an expression of the control as a
function of the state. Such an expression usually leads to a nonconstant control.
More generally, a running inequality state constraint usually cannot be activated
by a trajectory on an interval [τ1, τ2], with τ1 < τ2, on which the associated (per-
manent) control is constant.We refer to Fig. 1 for an illustration. Therefore, since
we deal with piecewise constant controls in Problem (OSCP), one should expect
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running inequality
state constraint

x

Usually the control is not
constant along a boundary
interval

Fig. 1 In the classical theory (that is, with permanent controls), a boundary interval is usually associated
with a nonconstant control

that an admissible trajectory of Problem (OSCP) does not contain any boundary
interval and thus exhibits a bouncing trajectory phenomenon. In order to guaran-
tee the validity of this remark, it is sufficient to make an assumption on f and h
which prevents the existence of an admissible trajectory x of Problem (OSCP)
and an interval [τ1, τ2] ⊂ [0, T ], with τ1 < τ2, for which ϕ(�)(t) = 0 for all
� ∈ N and all t ∈ [τ1, τ2], where ϕ is defined by ϕ(t) := h(x(t), t) for all
t ∈ [τ1, τ2]. This will be done in Sect. 4.2 (see Hypothesis (H1)).

(ii) Let t ∈ [0, T ] be a left isolated (resp. right isolated) activating time of an
admissible trajectory x of Problem (OSCP). In what follows we denote by u
the corresponding control. Let us assume that t is not a sampling time, that
is, t ∈ (ti , ti+1) for some i ∈ {0, . . . , N − 1}. Usually the trajectory x “hits”
(resp. “exits”) the running inequality state constraint transversally at t . Since the
control value u(t) = ui is fixed all along the sampling interval [ti , ti+1], the
trajectory x then “crosses” the running inequality state constraint immediately
after t (resp. immediately before t), which contradicts the admissibility of x . We
refer to Fig. 2 for an illustration. Hence, in order to preserve the admissibility
of x , we understand that the control value must change at t , that is, since u is
a sampled-data control, that t must be one of the sampling times ti . From this
simple heuristic discussion, one should expect that an admissible trajectory of
Problem (OSCP) has no left or right isolated activating time outside of the sam-
pling times ti . In order to guarantee the validity of this remark, it is sufficient
to make an assumption on f and h which prevents the existence of an admissi-
ble trajectory of Problem (OSCP) which “hits” or “exits” the running inequality
state constraint tangentially. This will be done in Sect. 4.2 (see Hypothesis (H2)).
Actually our Hypothesis (H2) will even guarantee that an admissible trajectory
of Problem (OSCP) has no activating time outside of the sampling times ti .

We conclude from (i) and (ii) that one should expect the admissible trajectories of
Problem (OSCP) to exhibit the bouncing trajectory phenomenon and, moreover, so
that the activating times occur at most at the sampling times ti (and thus in a finite
number and at precise instants). We refer to Fig. 3 for an illustration of this feature.
Note that, even if activating times are sampling times, the reverse is not true in general.
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running inequality
state constraint

x

Usually the trajectory
“hits” the running
inequality state con-
straint transversally

Keeping the same con-
trol value u(t) = ui,
the trajectory “crosses”
the running inequality
state constraint

tti ti+1

Fig. 2 Illustration of a trajectory x hitting transversally the running inequality state constraint at some left
isolated activating time t which belongs to the interior (ti , ti+1) of a sampling interval

running inequality
state constraint

x

ti−2 ti−1 ti ti+1ti−3 ti+3ti+2

Fig. 3 Illustration of the expected behavior of an admissible trajectory x of Problem (OSCP)

We conclude this section by mentioning that the above descriptions are only heuris-
tic and, of course, one can easily find counterexamples inwhich the behavior of Fig. 3 is
not observed. Nonetheless we emphasize that the bouncing trajectory phenomenon is
quite ordinary when dealing with sampled-data controls and running inequality state
constraints, as guaranteed by the mathematical justifications provided in Sect. 4.2
below and as illustrated by the examples numerically solved in Sect. 5.

4.2 A sufficient condition for the bouncing trajectory phenomenon

Our aim in this section is to provide a rigorous mathematical framework describing the
heuristic discussion provided in the previous Sect. 4.1. In particular we will formulate
a sufficient condition (see Proposition 4.1 below) ensuring the bouncing trajectory
phenomenon and that the rebounds occur at most at the sampling times ti .

To this aim, and similarly to [47, p. 183], we introduce the functions h[�] : R
n ×

R
m × [0, T ] → R defined by the induction

{
h[0](y, v, t) := h(y, t),
∀� ∈ N, h[�+1](y, v, t) := 〈∂1h[�](y, v, t), f (y, v, t)〉Rn + ∂3h[�](y, v, t),
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for all (y, v, t) ∈ R
n × R

m × [0, T ]. We introduce the subset

M := {(y, t) ∈ R
n × ([0, T ]\T) | h(y, t) = 0},

and we denote by

�′(y, v, t) := min{� ∈ N | h[�](y, v, t) �= 0} ∈ N
∗ ∪ {+∞},

for all (y, t) ∈ M and all v ∈ U. Finally we introduce the set

N (y, t) := {v ∈ U | �′(y, v, t) is finite and even},

for all (y, t) ∈ M. We now state the main result of this section.

Proposition 4.1 Assume that q = 1 and that f and h are of class C∞ in all their
variables. If the hypotheses

∀(y, t) ∈ M, ∀v ∈ U, �′(y, v, t) < +∞, (H1)

and

∀(y, t) ∈ M, ∀v ∈ N (y, t), h[�′(y,v,t)](y, v, t) > 0, (H2)

are both satisfied, then the activating times of an admissible trajectory x of Prob-
lem (OSCP) are sampling times. In particular x exhibits the bouncing trajectory
phenomenon and the rebounds occur at most at the sampling times ti (and thus in a
finite number and at precise instants).

Proof Let (x, u) be an admissible couple of Problem (OSCP). Let t ∈ [0, T ] be an
activating time and assume by contradiction that t ∈ (ti , ti+1) for some i = 0, . . . , N−
1. In particular we have (x(t), t) ∈ M. Since ui ∈ U, fromHypothesis (H1), we know
that �′ := �′(x(t), ui , t) < +∞ and it holds that h[�′](x(t), ui , t) �= 0. From Taylor’s
theorem it holds that

h(x(t + ε), t + ε) = ε�′
(
h[�′](x(t), ui , t)

�′! + R(ε)

)
,

for all ε ∈ R such that t + ε ∈ (ti , ti+1), where the remainder term R satis-
fies limε→0 R(ε) = 0. Thus there exists ε̄ > 0 such that (t − ε̄, t + ε̄) ⊂ (ti , ti+1)

and h(x(t ′), t ′) has the same sign than (t ′−t)�
′
h[�′](x(t), ui , t) for all t ′ ∈ (t−ε̄, t+ε̄)

with t ′ �= t . We now distinguish two cases: �′ odd and �′ even. If �′ is odd, then there
clearly exists t ′ ∈ (t − ε̄, t + ε̄) with t ′ �= t such that h(x(t ′), t ′) > 0 which raises a
contradiction with the admissibility of (x, u). If �′ is even, then ui ∈ N (x(t), t) and,
from Hypothesis (H2), it holds that h[�′](x(t), ui , t) > 0. We easily deduce that there
exists t ′ ∈ (t − ε̄, t + ε̄) with t ′ �= t such that h(x(t ′), t ′) > 0 which raises the same
contradiction. The proof is complete. ��
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Remark 4.1 We emphasize that Hypotheses (H1) and (H2) are assumptions which
guarantee the validity of the arguments presented heuristically in the items (i) and (ii)
of Sect. 4.1.

In the context of Proposition 4.1, it is ensured that an admissible trajectory of
Problem (OSCP) activates the running inequality state constraint at most at the sam-
pling times ti (and thus in a finite number and at precise instants). We will see in
Sect. 5 below that this bouncing trajectory phenomenon (with localized rebounds)
presents some benefits from a numerical point of view. Taking this advantage we will
numerically solve some simple examples in which Hypotheses (H1) and (H2) are both
satisfied and we will observe optimal trajectories bouncing on the running inequality
state constraint considered.

5 Numerical experiments

Two predominant kinds of numerical methods are known in classical optimal control
theory (that is, with permanent controls) without running inequality state constraints.
The first kind is usually called direct numerical methods and they consist in making
a full discretization of the optimal control problem which results into a constrained
finite-dimensional optimization problem that can be numerically solved from various
standard optimization algorithms and techniques. The second strategy is called indi-
rect numerical methods because they are based on the Pontryagin maximum principle.
Precisely, if the Hamiltonian maximization condition allows to express the optimal
control u as a function of the state x and of the (absolutely continuous) adjoint vector p,
then the indirect numerical methods consist in the numerical resolution by a shoot-
ing method of the boundary value problem satisfied by the augmented state-costate
vector (x, p). We emphasize that neither direct nor indirect methods are fundamen-
tally better than the other. We refer for instance to [70, pp. 170–171] for details and
discussions on the advantages and drawbacks of each kind of methods.

In the presence of running inequality state constraints, direct numerical methods
can be adapted easily. On the contrary, solving optimal permanent control problems
with running inequality state constraints might be more intricate when using indirect
numerical methods. Indeed, in that situation, the adjoint vector p is not absolutely con-
tinuous in general, but (only) of bounded variation. From the Lebesgue decomposition
(see e.g., [23, Corollary 20.20, p. 373]), we can write

p = pac + psc + ps,

where pac is the absolutely continuous part, psc is the singularly continuous part and
ps is the saltus (or pure jump part) of p. From the complementary slackness condition,
it is well known that the adjoint vector p is absolutely continuous on intervals with no
activating time of the optimal trajectory x . On the other hand, on boundary intervals,
the adjoint vector pmayhave an infinite number of unlocalized jumps or a pathological
behavior due to its singular part. As a consequence, an important part of the literature
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is devoted to the analysis of the costate’s behavior and some constraint qualification
conditions have been established. We refer for instance to [8,14,47,52,59].

In this paper we have established a Pontryagin maximum principle (Theorem 3.1)
and our aim in this section is to propose an indirect method for numerically solving
optimal sampled-data control problems with running inequality state constraints. As
in the classical theory (with permanent controls), it appears that the adjoint vector
obtained in Theorem 3.1 is (only) a function of bounded variation and we will a priori
encounter the same difficulties outlined above. Nevertheless, as detailed in Sect. 4,
we have proved in Proposition 4.1 that, under (quite unrestrictive) Hypotheses (H1)
and (H2), the optimal trajectory x of Problem (OSCP) activates the running inequality
state constraint at most at the sampling times ti . As detailed in Sect. 5.1 below, it
follows that the corresponding adjoint vector p has no singular part and admits a finite
number of jumpswhich are localized atmost at the sampling times ti . Taking advantage
of these informations, we will propose in Sect. 5.1 a simple indirect method in order
to numerically solve optimal sampled-data control problems with running inequality
state constraints of the form of Problem (OSCP) under Hypotheses (H1) and (H2).

InSects. 5.2, 5.3 and5.4, this indirectmethod is implemented in order to numerically
solve three simple examples. We precise that the parameters of these examples have
been chosen in order to obtain figures which illustrate and highlight the bouncing
trajectory phenomenon and the jumps of the adjoint vector. Furthermore note that the
numerical results returned by the indirect method suggests the convergence of the
optimal sampled-data controls to the optimal permanent control as N tends to +∞.
This provides a very interesting perspective to investigate in future works.Wemention
that such a result has already been established in [20] in the case of unconstrained
linear-quadratic problems.

We conclude this paragraph by noting that the indirect numerical method proposed
in Sect. 5.1 (and its implementation in Sects. 5.2, 5.3 and 5.4 ) is based on the assump-
tion that there exists a solution to Problem (OSCP). This question of existence has not
been addressed in the present paper and constitutes an open question for future works
(see Remark 3.2 for more details).

5.1 A shooting function for an indirect method

In this section our aim is to provide an indirect method, based on the Pontryagin
maximum principle given in Theorem 3.1, which allows to numerically solve some
optimal sampled-data control problems with running inequality state constraints. This
numerical method can be implemented in the normal case as well as in the abnormal
case (in the sense of Remark 3.4).

Let (x, u) be a solution to Problem (OSCP). We denote by p0, η, p the elements
provided by the Pontryagin maximum principle given in Theorem 3.1. As explained
at the beginning of Sect. 5, the adjoint vector p may have a pathological behavior
which would imply some theoretical and/or numerical difficulties. Our aim in the
sequel is to take advantage of Proposition 4.1 established in Sect. 4. To this aim,
we assume in the sequel that q = 1, that f and h are of class C∞ in all variables
and that Hypotheses (H1) and (H2) are satisfied. As a consequence, it follows from
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Proposition 4.1 that x activates the running inequality state constraint at most at the
sampling times ti . From the complementary slackness condition in Theorem 3.1, we
deduce that η admits exactly (N + 1) nonnegative jumps localized exactly at the
sampling times ti , and that η remains constant over (t0, t1) and over all [ti , ti+1)

with i = 1, . . . , N − 1. In what follows we denote the nonnegative jumps of η as
follows:

η[0] := η(t+0 ) − η(t0) = η(t+0 ), η[1] := η(t1) − η(t+0 )

and ∀i = 2, . . . , N , η[i] := η(ti ) − η(ti−1).

From the adjoint equation in Theorem 3.1, it follows that the adjoint vector p has no
singular part, that it admits (N + 1) jumps localized exactly at the sampling times ti ,
and that p remains absolutely continuous over (t0, t1) and over all [ti , ti+1) with i =
1, . . . , N −1.Moreover, from the integral representation of p, the jumps of the adjoint
vector are given by

p[0] := p(t+0 ) − p(t0) = η[0]∂1h(x(t0), t0)

and ∀i = 1, . . . , N , p[i] := p(ti ) − p(t−i ) = η[i]∂1h(x(ti ), ti ).

The general indirect numerical method proposed in this paper is based on the shooting
map

(
xT , (η[i])i=0,...,N

)
�−→

(
x(0) − x0,

(
η[i]h(x(ti ), ti )

)
i=0,...,N

)
,

where:

(i) we provide a guess of the final value x(T ) = xT and of the nonnegative jumps
η[i] for all i = 0, . . . , N ;

(ii) we compute p(T ) = p0∇g(x(T ));
(iii) we numerically solve the state and adjoint equations in a backwardway (from t =

T to t = 0), by using the nonpositive averaged Hamiltonian gradient condition
in order to compute the control values ui for all i = 0, . . . , N − 1;

(iv) we finally compute x(0) − x0 and η[i]h(x(ti ), ti ) for all i = 0, . . . , N .

As illustrations of the above indirect numerical method, we solve three simple
examples in Sects. 5.2, 5.3 and 5.4 below. We precise that we used the MATLAB
function fsolve in order to find the zeros of the above shooting function. We also
mention that we used the basic forward Euler method in order to numerically solve
the state and adjoint equations (but numerous other approaches can be considered,
such as Runge-Kutta methods for example). Finally we emphasize that the numerical
results obtained and presented hereafter have all been confirmed by direct numerical
approaches (using a basic forward Euler discretization of the whole problem resulting
into a constrained finite-dimensional optimization problem solved numerically by the
MATLAB function fmincon).
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5.2 Example 1: a problemwith a parabolic running inequality state constraint

We first consider the following optimal sampled-data control problem with running
inequality state constraint given by

minimize
∫ 4

0
x(τ ) + 1

4
u(τ )2 dτ

subject to x ∈ AC1, u ∈ PCT

1 ,

ẋ(t) = u(t) for a.e. t ∈ [0, 4],
x(0) = 6,
1
2 (t − 2)2 + 2 − x(t) ≤ 0 for all t ∈ [0, 4],
u(t) ∈ [−3,+∞) for all t ∈ [0, 4],

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(E1)

for fixed uniform N -partitions T of the interval [0, 4]with different values of N ∈ N
∗.

This simple problem coincides with a calculus of variations problem (with running
inequality state constraints on the trajectory and its derivative, and also constraining
the derivative to be piecewice constant).

Let us check that Problem (E1) satisfies Hypotheses (H1) and (H2). To this aim we
follow the notations introduced in Sect. 4.2. For all (y, t) ∈ M and all v ∈ [−3,+∞)

it holds that h[2](y, v, t) = 1 and so Hypothesis (H1) is satisfied. We deduce that, for
all (y, t) ∈ M and all v ∈ N (y, t), we have �′(y, v, t) = 2 and h[�′(y,v,t)](y, v, t) =
1 > 0, so Hypothesis (H2) is satisfied as well. We conclude from Proposition 4.1 that
all admissible trajectories activate the running inequality state constraint at most at
the sampling times ti .

In what follows we assume that there exists an optimal couple (x, u) for Prob-
lem (E1) andwe denote by p0, η, p the elements provided by the Pontryaginmaximum
principle given in Theorem 3.1. Let us check that the case is normal (in the sense of
Remark 3.4). Assume by contradiction that p0 = 0. We have the adjoint equation
−dp = dη over [0, 4] with p(4) = 0. Therefore p(t) = ∫ 4

t dη(τ) = η(4) − η(t)
for all t ∈ [0, 4]. Then, from the nontriviality of the couple (p0, η), it follows
that η �= 0NBV1 and thus, from the complementary slackness condition, we deduce
that x necessarily activates the running inequality state constraint. Let t̄ ∈ [0, 4]
denote the first activating time. From Proposition 4.1, we know that t̄ = t̂i for some
î ∈ {0, . . . , N }. Since x(0) = 6, we have î ≥ 1. It follows that p(t) > 0 for all
t ∈ [0, t1). Finally, from the nonpositive averaged Hamiltonian gradient condition at
i = 0, it follows that u0 ≥ v for all v ∈ [−3,+∞) which is absurd.

From the previous paragraph, we normalize p0 = −1 (see Remark 3.4). Since we
are in the context of Proposition 4.1, we can now apply the shooting method detailed
in Sect. 5.1. As expected, we observe in Fig. 4 (with N = 5) that the optimal trajectory
returned by the algorithm activates the running inequality state constraint at most at
the sampling times ti (represented by dashed lines). As also expected, the jumps of the
adjoint vector occur at the same activating times. Figures 5 and 6 continue to illustrate
this bouncing trajectory phenomenon for larger values of N (respectively with N = 10
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Fig. 4 Example 1 with N = 5
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Fig. 5 Example 1 with N = 10

and N = 40). Furthermore, in Figs. 4, 5 and 6, we observe that the adjoint vector has
no jump at sampling times which are not activating times.

Remark 5.1 Actually, in that simple Example 1, the state and adjoint equations are
very simple and can be solved explicitly. As a consequence, the shooting map can
even be expressed in the closed form given by

(
xT , (η[i])i=0,...,N

)
�−→

(
xT − x0 −

N−1∑
i=0

ui (ti+1 − ti ),
(
η[i][1

2
(ti − 2)2 + 2 − xT +

N−1∑
k=i

uk(tk+1 − tk)
])

i=0,...,N−1

)
,
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Fig. 6 Example 1 with N = 40

where

ui = max

{
2

(
ti + ti+1

2
− T +

N∑
k=i+1

η[k]
)

,−3

}
,

for all i = 0, . . . , N − 1.

5.3 Example 2: an optimal consumption problemwith an affine running
inequality state constraint

The secondexample is the optimal sampled-data control problemwith running inequal-
ity state constraint given by

minimize
∫ 12

0
(u(τ ) − 1)x(τ ) dτ

subject to x ∈ AC1, u ∈ PCT

1 ,

ẋ(t) = u(t)x(t) for a.e. t ∈ [0, 12],
x(0) = 1,
x(t) − 10t − 2 ≤ 0 for all t ∈ [0, 12],
u(t) ∈ [0, 1] for all t ∈ [0, 12],

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(E2)

for fixed uniform N -partitionsT of the interval [0, 12]with different values of N ∈ N
∗.

This problem corresponds to a classical optimal consumption problem (see e.g., [39,
p. 5]) revisited with sampled-data controls and running inequality state constraint.

Let us check that Problem (E2) satisfies Hypotheses (H1) and (H2). To this aim
we follow the notations introduced in Sect. 4.2. Let us assume by contradiction that
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Fig. 7 Example 2 with N = 2

there exist (y, t) ∈ M and v ∈ [0, 1] such that �′(y, v, t) = +∞. Then it follows
that h[0](y, v, t) = h[1](y, v, t) = h[2](y, v, t) = 0. From h[0](y, v, t) = 0, it holds
that y > 0 and, from h[1](y, v, t) = 0, it holds that v > 0. Therefore h[2](y, v, t) =
v2y > 0 which raises a contradiction. Thus Hypothesis (H1) is satisfied. From a
similar reasoning, we prove that Hypothesis (H2) is also satisfied. We conclude from
Proposition 4.1 that all admissible trajectories activate the running inequality state
constraint at most at the sampling times ti .

In what follows we assume that there exists an optimal couple (x, u) for Prob-
lem (E2) andwe denote by p0, η, p the elements provided by the Pontryaginmaximum
principle given in Theorem 3.1. Note that necessarily x(t) > 0 for all t ∈ [0, 12].
Let us check that the case is normal (in the sense of Remark 3.4). Assume by con-
tradiction that p0 = 0. We have the adjoint equation dp = dη over [0, 12] with
p(12) = 0. Therefore p(t) = − ∫ 12t dη(τ) = η(t) − η(12) for all t ∈ [0, 12]. Then,
from the nontriviality of the couple (p0, η), it follows that η �= 0NBV1 and thus, from
the complementary slackness condition, we deduce that x necessarily activates the
running inequality state constraint. Let t̄ ∈ [0, 12] denote the first activating time.
From Proposition 4.1, we know that t̄ = t̂i for some î ∈ {0, . . . , N }. Since x(0) = 1,
we know that î ≥ 1. It follows that p(t) < 0 for all t ∈ [0, t̂i ). Finally, since x(t) > 0
for all t ∈ [0, 12] and from the nonpositive averaged Hamiltonian gradient condition
at i = 0, . . . , î − 1, we get that u0 = · · · = ûi−1 = 0, which gives x(t) = 1 for all
t ∈ [0, t̄]. This raises a contradiction since x(t̄) = 10t̄ + 2 > 1.

From the previous paragraph, we normalize p0 = −1 (see Remark 3.4). Since
we are in the context of Proposition 4.1, we can now apply the shooting method
detailed in Sect. 5.1. In Fig. 7 (with N = 2) we observe that the optimal trajectory
returned by the algorithm activates the running inequality state constraint at most at the
sampling times ti (represented by dashed lines). Figures 8 and 9 continue to illustrate
this bouncing trajectory phenomenon for larger values of N (respectively with N = 4
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Fig. 8 Example 2 with N = 4
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Fig. 9 Example 2 with N = 6

and N = 6). Furthermore, in Figs. 8 and 9, we observe that the adjoint vector has no
jump at sampling times which are not activating times.

5.4 Example 3: a two-dimensional problemwith a linear running inequality state
constraint

As a third and last example we consider the optimal sampled-data control problem
with running inequality state constraint given by
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minimize
∫ 2

0
x2(τ ) + 1

4
u(τ )2dτ

subject to x ∈ AC2, u ∈ PCT

1 ,
˙(
x1
x2

)
(t) =

(
x2(t) − u(t)

x1(t) + x2(t) + u(t)

)
for a.e. t ∈ [0, 2],(

x1
x2

)
(0) =

(
0.05
−0.1

)
,

x1(t) − 16x2(t) − 2 ≤ 0 for all t ∈ [0, 2],
u(t) ∈ [−0.1,+∞) for all t ∈ [0, 2],

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(E3)

for fixed uniform N -partitions T of the interval [0, 2]with different values of N ∈ N
∗.

This problem constitutes a two-dimensional problem with a linear running inequality
state constraint.

Let us check that Problem (E3) satisfies Hypotheses (H1) and (H2). We denote
by y := (y1, y2) ∈ R

2 and we follow the notations introduced in Sect. 4.2. Let us
assume by contradiction that there exist (y, t) ∈ M and v ∈ [−0.1,+∞) such that
�′(y, v, t) = +∞. Then it follows the system of linear equalities given by

h[0](y, v, t) = y1 − 16y2 − 2 = 0,

h[1](y, v, t) = −16y1 − 15y2 − 17v = 0,

h[2](y, v, t) = −15y1 − 31y2 + v = 0,

which has a unique solution given by (y1, y2, v) = 1
9 (2,−1,−1) which raises a con-

tradiction since v ∈ [−0.1,+∞). Thus Hypothesis (H1) is satisfied. If h[0](y, v, t) =
h[1](y, v, t) = 0 for some (y, t) ∈ M and some v ∈ [−0.1,+∞), it follows that
−15y1 − 31y2 = 2+ 17v. Therefore h[2](y, v, t) = −15y1 − 31y2 + v = 2+ 18v ≥
0.2 > 0. Thus Hypothesis (H2) is also satisfied. We conclude from Proposition 4.1
that all admissible trajectories activate the running inequality state constraint at most
at the sampling times ti .

In what follows we assume that there exists an optimal couple (x, u) for Prob-
lem (E3) andwe denote by p0, η, p the elements provided by the Pontryaginmaximum
principle given in Theorem 3.1. Let us check that the case is normal (in the sense of
Remark 3.4). Assume by contradiction that p0 = 0. From the previous paragraph, we
know that x activates the running inequality state constraint at most at the sampling
times ti . From the complementary slackness condition in Theorem 3.1, we deduce that
η admits exactly (N +1) nonnegative jumps localized exactly at the sampling times ti ,
and that η remains constant over (t0, t1) and over all [ti , ti+1) with i = 1, . . . , N − 1.
Similarly to Sect. 5.1, we denote by η[i], for all i = 0, . . . , N , the N + 1 jumps of η.
From the nontriviality of the couple (p0, η), we know that the jumps η[i] are not all
zero. Since the initial condition x(0) does not activate the running inequality state
constraint, we know that η[0] = 0. Now take î ∈ {1, . . . , N } such that η[̂i] > 0 is the
last nonzero jump of η. On the other hand, since p(T ) = 0R2 and from the adjoint
equation considered over the time interval [t̂i , T ], we obtain that p(t̂i ) = 0R2 . From
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the adjoint equation considered over the time interval [t̂i−1, t̂i ], we obtain that

p(t−
î

) = p(t̂i ) − η[̂i]
(

1
−16

)
= η[̂i]

(−1
16

)
,

and p(t) = e(t−t̂i )A × p(t−
î

) for all t ∈ [t̂i−1, t̂i ) where

A :=
(

0 −1
−1 −1

)
.

We get that

∫ t̂i

t̂i−1

∂2H(x(τ ), ûi−1, p(τ ), p0, τ ) dτ

=
∫ t̂i

t̂i−1

p2(τ ) − p1(τ ) dτ =
∫ t̂i

t̂i−1

〈
p(τ ),

(−1
1

)〉
R2

dτ

= η[̂i]
〈∫ t̂i

t̂i−1

e(τ−t̂i )A dτ ×
(−1
16

)
,

(−1
1

)〉
R2

= η[̂i]
〈
A−1 ×

(
Id2 − e−(t̂i−t̂i−1)A

)
×
(−1
16

)
,

(−1
1

)〉
R2

.

The sign of this term is independent of the value of η[̂i] > 0. We compute numerically
the above termwith different positive values of t̂i − t̂i−1 belonging to (0, 2] (in particu-
lar 2

4 ,
2
5 and

2
8 which are the values used in the next paragraph) and we always obtain a

positive value which raises a contradiction with the nonpositive averaged Hamiltonian
gradient condition provided in Theorem 3.1.

From the previous paragraph, we normalize p0 = −1 (see Remark 3.4). Since we
are in the context of Proposition 4.1, we can now apply the shooting method detailed
in Sect. 5.1. In Fig. 10 (with N = 4) we observe as expected a bouncing trajectory
phenomenon. Figures 11 and 12 give illustrations for larger values of N (respectively
with N = 5 and N = 8).

A Preliminaries for the proof of Theorem 3.1

This appendix is devoted to some required preliminaries for the proof of Theorem 3.1
found in Appendix B. In Sect. A.1 we give some recalls on renorming Banach spaces
and on the regularity of distance functions. Sect. A.2 is concerned with the sensitivity
analysis of the state equation in Problem (OSCP). Then, in Sect. A.3, we give some
recalls on Stieltjes integrations and on Fubini formulas. Finally Sect. A.4 is devoted
to Duhamel formulas for Cauchy-Stieltjes Problems (FCSP) and (BCSP).
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Fig. 10 Example 3 with N = 4
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Fig. 11 Example 3 with N = 5

A.1 About renorming Banach spaces and regularity of distance functions

Let (Y , ‖ · ‖) be a normed space. We recall that the dual space of (Y , ‖ · ‖), which we
denote by Y ∗ := L((Y , ‖ · ‖), R), is the space of linear continuous forms on (Y , ‖ · ‖).
We recall that Y ∗ can be endowed with the dual norm ‖ · ‖∗ defined by

‖ · ‖∗ : Y ∗ −→ R+
y∗ �−→ ‖y∗‖∗ := sup

y∈Y
‖y‖≤1

|〈y∗, y〉Y ∗×Y |.
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Fig. 12 Example 3 with N = 8

In this situation we denote by (Y ∗, ‖ · ‖∗) := dual(Y , ‖ · ‖). We recall the following
proposition on renorming separable Banach spaces.

Proposition A.1 Let (Y , ‖ · ‖) be a separable Banach space and let (Y ∗, ‖ · ‖∗) =
dual(Y , ‖ · ‖). Then there exists a norm N on Y equivalent to ‖ · ‖ such that:

(i) N∗ is equivalent to ‖ · ‖∗;
(ii) N∗ is strictly convex;

where (Y ∗,N∗) = dual(Y ,N).

Proof We refer to [56, Theorem 2.18, p. 42] or to [15, Proposition 4, p. 16] for a
complete proof. ��

Let F : Y → R be a convex function. Recall that the subdifferential of F at a point
y ∈ Y is defined to be the set

∂F(y) := {y∗ ∈ Y ∗ | 〈y∗, y′ − y〉Y ∗×Y ≤ F(y′) − F(y) for all y′ ∈ Y }.

We recall that a function F : Y → R is said to be strictly Hadamard-differentiable at
a point y ∈ Y with the strict Hadamard derivative DF(y) ∈ Y ∗ if

lim
y′→y
t↘0

[
sup
y′′∈K

∣∣∣∣ F(y′ + t y′′) − F(y′)
t

− 〈DF(y), y′′〉Y ∗×Y

∣∣∣∣
]

= 0,

for every compact set K ⊂ Y . We refer to [62, pp. 312–313] for more details. Finally
we denote by dS : Y → R the distance function to a nonempty subset S ⊂ Y defined
by dS(y) := inf y′∈S ‖y − y′‖ for all y ∈ Y , and by d2S : Y → R the squared distance
function defined by d2S(y) := dS(y)2 for all y ∈ Y . We recall the following proposition
on the regularity of distance functions.
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Proposition A.2 Let (Y , ‖ · ‖) be a normed space. Let S ⊂ Y be a nonempty closed
convex subset and let us assume that ‖ · ‖∗ is strictly convex, where (Y ∗, ‖ · ‖∗) :=
dual(Y , ‖ · ‖). Then it holds that:

(i) dS is convex and 1-Lipschitz continuous;
(ii) dS is strictly Hadamard-differentiable on Y\S with ‖DdS(y)‖∗ = 1 and

∂dS(y) = {DdS(y)} for all y ∈ Y\S;
(iii) d2S is strictly Hadamard-differentiable on Y\S with Dd2S(y) = 2dS(y)DdS(y)

for all y ∈ Y\S;
(iv) d2S is Fréchet-differentiable on S with Dd2S(y) = 0Y ∗ for all y ∈ S.

Proof The proof of (i) is a standard result. We refer to [62, Theorem 3.54, p. 313] and
[15, Appendix B.2] for the proof of (ii). The proofs of (iii) and (iv) are straightforward.

��

A.2 About sensitivity analysis of the state equation in Problem (OSCP)

For all u ∈ L∞
m we consider the Cauchy problem (CPu) given by

{
ẋ(t) = f (x(t), u(t), t) for a.e. t ∈ [0, T ],
x(0) = x0.

(CPu)

Before proceeding to the sensitivity analysis of the Cauchy problem (CPu) with
respect to the control u, we first recall some definitions and results from the classical
Cauchy–Lipschitz (or Picard-Lindelöf) theory (see e.g., [28]).

Definition A.1 Let u ∈ L∞
m . A (local) solution to theCauchy problem (CPu) is a couple

(x, I ) such that:

(i) I is an interval such that {0} � I ⊂ [0, T ];
(ii) x ∈ AC([0, T ′], R

n), with ẋ(t) = f (x(t), u(t), t) for a.e. t ∈ [0, T ′], for all
T ′ ∈ I ;

(iii) x(0) = x0.

Let (x1, I1) and (x2, I2) be two (local) solutions to the Cauchy problem (CPu). We say
that (x2, I2) is an extension (resp. strict extension) to (x1, I1) if I1 ⊂ I2 (resp. I1 � I2)
and x2(t) = x1(t) for all t ∈ I1. A maximal solution to the Cauchy problem (CPu) is
a (local) solution that does not admit any strict extension. Finally a global solution to
the Cauchy problem (CPu) is a solution (x, I ) such that I = [0, T ].
Proposition A.3 For all u ∈ L∞

m , the Cauchy problem (CPu) admits a unique maximal
solution, denoted by (x(·, u), I (u)), which is an extension to any other local solution.

We now introduce the notion of controls admissible for globality.

Definition A.1 A control u ∈ L∞
m is said to be admissible for globality if the corre-

sponding maximal solution (x(·, u), I (u)) is global, that is, if I (u) = [0, T ]. In what
follows we denote by AG ⊂ L∞

m the set of all controls admissible for globality.
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938 L. Bourdin, G. Dhar

Remark A.1 Using the standard combination of the Gronwall lemma with the blow-
up theorem for nonglobal solutions in ordinary differential equations theory, we can
establish the following sufficient condition. Given a control u ∈ L∞

m , if there exist
a nonnegative coercive mapping 	 : R

n → R+ of class C1 with two nonnegative
constants c1, c2 ≥ 0 such that 〈 f (x, u(t), t),∇	(x)〉Rn ≤ c1	(x)+c2 for all x ∈ R

n

and for a.e. t ∈ [0, T ], then u ∈ AG. This sufficient condition covers, not only
some typical situations for which AG = L∞

m (such as global Lipschitz dynamics,
or more generally dynamics with a sublinear growth, taking 	(x) := ‖x‖2

Rn for
all x ∈ R

n), but also some dynamics with polynomial growth for whichAG � L∞
m . As

an illustration, take the scalar case n = m = 1 and the dynamics f (x, u, t) := x−ux3

for all (x, u, t) ∈ R × R × [0, T ]. In that example, if a scalar control u ∈ L∞
m takes

only nonnegative values on [0, T ], by considering	(x) := x2 for all x ∈ R, we prove
that u ∈ AG.

In the following lemma we state a continuous dependence result for the trajectory
x(·, u) with respect to the control u. In particular we prove that AG is open.

Lemma A.1 For all u ∈ AG, there exists εu > 0 such that BL∞
m

(u, εu) ⊂ AG, where
BL∞

m
(u, εu) stands for the standard closed ball in L∞

m centered at u and of radius εu.
Moreover the map

u′ ∈ (BL∞
m

(u, εu), ‖ · ‖L∞
m

) �−→ x(·, u′) ∈ (Cn, ‖ · ‖∞),

is Lipschitz continuous.

Proof This proof is standard and essentially based on the classical Gronwall lemma.
We refer to [17, Lemmas 1 and 3, pp. 3795–3797], [19, Lemmas 4.3 and 4.5, pp.
73–74] (in the general framework of time scale calculus) or to [15, Propositions 1
and 2, pp. 4–5] (in a more classical framework, closer to the present considerations)
for similar statements with detailed proofs. ��

Remark A.2 Let u ∈ AG and εu > 0 as given in Lemma A.1. Let u′ ∈ BL∞
m

(u, εu)

and (uk)k∈N be a sequence in BL∞
m

(u, εu) converging to u′ in L∞
m . From Lemma A.1,

we deduce that the sequence (x(·, uk))k∈N uniformly converges to x(·, u′) over [0, T ].

In the next proposition we state a differentiability result for the trajectory x(·, u)

with respect to a convex L∞-perturbation of the control u.

Proposition A.4 Let u ∈ AG and let z ∈ L∞
m .We consider the convexL∞-perturbation

of u given by

uz(·, ρ) := u + ρ(z − u),

for all ρ ∈ [0, 1]. Then:
(i) there exists 0 < ρ0 ≤ 1 such that uz(·, ρ) ∈ AG for all ρ ∈ [0, ρ0];

123



Optimal sampled-data controls with running... 939

(ii) the map

ρ ∈ ([0, ρ0], | · |) �−→ x(·, uz(·, ρ)) ∈ (Cn, ‖ · ‖∞),

is differentiable at ρ = 0 and its derivative is equal to the variation vector
wz(·, u) ∈ ACn being the unique solution (that is global) to the linearizedCauchy
problem given by

⎧⎪⎨
⎪⎩

ẇ(t) = ∂1 f (x(t, u), u(t), t) × w(t) + ∂2 f (x(t, u), u(t), t) × (z(t) − u(t))

for a.e. t ∈ [0, T ],
w(0) = 0Rn .

Proof This proof is standard and essentially based on the classical Gronwall lemma.
We refer to [17, Lemma 4 and Proposition 1, pp. 3797–3798] for a similar statement
with detailed proof. ��

We conclude this section by a technical lemma on the convergence of variation
vectors which is required in the proof of our main result.

Lemma A.2 Let u ∈ AG and εu > 0 as in Lemma A.1. Let z ∈ L∞
m . Let u′ ∈

BL∞
m

(u, εu) and (uk)k∈N be a sequence in BL∞
m

(u, εu) converging to u′ in L∞
m . Then

the sequence (wz(·, uk))k∈N uniformly converges to wz(·, u′) over [0, T ].
Proof This proof is standard and essentially based on the classical Gronwall lemma.
We refer to [17, Lemmas 4.8 and 4.9, pp. 77–78] for a similar statement with detailed
proof. ��

A.3 About Stieltjes integrations and Fubini formulas

In this section our aim is to recall some notions on Stieltjes integrations and to recall
some Fubini formulas. We refer to standard references and books such as [5,22,23,
41,75] for more details. We also refer to [15, Appendix C] and references therein. In
the sequel we denote by C+

n := C([0, T ], (R+)n) where R+ := [0,+∞). We denote
by C∗

n as the dual space of Cn (see Sect. A.1 for some details on dual spaces). We
first recall the following Riesz representation theorem (see [57, Theorem 14.5, pp.
245–246] or [15, Proposition 7, p. 19]).

Proposition A.5 (Riesz representation theorem). Let ψ∗ ∈ C∗
1. Then there exists a

unique η ∈ NBV1 such that:

〈ψ∗, ψ〉C∗
1×C1 =

∫ T

0
ψ(τ) dη(τ),

for all ψ ∈ C1. Moreover it holds that:

(i) 〈ψ∗, ψ〉C∗
1×C1 ≥ 0 for all ψ ∈ C+

1 if and only if η is monotonically increasing
on [0, T ];
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(ii) ψ∗ = 0C∗
1
if and only if η = 0NBV1 .

Recall that if η ∈ NBV1 is monotonically increasing on [0, T ], then η induces
a finite nonnegative Borel measure dη on [0, T ] by defining dη({0}) := η(0+)

and dη((a, b]) := η(b) − η(a) for all semiopen intervals (a, b] ⊂ [0, T ] and
by using the Carathéodory extension theorem. Furthermore, for all ψ ∈ C1, the
Riemann–Stieltjes integral

∫ b
a ψ(τ)dη(τ) coincides with the Lebesgue–Stieltjes inte-

gral
∫
(a,b] ψ(τ)dη(τ) for all 0 ≤ a ≤ b ≤ T . We refer to [41, p. 83] and [75, p. 288]

for more details. Consequently the Fubini formula

∫ T

0

∫ τ

0
�(τ, s) ds dη(τ) =

∫ T

0

∫ T

s
�(τ, s) dη(τ) ds, (4)

holds for all � ∈ L∞([0, T ]2, R) such that � is continuous in its first variable.
We now introduce some notations for Riemann–Stieltjes integrals with respect to

vectorial functions of bounded variation. We denote by

∫ T

0
〈ψ(τ), dη(τ)〉 :=

q∑
j=1

∫ T

0
ψ j (τ ) dη j (τ ) ∈ R,

for all ψ = (ψ j ) j=1,...,q ∈ Cq and all η = (η j ) j=1,...,q ∈ BVq . Moreover we denote
by

∫ T

0
M(τ ) × dη(τ) :=

⎛
⎝ q∑

j=1

∫ T

0
mr j (τ ) dη j (τ )

⎞
⎠

r=1,...,n

∈ R
n,

and

∫ T

0
〈ψ(τ), M(τ ) × dη(τ)〉 :=

∫ T

0
〈M(τ ) × ψ(τ), dη(τ)〉 ∈ R,

for allψ = (ψr )r=1,...,n ∈ Cn , all η = (η j ) j=1,...,q ∈ BVq and all continuousmatrices
M = (mr j )r j : [0, T ] → R

n×q . In particular one can easily prove that, if ψ ∈ R
n

(i.e. ψ ∈ Cn constant), then

∫ T

0
〈ψ, M(τ ) × dη(τ)〉 =

〈
ψ,

∫ T

0
M(τ ) × dη(τ)

〉
Rn

,

for all η = (η j ) j=1,...,q ∈ BVq and all continuous matrices M = (mr j )r j : [0, T ] →
R
n×q .
Finally, from the Fubini formula (4) and the above notations, one can easily deduce

that the Fubini formula

∫ T

0

〈∫ τ

0
�(τ, s) ds, dη(τ)

〉
=
∫ T

0

∫ T

s
〈�(τ, s), dη(τ)〉 ds,
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holds for all � ∈ L∞([0, T ]2, R
q) being continuous in its first variable and for all

η = (η j ) j=1,...,q ∈ NBVq such that η j is monotonically increasing on [0, T ] for each
j = 1, . . . , q.

A.4 About problems (FCSP) and (BCSP) and Duhamel formulas

Let us consider the framework and the notations introduced in Sect. 2.2. Our aim in
this section is to provide Duhamel formulas for the solutions to Problems (FCSP)
and (BCSP). To this aim, we recall that the state-transition matrix �(·, ·) : [0, T ]2 →
R
n×n associated with A ∈ L∞([0, T ], R

n×n) is defined as follows. For all s ∈ [0, T ],
�(·, s) is the unique solution (that is global) to the linear forward/backward Cauchy
problem given by

{
�̇(t) = A(t) × �(t) for a.e. t ∈ [0, T ],
�(s) = Idn .

The equalities

�(t, s) = Idn +
∫ t

s
A(τ ) × �(τ, s) dτ = Idn +

∫ t

s
�(t, τ ) × A(τ ) dτ,

both hold for all (t, s) ∈ [0, T ]2. From these two equalities and the Fubini formulas
from Sect. A.3, one can easily derive the following proposition. We also refer to [15,
Appendix D] for some details.

Proposition A.6 [Duhamel formulas] The solutions to (FCSP) and (BCSP) are given
by

x(t) = �(t, 0) × x0 +
∫ t

0
�(t, τ ) × B(τ ) dτ +

q∑
j=1

∫ t

0
�(t, τ ) × C j (τ ) dη j (τ ),

and

p(t) = �(T , t) × pT +
∫ T

t
�(τ, t) × B(τ ) dτ +

q∑
j=1

∫ T

t
�(τ, t) × C j (τ ) dη j (τ ),

for all t ∈ [0, T ], where �(·, ·) stands for the state-transition matrix associated with
A.

B Proof of Theorem 3.1

This appendix is dedicated to the detailed proof of Theorem 3.1. Section B.1 deals
with the case L = 0 (the case L �= 0 is treated in Sect. B.2 with a simple change of
variable). In Sect. B.1.1 the Ekeland variational principle is applied on an appropriate
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penalized functional in order to derive a crucial inequality (see Inequality (9)). In
Sect. B.1.2 we conclude the proof of Theorem 3.1 by introducing the adjoint vector p.

We first remark that the running inequality state constraints in Problem (OSCP)
can be written as h(x) ∈ S where:

• h : Cn → Cq is defined as h(x) := h(x, ·) for all x ∈ Cn . Note that h is of class
C1 with Dh(x)(x ′) = ∂1h(x, ·) × x ′ for all x , x ′ ∈ Cn ;

• S := C([0, T ], (R−)q) where R− := (−∞, 0]. We emphasize that S ⊂ Cq is a
nonempty closed convex cone of Cq with a nonempty interior.

Recall that (Cq , ‖ · ‖∞) is a separable Banach space. Applying Proposition A.1, we
endow Cq with an equivalent norm ‖ · ‖Cq such that the associated dual norm ‖ · ‖C∗

q

is strictly convex. We denote by dS : Cq → R the 1-Lipschitz continuous distance
function to S (see Sect. A.1). Then, from Proposition A.2, we know that dS and d2S
are strictly Hadamard-differentiable on Cq\S with Dd2S(x) = 2dS(x)DdS(x) and
‖DdS(x)‖C∗

q
= 1 for all x ∈ Cq\S, and that d2S is Fréchet-differentiable on S with

Dd2S(x) = 0C∗
q
for all x ∈ S.

B.1 The case L = 0

In the whole section we will assume that L = 0 in Problem (OSCP) (see Sect. B.2 for
the case L �= 0). Let (x, u) ∈ ACn×PCT

m be a solution to Problem (OSCP). Following
the notation introduced in Sect. A.2, it holds that u ∈ AG and that x = x(·, u). In what
follows we will also consider the positive real number εu > 0 given in Lemma A.1.

B.1.1 Application of the Ekeland variational principle

Let us recall a simplified version (but sufficient for our purposes) of the Ekeland
varational principle (see [38]).

Proposition B.1 (Ekeland variational principle) Let (E, dE) be a complete metric set.
Let J : E → R

+ be a continuous nonnegative map. Let ε > 0 and e ∈ E
such that J (e) = ε. Then there exists eε ∈ E such that dE(eε, e) ≤ √

ε, and
−√

ε dE(e′, eε) ≤ J (e′) − J (eε) for every e′ ∈ E.

We introduce the set

Eu := {u′ ∈ BL∞
m

(u, εu) | u′ ∈ PCT

m and u′(t) ∈ U for all t ∈ [0, T ]}.

From the closedness assumption on U, one can easily prove that (Eu, ‖ · ‖L∞
m

) is a
complete metric set. Let us choose a sequence (εk)k∈N such that 0 <

√
εk < εu for

all k ∈ N and satisfying limk→∞ εk = 0. We introduce the penalized functional

Jk : Eu −→ R+

u′ �−→ Jk(u′) :=
√((

g(x(T , u′)) − g(x(T )) + εk

)+)2

+ d2S

(
h(x(·, u′))

)
,
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for all k ∈ N. From Lemma A.1, note that Jk is correctly defined for all k ∈ N. Also,
from Lemma A.1 and from the continuities of g, h and d2S (see Proposition A.2), it
follows that Jk is continuous as well for all k ∈ N. Note that Jk is nonnegative and,
since the constraint h(x) ∈ S is satisfied, it holds that Jk(u) = εk for all k ∈ N.
Therefore, from the Ekeland variational principle (see Proposition B.1), we conclude
that there exists a sequence (uk)k∈N ⊂ Eu such that

‖uk − u‖L∞
m

≤ √
εk, (5)

and

− √
εk ‖u′ − uk‖L∞

m
≤ Jk(u

′) − Jk(uk), (6)

for all u′ ∈ Eu and all k ∈ N. In particular, from Inequality (5), note that the sequence
(uk)k∈N converges to u in L∞

m . From optimality of the couple (x, u), note thatJk(u′) >

0 for all u′ ∈ Eu and all k ∈ N. We thus define correctly the couple (λk, ψ
∗
k ) ∈ R×C∗

q
as

λk := 1

Jk(uk)

(
g(x(T , uk)) − g(x(T )) + εk

)+ ≥ 0,

and

ψ∗
k :=

⎧⎨
⎩

1

Jk(uk)
dS
(
h(x(·, uk))

)
DdS

(
h(x(·, uk))

)
if h(x(·, uk)) /∈ S,

0C∗
q

if h(x(·, uk)) ∈ S,

for all k ∈ N. From Proposition A.2 it holds that |λk |2 + ‖ψ∗
k ‖2C∗

q
= 1 for all k ∈ N.

As a consequence, we can extract subsequences (which we do not relabel) such that
(λk)k∈N converges to some λ ≥ 0 and (ψ∗

k )k∈N weakly∗ converges to some ψ∗ ∈ C∗
q .

In particular it holds that |λ|2+‖ψ∗‖2C∗
q

≤ 1.At this step note thatwe cannot ensure that

the couple (λ, ψ∗) is not trivial. The nontriviality is guaranteed by the next proposition.

Proposition B.2 The couple (λ, ψ∗) ∈ R × C∗
q is nontrivial and it holds that

〈ψ∗, ψ − h(x)〉C∗
q×Cq ≤ 0, (7)

for all ψ ∈ S.

Proof Let k ∈ N be fixed. From Proposition A.2, if h(x(·, uk)) /∈ S, then
DdS(h(x(·, uk))) ∈ ∂dS(h(x(·, uk))). Hence, if h(x(·, uk)) /∈ S, it holds that

〈
DdS

(
h(x(·, uk))

)
, ψ − h(x(·, uk))

〉
C∗
q×Cq

≤ dS(ψ) − dS
(
h(x(·, uk)

)
≤ 0,

123



944 L. Bourdin, G. Dhar

for all ψ ∈ S. As a consequence, in both cases h(x(·, uk)) ∈ S and h(x(·, uk)) /∈ S, it
holds that

〈
ψ∗
k , ψ − h(x(·, uk))

〉
C∗
q×Cq

≤ 0, (8)

for all ψ ∈ S. Using Lemma A.1 and taking the limit as k tends to +∞, we get
Inequality (7). Now let us prove that the couple (λ, ψ∗) ∈ R ×C∗

q is nontrivial. Since
S has a nonempty interior, there exists ξ ∈ S and δ > 0 such that ξ + δψ ∈ S for all
ψ ∈ BCq (0Cq , 1). Hence we obtain from Inequality (8) that

δ〈ψ∗
k , ψ〉C∗

q×Cq ≤ 〈ψ∗
k , h(x(·, uk)) − ξ 〉C∗

q×Cq ,

for all ψ ∈ BCq (0Cq , 1) and all k ∈ N. We deduce that

δ‖ψ∗
k ‖C∗

q
= δ
√
1 − |λk |2 ≤ 〈ψ∗

k , h(x(·, uk)) − ξ 〉C∗
q×Cq ,

for all k ∈ N. Using Lemma A.1 and taking the limit as k tends to +∞, we obtain
that

δ
√
1 − |λ|2 ≤ 〈ψ∗, h(x) − ξ 〉C∗

q×Cq .

Since δ > 0, the last inequality implies that the couple (λ, ψ∗) is nontrivial which
completes the proof. ��

Finally, in the next result, we use Inequality (6) with convex L∞-perturbations of
the control uk in order to establish a crucial inequality.

Proposition B.3 The inequality

λ
〈
∇g(x(T )), wz(T , u)

〉
Rn

+
〈
ψ∗, ∂1h(x, ·) × wz(·, u)

〉
C∗
q×Cq

≥ 0, (9)

holds for all z ∈ PCT
m with values in U, where wz(·, u) is the variation vector defined

in Proposition A.4.

Proof Let z ∈ PCT
m with values in U. We fix k ∈ N. Since U is convex, it is clear that

the convexL∞-pertubation of the control uk associatedwith z, defined by uk,z(t, ρ) :=
uk(t)+ρ(z(t)−uk(t)) for all t ∈ [0, T ] and all 0 ≤ ρ ≤ 1, belongs to PCT

m and takes
values in U. Furthermore it holds that ‖uk,z(·, ρ) − u‖L∞

m
≤ ρ‖z − uk‖L∞

m
+ ‖uk −

u‖L∞
m

≤ ρ‖z − uk‖L∞
m

+ √
εk . Since

√
εk < εu , we deduce that uk,z(·, ρ) ∈ Eu for

small enough ρ > 0. From Inequality (6) we get that

−√
εk ‖z − uk‖L∞

m
≤ 1

Jk(uk,z(·, ρ)) + Jk(uk)
× Jk(uk,z(·, ρ))2 − Jk(uk)2

ρ
,
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for small enough ρ > 0. From Proposition A.4 and from strict Hadamard-
differentiability of d2S over Cq\S and Fréchet-differentiability of d2S over S (see
Proposition A.2), taking the limit as ρ tends to 0, we get that

− √
εk ‖z − uk‖L∞

m
≤ 1

2Jk(uk)[
2
(
g(x(T , uk)) − g(x(T )) + εk

)+〈∇g(x(T , uk)), wz(T , uk)
〉
Rn

+
〈
2dS(h(x(·, uk)))DdS(h(x(·, uk))), ∂1h(x(·, uk), ·) × wz(·, uk)

〉
C∗
q×Cq

]
,

with the convention that the second term on the right-hand side is zero if h(x(·, uk)) ∈
S. Using the definition of λk and ψ∗

k , we deduce that

−√
εk ‖z − uk‖L∞

m
≤ λk

〈
∇g(x(T , uk)), wz(T , uk)

〉
Rn

+
〈
ψ∗
k , ∂1h(x(·, uk), ·) × wz(·, uk)

〉
C∗
q×Cq

.

We take the limit of this inequality as k tends to +∞. From the smoothness of g and
h and from Lemmas A.1 and A.2, Inequality (9) is proved. ��

B.1.2 Introduction of the adjoint vector

We can now conclude the proof of Theorem 3.1 (in the case L = 0) by introducing
the adjoint vector p. We refer to Sects. 2.2, A.3 and A.4 for notations and background
concerning Stieltjes integrations and linear Cauchy–Stieltjes problems.

Introduction of the nontrivial couple (p0, η) and complementary slackness condition.
We introduce p0 := −λ ≤ 0 and we write ψ∗ = (ψ∗

j ) j=1,...,q where ψ∗
j ∈ C∗

1 for
every j = 1, . . . , q. From the Riesz representation theorem (see Proposition A.5),
there exists a unique η j ∈ NBV1 such that

〈ψ∗
j , ψ〉C∗

1×C1 =
∫ T

0
ψ(τ) dη j (τ ),

for allψ ∈ C1 and all j = 1, . . . , q. Furthermoreψ∗
j = 0C∗

1
if and only if η j = 0NBV1.

Thus it follows from Proposition B.2 that the couple (p0, η) is not trivial, where
η := (η j ) j=1,...,q ∈ NBVq . Moreover, from Inequality (7) (and the fact that S is a
cone containing h(x)), one can easily deduce that 〈ψ∗

j , h j (x)〉C∗
1×C1 = 0, that is,

∫ T

0
h j (x(τ ), τ ) dη j (τ ) = 0,
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for all j = 1, . . . , q. Finally one can similarly deduce from Inequality (7) that
〈ψ∗

j , ψ〉C∗
1×C1 ≥ 0 for all ψ ∈ C+

1 and all j = 1, . . . , q. From Proposition A.5,
it follows that η j is monotonically increasing on [0, T ] for all j = 1, . . . , q.

Adjoint equation. We define the adjoint vector p ∈ BVn as the unique solution to the
backward linear Cauchy–Stieltjes problem given by

{
−dp =

(
∂1 f (x, u, ·) × p

)
dt −∑q

j=1 ∂1h j (x, ·) dη j over [0, T ],
p(T ) = p0∇g(x(T )).

From theDuhamel formula for backward linearCauchy–Stieltjes problems (see Propo-
sition A.6) and using notations introduced in Sect. A.3, it holds that

p(t) = �(T , t) ×
(
p0∇g(x(T ))

)
−
∫ T

t
�(τ, t) × ∂1h(x(τ ), τ ) × dη(τ),

for all t ∈ [0, T ], where �(·, ·) : [0, T ]2 → R
n×n stands for the state-transition

matrix associated with ∂1 f (x, u, ·) ∈ L∞([0, T ], R
n×n).

Nonpositive averaged Hamiltonian gradient condition. From Inequality (9) and using
notations introduced in Sect. A.3, it holds that

λ
〈
∇g(x(T )), wz(T , u)

〉
Rn

+
∫ T

0

〈
∂1h(x(τ ), τ ) × wz(τ, u), dη(τ)

〉
≥ 0,

for all z ∈ PCT
m with values in U. From the definition of the variation vector wz(·, u)

and the classical Duhamel formula for standard forward linear Cauchy problems, it
holds that

wz(τ, u) =
∫ τ

0
�(τ, s) × ∂2 f (x(s), u(s), s) × (z(s) − u(s)) ds,

for all τ ∈ [0, T ]. Substituting this expression into the previous inequality and using
the last Fubini formula given in Sect. A.3, it follows that

∫ T

0

〈
�(T , s) ×

(
p0∇g(x(T ))

)
, ∂2 f (x(s), u(s), s) × (z(s) − u(s))

〉
Rn

ds

−
∫ T

0

〈
∂2 f (x(s), u(s), s) × (z(s) − u(s)),

∫ T

s
�(τ, s) × ∂1h(x(τ ), τ ) × dη(τ)

〉
Rn

ds ≤ 0,

for all z ∈ PCT
m with values in U. Finally, grouping like terms, we exactly obtain

∫ T

0

〈
p(s), ∂2 f (x(s), u(s), s) × (z(s) − u(s))

〉
Rn

ds ≤ 0,
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for all z ∈ PCT
m with values in U. For all i = 0, . . . , N − 1 and all v ∈ U, let us

consider zi,v ∈ PCT
m with values in U as

zi,v(s) :=
{

v if s ∈ [ti , ti+1),

u(s) if s /∈ [ti , ti+1),

for all s ∈ [0, T ]. Substituting z by zi,v in the above inequality and from the definition
of the Hamiltonian H , we exactly get that

〈∫ ti+1

ti
∂2H(x(s), ui , p(s), p

0, s) ds, v − ui

〉
Rm

≤ 0,

for all v ∈ U and all i = 0, . . . , N − 1. The proof of Theorem 3.1 is complete (in the
case L = 0).

B.2 The case L �= 0

In the previous section we have proved Theorem 3.1 in the case L = 0 (without
Lagrange cost). This section is dedicated to the case L �= 0. Let (x, u) ∈ ACn × PCT

m
be a solution to Problem (OSCP). Let us introduce

X(t) :=
∫ t

0
L(x(τ ), u(τ ), τ ) dτ,

for all t ∈ [0, T ]. We see that the augmented couple ((x, X), u) ∈ ACn+1 × PCT
m

is a solution to the augmented optimal sampled-data control problem with running
inequality state constraints of Mayer form given by

minimize g̃((x, X)(T ))

subject to (x, X) ∈ ACn+1, u ∈ PCT
m,

˙( x
X

)
(t) =

(
f (x(t), u(t), t)
L(x(t), u(t), t)

)
for a.e. t ∈ [0, T ],(

x
X

)
(0) =

(
x0
0

)
,

h̃ j ((x, X)(t), t) ≤ 0 for all t ∈ [0, T ] and all j = 1, . . . , q,

u(t) ∈ U for all t ∈ [0, T ],

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(OSCPaug)

where g̃ : R
n+1 → R is defined by g̃(x1, X1) := g(x1)+ X1 for all (x1, X1) ∈ R

n+1

and where h̃ : R
n+1 × [0, T ] → R

q is defined by h̃((x1, X1), t) := h(x1, t) for
all (x1, X1) ∈ R

n+1 and all t ∈ [0, T ]. Note that Problem (OSCPaug) satisfies all
of the assumptions of Theorem 3.1 and is without Lagrange cost. We introduce the
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948 L. Bourdin, G. Dhar

augmented Hamiltonian H̃ : R
n+1 × R

m × R
n+1 × [0, T ] → R defined as

H̃((x, X), u, (p, P), t) :=
〈(

p
P

)
,

(
f (x, u, t)
L(x, u, t)

)〉
Rn+1

,

for all ((x, X), u, (p, P), t) ∈ R
n+1 × R

m × R
n+1 × [0, T ]. Applying Theorem 3.1

(without Lagrange cost, proved in the previous section), we deduce the existence of
a nontrivial couple (p0, η), where p0 ≤ 0 and η = (η j ) j=1,...,q ∈ NBVq , such that
all conclusions of Theorem 3.1 are satisfied. In particular, the adjoint vector (p, P) ∈
BVn+1 satisfies the backward linear Cauchy-Stieltjes problem given by
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−
(
dp

dP

)
= ∂(x,X)

(
f

L

)
(x, u, ·) ×

(
p

P

)
dt −∑q

j=1 ∂(x,X)h̃ j ((x, X), ·) dη j over [0, T ],
(

p

P

)
(T ) = p0∇(x,X) g̃((x, X)(T )).

Wededuce that P(T ) = p0 and dP = 0 over [0, T ]. Thus P(t) = p0 for all t ∈ [0, T ],
and we obtain that p ∈ BVn satisfies the backward linear Cauchy–Stieltjes problem
{

−dp =
(
∂1 f (x, u, ·) × p + p0∂1L(x, u, ·)

)
dt −∑q

j=1 ∂1h j (x, ·) dη j over [0, T ],
p(T ) = p0∇g(x(T )).

The rest of the proof is straightforward from all the necessary conditions obtained
from the version of Theorem 3.1 without Lagrange cost.
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