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Abstract
This work is concerned with the classical problem of finding a zero of a sum of
maximalmonotone operators. For the projective splitting framework recently proposed
by Combettes and Eckstein, we show how to replace the fundamental subproblem
calculation using a backward step with one based on two forward steps. The resulting
algorithms have the same kind of coordination procedure and can be implemented in
the same block-iterative and highly flexible manner, but may perform backward steps
on some operators and forward steps on others. Prior algorithms in the projective
splitting family have used only backward steps. Forward steps can be used for any
Lipschitz-continuous operators provided the stepsize is bounded by the inverse of
the Lipschitz constant. If the Lipschitz constant is unknown, a simple backtracking
linesearch procedure may be used. For affine operators, the stepsize can be chosen
adaptively without knowledge of the Lipschitz constant and without any additional
forward steps. We close the paper by empirically studying the performance of several
kinds of splitting algorithms on a large-scale rare feature selection problem.

Mathematics Subject Classification 49M27 · 47H05 · 47J25

1 Introduction

For a collection of real Hilbert spaces {Hi }ni=0, consider the problem of finding z ∈ H0
such that

0 ∈
n∑

i=1
G∗i Ti (Gi z), (1)
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632 P. R. Johnstone, J. Eckstein

where Gi : H0 → Hi are linear and bounded operators, Ti : Hi → 2Hi are maximal
monotone operators and additionally there exists a subset IF ⊆ {1, . . . , n} such that
for all i ∈ IF the operator Ti is Lipschitz continuous. An important instance of this
problem is

min
x∈H0

n∑

i=1
fi (Gi x), (2)

where every fi : Hi → R is closed, proper and convex, with some subset of the
functions also being differentiable with Lipschitz-continuous gradients. Under appro-
priate constraint qualifications, (1) and (2) are equivalent. Problem (2) arises in a host of
applications such as machine learning, signal and image processing, inverse problems,
and computer vision; see [4,9,12] for some examples. Operator splitting algorithms
are now a common way to solve structured monotone inclusions such as (1). Until
recently, there were three underlying classes of operator splitting algorithms: forward–
backward [29], Douglas/Peaceman–Rachford [25], and forward–backward–forward
[35]. In [14], Davis and Yin introduced a new operator splitting algorithm which does
not reduce to any of these methods. Many algorithms for more complicated monotone
inclusions and optimization problems involving many terms and constraints are in fact
applications of one of these underlying techniques to a reduced monotone inclusion
in an appropriately defined product space [5,6,11,13,22]. These four operator splitting
techniques are, in turn, a special case of the Krasnoselskii-Mann (KM) iteration for
finding a fixed point of a nonexpansive operator [24,28].

A different, relatively recently proposed class of operator splitting algorithms is
projective splitting: this class has a different convergence mechanism based on pro-
jection onto separating sets and does not in general reduce to the KM iteration. The
root ideas underlying projective splitting can be found in [20,32,33], which dealt with
monotone inclusions with a single operator. The algorithm of [16] significantly built
on these ideas to address the case of two operators and was thus the original projec-
tive “splitting” method. This algorithm was generalized to more than two operators
in [17]. The related algorithm in [1] introduced a technique for handling compositions
of linear and monotone operators, and [8] proposed an extension to “block-iterative”
and asynchronous operation—block-iterative operation meaning that only a subset
of the operators making up the problem need to be considered at each iteration (this
approach may be called “incremental” in the optimization literature). A restricted and
simplified version of this framework appears in [15]. The potentially asynchronous
and block-iterative nature of projective splitting as well as its ability to handle com-
position with linear operators gives it an unprecedented level of flexibility compared
with prior classes of operator splitting methods. Further, in the projective splitting
methods of [8,15] the order with which operators can be processed is deterministic,
variable, and highly flexible. It is not necessary that each operator be processed the
same number of times either exactly or approximately; in fact, one operator may be
processed much more often than another. The only constraint is that there is an upper
bound on the number of iterations between the consecutive times that each operator
is processed.
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Projective splitting with forward steps 633

Projective splitting algorithms work by performing separate calculations on each
individual operator to construct a separating hyperplane between the current iterate and
the problem’s Kuhn–Tucker set (essentially the set of primal and dual solutions), and
then projecting onto this hyperplane. In prior projective splitting algorithms, the only
operation performed on the individual operators Ti is a proximal step (equivalently
referred to as a resolvent or backward step), which consists of evaluating the operator
resolvents (I + ρTi )

−1 for some scalar ρ > 0. In this paper, we show how, for the
Lipschitz continuous operators, the same kind of framework can also make use of
forward steps on the individual operators, equivalent to applying I − ρTi . Typically,
such “explicit” steps are computationally much easier than “implicit”, proximal steps.
Our procedure requires two forward steps each time it evaluates an operator, and
in this sense is reminiscent of Tseng’s forward–backward–forward method [35] and
Korpelevich’s extragradient method [23]. Indeed, for the special case of only one
operator, projective splitting with the new procedure reduces to the variant of the
extragradient method in [20] (see [21, Section 4] for the derivation). In our forward-
step procedure, each stepsize must be bounded by the inverse of the Lipschitz constant
of Ti . However, a simple backtracking procedure can eliminate the need to estimate
the Lipschitz constant, and other options are available for selecting the stepsize when
Ti is affine.

1.1 Intuition and contributions: basic idea

We first provide some intuition into our fundamental idea of incorporating forward
steps into projective splitting. For simplicity, consider (1) without the linear operators
Gi , that is, we want to find z such that 0 ∈∑n

i=1 Ti z, where T1, . . . , Tn : H0 → 2H0

are maximal monotone operators on a single real Hilbert spaceH0. We formulate the
Kuhn–Tucker solution set of this problem as

S =
{

(z, w1, . . . , wn−1)
∣∣∣∣∣ wi ∈ Ti z, i = 1, . . . , n − 1,−

n−1∑

i=1
wi ∈ Tnz

}
. (3)

It is clear that z∗ solves 0 ∈ ∑n
i=1 Ti z∗ if and only if there exist w∗1, . . . , w∗n−1 such

that (z∗, w∗1, . . . , w∗n−1) ∈ S. A separator-projection algorithm for finding a point in
S finds, at each iteration k, a closed and convex set Hk which separates S from the
current point, meaning S is entirely in the set and the current point is not. One can
then move closer to the solution set by projecting the current point onto the set Hk .

If we define S as in (3), then the separator formulation presented in [8] constructs
the set Hk through the function

ϕk(z, w1, . . . , wn−1) =
n−1∑

i=1
〈z − xk

i , yk
i − wi 〉 +

〈
z − xn

i , yn
i +

n−1∑

i=1
wi

〉
(4)

=
〈

z,
n∑

i=1
yk

i

〉
+

n−1∑

i=1
〈xk

i − xk
n , wi 〉 −

n∑

i=1
〈xk

i , yk
i 〉, (5)
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634 P. R. Johnstone, J. Eckstein

for some xk
i , yk

i ∈ H0 such that yk
i ∈ Ti xk

i , i ∈ 1, . . . , n. From its expression in (5)
it is clear that ϕk is an affine function on Hn

0. Furthermore, it may easily be verified
that for any p = (z, w1, . . . , wn−1) ∈ S, one has ϕk(p) ≤ 0, so that the separator
set Hk may be taken to be the halfspace {p | ϕk(p) ≤ 0 }. The key idea of projective
splitting is, given a current iterate pk = (zk, wk

1, . . . , w
k
n−1) ∈ Hn

0, to pick (xk
i , yk

i )

so that ϕk(pk) is positive if pk /∈ S. Then, since the solution set is entirely on the
other side of the hyperplane {p | ϕk(p) = 0 }, projecting the current point onto this
hyperplane makes progress toward the solution. If it can be shown that this progress
is sufficiently large, then it is possible to prove (weak) convergence.

Let the iterates of such an algorithm be pk = (zk, wk
i , . . . , wk

n−1) ∈ Hn
0.

To simplify the subsequent analysis, define wk
n � −∑n−1

i=1 wk
i at each itera-

tion k, whence it is immediate from (4) that ϕk(pk) = ϕk(zk, wk
1, . . . , w

k
n−1) =∑n

i=1〈zk − xk
i , yk

i − wk
i 〉. To construct a function ϕk of the form (4) such that

ϕk(pk) = ϕk(zk, wk
1, . . . , w

k
n) > 0 whenever pk /∈ S, it is sufficient to be

able to perform the following calculation on each individual operator Ti : for
(zk, wk

i ) ∈ H2
0, find xk

i , yk
i ∈ H0 such that yk

i ∈ Ti xk
i and 〈zk − xk

i , yk
i − wk

i 〉 ≥ 0,
with 〈zk − xk

i , yk
i − wk

i 〉 > 0 if wk
i /∈ Ti zk . In earlier work on projective split-

ting [1,8,16,17], the calculation of such a (xk
i , yk

i ) is accomplished by a proximal
(implicit) step on the operator Ti : given a scalar ρ > 0, we find the unique pair
(xk

i , yk
i ) ∈ H2

0 such that yk
i ∈ Ti xk

i and

xk
i + ρyk

i = zk + ρwk
i ⇒ zk − xk

i = ρ(yk
i − wk

i ). (6)

We immediately conclude that

〈zk − xk
i , yk

i − wk
i 〉 = (1/ρ)‖zk − xk

i ‖2 ≥ 0, (7)

and furthermore that 〈zk − xk
i , yk

i − wk
i 〉 > 0 unless xk

i = zk , which would in turn
imply that yk

i = wk
i and wk

i ∈ Ti zk . If we perform such a calculation for each
i = 1, . . . , n, we have constructed a separator of the form (4) which, in view of
ϕk(pk) = ∑n

i=1〈zk − xk
i , yk

i − wk
i 〉, has ϕk(pk) > 0 if pk /∈ S. This basic calcu-

lation on Ti is depicted in Fig. 1a for H0 = R
1: because zk − xk

i = ρ(yk
i − wk

i ),
the line segment between (zk, wk

i ) and (xk
i , yk

i ) must have slope −1/ρ, meaning that
〈zk − xk

i , wk
i − yk

i 〉 ≤ 0 and thus that 〈zk − xk
i , yk

i − wk
i 〉 ≥ 0. It also bears men-

tioning that the relation (7) plays (in generalized form) a key role in the convergence
proof.

Consider now the case that Ti is Lipschitz continuous with modulus Li ≥ 0 (and
hence single valued) and defined throughout H0. We now introduce a technique to
accomplish something similar to the preceding calculation through two forward steps
instead of a single backward step. We begin by evaluating Ti zk and using this value
in place of yk

i in the right-hand equation in (6), yielding

zk − xk
i = ρ

(
Ti z

k − wk
i

) ⇒ xk
i = zk − ρ

(
Ti z

k − wk
i

)
, (8)
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Projective splitting with forward steps 635

(a) Ti

−1/ρ (zk, wk
i )

(xk
i , y

k
i )

(b) Ti

(zk, wk
i )

zk, Tiz
k
)

(xk
i , w

k
i )

1/ρ(xk
i , y

k
i )

Fig. 1 Backward and forward operator calculations in H0 = R
1. The goal is to find a point (xk

i , yk
i ) on

the graph of the operator such that line segment connecting (zk , wk
i ) and (xk

i , yk
i ) has negative slope. Part

a depicts a standard backward-step-based construction, while b depicts our new construction based on two
forward steps

and we use this value for xk
i . This calculation is depicted by the lower left point in

Fig. 1b. We then calculate yk
i = Ti xk

i , resulting in a pair (xk
i , yk

i ) on the graph of
the operator; see the upper left point in Fig. 1b. For this choice of (xk

i , yk
i ), we next

observe that

〈zk − xk
i , yk

i − wk
i 〉 =

〈
zk − xk

i , Ti z
k − wk

i

〉
−
〈
zk − xk

i , Ti z
k − yk

i

〉

=
〈
zk − xk

i , 1
ρ
(zk − xk

i )
〉
−
〈
zk − xk

i , Ti z
k − Ti xk

i

〉
(9)

≥ 1
ρ

∥∥∥zk − xk
i

∥∥∥
2 − Li

∥∥∥zk − xk
i

∥∥∥
2

(10)

=
(
1

ρ
− Li

)∥∥∥zk − xk
i

∥∥∥
2
. (11)

Here, (9) follows because Ti zk − wk
i = (1/ρ)(zk − xk

i ) from (8) and because we
let yk

i = Ti xk
i . The inequality (10) then follows from the Cauchy-Schwarz inequality

and the hypothesized Lipschitz continuity of Ti . If we require that ρ < 1/Li , then
we have 1/ρ > Li and (11) therefore establishes that 〈zk − xk

i , yk
i − wk

i 〉 ≥ 0, with
〈zk − xk

i , yk
i − wk

i 〉 > 0 unless xk
i = zk , which would imply that wk

i = Ti zk . We thus
obtain a conclusion very similar to (7) and the results immediately following from it,
but using the constant 1/ρ − Li > 0 in place of the positive constant 1/ρ.

ForH0 = R
1, this process is depicted in Fig. 1b. By construction, the line segment

between
(
zk, Ti zk

)
and (xk

i , wk
i ) has slope 1/ρ, which is “steeper” than the graph of

the operator, which can have slope at most Li by Lipschitz continuity. This guarantees
that the line segment between (zk, wk

i ) and (xk
i , yk

i ) must have negative slope, which
in R1 is equivalent to the claimed inner product property.

Using a backtracking line search, we will also be able to handle the situation in
which the value of Li is unknown. If we choose any positive constant Δ > 0, then
by elementary algebra the inequalities (1/ρ) − Li ≥ Δ and ρ ≤ 1/(Li + Δ) are
equivalent. Therefore, if we select some positive ρ ≤ 1/(Li +Δ), we have from (11)

123



636 P. R. Johnstone, J. Eckstein

that

〈zk − xk
i , yk

i − wk
i 〉 ≥ Δ‖zk − xk

i ‖2, (12)

which implies the key properties we need for the convergence proofs. Therefore we
may start with any ρ = ρ0 > 0, and repeatedly halve ρ until (12) holds; in Sect. 5.1
below, we bound the number of halving steps required. In general, each trial value of
ρ requires one application of the Lipschitz continuous operator Ti . However, for the
case of affine operators Ti , we will show that it is possible to compute a stepsize such
that (12) holds with a total of only two applications of the operator. By contrast, most
backtracking procedures in optimization algorithms require evaluating the objective
function at each new candidate point, which in turn usually requires an additional
matrix multiply operation in the quadratic case [3].

1.2 Summary of contributions

The main thrust of the remainder of this paper is to incorporate the second, forward-
step construction of (xk

i , yk
i ) above into an algorithm resembling those of [8,15],

allowing some operators to use backward steps, and others to use forward steps. Thus,
projective splitting may become useful in a broad range of applications in which
computing forward steps is preferable to computing or approximating proximal steps.
The resulting algorithm inherits the block-iterative features and flexible capabilities
of [8,15].

We will work with a slight restriction of problem (1), namely

0 ∈
n−1∑

i=1
G∗i Ti (Gi z)+ Tn(z). (13)

In terms of problem (1), we are simply requiring that Gn be the identity operator and
thus that Hn = H0. This is not much of a restriction in practice, since one could
redefine the last operator as Tn ← G∗n ◦ Tn ◦ Gn , or one could simply append a new
operator Tn with Tn(z) = {0} everywhere.

The principle reason for adopting a formulation involving the linear operators Gi

is that in many applications of (13) it may be relatively easy to compute the proximal
step of Ti but difficult to compute the proximal step of G∗i ◦Ti ◦Gi . Our frameworkwill
include algorithms for (13) that may compute the proximal steps on Ti , forward steps
when Ti is Lipschitz continuous, and applications (“matrix multiplies”) of Gi and G∗i .
An interesting feature of the forward steps in our method is that while the allowable
stepsizes depend on the Lipschitz constants of the Ti for i ∈ IF, they do not depend
on the linear operator norms ‖Gi‖, in contrast with primal-dual methods [6,13,36].
Furthermore, as already mentioned, the stepsizes used for each operator can be chosen
independently and may vary by iteration.

We also present a previously unpublished “greedy” heuristic for selecting operators
in block-iterative splitting, based on a simple proxy. Augmenting this heuristic with a
straightforward safeguard allows one to retain all of the convergence properties of the
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Projective splitting with forward steps 637

main algorithm. The heuristic is not specifically tied to the use of forward steps and
also applies to the earlier algorithms in [8,15]. The numerical experiments in Sect. 6
below attest to its usefulness.

The main contribution of this work is the new two-forward-step procedure. The
main proposed algorithm is a block-iterative splitting method that performs well in
our numerical experiments when combined with the greedy block selection strategy.
However, the analysis also allows for the kind of asynchronous operation developed
in [8,15]. Empirically investigating such asynchronous implementations is beyond
the scope of this work. Since allowing for asynchrony introduces little additional
complexity into the convergence analysis, we have included it in the theoretical results.

After submitting this paper, we became aware of the preprint [34], which develops
a similar two-forward-step procedure for projective splitting in a somewhat differ-
ent setting than (13). The scheme is equivalent to ours when Gi = I , but does not
incorporate the backtracking linesearch or its simplification for affine operators. Their
analysis also does not allow for asynchronous or block-iterative implementations.

2 Mathematical preliminaries

2.1 Notation

Summations of the form
∑n−1

i=1 ai for some collection {ai }will appear throughout this
paper. To deal with the case n = 1, we use the standard convention that

∑0
i=1 ai = 0.

To simplify the presentation, we use the following notation throughout the rest of the
paper, where I denotes the identity map on Hn :

Gn = I (∀ k ∈ N) wk
n � −

n−1∑

i=1
G∗i wk

i . (14)

Note that when n = 1, wk
1 = 0. We will use a boldface w = (w1, . . . , wn−1) for

elements of H1 × . . .×Hn−1.
Throughout, we will simply write ‖ · ‖i = ‖ · ‖ as the norm for Hi and let the

subscript be inferred from the argument. In the same way, we will write 〈·, ·〉i as 〈·, ·〉
for the inner product of Hi . For the collective primal-dual space defined in Sect. 2.2,
we will use a special norm and inner product with its own subscript.

For any maximal monotone operator A we will use the notation proxρ A = (I +
ρ A)−1, for any scalar ρ > 0, to denote the proximal operator, also known as the
backward or implicit step with respect to A. This means that

x = proxρ A(a) �⇒ ∃y ∈ Ax : x + ρy = a. (15)

The x and y satisfying this relation are unique. Furthermore, proxρ A is defined every-
where and range(proxA) = dom(A) [2, Prop. 23.2].

We use the standard “⇀” notation to denote weak convergence, which is of course
equivalent to ordinary convergence in finite-dimensional settings.
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638 P. R. Johnstone, J. Eckstein

The following basic result will be used several times in our proofs:

Lemma 1 For any vectors v1, . . . , vn,
∥∥∑n

i=1 vi
∥∥2 ≤ n

∑n
i=1 ‖vi‖2 .

Proof
∥∥∑n

i=1 vi
∥∥2 = n2

∥∥ 1
n

∑n
i=1 vi

∥∥2 ≤ n2 · 1
n

∑n
i=1 ‖vi‖2, where the inequality

follows from the convexity of the function ‖ · ‖2. ��

2.2 Main assumptions regarding problem (13)

Let H = H0 ×H1 × · · · ×Hn−1 and Hn = H0. Define the extended solution set or
Kuhn–Tucker set of (13) to be

S =
{
(z, w1, . . . , wn−1) ∈H

∣∣∣ wi ∈ Ti (Gi z), i = 1, . . . , n − 1,

−
n−1∑

i=1
G∗i wi ∈ Tn(z)

}
. (16)

Clearly z ∈ H0 solves (13) if and only if there exists w ∈ H1 × · · · ×Hn−1 such that
(z,w) ∈ S. Our main assumptions regarding (13) are as follows:

Assumption 1 Problem (13) conforms to the following:

1. H0 = Hn and H1, . . . ,Hn−1 are real Hilbert spaces.
2. For i = 1, . . . , n, the operators Ti : Hi → 2Hi are monotone.
3. For all i in some subset IF ⊆ {1, . . . , n}, the operator Ti is Li -Lipschitz continuous

(and thus single-valued) and dom(Ti ) = Hi .
4. For i ∈ IB � {1, . . . , n}\IF, the operator Ti is maximal and that the map

proxρTi
: Hi → Hi can be computed to within the error tolerance specified below

in Assumption 4 (however, these operators are not precluded from also being Lip-
schitz continuous).

5. Each Gi : H0 → Hi for i = 1, . . . , n − 1 is linear and bounded.
6. The solution set S defined in (16) is nonempty.

Lemma 2 Suppose Assumption 1 holds. The set S defined in (16) is closed and convex.

Proof We first remark that for i ∈ IF the operators Ti are maximal by [2, Proposi-
tion 20.27], so T1, . . . , Tn are all maximal monotone. The claimed result is then a
special case of [5, Proposition 2.8(i)] with the following change of notation, where
“MM” stands for “maximal monotone” and “BL” stands for “bounded linear”:

Notation here Notation in [5]
Tn −→ A (MM operator)

(x1, . . . , xn−1) �→ T1x1 × · · · × Tn−1xn−1 −→ B (MM operator)

z �→ (G1z, . . . , Gn−1z) −→ L (BL operator).

��
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2.3 A generic linear separator-projectionmethod

Suppose that H is a real Hilbert space with inner product 〈·, ·〉H and norm ‖ · ‖H.
A generic linear separator-projection method for finding a point in some closed and
convex set S ⊆H is given in Algorithm 1.

Algorithm 1: Generic linear separator-projection method for finding a point in a
closed and convex set S ⊆H.
Input: p1, 0 < β ≤ β < 2

1 for k = 1, 2, . . . , do
2 Find an affine function ϕk such that ∇ϕk �= 0 and ϕk (p) ≤ 0 for all p ∈ S.
3 Choose βk ∈ [β, β]
4 pk+1 = pk − βk max{0,ϕk (pk )}

‖∇ϕk‖2H
∇ϕk

The update on line 4 is the βk-relaxed projection of pk onto the halfspace {p :
ϕk(p) ≤ 0} using the norm ‖ · ‖H. In other words, if p̂k is the projection onto this
halfspace, then the update is pk+1 = (1 − βk)pk + βk p̂k . Note that we define the
gradient ∇ϕk with respect to the inner product 〈·, ·〉H, meaning we can write

(∀p, p̃ ∈H) : ϕk(p) = 〈∇ϕk, p − p̃〉H + ϕk( p̃).

We will use the following well-known properties of algorithms fitting the template of
Algorithm 1; see for example [7,16]:

Lemma 3 Suppose S is closed and convex. Then for Algorithm 1,

1. The sequence {pk} is bounded.
2. ‖pk − pk+1‖H → 0;
3. If all weak limit points of {pk} are in S, then pk converges weakly to some point in

S.

Note that we have not specified how to choose the affine function ϕk . For our specific
application of the separator-projection framework, we will do so in Sect. 2.4.

2.4 Our hyperplane

In this section, we define the affine function our algorithm uses to construct a sepa-
rating hyperplane. Let p = (z,w) = (z, w1, . . . , wn−1) be a generic point in H, the
collective primal-dual space. For H, we adopt the following norm and inner product
for some γ > 0:

‖(z,w)‖2γ = γ ‖z‖2 +
n−1∑

i=1
‖wi‖2
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640 P. R. Johnstone, J. Eckstein

〈
(z1,w1), (z2,w2)

〉

γ
= γ 〈z1, z2〉 +

n−1∑

i=1
〈w1

i , w2
i 〉. (17)

Define the following function generalizing (4) at each iteration k ≥ 1:

ϕk(p) =
n−1∑

i=1

〈
Gi z − xk

i , yk
i − wi

〉
+
〈

z − xk
n , yk

n +
n−1∑

i=1
G∗i wi

〉
, (18)

where the (xk
i , yk

i ) are chosen so that yk
i ∈ Ti xk

i for i = 1, . . . , n (recall that each
inner product is for the corresponding Hilbert space Hi ). This function is a special
case of the separator function used in [8]. The following lemma proves some basic
properties of ϕk ; similar results are in [1,8,15] in the case γ = 1.

Lemma 4 Let ϕk be defined as in (18). Then:

1. ϕk is affine on H.
2. With respect to inner product 〈·, ·〉γ on H, the gradient of ϕk is

∇ϕk =
(
1

γ

(
n−1∑

i=1
G∗i yk

i + yk
n

)
, xk

1 − G1xk
n , . . . , xk

n−1 − Gn−1xk
n

)
.

3. Suppose Assumption 1 holds and that yk
i ∈ Ti xk

i for i = 1, . . . , n. Then ϕk(p) ≤ 0
for all p ∈ S defined in (16).

4. If Assumption 1 holds, yk
i ∈ Ti xk

i for i = 1, . . . , n, and ∇ϕk = 0, then
(xk

n , yk
1 , . . . , yk

n−1) ∈ S.

Proof To see that ϕk is affine, rewrite (18) as

ϕk(z,w) =
n−1∑

i=1
〈Gi z, yk

i − wi 〉 −
n−1∑

i=1
〈xk

i , yk
i − wi 〉 +

〈
z, yk

n +
n−1∑

i=1
G∗i wi

〉

−
〈

xk
n , yk

n +
n−1∑

i=1
G∗i wi

〉

=
n−1∑

i=1
〈z, G∗i (yk

i − wi )〉 +
n−1∑

i=1
〈wi , xk

i 〉 −
n∑

i=1
〈xk

i , yk
i 〉

+
〈

z, yk
n +

n−1∑

i=1
G∗i wi

〉
−

n−1∑

i=1

〈
wi , Gi xk

n

〉

=
〈

z,
n−1∑

i=1
G∗i yk

i + yk
n

〉
+

n−1∑

i=1
〈wi , xk

i − Gi xk
n 〉 −

n∑

i=1
〈xk

i , yk
i 〉. (19)
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It is now clear that ϕk is an affine function of p = (z,w). Next, fix an arbitrary p̃ ∈H.
Using that ϕk is affine, we may write

ϕk(p) = 〈p − p̃,∇ϕk〉γ + ϕk( p̃) = 〈p,∇ϕk〉γ + ϕk( p̃)− 〈 p̃,∇ϕk〉γ

= γ 〈z,∇zϕk〉 +
n−1∑

i=1
〈wi ,∇wi ϕk〉 + ϕk( p̃)− 〈 p̃,∇ϕk〉γ

Equating terms between this expression and (19) yields the claimed expression for the
gradient.

Next, suppose Assumption 1 holds and yk
i ∈ Ti xk

i for i = 1, . . . , n. To prove the
third claim, we need to consider (z,w) ∈ S and establish that ϕi (z,w) ≤ 0. We do so
by showing that all n terms in (18) are nonpositive: first, for each i = 1, . . . , n−1, we
have 〈Gi z − xk

i , yk
i − wi 〉 ≤ 0 since Ti is monotone, wi ∈ Ti (Gi z), and yk

i ∈ Ti xk
i .

The nonpositivity of the final term is established similarly by noting that yk
n ∈ Tn xk

n ,
−∑n−1

i=1 G∗i wi ∈ Tnz, and that Tn is monotone.

Finally, suppose ∇ϕk = 0 for some k ≥ 1. Then yk
n = −

∑n−1
i=1 G∗i yk

i and xk
i −

Gi xk
n = 0 for all i = 1, . . . , n − 1. The latter implies that yk

i ∈ Ti (Gi xk
n ) for all i =

1, . . . , n−1. Since we also have yk
n ∈ Tn(xk

n ), we obtain that (xk
n , yk

1 , . . . , yk
n−1) ∈ S.

��

3 Our algorithm

3.1 Algorithm definition

Algorithm 2 is our flexible block-iterative projective splitting algorithm with forward
steps for solving (13). It is essentially a special case of the weakly convergent Algo-
rithm of [8], except that we use the new forward-step procedure to deal with the
Lipschitz continuous operators Ti for i ∈ IF, instead of exclusively using proximal
steps. For our separating hyperplane in (18), we use a special case of the formula-
tion of [8], which is slightly different from the one used in [15]. Our method can be
reformulated to use the same hyperplane as [15]; however, this requires that it be com-
putationally feasible to project on the subspace given by the equation

∑n
i=1 G∗i wi = 0.

Under appropriate conditions, Algorithm 2 is an instance of Algorithm 1 (see
Lemma 6). Lines 12–26 of Algorithm 2 essentially implement the projection step
on line 4 of Algorithm 1. Lines 2–11 construct the points (xk

i , yk
i ) used to define the

affine function ϕk in (18), which defines the separating hyperplane.
The algorithm has the following parameters:

– For each iteration k ≥ 1, a subset Ik ⊆ {1, . . . , n}. These are the indices of
the “active” operators that iteration k processes by either a backward step or
two forward steps. The remaining, “inactive” operators simply have (xk

i , yk
i ) =

(xk−1
i , yk−1

i ).
– For each iteration k ≥ 1 and i = 1, . . . , n, a delayed iteration index d(i, k) ∈
{1, . . . , k} which allows the subproblem calculations on lines 4–9 to use outdated
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642 P. R. Johnstone, J. Eckstein

Algorithm 2: General Projective Splitting Algorithm for solving (13).

Input : (z1,w1) ∈H, (x0i , y0i ) ∈ H2
i for i = 1, . . . , n.

Parameters: {Ik }k∈N where Ik ⊆ {1, . . . , n}, {d(i, k)}k∈N for i = 1, . . . , n where 1 ≤ d(i, k) ≤ k,
0 < β ≤ β < 2, γ > 0.

1 for k = 1, 2, . . . do
2 for i ∈ Ik do

/* these are the active operators to be processed */
3 if i ∈ IB then

4 a = Gi zd(i,k) + ρ
d(i,k)
i w

d(i,k)
i + ek

i /* do a backward step */

5 xk
i = prox

ρ
d(i,k)
i Ti

(a)

6 yk
i = (ρ

d(i,k)
i )−1

(
a − xk

i

)

7 else
/* do two forward steps */

8 xk
i = Gi zd(i,k) − ρ

d(i,k)
i (Ti Gi zd(i,k) − w

d(i,k)
i ),

9 yk
i = Ti xk

i .

10 for i /∈ Ik do
/* These are the inactive operators */

11 (xk
i , yk

i ) = (xk−1
i , yk−1

i )

/* Beginning of projection procedure */

12 uk
i = xk

i − Gi xk
n , i = 1, . . . , n − 1,

13 vk =∑n−1
i=1 G∗i yk

i + yk
n

14 πk = ‖uk‖2 + γ−1‖vk‖2
15 if πk > 0 then
16 Choose some βk ∈ [β, β]
17 ϕk (pk ) = 〈zk , vk 〉 +∑n−1

i=1 〈wk
i , uk

i 〉 −
∑n

i=1〈xk
i , yk

i 〉
18 αk = βk

πk
max

{
0, ϕk (pk )

}

19 else
20 if ∪k

j=1 I j = {1, . . . , n} then

21 return zk+1 ← xk
n , wk+1

1 ← yk
1 , . . . , wk+1

n−1 ← yk
n−1

22 else
23 αk = 0

24 zk+1 = zk − γ−1αkvk

25 wk+1
i = wk

i − αkuk
i , i = 1, . . . , n − 1,

26 wk+1
n = −∑n−1

i=1 G∗i wk+1
i

information (zd(i,k), w
d(i,k)
i ). In themost straightforward case of no delays, d(i, k)

is simply k.
– For each k ≥ 1 and i = 1, . . . , n, a positive scalar stepsize ρk

i .
– For each iteration k ≥ 1, an overrelaxation parameter βk ∈ [β, β] for some

constants 0 < β ≤ β < 2.
– A scalar γ > 0 which controls the relative emphasis on the primal and dual
variables in the projection update in lines 24–25; see (17) in Sect. 2.4 for more
details.
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– Sequences of errors {ek
i }k≥1 for i ∈ IB modeling inexact computation of the

proximal steps.

In the form directly presented in Algorithm 2, the delay indices d(i, k) may seem
unmotivated; it might seem best to always select d(i, k) = k. However, these indices
can play a critical role in modeling asynchronous parallel implementation. There are
many ways in which Algorithm 2 could be implemented in various parallel computing
environments; a specific suggestion for asynchronous implementation of a closely
related class of algorithms is developed in [15, Section 3].

The error parameters ek
i for the proximal steps would simply be zero for proximal

steps that are calculated exactly. When nonzero, they would not typically in practice
be explicitly chosen prior to calculating xk

i and yk
i , but instead implicitly defined by

some (likely iterative) procedure for approximating the prox operation. We present
the error parameters as shown in order to avoid cluttering the algorithm description
with additional loops and abstractions as in [18,19].

3.2 A block-iterative implementation

Before proceeding with the analysis of Algorithm 2, we present a somewhat simpli-
fied block-iterative version. This version eliminates the possibility of delays, setting
d(i, k) ≡ k. The strategy for deciding which operators Ik to select at each iteration is
left open for the time being and is determined entirely by the algorithm implementer.
We will propose one specific strategy for the case |Ik | ≡ 1 in Sect. 5.3, but one may
use any approach conforming to Assumption 2(1) below.

Algorithm 3: Simplified Block-Iterative Algorithm.

Input : (z1,w1) ∈H, (x0i , y0i ) ∈ H2
i for i = 1, . . . , n.

Parameters: {Ik }k∈N where Ik ⊆ {1, . . . , n}, 0 < β ≤ β < 2, γ > 0.
1 for k = 1, 2, . . . do
2 for i ∈ Ik do

/* Loop over the blocks chosen to be updated according to
user-supplied rule {Ik } */

3 if i ∈ IB then
4 a = Gi zk + ρk

i wk
i + ek

i /* do a backward step */

5 xk
i = prox

ρk
i Ti

(a)

6 yk
i = (ρk

i )−1
(

a − xk
i

)

7 else
8 xk

i = Gi zk − ρk
i (Ti Gi zk − wk

i ), /* do two forward steps */

9 yk
i = Ti xk

i .

10 For j /∈ Ik , set (xk
j , yk

j ) = (xk−1
j , yk−1

j ) /* other blocks unchanged */

/* The projection procedure is then the same as lines 12-26 of
Algorithm 2 */
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4 Convergence analysis

We now start our analysis of the weak convergence of the iterates of Algorithm 2
to a solution of problem (13). While the overall proof strategy is similar to [15],
considerable innovation is required to incorporate the forward steps. Before the main
proof, we will first state our assumptions on Algorithm 2 and its parameters, state the
main convergence theorem, and sketch an outline of the proof.

4.1 Algorithm assumptions

We start with our assumptions about parameters of Algorithm 2. With the exception
of (20), they are taken from [8,15] and use the notation of [15].

Assumption 2 For Algorithm 2, assume:

1. For some fixed integer M ≥ 1, each index i in 1, . . . , n is in Ik at least once every
M iterations, that is,

(∀ j ≥ 1)
j+M−1⋃

k= j

Ik = {1, . . . , n}.

2. For some fixed integer D ≥ 0, we have k − d(i, k) ≤ D for all i, k with i ∈ Ik .
That is, there is a constant bound on the extent to which the information zd(i,k) and
w

d(i,k)
i used in lines 4 and 8 is out of date.

Assumption 3 The stepsize conditions for weak convergence of Algorithm 2 are:

ρ � min
i=1,...,n

{
inf
k≥1 ρk

i

}
> 0 ρ � max

i∈IB

{
sup
k≥1

ρk
i

}
<∞

(∀ i ∈ IF) ρi � lim sup
k→∞

ρk
i <

1

Li
. (20)

Note that (20) allows the stepsize to be larger than the right hand side for a finite
number of iterations.

The last assumption concerns the possible errors ek
i in computing the proximal steps

and requires some notation from [15]: for all i and k, define

S(i, k) = { j ∈ N : j ≤ k, i ∈ I j } s(i, k) =
{
max S(i, k), when S(i, k) �= ∅
0, otherwise.

In words, s(i, k) is the most recent iteration up to and including k in which the index-i
information in the separator was updated, or 0 if index-i information has never been
processed. Assumption 2 ensures that 0 ≤ k − s(i, k) < M .

Next, for all i = 1, . . . , n and iterations k, define l(i, k) = d
(
i, s(i, k)

)
. Thus,

l(i, k) is the iteration in which the algorithm generated the information zl(i,k) and
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Projective splitting with forward steps 645

w
l(i,k)
i used to compute the current point (xk

i , yk
i ). For initialization purposes, we set

d(i, 0) = 0.

Assumption 4 The error sequences {ek
i } are bounded for all i ∈ IB. For some σ with

0 ≤ σ < 1 the following hold for all k ≥ 1:

(∀i ∈ IB) 〈Gi z
l(i,k) − xk

i , es(i,k)
i 〉 ≥ −σ‖Gi z

l(i,k) − xk
i ‖2 (21)

(∀i ∈ IB) 〈es(i,k)
i , yk

i − w
l(i,k)
i 〉 ≤ ρ

l(i,k)
i σ‖yk

i − w
l(i,k)
i ‖2. (22)

4.2 Main result

We now state the main technical result of the paper, asserting weak convergence of
Algorithm 2 to a solution of (13).

Theorem 1 Suppose Assumptions 1–4 hold. If Algorithm 2 terminates at line 21, then
its final iterate is a member of the extended solution set S. Otherwise, the sequence
{(zk,wk)} generated by Algorithm 2 converges weakly to some point (z̄,w) in the
extended solution set S of (13) defined in (16). Furthermore, xk

i ⇀Gi z̄ and yk
i ⇀wi

for all i = 1, . . . , n − 1, xk
n⇀z̄, and yk

n⇀−∑n−1
i=1 G∗i wi .

Before establishing this result, we first outline the basic proof strategy: first, since
it arises from a projection method, the sequence {pk} has many desirable properties,
as outlined in Lemma 3. In particular, Lemma 3(3) allows us to establish (weak)
convergence of the entire sequence to a solution if we can prove that all its limit points
must be elements of S. To that end, we will establish that

(∀i = 1, . . . , n) : Gi z
k − xk

i → 0 and yk
i − wk

i → 0. (23)

By the definition ofwk
n on line 26, the iterates (zk,wk) always meet the linear relation-

ship between the wi implicit in the definition (16) of S, whereas the (xk
i , yk

i ) iterates
always meet its inclusion conditions. Therefore, if (23) holds, then one may expect all
limit points of (zk,wk) to satisfy all the conditions in (16) and thus to to lie in S. In
finite dimension, this result is in fact fairly straightforward to establish. The general
Hilbert space proof is more delicate, but was carried out in [1, Proposition 2.4].

In order to establish (23), we will first establish that the gradient of the affine
function ϕk defined in (18) remains bounded. Then, consider the projection update as
written on line 4 of Algorithm 1, which implies

‖pk+1 − pk‖ = βk max{0, ϕk(pk)}
‖∇ϕk‖H .

If ‖∇ϕk‖H remains bounded, then since Lemma 3(2) implies the left hand side goes
to 0, lim supϕk(pk) ≤ 0.
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The key to establishing (23) is then to show that the cut provided by the separating
hyperplane is “sufficiently deep”. This will amount to proving (in simplified form)

ϕk(pk) ≥ C
n∑

i=1
‖Gi z

k − xk
i ‖2 (24)

for some C > 0. Then, using lim supϕk(pk) ≤ 0, the first part of (23) follows. The
second part of (23) is then established by a similar argument.

4.3 Preliminary lemmas

To begin the proof of Theorem 1, we first deal with the situation in which Algorithm 2
terminates at line 21.

Lemma 5 For Algorithm 2:

1. Suppose Assumption 1 holds. If the algorithm terminates via line 21, then
(zk+1,wk+1) ∈ S. Furthermore xk

i = Gi zk+1 and yk
i = wk+1

i for i = 1, . . . , n−1,

and xk
n = zk+1 and yk

n = −
∑n−1

i=1 G∗i w
k+1
i .

2. Additionally, suppose Assumption 2(1) holds. Then if πk = 0 at some iteration
k ≥ M, the algorithm terminates via line 21.

Proof The condition ∪k
j=1 I j = {1, . . . , n} on line 20 implies that yk

i ∈ Ti xk
i for

i = 1, . . . , n. Let ϕk be the affine function defined in (18). Simple algebra verifies
that for uk and vk defined on lines 12 and 13, uk

i = ∇wi ϕk for i = 1, . . . , n − 1,
vk = γ∇zϕk , and πk = ‖∇ϕk‖2γ .

If for any such k, πk equals 0, then this implies ∇ϕk = 0. Then we can invoke
Lemma 4(4) to conclude that (xk

n , yk
1 , . . . , yk

n−1) ∈ S. Thus, the algorithm terminates
with

(zk+1, wk+1
1 , . . . , wk+1

n−1) = (xk
n , yk

1 , . . . , yk
n−1) ∈ S.

Furthermore, when ∇ϕk = 0, Lemma 4(2) leads to

n−1∑

i=1
G∗i yk

i + yk
n = 0 xk

i − Gi xk
n = 0 i = 1, . . . , n − 1.

We immediately conclude that yk
n = −∑n−1

i=1 G∗i yk
i = −∑n−1

i=1 G∗i w
k+1
i and, for

i = 1, . . . , n − 1, that xk
i = Gi xk

n = Gi zk .
Finally, note that for any k ≥ M , ∪k

j=1 I j = {1, . . . , n} by Assumption 2(1).
Therefore whenever πk = 0 for k ≥ M , the algorithm terminates via line 21. ��
Lemma 5 asserts that if the algorithm terminates finitely, then the final iterate is a
solution. For the rest of the analysis, we therefore assume that πk �= 0 for all k ≥ M .
Under Assumption 2, Algorithm 2 is a projection algorithm:
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Lemma 6 Suppose that Assumption 1 holds for problem (13) and Assumption 2(1)
holds for Algorithm 2. Then, for all k ≥ M such that πk defined on Line 14 is
nonzero, Algorithm 2 is an instance of Algorithm 1 with H = H0 × · · · × Hn−1
and the inner product in (17), S as defined in (16), and ϕk as defined in (18). All the
statements of Lemma 3 hold for the sequence {pk} = {(zk, wk

1, . . . , w
k
n−1)} generated

by Algorithm 2.

Proof For k ≥ M in Algorithm 2, by Assumption 2(1) all (xk
i , yk

i ) have been updated
at least once using either lines 5–6 or lines 8–9, and thus yk

i ∈ Ti xk
i for i = 1, . . . , n.

Therefore, Lemma 4 implies that ϕk(z,w) ≤ 0.
Next we verify that lines 12–26 of Algorithm 2 are an instantiation of line 4 of

Algorithm 1 using ϕk as defined in (18) and the norm defined in (17). As already
shown, πk = ‖∇ϕk‖2γ . Considering the decomposition of ϕk in (19), it can then be
seen that lines 14–25 ofAlgorithm2 implement the projection on line 4 ofAlgorithm1.

To conclude the proof, we note that Lemma 2 asserts that S is closed and convex,
so all the results of Lemma 3 apply. ��

The next two lemmas concern the indices s(i, k) and l(i, k) defined in Sect. 2.

Lemma 7 Suppose Assumption 2(1) holds. For all iterations k ≥ M, if Algorithm 2
has not already terminated, then the updates may be written as

(∀i ∈ IB) xk
i + ρ

l(i,k)
i yk

i = Gi z
l(i,k) + ρ

l(i,k)
i w

l(i,k)
i + es(i,k)

i ,

yk
i ∈ Ti xk

i , (25)

(∀i ∈ IF) xk
i = Gi z

l(i,k) − ρ
l(i,k)
i (Ti Gi z

l(i,k) − w
l(i,k)
i ),

yk
i = Ti xk

i . (26)

Proof The proof follows from the definition of l(i, k) and s(i, k). After M iterations,
all operatorsmust have been in Ik at least once. Thus, after M iterations, every operator
has been updated at least once using either the proximal step on lines 4–6 or the forward
steps on lines 8–9 of Algorithm 2. Recall the variables defined to ease mathematical
presentation, namely Gn = I and wk

n defined in (14) and line 26. ��
Wenowderive some important properties of l(i, k). The following resultwas proved

in Lemma 6 of [15] but since it is short we include the proof here.

Lemma 8 Under Assumption 2, k−l(i, k) < M+D for all i = 1, . . . , n and iterations
k.

Proof From the definition, we know that 0 ≤ k − s(i, k) < M . Part 2 of Assump-
tion 2 ensures that s(i, k) − l(i, k) = s(i, k) − d(i, s(i, k)) ≤ D. Adding these two
inequalities yields the desired result. ��
Lemma 9 Suppose Assumptions 1 and 2 hold and πk > 0 for all k ≥ M. Then
w

l(i,k)
i − wk

i → 0 for all i = 1, . . . , n and zl(i,k) − zk → 0.
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Proof For zk and wk
i for i = 1, . . . , n − 1, the proof is identical to the proof of [15,

Lemma 9]. For {wk
n}, we have from line 26 of the algorithm that

‖wl(n,k)
n − wk

n‖ =
∥∥∥∥∥

n−1∑

i=1
G∗i
(
wk

i − w
l(n,k)
i

)∥∥∥∥∥

≤
n−1∑

i=1
‖G∗i ‖

∥∥∥wk
i − w

l(n,k)
i

∥∥∥ .

=
n−1∑

i=1
‖G∗i ‖

∥∥∥∥∥∥

k−l(n,k)∑

j=1

(
w

k− j+1
i − w

k− j
i

)
∥∥∥∥∥∥

≤
n−1∑

i=1
‖G∗i ‖

k−l(n,k)∑

j=1

∥∥∥wk− j+1
i − w

k− j
i

∥∥∥

≤
n−1∑

i=1
‖G∗i ‖

M+D∑

j=1

∥∥∥wk− j+1
i − w

k− j
i

∥∥∥ ,

where final line uses Lemma 8. Since the operators Gi are bounded and Lemma 3(2)
implies thatwk+1

i −wk
i → 0 for all i = 1, . . . , n−1, we conclude thatwl(n,k)

n −wk
n →

0. ��
Next, we define

(∀i = 1, . . . , n) φik � 〈Gi z
k − xk

i , yk
i − wk

i 〉 φk �
∑n

i=1 φik (27)

(∀i = 1, . . . , n) ψik � 〈Gi z
l(i,k) − xk

i , yk
i − w

l(i,k)
i 〉 ψk �

∑n
i=1 ψik . (28)

Note that (27) simply expands the definition of the affine function in (18) and we may
write ϕk(pk) = φk .

Lemma 10 Suppose Assumptions 1 and 2 hold and πk > 0 for all k ≥ M. Then
φik − ψik → 0 for all i = 1, . . . , n.

Proof In view of Lemma 9, we may follow the same argument as given in [15,
Lemma 12]. ��

4.4 Three technical lemmas

We now prove three technical lemmas which pave the way to establishing weak con-
vergence of Algorithm 2 to a solution of (13). The first lemma upper bounds the norm
of the gradient of ϕk at each iteration.

Lemma 11 Suppose Assumptions 1–4 hold. Suppose that πk > 0 for all k ≥ M. Recall
the affine function ϕk defined in (18). There exists ξ1 ≥ 0 such that ‖∇ϕk‖2γ ≤ ξ1 for
all k ≥ 1.
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Proof For k < M the gradient can be trivially bounded by max1≤k<M ‖∇ϕk‖2γ . Now
fix any k ≥ M . Using Lemma 4,

‖∇ϕk‖2γ = γ−1
∥∥∥∥∥

n−1∑

i=1
G∗i yk

i + yk
n

∥∥∥∥∥

2

+
n−1∑

i=1
‖xk

i − Gi xk
n‖2. (29)

Using Lemma 1, we begin by writing the second term on the right of (29) as

n−1∑

i=1
‖xk

i − Gi xk
n‖2 ≤ 2

n−1∑

i=1

(
‖xk

i ‖2 + ‖Gi‖2‖xk
n‖2
)

≤ 2
n−1∑

i=1
‖xk

i ‖2 + 2(n − 1)max
i

{
‖Gi‖2

}
‖xk

n‖2.

The linear operators Gi are bounded byAssumption 1.We now check the boundedness
of sequences {xk

i }, i = 1, . . . , n. For i ∈ IB, the boundedness of {xk
i } follows from

exactly the same argument as in [15, Lemma 10]. Now taking any i ∈ IF, we use the
triangle inequality and Lemma 7 to obtain

‖xk
i ‖ ≤ ‖Gi z

l(i,k) − ρ
l(i,k)
i Ti Gi z

l(i,k)‖ + ρ
l(i,k)
i ‖wl(i,k)

i ‖
≤ ‖Gi‖‖zl(i,k)‖ + ρ

l(i,k)
i ‖Ti Gi z

l(i,k)‖ + ρ
l(i,k)
i ‖wl(i,k)

i ‖.

Now the sequences {‖zk‖} and {‖wk
i ‖} are bounded by Lemma 3, implying the bound-

edness of {‖zl(i,k)‖} and {‖wl(i,k)
i ‖}. Since {zl(i,k)} is bounded, Gi is bounded, and Ti

is Lipschitz continuous, {Ti Gi zl(i,k)} is bounded. Finally, the stepsizes ρk
i are bounded

by Assumption 3. Therefore, {xk
i } is bounded for i ∈ IF, and we may conclude that

the second term in (29) is bounded.
We next consider the first term in (29). Rearranging the update equations for Algo-

rithm 2 as given in Lemma 7, we may write

yk
i =

(
ρ

l(i,k)
i

)−1 (
Gi z

l(i,k) − xk
i + ρ

l(i,k)
i w

l(i,k)
i + es(i,k)

i

)
, i ∈ IB (30)

Ti Gi z
l(i,k) =

(
ρ

l(i,k)
i

)−1 (
Gi z

l(i,k) − xk
i + ρ

l(i,k)
i w

l(i,k)
i

)
, i ∈ IF. (31)

Using Gn = I , the squared norm in the first term of (29) may be written as

∥∥∥∥∥

n∑

i=1
G∗i yk

i

∥∥∥∥∥

2

=
∥∥∥∥∥∥

∑

i∈IB
G∗i yk

i +
∑

i∈IF
G∗i
(

Ti Gi z
l(i,k) + yk

i − Ti Gi z
l(i,k)

)
∥∥∥∥∥∥

2

(a)≤ 2

∥∥∥∥∥∥

∑

i∈IB
G∗i yk

i +
∑

i∈IF
G∗i Ti Gi z

l(i,k)

∥∥∥∥∥∥

2
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650 P. R. Johnstone, J. Eckstein

+ 2

∥∥∥∥∥∥

∑

i∈IF
G∗i
(

yk
i − Ti Gi z

l(i,k)
)
∥∥∥∥∥∥

2

(b)≤ 4

∥∥∥∥∥

n∑

i=1

(
ρ

l(i,k)
i

)−1
G∗i
(

Gi z
l(i,k) − xk

i + ρ
l(i,k)
i w

l(i,k)
i

)∥∥∥∥∥

2

+ 2|IF|
∑

i∈IF
‖Gi‖2

∥∥∥Ti xk
i − Ti Gi z

l(i,k)
∥∥∥
2

+ 4

∥∥∥∥∥∥

∑

i∈IB

(
ρ

l(i,k)
i

)−1
G∗i es(i,k)

i

∥∥∥∥∥∥

2

(32)

(c)≤ 4nρ−2 max
i

{‖Gi‖
}2
(

n∑

i=1

∥∥∥Gi z
l(i,k) − xk

i + ρ
l(i,k)
i w

l(i,k)
i

∥∥∥
2

+
∑

i∈IB
‖es(i,k)

i ‖2
⎞

⎠

+ 2|IF|
∑

i∈IF
‖Gi‖2L2

i ‖xk
i − Gi z

l(i,k)‖2 (33)

In the above, (a) uses Lemma 1, while (b) is obtained by substituting (30)–(31) into
the first squared norm and using yk

i = Ti xk
i for i ∈ IF in the second, and then using

Lemma 1 on both terms. Finally, (c) uses Lemma 1, the Lipschitz continuity of Ti ,
and Assumption 3. For each i = 1, . . . , n, we have that Gi is a bounded operator, the
sequences {zl(i,k)}, {xk

i }, and {wl(i,k)
i } are already known to be bounded, {ρl(i,k)

i } is
bounded by Assumption 3, and for i ∈ IB, {es(i,k)

i } is bounded by Asssumption 4. We
conclude that the right hand side of (33) is bounded. Therefore, the first term in (29)
is bounded and the sequence {∇ϕk} must be bounded. ��

The second technical lemma establishes a lower bound for the affine function ϕk

evaluated at the current point which is similar to (24). This shows that the cut provided
by the hyperplane is “deep enough” to guarantee weak convergence of the method.
The lower bound applies to the quantity ψk defined in (28): this quantity is easier to
analyze than φk and Lemma 10 asserts that the difference between the two converges
to zero.

Lemma 12 Suppose that Assumptions 1–4 hold. Suppose πk > 0 for all k ≥ M. Then
there exists ξ2 > 0 such that

lim sup
k→∞

ψk ≥ ξ2 lim sup
k→∞

n∑

i=1
‖Gi z

l(i,k) − xk
i ‖2.
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Proof For k ≥ M , we have

ψk =
n∑

i=1

〈
Gi z

l(i,k) − xk
i , yk

i − w
l(i,k)
i

〉

(a)=
∑

i∈IB

〈
Gi z

l(i,k) − xk
i ,
(
ρ

l(i,k)
i

)−1 (
Gi z

l(i,k) − xk
i + es(i,k)

i

)〉

+
∑

i∈IF

〈
Gi z

l(i,k) − xk
i , Ti Gi z

l(i,k) − w
l(i,k)
i

〉

+
∑

i∈IF

〈
Gi z

l(i,k) − xk
i , yk

i − Ti Gi z
l(i,k)

〉

(b)=
∑

i∈IB

[(
ρ

l(i,k)
i

)−1‖Gi z
l(i,k) − xk

i ‖2 +
(
ρ

l(i,k)
i

)−1 〈
Gi z

l(i,k) − xk
i , es(i,k)

i

〉]

+
∑

i∈IF

〈
Gi z

l(i,k) − xk
i ,
(
ρ

l(i,k)
i

)−1 (
Gi z

l(i,k) − xk
i

)〉

−
∑

i∈IF

〈
Gi z

l(i,k) − xk
i , Ti Gi z

l(i,k) − Ti xk
i

〉

(c)≥ (1− σ)
∑

i∈IB

(
ρ

l(i,k)
i

)−1‖Gi z
l(i,k) − xk

i ‖2

+
∑

i∈IF

((
ρ

l(i,k)
i

)−1 − Li

)
‖Gi z

l(i,k) − xk
i ‖2. (34)

In the above derivation, (a) follows by substitution of (25) into the IB terms and
algebraic manipulation of the IF terms. Next, (b) follows by algebraic manipulation
of the IB terms and substitution of (26) into the IF terms. Finally, (c) is justified by
using (21) in Assumption 4 and the Lipschitz continuity of Ti for i ∈ IF.

Now consider any two sequences {ak} ⊂ R, {bk} ⊂ R+. We note that

lim sup
k→∞

akbk ≥ lim sup
k→∞

{(
lim inf
k→∞ ak

)
bk

}
=
(
lim inf
k→∞ ak

)(
lim sup

k→∞
bk

)
.

Applying this fact to the expression in (34) yields the desired result with

ξ2 = min

{
(1− σ)ρ−1, min

j∈IF

{
ρ−1j − L j

}}
,

and Assumption 3 guarantees that ξ2 > 0. ��
In the third technical lemma, we provide what is essentially a complementary lower
bound for ψk :
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Lemma 13 Suppose Assumptions 1–4 hold. Suppose πk > 0 for all k ≥ M. Then
there exists ξ3 > 0 such that

lim sup
k→∞

⎛

⎝ψk +
∑

i∈IF
Li‖Gi z

l(i,k) − xk
i ‖2
⎞

⎠

≥ ξ3 lim sup
k→∞

⎛

⎝
∑

i∈IB
‖yk

i − w
l(i,k)
i ‖2 +

∑

i∈IF
‖Ti Gi z

l(i,k) − w
l(i,k)
i ‖2

⎞

⎠ . (35)

Proof For all k ≥ M , we have

ψk =
n∑

i=1
〈Gi z

l(i,k) − xk
i , yk

i − w
l(i,k)
i 〉

(a)=
∑

i∈IB
〈ρl(i,k)

i (yk
i − w

l(i,k)
i )− es(i,k)

i , yk
i − w

l(i,k)
i 〉

+
∑

i∈IF
〈Gi z

l(i,k) − xk
i , Ti Gi z

l(i,k) − w
l(i,k)
i 〉

+
∑

i∈IF
〈Gi z

l(i,k) − xk
i , yk

i − Ti Gi z
l(i,k)〉

(b)=
∑

i∈IB

(
ρ

l(i,k)
i ‖yk

i − w
l(i,k)
i ‖2 − 〈es(i,k)

i , yk
i − w

l(i,k)
i 〉

)

+
∑

i∈IF
〈ρl(i,k)

i (Ti Gi z
l(i,k) − w

l(i,k)
i ), Ti Gi z

l(i,k) − w
l(i,k)
i 〉

−
∑

i∈IF
〈xk

i − Gi z
l(i,k), Ti xk

i − Ti Gi z
l(i,k)〉 (36)

(c)≥ (1− σ)
∑

i∈IB
ρ

l(i,k)
i ‖yk

i − w
l(i,k)
i ‖2 +

∑

i∈IF
ρ

l(i,k)
i ‖Ti Gi z

l(i,k) − w
l(i,k)
i ‖2

−
∑

i∈IF
Li‖Gi z

l(i,k) − xk
i ‖2. (37)

In the above derivation, (a) follows by substition of (25) into theIB terms and algebraic
manipulation of the IF terms. Next (b) is obtained by algebraic simplification of the IB
terms and substitution of (26) into the two groups of IF terms. Finally, (c) is obtained
by substituting the error criterion (22) from Assumption 4 for the IB terms and using
the Lipschitz continuity of Ti for the IF terms. Adding the last term in (37) to both
sides yields
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ψk +
∑

i∈IF
Li‖Gi z

l(i,k) − xk
i ‖2

≥ (1− σ)
∑

i∈IB
ρ

l(i,k)
i ‖yk

i − w
l(i,k)
i ‖2 +

∑

i∈IF
ρ

l(i,k)
i ‖Ti Gi z

l(i,k) − w
l(i,k)
i ‖2.

Assumption 4 requires that σ < 1 and Assumption 3 requires that ρk
i ≥ ρ > 0 for all

i , so taking limits in the above inequality implies that (35) holds with ξ3 = (1− σ)ρ.

��

4.5 Proof of Theorem 1

We are now in a position to complete the proof. The assertion regarding termination
at line 21 follows immediately from Lemma 5. For the remainder of the proof, we
therefore consider only the case that the algorithm runs indefinitely and thus that
πk > 0 for all k ≥ M .

The proof has three parts. The first part establishes that Gi zk − xk
i → 0 for all i

and the second part proves that yk
i −wk

i → 0 for all i . Finally, the third part uses these
results in conjunction with a result in [1] to show that any convergent subsequence
of {pk} = {(zk,wk)} generated by the algorithm must converge to a point in S, after
which we may simply invoke Lemma 3.
Part 1. Convergence of Gi zk − xk

i → 0
Lemma 6 and (27) imply that

pk+1 = pk − βk max{ϕk(pk), 0}
‖∇ϕk‖2γ

∇ϕk = pk − βk max{φk, 0}
‖∇ϕk‖2γ

∇ϕk .

Lemma 3(2) guarantees that pk − pk+1 → 0, so it follows that

0 = lim
k→∞‖pk+1 − pk‖γ = lim

k→∞
βk max{φk, 0}
‖∇ϕk‖γ ≥ β lim supk→∞max{φk, 0}√

ξ1
,

since ‖∇ϕk‖γ ≤ √ξ1 <∞ for all k by Lemma 11. Thus, lim supk→∞ φk ≤ 0. Since
Lemma 10 implies that φk − ψk → 0, it follows that lim supk→∞ ψk ≤ 0. With (a)
following from Lemma 12, we next obtain

0 ≥ lim sup
k→∞

ψk
(a)≥ ξ2 lim sup

k

n∑

i=1
‖Gi z

l(i,k) − xk
i ‖2

≥ ξ2 lim inf
k

n∑

i=1
‖Gi z

l(i,k) − xk
i ‖2 ≥ 0.

Thus, Gi zl(i,k)− xk
i → 0 for i = 1, . . . , n. Since zk − zl(i,k) → 0 and Gi is bounded,

we obtain that Gi zk − xk
i → 0 for i = 1, . . . , n.
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Part 2. Convergence of yk
i − wk

i → 0

From lim supk→∞ ψk ≤ 0 and Gi zl(i,k) − xk
i → 0, we obtain

lim sup
k→∞

⎧
⎨

⎩ψk +
∑

i∈IF
Li‖Gi z

l(i,k) − xk
i ‖2
⎫
⎬

⎭ ≤ 0. (38)

Combining (38) with (35) in Lemma 13, we infer that

(∀ i ∈ IB) yk
i − w

l(i,k)
i → 0 �⇒ yk

i − wk
i → 0

(∀ i ∈ IF) Ti Gi z
l(i,k) − w

l(i,k)
i → 0 �⇒ Ti Gi z

k − wk
i → 0. (39)

where the implications follow fromLemma 9, the Lipschitz continuity of Ti for i ∈ IF,
and the continuity of the linear operators Gi . Finally, for each i ∈ IF and k ≥ M , we
further reason that

‖yk
i − wk

i ‖ = ‖Ti Gi z
k − wk

i + yk
i − Ti Gi z

k‖,
≤ ‖Ti Gi z

k − wk
i ‖ + ‖yk

i − Ti Gi z
k‖

(a)= ‖Ti Gi z
k − wk

i ‖ + ‖Ti xk
i − Ti Gi z

k‖
(b)≤ ‖Ti Gi z

k − wk
i ‖ + Li‖Gi z

k − xk
i ‖

(c)→ 0.

Here, (a) uses (26) from Lemma 7, (b) uses the Lipschitz continuity of Ti , and (c)
relies on (39) and part 1 of this proof.

Part 3. Subsequential convergence
Consider any increasing sequence of indices {qk} such that (zqk ,wqk ) weakly con-
verges to some point (z∞,w∞) ∈H.We claim that in any such situation, (z∞,w∞) ∈
S.

By part 1, zk − xk
n → 0, so xqk

n ⇀z∞. For any i = 1, . . . , n, part 2 asserts that
yk

i − wk
i → 0, so yqk

i ⇀w∞i . Furthermore, part 2, (14), and the boundedness of Gi

imply that

n∑

i=1
G∗i yk

i =
n∑

i=1
G∗i wk

i +
n∑

i=1
G∗i (yk

i − wk
i )→ 0.

Finally, part 1 and the boundedness of Gi yield

(∀ i = 1, . . . , n − 1) xk
i − Gi xk

n = xk
i − Gi z

k − Gi (xk
n − zk)→ 0.

Next we apply [1, Proposition 2.4] with the following change of notation where “MM”
stands for “maximal monotone” and “BL” stands for “bounded linear”:

Notation here Notation in [1]
iteration counter k −→ iteration counter n
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xk
n −→ an

(xk
1 , . . . , xk

n−1) −→ bn

yk
n −→ a∗n

(yk
1 , . . . , yk

n−1) −→ b∗n
Tn −→ A (MM operator)

(x1, . . . , xn−1) �→ T1x1 × · · · × Tn−1xn−1 −→ B (MM operator)

z �→ (G1z, . . . , Gn−1z) −→ L (BL operator)

z∞ −→ x̄

w∞ −→ v̄∗.

We then conclude from [1, Proposition 2.4] that (z∞,w∞) ∈ S, and the claim is
established.

Invoking Lemma 3(3), we immediately conclude that {(zk,wk)} converges weakly
to some (z̄,w) ∈ S. For each i = 1, . . . , n,wefinally observe that sinceGi zk−xk

i → 0
and yk

i − wk
i → 0, we also have xk

i ⇀Gi z̄ and yk
i ⇀wi . ��

5 Extensions

5.1 Backtracking Linesearch

This section describes a backtracking linesearch procedure that may be used in the
forward steps when the Lipschitz constant is unknown. The backtracking procedure
is formalized in Algorithm 4, to be used in place of lines 8–9 of Algorithm 2.

Algorithm 4: Backtracking procedure for unknown Lipschitz constants

Input : i, k, zd(i,k), wd(i,k)
i , ρd(i,k)

i , Δ

1 ρ
(1,k)
i = ρ

d(i,k)
i

2 θk
i = Gi zd(i,k)

3 ζ k
i = Ti θ

k
i

4 for j = 1, 2, . . . do

5 x̃( j,k)
i = θk

i − ρ
( j ,k)
i (ζ k

i − w
d(i,k)
i )

6 ỹ( j,k)
i = Ti x̃( j,k)

i

7 if Δ‖θk
i − x̃( j,k)

i ‖2 − 〈θk
i − x̃( j ,k)

i , ỹ( j ,k)
i − w

d(i,k)
i 〉 ≤ 0 then

8 return J (i, k) ← j, ρ̂
d(i,k)
i ← ρ

( j ,k)
i , xk

i ← x̃( j ,k)
i , yk

i ← ỹ( j,k)
i

9 ρ
( j+1,k)
i = ρ

( j,k)
i /2

We introduce the following notation: as suggested in line 8 of Algorithm 4, we
set J (i, k) to be the number of iterations of the backtracking algorithm for operator
i ∈ IF at outer iteration k ≥ 1; the subsequent theorem will show that J (i, k) can be
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upper bounded. As also suggested in line 8, we let ρ̂d(i,k)
i = ρ

(J (i,k),k)
i for i ∈ IF ∩ Ik .

When using the backtracking procedure for i ∈ IF, it is important to note that the
interpretation of ρ

d(i,k)
i changes: it is the initial trial stepsize value for the i th operator

at iteration k, and the actual stepsize used is ρ̂
d(i,k)
i . When i /∈ Ik , we set J (i, k) = 0

and ρ̂
d(i,k)
i = ρ

d(i,k)
i .

Assumption 5 Lines 8–9 of Algorithm 2 are replaced with the procedure in Algo-
rithm 4. Regarding stepsizes, we assume that

ρ � max
i=1,...,n

{
sup

k
ρk

i

}
<∞ (40)

and either:

ρ = min
i=1,...,n

{
inf

k
ρk

i

}
> 0. (41)

or

ρ
d(i,1)
i > 0 and (∀k ≥ 2) : ρ

d(i,k)
i ≥ ρ̂

d(i,k−1)
i . (42)

In words, (42) allows us to initialize the linesearch with a stepsize which is at least as
large as the previously discovered stepsize, which is a common procedure in practice.

Theorem 2 Suppose that Assumptions 1, 2, 4, and 5 hold. Then all the conclusions of
Theorem 1 follow. Specifically, either the algorithm terminates in a finite number of
iterations at point inS, or there exists (z̄,w) ∈ S such that (zk,wk)⇀(z̄,w), xk

i ⇀Gi z̄

and yk
i ⇀wi for all i = 1, . . . , n − 1, xk

n⇀z̄, and yk
n⇀−∑n−1

i=1 G∗i wi ,

Proof The proof of finite termination at an optimal point follows as before, via
Lemma 5. From now on, suppose πk > 0 for all k ≥ M implying that the algo-
rithm runs indefinitely.

The proof proceeds along the following outline: first, we upper bound the number
of iterations of the loop in Algorithm 4, implying that the stepsizes ρ̂

d(i,k)
i are bounded

from above and below.We then argue that lemmas 6–10 hold as before. Then we show
that lemmas 11–13 essentially still hold, but with different constants. The rest of the
proof then proceeds identically to that of Theorem 1.

Regarding upper bounding the inner loop iterations, fix any i ∈ IF. For any k ≥ 1
such that i ∈ Ik and for any j ≥ 1, substituting the values just assigned to θk

i and ζ k
i

allows us to expand the forward step on line 5 of Algorithm 4 into

x̃ ( j,k)
i = Gi z

d(i,k) − ρ
( j,k)
i (Ti Gi z

d(i,k) − w
d(i,k)
i ).

Following the arguments used to derive the IF terms in (34), we have

((
ρ

( j,k)
i

)−1−Li
)‖Gi z

d(i,k)−x̃ ( j,k)
i ‖2−〈Gi z

d(i,k)−x̃ ( j,k)
i , ỹ( j,k)

i −w
d(i,k)
i 〉 ≤ 0. (43)
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Using that ρ
( j,k)
i = 21− jρ

d(i,k)
i , some elementary algebraic manipulations establish

that once

j ≥
⌈
1+ log2

(
(Δ+ Li )ρ

d(i,k)
i

)⌉
,

one must have Δ ≤ (ρ( j,k)
i

)−1 − Li , and by (43) the condition triggering the return
statement in Algorithm 4 must be true. Therefore, for any k ≥ 1 we have

J (i, k) ≤ max
{⌈

1+ log2
(
(Δ+ Li )ρ

d(i,k)
i

)⌉
, 1
}

≤ max
{
2+ log2

(
(Δ+ Li )ρ

d(i,k)
i

)
, 1
}

. (44)

By the condition ρ < ∞ in (40), we may now infer that {J (i, k)}k∈N is bounded.
Furthermore, by substituting (44) into ρ̂

d(i,k)
i = 21−J (i,k)ρ

d(i,k)
i , we may infer for all

k ≥ 1 that

ρ̂
d(i,k)
i ≥ min

{
1

2(Li +Δ)
, ρ

d(i,k)
i

}
. (45)

If (41) is enforced, then

ρ̂
d(i,k)
i ≥ min

{
1

2(Li +Δ)
, ρ

d(i,k)
i

}
≥ min

{
1

2(Li +Δ)
, ρ

}
> 0. (46)

On the other hand, if (42) is enforced, then for all k such that i ∈ Ik , we have

ρ
d(i,k+1)
i ≥ ρ̂

d(i,k)
i ≥ min

{
1

2(Li +Δ)
, ρ

d(i,k)
i

}
(47)

If k /∈ Ik then ρ̂
d(i,k)
i = ρ

d(i,k)
i andρ

d(i,k+1)
i ≥ ρ

d(i,k)
i . Therefore,wemay recurse (47)

to yield

ρ̂
d(i,k)
i ≥ min

{
1

2(Li +Δ)
, ρ

d(i,1)
i

}
> 0. (48)

Finally since ρ̂
d(i,k)
i ≤ ρ

d(i,k)
i ≤ ρ̄ for all k ≥ 1, we must have

lim sup
k→∞

{ρ̂d(i,k)
i } ≤ ρ̄.

Since the choice of i ∈ IF was arbitrary, we know that {ρ̂d(i,k)
i }k∈N is bounded for all

i ∈ IF, and the first phase of the proof is complete.
We now turn to lemmas 6–10. First, Lemma 6 still holds, since it remains true that

yk
i = Ti xk

i for all i ∈ IF and k ≥ M . Next, a result like that of Lemma 7 holds, but
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with ρ
l(i,k)
i replaced by ρ̂

l(i,k)
i for all i ∈ IF. The arguments of Lemmas 8–10 remain

completely unchanged.
Nextwe show that Lemma11 holdswith a different constant. The derivation leading

up to (32) continues to apply if we incorporate the substitution in Lemma 7 specified
in the previous paragraph. Therefore, we replace ρk

i by ρ̂k
i in (32) for i ∈ IF. Using

(46)/(48) and the fact that lim supk→∞{ρ̂d(i,k)
i } ≤ ρ̄ we conclude that Lemma 11 still

holds, with the constant ξ1 adjusted in light of (46)/(48).
Now we show that Lemma 12 holds with a different constant. For k ≥ M , we may

use Lemma 7 and the termination criterion for Algorithm 4 to write

ψk =
∑

i∈IB

〈
Gi z

l(i,k) − xk
i , yk

i − w
l(i,k)
i

〉
+
∑

i∈IF

〈
Gi z

l(i,k) − xk
i , yk

i − w
l(i,k)
i

〉

≥ (1− σ)
∑

i∈IB
(ρk

i )−1‖xk
i − Gi z

l(i,k)‖2 +Δ
∑

i∈IF
‖xk

i − Gi z
l(i,k)‖2.

Here, the terms involving IB are dealt with the same way as before in Lemma 12. We
conclude that Lemma 12 holds with ξ2 replaced by

ξ ′2 = min
{
(1− σ)ρ−1,Δ

}
.

Nowwe show that Lemma 13 holds with a different constant. The derivation up to (36)
proceeds as before, but replacing ρ

l(i,k)
i with ρ̂

l(i,k)
i for i ∈ IF. Using (46)–(48) and

Assumption 4, it is clear that the conclusion of Lemma 13 follows with the constant
ξ3 adjusted in light of (46)–(48).

Finally, the rest of the proof now follows in the same way as in the proof of Theo-
rem 1. ��

5.2 Backtracking is unnecessary for affine operators

When i ∈ IF and Ti affine, it is not necessary to iteratively backtrack to find a valid
stepsize. Instead, it is possible to directly solve for a stepsize ρ = ρ

( j,k)
i such that

the condition on line 7 of Algorithm 4 is immediately satisfied. Thus, one can process
an affine operator with only two forward steps, even without having estimated its
Lipschitz constant.

From here on, we continue to use the notation θk
i = Gi zd(i,k) and ζ k

i = Tiθ
k
i

introduced in Algorithm 4. Fix i ∈ IF and suppose that Ti x = T l
i x + ci where

ci ∈ Hi and T l
i is linear. The loop termination condition on line 7 of Algorithm 4 may

be written

〈θk
i − x̃ ( j,k)

i , ỹ( j,k)
i − w

d(i,k)
i 〉 ≥ Δ‖θk

i − x̃ ( j,k)
i ‖2. (49)

Substituting the expressions for x̃ ( j,k)
i and ỹ( j,k)

i from lines 5–6 of Algorithm 4 into

the left-hand side of (49), replacing ρ
(i, j)
i with ρ for simplicity, and using the linearity

123



Projective splitting with forward steps 659

of T l
i yields

ρ
〈
ζ k

i − w
d(i,k)
i , T l

i

(
θk

i − ρ
(
Ti Gi z

d(i,k) − w
d(i,k)
i

))+ ci − w
d(i,k)
i

〉

= ρ
〈
ζ k

i − w
d(i,k)
i , T l

i θk
i − ρT l

i

(
ζ k

i − w
d(i,k)
i

)+ ci − w
d(i,k)
i

〉

= ρ
〈
ζ k

i − w
d(i,k)
i , ζ k

i − w
d(i,k)
i − ρT l

i

(
ζ k

i − w
d(i,k)
i

)〉

= ρ
(
‖ζ k

i − w
d(i,k)
i ‖2 − ρ

〈
ζ k

i − w
d(i,k)
i , T l

i

(
ζ k

i − w
d(i,k)
i

)〉)
. (50)

Substituting the expression for x̃ (i, j)
i from line 5 of Algorithm 4, the right-hand side

of (49) may be written

Δρ2‖ζ k
i − w

d(i,k)
i ‖2. (51)

Substituting (50) and (51) into (49) and solving for ρ yields that the loop exit condition
holds when

ρ ≤ ρ̃k
i �

‖ζ k
i − w

d(i,k)
i ‖2

Δ‖ζ k
i − w

d(i,k)
i ‖2 +

〈
ζ k

i − w
d(i,k)
i , T l

i

(
ζ k

i − w
d(i,k)
i

)〉 . (52)

If ζ k
i − w

d(i,k)
i = 0, then (52) is not defined, but in this case the step acceptance

condition (49) holds trivially and lines 5–6of the backtracking procedure yield x̃ ( j,k)
i =

θk
i and ỹ( j,k)

i = ζ k
i for any stepsize ρ

( j,k)
i .

We next show that ρ̃k
i as defined in (52) will behave in a bounded manner even

as ζ k
i − w

d(i,k)
i → 0. Temporarily letting ξ = ζ k

i − w
d(i,k)
i , we note that as long as

ξ �= 0, we have

ρ̃k
i =

‖ξ‖2
Δ ‖ξ‖2 + 〈ξ, T l

i ξ〉 =
1

Δ+ 〈ξ,T l
i ξ〉

‖ξ‖2
∈
[

1

Δ+ Li
,
1

Δ

]
, (53)

where the inclusion follows because Ti is monotone and thus T l
i is positive semidefi-

nite, and because Ti is Li -Lipschitz continuous and therefore so is T l
i . Thus, choosing

ρ̃k
i to take some arbitrary fixed value ρ̄ > 0 whenever ζ k

i −w
d(i,k)
i = 0, the sequence

{ρ̃k
i } is bounded from both above and below, and all of the arguments of Theorem 2

apply if we use ρ̃k
i in place of the results of the backtracking line search.

To calculate (52), one must compute ζ k
i = Ti Gi zd(i,k) and T l

i

(
ζ k

i −w
d(i,k)
i

)
. Then

xk
i can be obtained via xk

i = θk
i − ρ

(
ζ k

i − w
d(i,k)
i

)
and

yk
i = ζ k

i − ρT l
i

(
ζ k

i − w
d(i,k)
i

)
. (54)

In total, this procedure requires one application of Gi and two of T l
i .

123



660 P. R. Johnstone, J. Eckstein

5.3 Greedy block selection

We now introduce a greedy block selection strategy which may be useful in some
block-iterative implementations of Algorithm 2, such as Algorithm 3. In essence, this
selection strategy provides a way to pick Ik at each iteration in Algorithm 3, and we
have found it to improve performance on several empirical tests.

Consider Algorithm 3 with |Ik | = 1 for all k (only one subproblem activated per
iteration), and βk = 1 for all k (no overrelaxation of the projection step). Consider
some particular iteration k ≥ M and assume ‖∇ϕk‖ > 0 (otherwise the algorithm
terminates at a solution). Ideally, one might like to maximize the length of the step
pk+1 − pk toward the solution set S, and

∥∥pk+1 − pk
∥∥

γ
= ϕk(pk)/ ‖∇ϕk‖γ .

Assuming thatβk = 1, the current point pk computed on lines 24–25 ofAlgorithm2
is the projection of pk−1 onto the halfspace {p : ϕk−1(p) ≤ 0}. If pk−1 was not
already in this halfspace, that is, ϕk−1(pk−1) > 0, then after the projection we have
ϕk−1(pk) = 0.

Using the notation Gn = I and wk
n defined in (14), ϕk−1(pk) = 0 is equivalent to

n∑

i=1
〈Gi z

k − xk−1
i , yk−1

i − wk
i 〉 = 0. (55)

Suppose we select operator i to be processed next, that is, Ik = {i}. After updating
(xk

i , yk
i ), the corresponding term in the summation in (55) becomes bounded below

by ξ‖Gi zk − xk
i ‖2 ≥ 0, where ξ = (1 − σ)/ρk

i for i ∈ IB, ξ = Δ for i ∈ IF
with backtracking, and ξ = ρ̄−1i − Li for i ∈ IF without backtracking. In any case,
processing operator i will cause the i th term to become nonnegative while the other
terms remain unchanged, so if we select an i with 〈Gi zk − xk−1

i , yk−1
i − wk

i 〉 < 0,
then the sum in (55) must increase by at least −〈Gi zk − xk−1

i , yk−1
i −wk

i 〉, meaning
that after processing subproblem i we will have

ϕk(pk) ≥ −〈Gi z
k − xk

i , yk
i − wk

i 〉 > 0.

Choosing the i for which 〈Gi zk−xk−1
i , yk−1

i −wk
i 〉 is themost negativemaximizes the

above lower bound on ϕk(pk) and would thus seem a promising heuristic for selecting
i .

Note that this “greedy” procedure is only heuristic because it does not take into
account the denominator in the projection operation, nor how much 〈Gi zk − xk

i , yk
i −

wk
i 〉might exceed zero after processing block i . Predicting this quantity for every block,

however, might require essentially the same computation as evaluating a proximal or
forward step for all blocks, after which we might as well update all blocks, that is, set
Ik = {1, . . . , n}.

In order to guarantee convergence under this block selection heuristic, we must
include some safeguard to make sure that Assumption 2(1) holds. One straightforward
option is as follows: if a block has not been processed for more than M > 0 iterations,
we must process it immediately regardless of the value of 〈Gi zk − xk−1

i , yk−1
i −wk

i 〉.
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5.4 Variable metrics

Looking at Lemmas 12 and 13, it can be seen that the update rules for (xk
i , yk

i ) can
be abstracted. In fact any procedure that returns a pair (xk

i , yk
i ) in the graph of Ti

satisfying, for some ξ4 > 0,

(∀i = 1, . . . , n) 〈Gi z
l(i,k) − xk

i , yk
i − w

l(i,k)
i 〉 ≥ ξ4‖Gi z

l(i,k) − xk
i ‖2 (56)

(∀i ∈ IB) 〈Gi z
l(i,k) − xk

i , yk
i − w

l(i,k)
i 〉 ≥ ξ4‖yk

i − w
l(i,k)
i ‖2 (57)

(∀i ∈ IF) 〈Gi z
l(i,k) − xk

i , yk
i − w

l(i,k)
i 〉 + Li‖Gi z

l(i,k) − xk
i ‖2

≥ ξ4‖Ti Gi z
l(i,k) − w

l(i,k)
i ‖2 (58)

yields a convergent algorithm. As with lemmas 12 and 13, these inequalities need only
hold in the limit.

An obvious way to make use of this abstraction is to introduce variable metrics. To
simplify the following, we will ignore the error terms ek

i and assume no delays, i.e.
d(i, k) = k. The updates on lines 4–6 and 7–9 of Algorithm 2 can be replaced with

(∀i ∈ IB) xk
i + ρk

i U k
i yk

i = Gi z
k + ρk

i U k
i wk

i , yk
i ∈ Ti xk

i , (59)

(∀i ∈ IF) xk
i = zk − ρk

i U k
i (Ti Gi z

k − wk
i ), yk

i = Ti xk
i , (60)

where {U k
i : Hi → Hi } are a sequence of bounded linear self-adjoint operators such

that

∀i = 1, . . . , n, x ∈ Hi : inf
k≥1〈x, U k

i x〉 ≥ λ‖x‖2 and sup
k≥1
‖U k

i ‖ ≤ λ (61)

where 0 < λ, λ < ∞. In the finite dimensional case, (61) simply states that the
eigenvalues of the set of matrices {U k

i } can be uniformly bounded away from 0 and
+∞. It can be shown that using (59)–(60) leads to the desired inequalities (56)–(58).

The new update (59) can be written as

xk
i = (I + ρk

i U k
i Ti )

−1(Gi z
k + ρk

i U k
i wk

i ). (62)

It was shown in [11, Lemma 3.7] that this is a proximal step with respect to U k
i Ti and

that this operator is maximal monotone under an appropriate inner product. Thus the
update (62) is single valued with full domain and hence well-defined. In the optimiza-
tion context where Ti = ∂ fi for closed convex proper fi , solving (62) corresponds to
the subproblem

min
x∈Hi

{
ρk

i fi (x)+ 1

2
〈(U k

i )−1(x − a), x − a〉
}

where a = Gi zk + ρk
i U k

i wk
i . For the variable-metric forward step (60), the stepsize

constraint (20) must be replaced by ρk
i < 1/‖U k

i ‖Li .
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6 Numerical experiments

We now present some preliminary numerical experiments with Algorithm 3, eval-
uating various strategies for selecting Ik and comparing efficiency of forward and
(approximate) backward steps. All our numerical experiments were implemented in
Python (using numpy and scipy) on an Intel Xeon workstation running Linux.

6.1 Rare feature selection

The work in [38] studies the problem of utilizing rare features in machine learning
problems. In this context, a “rare feature” is one whose value is rarely nonzero, making
it hard to estimate the corresponding model coefficients accurately. Despite this, such
features can be highly informative, so the standard practice of discarding them is
wasteful. The technique in [38] overcomes this difficulty bymaking use of an auxiliary
tree data structure T describing feature relatedness. Each leaf of the tree is a feature
and two features’ closeness on the tree measures how “related” they are. Closely
related features can then be aggregated (summed) so that more samples are captured,
increasing the accuracy of the coefficient estimate for a single coefficient for the
aggregated features.

To formulate the resulting aggregation and fitting problem, [38] introduced the
following generalized regression problem:

min
β∈Rd ,γ∈R|T |

{
�(Xβ, b)+ λ

(
(1− α)‖β‖1 + α‖γ−r‖1

) ∣∣ β = Hγ
}

(63)

where � : Rm×R
m → R is a loss function, X ∈ R

m×d is the datamatrix, b ∈ R
m is the

target (response) vector, and β ∈ R
d are the feature coefficients. Each γ i is associated

with a node of the similarity tree T , and γ−r denotes the subvector of γ corresponding
to all nodes except the root node. The matrix H ∈ R

d×|T | contains a 1 in positions
i, j for those features i which correspond to a leaf of T that is descended from node
j , and elsewhere contains zeroes. Due to the constraint β = Hγ , the coefficient γ j of
each tree node j contributes additively to the coefficient β i of each feature descended
from j . H thus fuses coefficients together in the following way: if γ i is nonzero for a
node i and all descendants of γ i in T are 0, then all coefficients on the leaves which
are descendant from γ i are equal (see [38, Sec. 3.2] for more details). The �1 norm
on γ enforces sparsity of γ , which in turn fuses together coefficients in β associated
with similar features. The �1 norm on β itself additionally enforces sparsity on these
coefficients, which is also desirable. The model can allow for an offset variable by
incorporating columns/rows of 1’s and 0’s in X and H , but for simplicity we omit the
details.

6.2 TripAdvisor reviews

We apply this model to a dataset of TripAdvisor reviews of hotels from [38]. The
response variable was the overall review of the hotel in the set {1, 2, 3, 4, 5}. The
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features were the counts of certain adjectives in the review. Many adjectives were
very rare, with 95% of the adjectives appearing in fewer than 5% of the reviews. The
authors of [38] constructed a similarity tree using information from word embeddings
and emotion lexicon labels; there are 7573 adjectives from the 209,987 reviews and the
tree T had 15,145 nodes. A test set of 40,000 examples was withheld, leaving a sparse
169,987 × 7573 matrix X having only 0.32% nonzero entries. The 7,573 × 15,145
matrix H arising from the similarity tree T is also sparse, having 0.15% nonzero
entries. In our implementation, we used the sparsematrix package sparse in scipy.

In [38], the elements of b are the review ratings and the loss function is given by
the standard least-squares formula �(Xβ, b) = (1/2m)‖Xβ − b‖22. To emphasize
the advantages of our new forward-step version of projective splitting over previous
backward-step versions, we instead use the same data and regularizers to construct a
classification problem with the logistic loss. We assigned the 73,987 reviews with a
rating of 5 a value of bi = +1, while we labeled the 96,000 reviews with value 4 or
less with bi = −1. The loss is then

�(Xβ, b) = 1

m

m∑

j=1
log
(
1+ exp

(− b j 〈x j ,β〉
))

(64)

where x j is the j th row of X . The classification problem is then to predict which
reviews are associated with a rating of 5.

In practice, one typically would solve (63) for many values of (α, λ) and then
choose the final model based on cross validation. To assess the computational
performance of the tested methods, we solve three representative examples corre-
sponding to sparse, medium, and dense solutions. The corresponding values for λ

were {10−8, 10−6, 10−4}. In preliminary experiements, we found that the value of α

had little effect on algorithm performance, so we fixed α = 0.5 for simplicity.

6.3 Applying projective splitting

The work in [38] solves the problem (63), with � set to the least-squares loss, using
a specialized application of the ADMM. The implementation involves precomputing
the singular value decompositions (SVDs) of the (large) matrices X and H , and so
does not fall within the scope of standard first-order methods. Instead, we solve (63)
with the logistic loss by simply eliminating β, so that the formulation becomes

F∗ � min
γ∈R|T |

{
�(X Hγ , b)+ λ

(
(1− α)‖Hγ ‖1 + α‖γ−r‖1

) }
. (65)

To utilize block-iterative updates in Algorithm 3, we split up the loss function as fol-
lows: LetR = {R1, .., RP } be an arbitrary partition of {1, . . . , m}. For i = 1, . . . , P ,
let Xi ∈ R

|Ri |×d be the submatrix of X with rows corresponding to indices in Ri and
similarly let bi ∈ R

|Ri | be the corresponding subvector of b. Then (65) is equivalent
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to

min
γ∈R|T |

{
P∑

i=1
�(Xi Hγ , bi )+ λ

(
(1− α)‖Hγ ‖1 + α‖γ−r‖1

)
}

. (66)

There are several ways to formulate this problem as a special case of (2), leading to
different realizations of Algorithm 3. The approach that we found to give the best
empirical performance was to set n = P + 3 and

Gi = H fi (t) = �(Xi t, bi ) i = 1, . . . n − 3

Gn−2 = H fn−2(t) = λ(1− α)‖t‖1
Gn−1 = G̃ fn−1(t) = λα‖t‖1

Gn = I fn(t) = 0,

where

G̃ : [γ 1 γ 2 · · · γ |T |−1 γ |T |] �→ [γ 1 γ 2 · · · γ |T |−1],

and the last element of γ , γ |T |, is the root of the tree. We append the trivial function
fn = 0 in order to comply with the requirement that the final linear operator Gn be
the identity; see (13). The functions fn−2 and fn−1 have easily-computed proximal
operators, so we process them at every iteration. Further, the proximal operator of
fn has is simply the identity, so we also process it at each iteration. Therefore,
{n − 2, n − 1, n} ⊆ Ik for all k ≥ 1. On the other hand, the functions fi (t) for
i = 1, . . . , P are

fi (t) = �(Xi t, b) = 1

m

|Ri |∑

j=1
log
(
1+ exp

(−bi
j 〈xi j , t〉)

)
,

where xi j is the j th row of the submatrix Xi and bi
j is the j th element of bi . These

functions areLipschitz differentiable and somaybe processed by our new forward-step
procedure. We use the backtracking procedure in Sect. 5.1 so that we do not need to
estimate the Lipschitz constant of each �i , a potentially costly computation involving
the SVD of each Xi . The most time-consuming part of each gradient evaluation are
two matrix multiplications, one by Xi and one by X i . We will refer to the approach of
setting IF = {1, . . . , P} and using backtracking as “Projective Splitting with Forward
Steps” (psf).

On the other hand, even though the proximal operators of f1, . . . , fP lack a closed
form, it is still possible to process these functions with an approximate backward step.
The exact proximal map for fi is the solution to

argmint∈Rd

⎧
⎨

⎩
1

m

|Ri |∑

j=1
log
(
1+ exp

(−bi
j 〈xi j , t〉)

)
+ 1

2
‖t − u‖22

⎫
⎬

⎭ . (67)
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This is an unconstrained nonlinear convex program and there are many different
ways one could approximately solve it. Since we are interested in scalable first-order
approaches, we chose the L-BFGS method—see for example [30]—which has small
memory footprint and only requires gradient and function evaluations. So, we choose
some σ ∈ [0, 1) and apply L-BFGS to solve (67) until the relative error criteria (21)
and (22) are met.

For a given candidate solution xk
i , we have yk

i = ∇�(Xi xk
i , bi ), and the error can be

explicitly computed as ek
i = xk

i + ρi yk
i − (H zk + ρiw

k
i ). Every iteration of L-BFGS

requires at least one gradient and function evaluation,which in turn requires twomatrix
multiplies, one by Xi and one by X i . We “warm-start” L-BFGS by initializing it at
xk−1

i . We will refer to this approach as “Projective Splitting with Backward Steps”
(psb).

The coordination procedure (lines 12–26) is the same for psf and psb, requir-
ing two multiplies by H , two by H , vector additions, inner products, and scalar
multiplications.

We tried P = 1 and P = 10, with each block chosen to have the same number
of elements (to within P , since m is not divisible by P) of contiguous rows from X .
At each iteration, we selected one block from among 1, . . . , P for a forward step in
psf or backward step with L-BFGS in psb, and blocks P + 1, P + 2, and P + 3
for backward steps. Thus, Ik always has the form {i, P + 1, P + 2, P + 3}, with
1 ≤ i ≤ P . To select this i , we tested three strategies: the greedy block selection
scheme described in Sect. 5.3, choosing blocks at random, and cycling through the
blocks in a round-robin fashion. For the greedy scheme, we did not use the safeguard
parameter M as in practice we found that every block was updated fairly regularly.

We refer to the greedy variants with P = 10 blocks as psf-g and psb-g,
those with randomly selected blocks as psf-r and psb-r, and those with cycli-
cally selected blocks as psf-c and psb-c. Finally, the versions with P = 1 are
referred to as psf-1 and psb-1.

6.4 The competition

To compare with our proposed methods, we restricted our attention to algorithms with
comparable features and benefits. In particular, we only considered first-ordermethods
which do not requre computingLipschitz constants of gradients andmatrices. Very few
such methods apply to (65). The presence of the matrix H in the term ‖Hγ ‖1 makes
it difficult to apply Davis-Yin three-operator splitting [14] and related methods [31],
since the proximal operator of this function cannot be computed in a simple way. We
compared our projective splitting methods with the following methods:

– The backtracking linesearch variant of the Chambolle-Pock primal-dual splitting
method [26], which we refer to as cp-bt.

– The algorithm of [10]. This approach is based on the “monotone + skew” inclusion
formulation obtained by first defining the monotone operators

T1(β) = λ(1− α)∂‖β‖1 T2(γ ) = λα∂‖γ−r‖1 T3(γ ) = ∇γ

[
�(X Hγ , b)

]
,
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Table 1 Tuning parameters for the (65) applied to TripAdvisor data

Parameter Method λ = 10−8 λ = 10−6 λ = 10−4

γ psf 10−5 10−6 10−4

γ psb 10−4 10−4 10−4

β cp-bt 106 106 10

γpd tseng-pd 1 1 10

γpd frb-pd 1 1 100

and then formulating the problem as 0 ∈ Ã(z, w1, w2)+ B̃(z, w1, w2), where Ã
and B̃ are defined by

Ã(z, w1, w2) = {0} × T−11 w1 × T−12 w2 (68)

B̃(z, w1, w2) =
⎡

⎣
T3(z)
0
0

⎤

⎦+
⎡

⎣
0 H I
−H 0 0
−I 0 0

⎤

⎦

⎡

⎣
z

w1
w2

⎤

⎦ . (69)

Ã is maximal monotone, while B̃ is the sum of two Lipshitz monotone operators
(the second being skew linear), and therefore is also Lipschitz monotone. The
algorithm in [10] is essentially Tseng’s forward–backward–forward method [35]
applied to this inclusion, using resolvent steps for Ã and forward steps for B̃.
Thus, we call this method tseng-pd. In order to achieve good performance with
tseng-pd we had to incorporate a diagonal preconditioner as proposed in [37].
We used the following preconditioner:

U = diag(Id×d , γpd Id×d , γpd Id×d) (70)

where U is used as in [37, Eq. (3.2)] for tseng-pd.
– The recently proposed forward-reflected-backward method [27], applied to this
same primal-dual inclusion 0 ∈ Ã(z, w1, w2) + B̃(z, w1, w2) specified by
(68)–(69). We call this method frb-pd. For this method, we used the same
preconditioner given in (70), used as M−1 on [27, p. 7].

6.5 Algorithm parameter selection

For psf, we used the backtracking procedure of Sect. 5.1 with Δ = 1 to determine
ρk
1 , . . . , ρ

k
n−3. For the stepsizes associated with the regularizers, we simply set ρk

n−2 =
ρk

n−1 = ρk
n = 1. For backtracking in all methods, we set the trial stepsize equal to the

previously discovered stepsize.
For psb, we used ρk

1 = . . . = ρk
n = 1 for simplicity. For the L-BFGS procedure

in psb, we set the history parameter to be 10 (i.e. the past 10 variables and gradients
were used to approximate the Hessian). We used a Wolfe linesearch with C1 = 10−4
and C2 = 0.9.
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Projective splitting with forward steps 667

Fig. 2 Objective values against wall-clock running time. Top row: λ = 10−8, middle row: λ = 10−6,
bottom row: λ = 10−4

Each tested method then had one additional tuning parameter: β given in line 2.a
of Algorithm 4 of [26] for cp-bt, γpd given in (70) for tseng-pd and frb-pd,
and γ for psf and psb. The values we used are given in Table 1. These values were
chosen by running each method for 2000 iterations and picking the tuning parameter
from {10−6, 10−5, . . . , 105, 106} giving the smallest final function value. We then ran
a longer experiment (about 10 minutes) for each method, using the chosen tuning
parameter. The greedy, random, cyclic, and 1-block variants of psf and psb all used
the same tuning parameter values.
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6.6 Results

In Fig. 2 we plot the objective function values against elapsed wall-clock running time,
excluding time to compute the plotted function values. For psf andpsb, we computed
function values for the primal variable zk . For cp-bt, we computed the objective at
yk as given in [26, Algorithm 4]. For tseng-pd and frb-pd, we computed the
objective values for the primal iterate corresponding to z in (68)–(69).

The best performing variants of projective splitting were psf-g and psb-g. In the
left-hand plots in Fig. 2, we compare the performance of psf-g,psf-r,psf-c, and
psf-1. This column of the figure demonstrates the superiority of the greedy variant
(psf-g) and the usefulness of the block-iterative capabilities of projective splitting:
in particular, processing only one of the first P blocks at each iteration, when this block
is selected by the greedy heuristic as in psf-g, results in much better performance
than the psf-1 strategy of procesing the entire loss function at each iteration. Further,
the greedy heuristic outperforms both random and cyclic selection.

The right-hand plots in the figure compare cp-bt, tseng-pd, and frb-pd to
our methods psf-g and psb-g. These plots suggest that tseng-pd, frb-pd,
and cp-bt are not particularly competitive on this problem. Our method psf-g is
the fastest method on all examples. Our similar method using approximate backward
steps, psb-g, is very close in performance to psf-g for λ = 10−6, but is slower for
λ = 10−8 and λ = 10−4. Furthermore, psf-g is arguably far simpler to implement
than psb-g: for psb-g, one must select a method for approximately solving the
nonlinear program (67) at each iteration. While we chose L-BFGS, there are many
other possibilities, each with its own parameters. For L-BFGS, we had to choose the
history parameter, the type of linesearch condition to use, and other parameters. After
making these choices, one thenmust implement the subproblem solver; onemight also
be able to use some existing implementation, but (in theory, at least) caremust be taken
to make sure that it terminates using the proper stopping criteria (21) and (22). By
contrast, the implementation details of psf-g are contained within this manuscript
and fewer choices need to be made. Overall, our experiments thus suggest that our
new forward-step procedure can improve the performance and usability of projective
splitting.
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