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Abstract
We establish necessary and sufficient conditions for strong duality of extended
monotropic optimization problems with possibly infinite sum of separable functions.
The results are applied to a minimization problem of the infinite sum of proper convex
functions. We consider a truncation method for duality and obtain the zero duality gap
by using only dual variable of finite support. An application to minimum cost flow
problems in infinite networks is also discussed.
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1 Introduction

The classical monotropic programming problem, introduced and analyzed by Rock-
afellar [16], is formulated as follows
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minimize
m∑

i=1

fi (xi )

subject tox ∈ S,

where x = (x1, ..., xm) ∈ R
m , fi , i = 1, ..., m are convex functions on R and S

is a subspace of Rm . Monotropic problems have originally arisen from minimum
cost network flow problems [15,17] and form a particular class of separable convex
programming with a lot of applications (see [2,3,5,6,8] and references given therein).
Many duality results that are important in development of computing methods have
been recently obtained in [2,3,6,8], in which considerable effort focuses on countably
infinite monotropic problems. Optimization problems involving a countably infinite
number of variables and a countably infinite number of constraints, are often met
in infinite dimensional linear programming, infinite networks and hypernetworks,
infinite-horizon planning, Markov decision processes, robust optimization and many
other fields ([10,17–20]).While under relativelymild conditions, zero duality gap does
hold for monotropic problems in finite dimension (Theorem 11D [16]), it is not the
case in the infinite dimension. To the best of our knowledge, [6] is the first work that
carefully analyzes Fenchel duality for generalized monotropic problems with infinite
sums in the framework of proper convex and lower semicontinuous functions. They
obtain strong duality under a constraint qualification on the closedness of the sum
of the conjugates of the convex functions and generalize the results of finite sums of
[3,5]. Another method has been recently utilized in [8] to establish zero duality gap
and strong duality for infinite monotropic problems over intervals of real numbers
by means of a suitable sequence of finite monotropic problems. According to this
method, the original infinite monotropic problem is truncated into finite ones. An
optimal solution of the original problem is obtained as limit of a sequence of optimal
solutions of truncated problems, and duality relations are derived from the already
acquired duality relations of the finite truncated ones. The main difference between
the approach by [6] and the one by [8] is the choice of the dual space. In [6] (see
also [9]) the dual variable is taken from the space of sequences with finite support
(sequences with only finitely many nonzero terms), while [8] uses sequences with
possibly infinite support, which seems to fit better with practical models in infinite
horizon planning and infinite networks.

Thepurposeof our study is to develop ageneral framework for duality ofmonotropic
optimization problems in which the objective functions are infinite sums of functions.
We employ the dual space introduced in [6] to construct dual problems and to establish
strong duality for both the primal and the dual problems. With regard to the results of
[6] we improve them in the sense that we give both necessary and sufficient conditions
for strong duality and show that one of the conditions imposed in [6] on the epigraph
of the conjugate function of the objective function can be removed. Besides usual
strong duality of type inf(P)= max(D), we also charaterize reverse duality of type
min(P)=sup(D). Furthermore, we use the truncation method of [8] to our problem
and generalize the main result of [8] on zero duality gap. An interesting outcome of
our analysis is the fact that under the same conditions, the dual problem using dual
variable from the space of sequences with finite support yields the same zero duality
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gap as the dual problem using dual variable from the space of sequences with infinite
support. This fact is important in computation, especially in solving minimum cost
flow problems on infinite networks as described in [8].

The paper is structured as follows. In Sect. 2 we summarize some properties of
summable families of real numbers and functions. In Sect. 3 we give a formula to
compute the conjugate of the infinite sum of separable functions. Section 4 is devoted
to the infinite sum of the epigraphs of separable functions and of their conjugates.
Section 5 is the core of our paper where we present a dual problem of the infinite
monotropic problem and give regularity conditions for strong duality and reverse
strong duality to hold. The results of this section improve those obtained in [6]. We
explain also that some regularity conditions of [6] can be removed. In Sect. 6 we apply
the results of Sect. 5 to the problem of minimizing an infinite sum of convex functions
by reformulating it in form of monotropic problem. Section 7 is devoted to extension
of the truncation method of [8] to a more general space setting. In a particular model
of [8], although the dual space we are considering is different from the one of [8],
we obtain the same dual problems for truncated problems. This enables us to derive
a zero duality gap by using dual variable of sequences with finite support instead of
sequences with infinite support. Due to a result of [1] on representation of positive
linear functionals by finite support positive vectors, we establish equivalence between
the algebraic dual of a conic optimization problem and the dual developed in our study.
In the final section we consider a minimum cost flow problem in infinite networks. By
using a translation of variable, we express the problem in form of infinite monotropic
problem. We apply the results obtained in Sect. 7 on zero duality gap to this problem
and address a discussion on differences between our approach and the approach of
[8,14].

2 Preliminaries

Throughout this paper R∞ := R ∪ {+∞}, R := R ∪ {±∞}, I is a nonempty index
set and I is the set of all nonempty finite subsets of I , partially ordered by inclusion.

Let {ti : i ∈ I } (or (ti )i for short) be a family from R∞. We define the sum of this
family to be the unconditional limit of the finite sums

∑
i∈J ti , J ∈ I when it exists

in R and denote it by
∑

i∈I ti . The following remarks will be used in what follows.

Remark 1 For {ti : i ∈ I } ⊂ [0,+∞] the sum ∑
i∈I ti exists and

0 ≤
∑

i∈I

ti = sup
I∈I

∑

i∈I

ti ≤ +∞.

Remark 2 If {ti : i ∈ I } ⊂ R and
∑

i∈I ti ≤ t for some t ∈ R, then there is
{si : i ∈ I } ⊂ R such that ti ≤ si for all i ∈ I and

∑
i∈I si = t .

Let (Si )i be a family of nonempty sets and let hi : Si → R, i ∈ I be given. The
following remark is very closed to Lemma A.2 [6] and its proof is omitted.
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Remark 3 If for every (xi )i ∈ S :=
∏

i∈I
Si , the infinite sum

∑
i∈I hi (xi ) exists in

R, and is not identically equal to −∞, then

−∞ < sup
(xi )i ∈S

∑

i∈I

hi (xi ) =
∑

i∈I

sup
xi ∈Si

hi (xi ) ≤ +∞.

Let X be a separated locally convex space and let h : X → R. We recall that the
effective domain of h is the set domh := {x ∈ X : h(x) < +∞}. The function
h is said to be proper if it does not take the value −∞ and its effective domain is
nonempty. The conjugate h∗ of h is defined on the topological dual X∗ of X by the
formula h∗(x∗) := supx∈X (x∗(x) − h(x)) for x∗ ∈ X∗. The biconjugate of h is the
conjugate of h∗ and defined on X by h∗∗(x) := supx∗∈X∗(x∗(x)−h∗(x∗)) for x ∈ X .

We know that h = h∗∗ if and only if either h is identically equal to +∞, or to −∞,
or h is proper convex and lower semicontinuous on X . The set of proper convex and
lower semicontinuous functions on X is sometimes denoted by �(X), and the set of
nonnegative proper convex and lower semicontinuous is denoted by �+(X).

3 Conjugate of the infinite sum of separable functions

Let (Xi , X∗
i ), i ∈ I be dual pairs of separated locally convex spaces over reals with

coupling functions 〈., .〉i , i ∈ I .We denote byX the product space
∏

i∈I
Xi equipped

with the product topology. According to Theorem 4.3 [21], the topological dual ofX is
the spaceX ∗ consisting of all families (x∗

i )i ∈
∏

i∈I
X∗

i which may have only a finite
number of nonzero terms (such families are said to be of finite support). The space
X ∗ is algebraically isomorphic to, hence sometimes identified with the direct sum of
X∗

i , i ∈ I . The topology on X ∗ is given by the w*-topology σ(X ∗,X ) generated by
the coupling function

〈(x∗
i )i , (xi )i 〉 :=

∑

i∈I

〈x∗
i , xi 〉i for (xi )i ∈ X , (x∗

i )i ∈ X ∗.

Note that the sum on the right hand side above is well defined as it is a finite sum
because all x∗

i , i ∈ I are zero except for finitely many terms. The canonical projection
p j from X onto X j is given by

p j ((xi )i ) := x j for (xi )i ∈ X ,

and its transposed � j : X∗
j → X ∗ by

� j (x∗
j ) = (x∗

i )i for x∗
j ∈ X∗

j ,
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where x∗
i = x∗

j if i = j and x∗
i = 0X∗

i
if i �= j . An extension of � j is L j : X∗

j ×R →
X ∗ × R defined by

L j (x∗
j , r) := (� j (x∗

j ), r) for x∗
j ∈ X∗

j , r ∈ R.

Now we consider a family { fi : Xi → R∞}i∈I of proper functions and assume the
following hypothesis

(H) For every (xi )i ∈ X , f ((xi )i ) := ∑
i∈I fi (xi ) exists in R, and dom f �= ∅.

By using the projection pi , each function fi on Xi can be extended to a function f̂i on
X by f̂i := fi ◦ pi , and so we can express f as an infinite sum of functions on X by
f = ∑

i∈I f̂i . The next result summarizes some relationships between the conjugate
functions f ∗

i , f̂ ∗
i and f ∗.

Proposition 1 For every (x∗
i )i ∈ X ∗ and j ∈ I one has

f̂ ∗
j ((x∗

i )i ) =
{

f ∗
j (x∗

j ) if � j (x∗
j ) = (x∗

i )i

+∞ else.
(1)

In particular epi f̂ ∗
j = L j (epi f ∗

j ). Moreover, under (H), the sum
∑

i∈I f ∗
i (x∗

i ) exists
in R∞ and

− ∞ < f ∗((x∗
i )i ) =

∑

i∈I

f ∗
i (x∗

i ) ≤ +∞. (2)

If, in addition, fi , i ∈ I are proper convex and lower semicontinuous anddom f ∗ �= ∅,
then f is proper convex and lower semicontinuous too.

Proof The formula (1) and equality epi f̂ ∗
j = L j (epi f ∗

j ) follow immediately from

the definitions of f̂ j , � j and L j (see also [6] (20)). Furthermore, since dom f ⊆∏
i∈I dom fi , we have

f ∗((x∗
i )i ) = sup

(xi )i ∈∏
i∈I dom fi

∑

i∈I

(〈x∗
i , xi 〉 − fi (xi )

)
.

Due to Remark 3 we switch sup and
∑

to obtain

f ∗((x∗
i )i ) =

∑

i∈I

sup
xi ∈dom fi

(〈x∗
i , xi 〉 − fi (xi )

)

=
∑

i∈I

f ∗
i (x∗

i ),

which proves (2) (see also Remark 2.1(ii) [6] for this relation in the case where x∗ ∈
dom f ∗ and f is convex). For the last statement, let (x∗

i )i ∈ dom f ∗. By (2) one has
f ∗((x∗

i )i ) = ∑
i∈I f ∗

i (x∗
i ) < +∞. Actually,

∑
i∈I f ∗

i (x∗
i ) ∈ R because dom f �= ∅
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(by (H)), and so f ∗((x∗
i )i ) �= −∞. For every i ∈ I , we define a function hi : Xi →

R∞ by

hi (xi ) := fi (xi ) − 〈x∗
i , xi 〉 + f ∗

i (x∗
i ).

In view of the Fenchel inequality, hi ∈ �+(Xi ). Consequently, ĥi := hi ◦ pi ∈ �+(X ).
By introducing k((xi )i ) := ∑

i∈I

(〈x∗
i , xi 〉 − f ∗

i (x∗
i )

)
for (xi )i ∈ X , we have

f ((xi )i ) + k((xi )i ) =
∑

i∈I

ĥi ((xi )i ).

Observe that dom( f + k) = dom f because the function k is linear continuous.
Moreover, being the supremum of the family {∑i∈J ĥi : J ∈ I} of functions from
�+(X ), the function h := f + k belongs to �+(X ) too. By this f = h − k ∈ �(X ).

��
We notice that equality in (2) may fail if dom f is empty as it is shown in the next

example.

Example 1 Let I = N, Xi = R and fi (xi ) = 1/i for xi ∈ Xi and i ∈ I . For
every (xi )i ∈ X we have f ((xi )i ) = ∑

i∈I fi (xi ) = ∑∞
i=1 1/i = +∞. Hence

f ∗((x∗
i )) = −∞ for all (x∗

i )i ∈ X ∗. Let (x∗
i )i ∈ X ∗ be such that x∗

1 �= 0 and
x∗

i = 0 for i ≥ 2. Then, f ∗
1 (x∗

1) = +∞ and f ∗
i (x∗

i ) = −1/i, i ≥ 2. Consequently,∑
i∈I f ∗

i (x∗
i ) = +∞ and f ∗((x∗

i )i ) �= ∑
i∈I f ∗

i (x∗
i ).

4 Infinite sums of epigraphs

Let (Z , Z∗) be a dual pair of separated locally convex spaces. The coupling function
between Z and Z∗ is denoted 〈., .〉. Let {zi : i ∈ I } be a family in Z . We say that
z is the w-sum of this family and write z = ∑w

i∈I zi if for every z∗ ∈ Z∗ one has
〈z∗, z〉 = ∑

i∈I 〈z∗, zi 〉. Similarly, z∗ is the w*-sum of a family {z∗
i : i ∈ I } ⊂ Z∗ (we

write z∗ = ∑w∗
i∈I z∗

i ) if 〈z∗, z〉 = ∑
i∈I 〈z∗

i , z〉 for all z ∈ Z . The w-sum of a family of
sets {Ai : i ∈ I } ⊂ Z and the w*-sum of a family {Bi : i ∈ I } ⊂ Z∗ are respectively
defined by

∑

i∈I

w
Ai :=

{
∑

i∈I

w
zi : zi ∈ Ai , i ∈ I

}

∑

i∈I

w∗
Bi :=

{
∑

i∈I

w∗
z∗

i : z∗
i ∈ Bi , i ∈ I

}

We now concentrate on the case Z = X × R, Z∗ = X ∗ × R and study the families
{epi fi : i ∈ I } and {epi f ∗

i : i ∈ I }.
Let’s denote the canonical projection of X ∗ onto X∗

j by q j and its transposed from
X j into X by m j , that is, for x j ∈ X j , m j (x j ) = (xi )i with xi = x j if i = j
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and xi = 0Xi if i �= j . An extention M j : X j × R → X × R of m j is given by
M j (x j , r) := (m j (x j ), r) for x j ∈ X j and r ∈ R.

Lemma 1 The following assertions hold true.

(i)
∑w

i∈I mi (xi ) = (xi )i for (xi )i ∈ X .
(ii)

∑w
i∈I mi (Ai ) = ∏

i∈I Ai for Ai ⊂ Xi , i ∈ I .
(iii)

∑w
i∈I Mi (Ci ) = {((xi )i ,

∑
i∈I ri ) ∈ X ×R : (xi , ri ) ∈ Ci } for Ci ⊂ Xi ×R, i ∈

I .

Proof Let (xi )i ∈ X . For each (x∗
i )i ∈ X ∗ we have

〈(x∗
i )i , (xi )i 〉 =

∑

i∈I

〈x∗
i , xi 〉 =

∑

i∈I

〈qi ((x∗
j ) j ), xi 〉 =

∑

i∈I

〈x∗
i , mi (xi )〉.

Hence (xi )i = ∑w
i∈I mi (xi ). For the second assertion, let ai ∈ Ai , i ∈ I . By (i),∑w

i∈I mi (ai ) = (ai )i ∈ ∏
i∈I Ai , which proves

∑w
i∈I mi (Ai ) ⊂ ∏

i∈I Ai . Conversely,
let (ai )i ∈ ∏

i∈I Ai . Again, by (i), (ai )i = ∑w
i∈I mi (ai ) ∈ ∑w

i∈I mi (Ai ) and (ii)
follows.

For the last assertion let ((ai )i , r) = ∑w
i∈I Mi (xi , ri ) = ∑m

i∈I (mi (xi ), ri ) for
some (xi , ri ) ∈ Ci , i ∈ I . It follows that (ai )i = ∑w

i∈I mi (xi ) and r = ∑
i∈I ri . By

(i), ai = xi and shows that (ai , ri ) ∈ Ci , i ∈ I . Conversely, let ((xi )i ,
∑

i∈I ri ) ∈
X × R with (xi , ri ) ∈ Ci , i ∈ I . Then r := ∑

i∈I ri ∈ R and by (i), ((xi )i , r) =∑w
i∈I (mi (xi ), ri ) = ∑w

i∈I Mi (xi , ri ) ∈ ∑w
i∈I Mi (Ci ), which completes the proof. ��

Proposition 2 Assume that f does not take the value −∞ and that (H) holds. Then

epi f =
∑

i∈I

w
Mi (epi fi ).

Proof By definition ((xi )i , r) ∈ epi f if and only if−∞ < f ((xi )i ) = ∑
i∈I fi (xi ) ≤

r < +∞. In view of Remark 2 the second inequality holds if and only if there are
ri ∈ R such that (xi , ri ) ∈ epi fi , i ∈ I and

∑
i∈I ri = r . In view of Lemma 1 (iii),

this is equivalent to ((xi )i , r) ∈ ∑w
i∈I Mi (epi fi ). The proof is complete. ��

A dual version of Lemma 1 and of Proposition 2 is given next.

Lemma 2 The following assertions hold true.

(i)
∑w∗

i∈I �i (x∗
i ) = (x∗

i )i for (x∗
i )i ∈ X ∗.

(ii)
∑w∗

i∈I �i (Bi ) = X ∗ ∩ ∏
i∈I Bi for Bi ⊂ X∗

i , i ∈ I .

(iii)
∑w∗

i∈I Li (Di ) = {((x∗
i )i ,

∑
i∈I ri ) ∈ X ∗ × R : (x∗

i , ri ) ∈ Di } for Di ⊂ X∗
i ×

R, i ∈ I .

Proof Apply the argument similar to that of Lemma 1. ��
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Proposition 3 Under (H) one has

epi f ∗ =
∑

i∈I

w∗
Li (epi f ∗

i ) =
∑

i∈I

w∗
epi f̂ ∗

i .

Proof Apply the argument of Proposition 2 by using Lemma 2. ��

5 Duality for infinite monotropic problems

In this section we assume that fi , i ∈ I are proper convex and lower semicontinuous
functions satisfying (H) and dom f ∗ �= ∅.

In view of Proposition 1 the function f is proper convex and lower semicontinuous
too. We consider the following extended infinite monotropic problem

(Pg
(x∗

i )i
)

inf
∑

i∈I ( fi (xi ) − 〈x∗
i , xi 〉) + g((xi )i )

(xi )i ∈ X ,

where g is a proper convex and lower semicontinuous function on X and (x∗
i )i ∈ X ∗

is given. The infimum of (Pg
(x∗

i )i
) is denoted by inf(Pg

(x∗
i )i

), or by min(Pg
(x∗

i )i
) if the

optimal value is attained. We have

− inf(Pg
(x∗

i )i
) = ( f + g)∗((x∗

i )i ) ≤ ( f ∗�g∗)((x∗
i )i ), (3)

where ( f ∗�g∗) denotes the infimal convolution of f ∗ and g∗, that is,

( f ∗�g∗)((x∗
i )i ) := inf

(y∗
i )i ∈X ∗( f ∗((y∗

i )i ) + g∗((x∗
i − y∗

i )i ) for (x∗
i )i ∈ X ∗. (4)

The above infimal convolution is said to be exact if the infimum on the right hand side
is attained at some (y∗

i )i ∈ X ∗.
We deduce the Fenchel conjugate dual of (Pg

(x∗
i )i

) :

(Dg
(x∗

i )i
)

sup −(
f ∗((x∗

i )i ) + g∗((x∗
i − x∗

i )i )
)

(x∗
i )i ∈ X ∗.

Because elements of X ∗ are of finite support, this dual is also referred to as finite
support dual. Due to Proposition 1 it can be written as

(Dg
(x∗

i )i
)

sup −( ∑
i∈I f ∗

i (x∗
i ) + g∗((x∗

i − x∗
i )i )

)

(x∗
i )i ∈ X ∗.

Similar to the case of (Pg
(x∗

i )i
), the supremum of (Dg

(x∗
i )i

) is denoted by sup(Dg
(x∗

i )i
), or

by max(Dg
(x∗

i )i
) if the optimal value is attained. The standard weak duality relation is

immediate from (3), namely,
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inf(Pg
(x∗

i )i
) = −( f + g)∗((x∗

i )i ) ≥ −( f ∗�g∗)((x∗
i )i ) = sup(Dg

(x∗
i )i

).

When the above inequality is equality, (Pg
(x∗

i )i
) is said to have zero duality gap, and if

in addition the optimal value of the dual is achieved, we have strong duality for the
primal problem, in which case (Pg

(x∗
i )i

) is called stable in some literature [7,12]. Thus,

the strong duality property is nothing, but the expression

( f + g)∗((x∗
i )i ) = ( f ∗�g∗)((x∗

i )i ), (5)

in which the infimal convolution is exact. Strong duality for the dual problem refers
to the case when min(Pg

(x∗
i )i

) = sup(Dg
(x∗

i )i
).

We give below themain result of this section on a necessary and sufficient condition
for strong duality. We shall need Theorem 9.2 [4] which states that if h1 and h2
are proper convex, lower semicontinuous functions on a separated locally convex
space Z such that domh1∩ domh2 �= ∅ and V is a nonempty subset of Z∗, then
(h1 + h2)

∗(z∗) = min{h∗
1(y∗)+ h∗

2(z
∗ − y∗) : y∗ ∈ Z∗} for every x∗ ∈ V if and only

if the set Q := epih∗
1+ epih∗

2 is w∗-closed regarding the set V × R in the sense that

Q ∩ (V × R) = Q
w∗ ∩ (V × R), where Q

w∗
denotes the closure of Q in the weak*

topology of Z∗ × R.

Theorem 1 Let g, fi , i ∈ I be proper convex and lower semicontinuous functions
satisfying (H) such that dom f ∩ domg �= ∅ and let (x∗

i )i ∈ X ∗ be given. Assume∑
i∈I f ∗

i (z∗
i ) ∈ R for some (z∗

i )i ∈ X ∗. Then the following statements are equivalent:

(i) inf(Pg
(x∗

i )i
) = max(Dg

(x∗
i )i

).

(ii) The set
∑w∗

i∈I Li (epi f ∗
i ) + epig∗ is w∗-closed regarding the set {(x∗

i )i } × R.

In particular, (i) holds for every (x∗
i )i ∈ X ∗ if and only if the set

∑w∗
i∈I Li (epi f ∗

i ) +
epig∗ is w∗-closed.

Proof We observe that in view of Proposition 1 the function f is proper convex and
lower semicontinuous. By Theorem 9.2 [4] cited above,

− ( f + g)∗((x∗
i )i ) = max{− f ∗((y∗

i )i ) − g∗((x∗
i − y∗

i )i ) : (y∗
i )i ∈ X ∗} (6)

if and only if epi f ∗+ epi g∗ is w∗-closed regarding the set {(x∗
i )i } × R. Since

(6) is exactly (i), it remains to apply Proposition 3 to obtain epi f ∗+ epi g∗ =∑
i∈I

w∗
Li (epi f ∗

i )+ epig∗ and the equivalence between (i) and (ii). The second state-
ment of the theorem visibly follows from the first one. The proof is complete. ��

The next theorem characterizes strong duality for the dual problem. We denote
by g̃ the function (xi )i �→ g(−(xi )i ) + ∑

i∈I 〈x∗
i , xi 〉 on X . One has g̃∗((x∗

i )i ) =
g∗((x̄∗

i − x∗
i )i ), which yields

domg̃∗ = (x̄∗
i )i − domg∗. (7)
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Theorem 2 Let g, fi , i ∈ I be proper convex and lower semicontinuous functions sat-
isfying (H) such that dom f ∗ ∩−(

domg∗ − (x∗
i )i

) �= ∅. Then the following statements
are equivalent:

(i) min(Pg
(x∗

i )i
) = sup(Dg

(x∗
i )i

).

(ii) The set
∑w

i∈I Mi (epi fi ) + epig̃ is closed regarding the set {0X } × R.

Proof By the definition of g̃ we express inf(Pg
(x∗

i )i
) and sup(Dg

(x∗
i )i

) as

inf(Pg
(x∗

i )i
) = ( f �g̃)(0X )

sup(Dg
(x∗

i )i
) = ( f ∗ + g̃∗)∗(0X ).

Since f and g̃ are proper convex, lower semicontinuous functions, and in view of
(7), dom f ∗ ∩ domg̃∗ �= ∅, we may apply the dual version of Theorem 9.2 [6] with
V = {0X } to obtain equivalence between (i) and the closedness of epi f + epig̃
regarding the set {0X } × R. It remains to apply Proposition 2 to conclude. ��

We wish to apply Theorems 1 and 2 to problems with set constraints. Let K be a
nonempty closed convex set in X . We consider the problem

(P)
inf

∑
i∈I fi (xi )

(xi )i ∈ K .

By setting g := δK the indicator function of K , the dual of (P) can be written as

(D)
sup −( ∑

i∈I f ∗
i (x∗

i ) + δ∗
K (−(x∗

i )i )
)

(x∗
i )i ∈ X ∗.

The conjugate δ∗
K of δK is often denoted σK (the support function of K ) and given by

σK ((x∗
i )i ) := sup

(xi )i ∈K

∑

i∈I

〈x∗
i , xi 〉.

Corollary 1 Let fi , i ∈ I be proper convex and lower semicontinuous functions satis-
fying (H) such that dom f ∩ K �= ∅. Then the following statements are equivalent:

(i) inf(P) = max(D).

(ii) The set
∑w∗

i∈I epi( f̂i )
∗ + epiσK is w∗-closed regarding the set {0X ∗} × R.

Proof Apply Theorem 1 with x∗
i = 0X∗

i
, i ∈ I . ��

Remark 4 According to Proposition 1, under (H) the existence of (z∗
i )i ∈ X ∗ such

that
∑

i∈I f ∗
i (z∗

i ) ∈ R is equivalent to dom f ∗ �= ∅.
Remark 5 A sufficient condition for (i) of Corollary 1 was already given by The-
orem 3.5 [6] which requires f to be proper lower semicontinuous and epi f ∗ =∑w∗

i∈I epi( f̂i )
∗ in addition to (ii). Note that in view of Proposition 1 and Proposition

3, these two conditions always hold under (H).
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Corollary 2 Let fi , i ∈ I be proper convex and lower semicontinuous functions sat-
isfying (H) such that dom f ∗ ∩ (−domσK ) �= ∅. Then the following statements are
equivalent:

(i) min(P) = sup(D).

(ii) The set
∑w

i∈I Mi (epi fi ) + K × R+ is closed regarding the set {0X } × R.

Proof Apply Theorem 2 with x∗
i = 0X∗

i
, i ∈ I . ��

6 Problems with infinite sum of convex functions

We consider the following problem

(Px∗)
inf

∑
i∈I fi (x) − 〈x∗, x〉

x ∈ X ,

where (X , X∗) is a dual pair of separated locally convex spaces, ( fi )i∈I is a family of
proper convex, lower semicontinuous functions on X and x∗ ∈ X∗ is given. We wish
to apply the method of monotropic programming developed in the previous section to
this problem. To this end we set Xi = X , i ∈ I and assume the following hypothesis

(H’) For every (xi )i ∈ X , f ((xi )i ) := ∑
i∈I fi (xi ) exists in R, and there is some

x ∈ X such that
∑

i∈I fi (x) ∈ R.

By definition X = X I , hence its dual X ∗ can be identified with the space (X∗)[I ]
consisting of all families (x∗

i )i ∈ (X∗)I with finitelymany nonzero terms.We consider
the linear mapping L : X → X defined by L(x) = (x)i , where (x)i denotes the
element (xi )i ∈ X with xi = x for all i ∈ I . Let S := L(X). It is a closed linear
subspace of X , called also the diagonal subspace of X . By using g = δS and by
choosing (x∗

i )i ∈ X ∗ such that
∑

i∈I x∗
i = x∗, we may express (Px∗) in form of

monotropic programming problem

(PδS
(x∗

i )i
)

inf
∑

i∈I ( fi (xi ) − 〈x∗
i , xi 〉) + δS((xi )i )

(xi )i ∈ X .

In order to obtain a dual of (Px∗) by the construction presented in Sect. 5, we compute
g∗ = δ∗

S = δS⊥ , where S⊥ is the orthogonal of S, that is,

S⊥ =
{

(x∗
i ) ∈ X ∗ :

∑

i∈I

〈x∗
i , x〉=0 for all x ∈ X

}
=

{
(x∗

i ) ∈ X ∗ :
∑

i∈I

w∗
x∗

i = 0X∗

}
.

Let A : X ∗ → X∗ denote the transposed of L , that is,

A((x∗
i )i ) =

∑

i∈I

w∗
x∗

i for every (x∗
i )i ∈ X ∗.
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Note that
∑w∗

i∈I x∗
i is a finite sum and therefore the superscript ”w∗

” in the expressions
of S⊥ and of A((x∗

i )i ) can be omitted. It follows that S⊥ coincides with the kernel
ker A of A. We deduce the dual of (Px∗):

(Dx∗)
sup −∑

i∈I f ∗
i (x∗

i )

(x∗
i )i ∈ (X∗)[I ], A((x∗

i )i ) = x∗.

Theorem 3 Let ( fi )i∈I be a family of proper convex lower semicontinuous functions on
X satisfying (H’). Assume that there is some (z∗

i )i ∈ (X∗)[I ] such that
∑

i∈I f ∗
i (z∗

i ) <

+∞. Then for every x∗ ∈ X∗, the following statements are equivalent.

(i) inf(Px∗) = max(Dx∗).
(ii)

∑w∗
i∈I Li (epi f ∗

i ) + ker A × {0} is w∗-closed regarding A−1(x∗) × R.

In particular (i) holds for all x∗ ∈ X∗ if and only if the set
∑w∗

i∈I Li (epi f ∗
i )+ker A×{0}

is w∗-closed in (X∗)[I ] × R.

Proof Let g := δS . We have epig∗ = ker A×R+. In view of Theorem 1, (i) holds true
if and only if

∑w∗
i∈I Li (epi f ∗

i ) + ker A × R+ is w∗-closed regarding A−1(x∗) × R.
Let us fix an index i0 ∈ I . For any t > 0, (x∗

i )i ∈ ker A and for (x∗
i0
, ti0) ∈ epi

f ∗
i0
, one may express Li0(x∗

i0
, ti0) + ((x∗

i )i , t) = Li0(x∗
i0
, ti0 + t) + ((x∗

i )i , 0), in

which (x∗
i0
, ti0 + t) ∈ epi f ∗

i0
. This implies that

∑w∗
i∈I Li (epi f ∗

i ) + ker A × R+ =
∑w∗

i∈I Li (epi f ∗
i ) + ker A × {0} and establishes equivalence between (i) and (ii). ��

Similar to (5), the strong duality property in Theorem 3(i) can be expressed in terms
of infimal convolution as follows. Let φi , i ∈ I be a family of proper functions on
X∗ such that for every (x∗

i )i ∈ (X∗)[I ],
∑

i∈I φi (x∗
i ) ∈ R. We define the generalized

infimal convolution of this family to be

(�i∈I φi )(x∗) := inf
(x∗

i )i ∈(X∗)[I ],
∑

i∈I x∗
i =x∗

∑

i∈I

φi (x∗
i )

and say that �i∈I φi is exact at x∗ if the infimum is attained. Thus, Theorem 3(i)
signifies that (

∑
i∈I fi )

∗(x̄∗) = (�i∈I fi )(x̄∗) with the infimal convolution exact at
x̄∗. Note that this definition of infimal convolution is different from the one given in
[13], in which a space larger than (X∗)[I ] was used for taking the infimum. Of course,
when I is finite, they are all the same and coincide with the classical definition of
infimal convolution known from convex analysis. Let us denote

∑

i∈I

⊗
epiφi :=

{
∑

i∈I

(x∗
i , ti ) : (x∗

i , ti ) ∈ epiφi , i ∈ I , (x∗
i )i ∈ (X∗)[I ]

}
.

It can be seen that

epis(�i∈I φi ) ⊆
∑

i∈I

⊗
epiφi ⊆ epi(�i∈I φi ),
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where epis stands for the strict epigraph. Moreover, the second inclusion is equality if
and only if the infimal convolution is exact on X∗.

Corollary 3 Let ( fi )i∈I be a family of proper convex lower semicontinuous functions on
X satisfying (H’). Assume that there is some (z∗

i )i ∈ (X∗)[I ] such that
∑

i∈I f ∗
i (z∗

i ) <

+∞. Then the following statements are equivalent.

(i) (
∑

i∈I fi )
∗ = �i∈I f ∗

i and the infimal convolution is exact on X∗.

(ii) epi(
∑

i∈I fi )
∗ = ∑⊗

i∈I epi f ∗
i .

(iii)
∑⊗

i∈I epi f ∗
i is w∗-closed in X∗ × R.

(iv)
∑w∗

i∈I Li (epi f ∗
i ) + ker A × {0} is w∗-closed in (X∗)[I ] × R.

Proof By (i) we have epi(
∑

i∈I fi )
∗ = epi(�i∈I f ∗

i ), which, in view of the discus-
sion before this corollary, gives (ii). The implication (i i) ⇒ (i i i) is clear because
(
∑

i∈I fi )
∗ is a convex and w∗-lower semicontinuous function. For the implica-

tion (i i i) ⇒ (iv) we consider the mapping Ã : (X∗)[I ] × R → X∗ × R defined
by Ã((x∗

i )i , t) = (A((x∗
i )i ), t) = (

∑
i∈I x∗

i , t). It is a w∗-continuous linear map-
ping with ker Ã = ker A × {0}. Moreover, by applying Lemma 2(iii) to the case
Xi = X , Di = epi f ∗

i , i ∈ I , we obtain that

Ã

(
∑

i∈I

w∗
Li (epi f ∗

i )

)
=

∑

i∈I

⊗
epi f ∗

i .

Consequently,

Ã−1

(
∑

i∈I

⊗
epi f ∗

i

)
=

∑

i∈I

w∗
Li (epi f ∗

i ) + ker Ã

=
∑

i∈I

w∗
Li (epi f ∗

i ) + ker A × {0}.

Hence,
∑w∗

i∈I Li (epi f ∗
i ) + ker A × {0} is w∗-closed because Ã is w∗-continuous.

Finally, under (iv), in view of Theorem 3, we have inf(Px∗) = max(Dx∗), for any
x̄∗ ∈ X∗, which yields (i). ��

In the next corollary M is an extension of L , mapping from X ×R toX ×R defined
by M(x, t) = (L(x), t) for (x, t) ∈ X × R.

Corollary 4 Let ( fi )i∈I be a family of proper convex lower semicontinuous functions
on X satisfying (H’). Assume that there is some (z∗

i )i ∈ ker A such that
∑

i∈I f ∗
i (z∗

i ) <

+∞. Then for every x∗ ∈ X∗, the following statements are equivalent.

(i) min(Px∗) = sup(Dx∗).
(ii)

∑w
i∈I Mi (epi fi ) + M(epi〈x∗, .〉) is closed regarding {0X I } × R.
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Proof Pick (x̄∗
i )i ∈ X ∗ such that

∑
i∈I x̄∗

i = x̄∗ and consider g̃((xi )i ) := δS(−(xi )i )+∑
i∈I 〈x∗

i , xi 〉.Wehave ((xi )i , t) ∈ epi g̃ if and only if (xi )i ∈ S and
∑

i∈I 〈x∗
i , xi 〉 ≤ t ,

or equivalently, xi = x, i ∈ I for some x ∈ X and 〈x∗, x〉 ≤ t . Hence, epig̃ =
M(epi〈x∗, .〉. It remains to apply Theorem 2 to achieve the proof. ��

We finish this section by an example to illustrate Corollary 3.

Example 2 Let X be a Hilbert space and {ai : i ∈ N} be a family of vectors in X with∑∞
i=1 ‖ai‖ < +∞. Consider the functions fi := 〈ai , .〉 + δB, i ∈ N, where 〈., .〉 is

the inner product and B is the unit ball of X . For every (xi )i ∈ XN we have

∑

i∈N
fi (xi ) =

{ 〈ai , xi 〉 if xi ∈ B, i ∈ N

+∞ else,

and (H’) holds. Moreover, direct calculation shows that

f ∗
i (x∗) = ‖x∗ − ai‖ for i ∈ N, x∗ ∈ X

∑

i∈N
f ∗
i (x∗

i ) =
∑

i∈N
‖x∗

i − ai‖ < +∞ for (x∗
i )i ∈ X [N]

(
∑

i∈N
fi

)∗
(x∗) = ‖x∗ − a‖,

where a = ∑∞
i=1 ai . It follows that all the assumptions of Corollary 3 are satisfied.

We wish to prove the following statement: Equality

‖x∗ − a‖ = min
(x∗

i )i ∈X [N],
∑∞

i=1 x∗
i =x∗

∑

i∈N
‖x∗

i − ai‖ (8)

holds true for every x∗ ∈ X (which is Corollary 3(i)) if and only if ai = 0X for all but
finitely many i ∈ N.

Indeed, if ai = 0X , i ≥ k for some k ≥ 1, then
∑

i∈N fi (x) = ∑k
i=1 fi (x) for

x ∈ X . Since the convex functions f1, ..., fk are finite and continuous at 0X , in view
of Theorem 1, page 178 [11] we have

(
∑

i∈N
fi

)∗
(x∗) =

(
�k

i=1 f ∗
i

)
(x∗) for x∗ ∈ X∗

with the infimal convolution exact. Thus, there exist some z∗
i ∈ X∗, i = 1, ..., k such

that
∑k

i=1 z∗
i = x∗ and

(∑
i∈N fi

)∗
(x∗) = ∑k

i=1 f ∗
i (z∗

i ). Set

x̄∗
i :=

{
z∗

i if i ≤ k
0X∗ else.
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Then (x̄∗
i )i ∈ (X∗)[N],

∑
i∈N x̄∗

i = x∗ and

(
∑

i∈N
fi

)∗
(x∗) =

k∑

i=1

‖z∗
i − ai‖ =

∑

i∈N
‖x̄∗

i − ai‖ =
∑

i∈N
f ∗
i (x̄∗

i )

≥ inf
(x∗

i )i ∈(X∗)[N],
∑

i∈N x∗
i =x∗

∑

i∈N
f ∗
i (x∗

i )

≥
(

∑

i∈N
fi

)∗
(x∗),

which gives (8). Conversely, assume an infinite number of a′
i s are nonzero, say ai �= 0

for all i ≥ 1. By definition we have

∑

i∈I

⊗
epi f ∗

i =
{ ∞∑

i=1

(x∗
i , ri ) : ‖x∗

i − ai‖ ≤ ri , i ∈ N, (x∗
i )i ∈ X [N]

}
.

For every n ≥ 1, set

x∗n
i :=

{
ai if i ≤ n
0X else

and rn
i :=

{
0 if i ≤ n
‖ai‖ else.

Then (x∗n
i , rn

i ) ∈ epi f ∗
i and (x∗n

i )i ∈ X [N] for all n ≥ 1. Consequently,
(
(
∑n

i=1 ai ,
∑∞

i=n+1 ri )
)

n is a sequence in the set
∑⊗

i∈I epi f ∗
i . Note, however, that

its limit when n tends to ∞ is equal to (a, 0) and does not lie in
∑⊗

i∈I epi f ∗
i . Thus,

the latter set is not w∗-closed in X∗. According to Corollary 3, (8) is not true.

7 Truncationmethod

Throughout this section we assume that I = N and Xi , i ∈ N are finite dimensional
spaces. We study problem (P) with K a closed linear subspace of X := ∏

i∈N Xi ,
namely,

(P)
inf

∑
i∈N fi (xi )

s.t. (xi )i ∈ K .

This problem is known as a countably infinite monotropic problem. It has numerous
applications in infinite network optimization and infinite horizon planning, and was
thoroughly analyzed in [8] when Xi = R and the domains of fi are segments. We
shall make the following hypothesis on the functions fi :

(H”)The functions fi , i ∈ N are proper convex, lower semicontinuous with compact
domains, and satisfy

∑∞
i=1 ‖ fi‖ < +∞, where ‖ fi‖ := supxi ∈dom fi

| fi (xi )|.
It is clear that under (H”) the family of functions ( fi )i satisfies (H) too. Moreover,

dom f = ∏
i∈N dom fi .
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Lemma 3 Let (x∗)i ∈ X ∗. Under (H”), the sum
∑

i∈I f ∗
i (x∗

i ) exists and

− ∞ < f ∗((x∗
i )i ) =

∑

i∈I

f ∗
i (x∗

i ) < +∞. (9)

Moreover, f is proper convex and lower semicontinuous.

Proof In view of Proposition 1 it suffices to show that
∑

i∈I f ∗
i (x∗

i ) is finite for every
(x∗

i )i ∈ X ∗. In fact, by definition,

| f ∗
i (x∗

i )| = | sup
xi ∈dom fi

(〈x∗
i , xi 〉 − fi (xi ))|

≤ | sup
xi ∈dom fi

〈x∗
i , xi 〉| + ‖ fi‖.

Since only a finite number of x∗
i are nonzero and dom fi are compact, the sum∑∞

i=1 | supxi ∈dom fi
〈x∗

i , xi 〉| is finite. This and (H”) imply that

|
∑

i∈I

f ∗
i (x∗

i )| ≤
∞∑

i=1

| sup
xi ∈dom fi

〈x∗
i , xi 〉| +

∞∑

i=1

‖ fi‖ < +∞

and complete the proof. ��
By using the construction of dual given in Sect. 5, we obtain a dual of (P):

(D)
sup −∑∞

i=1 f ∗
i (x∗

i )

s.t. (x∗
i )i ∈ K ⊥,

where K ⊥ := {(x∗
i )i ∈ X ∗ : ∑∞

i=1〈x∗
i , xi 〉 = 0 for all (xi )i ∈ K }.

To establish a relationship between (P) and (D), we follow the method of [8] to
consider the truncated problems

(Pn)
inf

∑n
i=1 fi (xi )

s.t. xi ∈ dom fi , i = 1, ..., n; (x1, ..., xn) ∈ Kn,

where

Kn :=
{

(x1, ..., xn) ∈
n∏

i=1

Xi : there is (yi )i ∈ K such that xi = yi , i = 1, ..., n

}
.

The dual of (Pn) is given by

(Dn)
sup −∑n

i=1 f ∗
i (x∗

i )

s.t. x∗
i ∈ X∗

i , i = 1, ..., n; (x∗
1 , ..., x∗

n ) ∈ K ⊥
n ,
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where

K ⊥
n :=

{
(x∗

1 , ..., x∗
n ) ∈

n∏

i=1

X∗
i :

n∑

i=1

〈x∗
i , xi 〉 = 0 for all (x1, ..., xn) ∈ Kn

}
.

The following proposition generalizes Proposition 18 [8].

Proposition 4 Assume that (P) has a feasible solution. Then, problems (P) and (Pn)
have optimal solutions and limn→∞ min(Pn) = min(P).

Proof Let (xi )i be a feasible solution of (P). By definition, (xi )i ∈ K ∩ ∏
i∈N dom fi .

It follows that (x1, ..., xn) ∈ Kn ∩ ∏n
i=1 dom fi , and hence (x1, ..., xn) is a feasible

solution of (Pn). Moreover, by hypothesis the function
∑n

i=1 fi (xi ) is proper convex
and lower semicontinuous, and the feasible set Kn ∩ ∏n

i=1 dom fi of (Pn) is compact.
Therefore, (Pn) admits an optimal solution. Similarly, in view of Lemma 3 the function
f is proper convex and lower semicontinuous, and the feasible set K ∩ ∏

i∈N dom fi

of (P) is compact in the product topology. Therefore, (P) admits an optimal solution
too.

Let x̄(n) ∈ Kn ∩∏n
i=1 dom fi be an optimal solution of (Pn). By definition, there is

some y(n) ∈ K such that x̄i (n) = yi (n), i = 1, ..., n. Choose z(n) ∈ ∏∞
i=n+1 dom fi

and set z̄(n) := (x̄(n), z(n)) ∈ ∏∞
i=1 dom fi . Since

∏∞
i=1 dom fi is compact and the

product space
∏∞

i=1 Xi is metrisable, without loss of generality, we may assume that
the sequence {z̄(n)}n converges to some z̄ ∈ ∏∞

i=1 dom fi .
Claim 1. z̄ is a feasible solution of (P).
It suffices to prove that z̄ ∈ K . Suppose to the contrary that z̄ /∈ K . Since K is closed,

there is an open neighborhood U of z̄ in X such that U ∩ K = ∅. By the definition
of the product topology, there are some N ≥ 1 and open sets Ui ⊂ Xi , i = 1, ..., N
such that z̄ ∈ U ′ := U1 × ... × UN × ∏∞

i=N+1 Xi ⊂ U . Moreover, because {z̄(n)}n

converges to z̄, there is some N ′ ≥ N such that z̄(n) ∈ U ′ for all n ≥ N ′. In particular,
x̄(n) = (z̄1(n), ..., z̄n(n)) ∈ U1 × ... × Un for n ≥ N ′. This implies y(n) ∈ U ′ for
n ≥ N ′ and contradicts the fact that y(n) ∈ K and K ∩ U = ∅.

Claim 2. z̄ is an optimal solution of (P).
Indeed, if not, there exists a feasible solution x̄ ∈ K such that

∑∞
i=1 fi (x̄i ) <∑∞

i=1 fi (z̄i ). Let ε > 0 be such that

∞∑

i=1

fi (x̄i ) + ε ≤
∞∑

i=1

fi (z̄i ). (10)

Since f is lower semicontinuous (Lemma 3) and
∑∞

i=1 ‖ fi‖ < +∞, we may choose
N sufficiently large such that f (z̄) ≤ f (z̄(N )) + ε/4 and

∑∞
i=N+1 ‖ fi‖ < ε/4. This

and (10) imply that

N∑

i=1

fi (x̄i ) ≤
∞∑

i=1

fi (x̄i ) + ε/4 ≤
∞∑

i=1

fi (z̄i ) − 3ε/4 ≤
∞∑

i=1

fi (z̄i (N )) − ε/2.
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Since z̄i (N ) = x̄i (N ) for i = 1, ..., N , we deduce also

N∑

i=1

fi (x̄i ) ≤
N∑

i=1

fi (z̄i (N )) +
∞∑

i=N+1

fi (z̄i (N )) − ε/2 ≤
N∑

i=1

fi (x̄i (N )) − ε/4,

which contradicts the fact that (x̄1, ..., x̄N ) ∈ KN ∩ ∏N
i=1 dom fi and x̄(N ) is an

optimal solution of (PN ).
Claim 3. limn→∞ f (z̄(n)) = f (z̄).
In fact, as f is lower semicontinuous (Lemma 3) and in view of Claim 1, we have

min(P)= f (z̄) ≤ lim infn→∞ f (z̄(n)). Suppose to the contrary that Claim 3 is not true.
There exists ε > 0 and a subsequence {z̄(nk)}k such that f (z̄) + ε ≤ f (z̄(nk)) for all
k ≥ 1. Choose k0 sufficiently large such that

∑∞
i=nk0+1 ‖ fi‖ < ε/4. Then,

nk0∑

i=1

fi (z̄i ) + 3ε/4 ≤ f (z̄) + ε ≤
nk0∑

i=1

fi (z̄i (nk0)) + ε/4,

which implies that

nk0∑

i=1

fi (z̄i ) <

nk0∑

i=1

fi (z̄i (nk0)).

Since (z̄1, ..., z̄nk0
) ∈ Knk0

∩ ∏nk0
i=1 dom fi and x̄(nk0) = (z̄1(nk0), ..., z̄nk0

(nk0)), the
latter strict inequality contradicts the fact that x̄(nk0) is an optimal solution of (Pnk0

).
Finally, in view of Claim 3 we obtain that

lim
n→∞ |min(P) − min(Pn)| = lim

n→∞ | f (z̄) −
n∑

i=1

fi (x̄i (n))|

= lim
n→∞ | f (z̄) − f (z̄(n)) +

∞∑

i=n+1

fi (z̄i (n))|

≤ lim
n→∞ | f (z̄) − f (z̄(n))| + lim

n→∞

∞∑

i=n+1

‖ fi‖

≤ 0,

and complete the proof. ��
Lemma 4 Let f1, ..., fn be proper convex and lower semicontinuous with compact
domains. If (Pn) has a feasible solution, then

min(Pn) = sup(Dn) ∈ R.
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Proof Let X ∗
n := ∏n

i=1 X∗
i and consider the function φ on X ∗

n defined by
φ(x∗

1 , ..., x∗
n ) := ∑n

i=1 f ∗
i (x∗

i ) for (x∗
1 , ..., x∗

n ) ∈ X ∗
n . For each i ≥ 1, since dom fi is

compact, the level sets {x ∈ Xi : fi (x) ≤ t}, t ∈ R are compact. In view of Theorem
6.3.9 [12], f ∗

i is continuous and finite at 0X∗
i
. Hence φ is continuous and finite at 0X ∗

n
.

By Theorem 1 (page 178) [11] there exists some x̄i ∈ Xi , i = 1, ..., n such that

+∞ > inf(Pn) ≥ sup(Dn) = (φ + δK ⊥
n
)∗(0X∗

i
)

= φ∗(x̄1, ..., xn) + δ∗
K ⊥

n
(−(x̄1, ..., x̄n))

=
n∑

i=1

fi (x̄i ) + δKn (−(x̄1, ..., x̄n))

≥ inf(Pn).

We deduce that (x̄1, ..., x̄n) ∈ Kn and

+∞ >

n∑

i=1

fi (x̄i ) = min(Pn) = sup(Dn) > −∞.

The proof is complete. ��
Lemma 5 Assume (H”) holds, (P) has a feasible solution and sup(D) ≥ sup(Dn) for
n ≥ 1. Then limn→∞ sup(Dn) = sup(D) and min(P)=sup(D).

Proof By Proposition 4 and Lemma 4, we have

min(P) = lim
n→∞min(Pn) = lim

n→∞ sup(Dn).

This and the hypothesis sup(D) ≥ sup(Dn) yield min(P) ≤ sup(D). The latter
inequality and the weak duality relation min(P) ≥ sup(D) give min(P)=sup(D).
Equality limn→∞ sup(Dn) = sup(D) is then immediate. ��
Here is the main result on strong duality for (D).

Theorem 4 Assume (H”) holds, (P) has a feasible solution and the functions fi , i ∈ N

are nonnegative. Then min(P)=sup(D).

Proof Wewish to applyLemma5. It suffices to prove that sup(D)≥ sup(Dn) for n ≥ 1.
Indeed, let (x∗

1 , ..., x∗
n ) ∈ K ⊥

n .Denote (x̃∗
i )i ∈ X the vector with x̃∗

i = x∗
i , i = 1, ..., n

and x̃∗
i = 0X∗

i
for i > n. It is clear that (x̃∗

i )i ∈ K ⊥. Moreover, because fi , i ∈ N are
nonnegative, we have f ∗

i (0X∗
i
) ≥ 0 for all i ≥ 1 and obtain

sup(D) ≥ −
∞∑

i=1

f ∗
i (x̃∗

i ) = −
n∑

i=1

f ∗
i (x∗

i ) −
∞∑

i=n+1

f ∗
i (0X∗

i
) ≥ −

n∑

i=1

f ∗
i (x∗

i ).

Since (x∗
1 , ..., x∗

n ) ∈ K ⊥
n was arbitrarily given, we deduce that sup(D) ≥ sup(Dn) and

complete the proof. ��
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Remark 6 It is worthwhile noticing that in the case Xi = R and dom fi = [ai , bi ]
with ai < bi , the truncated problems (Pn) and their duals (Dn) coincide with those
developed in [8]. Despite this, the finite support dual (D) is different from the dual
problem presented in [8], which is given by

(D′) sup −∑∞
i=1 f ∗

i (x∗
i )

s.t. (x∗
i )i ∈ K̂ ⊥,

where K̂ ⊥ consists of (x∗
i )i ∈ R

N such that

(a)
∑∞

i=1 |x∗
i |max{|ai |, |bi |} < +∞;

(b)
∑∞

i=1 |x∗
i xi | < +∞ for all (xi )i ∈ K ;

(c)
∑∞

i=1 x∗
i xi = 0 for all (xi )i ∈ K .

Let us denote the linear subspace of all (x∗
i )i ∈ R

N satisfying (a) and (b) by �. Then
X ∗ ⊂ � and K ⊥ ⊂ K̂ ⊥ ⊂ �. The weak duality relation sup(D′) ≤ inf(P) being
clear, we obtain that sup(D) ≤ sup(D′) ≤ inf(P). Under the hypotheses of Theorem
4 we have min(P)=sup(D) and hence min(P)=sup(D’) too. The latter duality relation
is essentially the result of Section 3 of [8]. The advantage of (D) over (D’) is the fact
that the dual variable of (D) may have only a finite number of nonzero components. It
is also interesting to note that the space � depends on the magnitude of the segments
[ai , bi ], i ∈ N, which means that for each problem one has to deal with its own space
of dual variable. Of course, � becomes X ∗ (which is R[N] in this case) when a) holds
true for any segments [ai , bi ], and hence (D’) coincides with (D).

Remark 7 The fact that a finite support dual and a dual with variable of infinite support
from the algebraic dual space (X )′ of X may provide the same zero duality gap,
has already been presented in [1] for semi-infinite programming problems. This is
possible because for X = R, linear functionals from (RN)′ that are positive onRN+ can

be represented by positive finite support vectors from R
[N]
+ (Lemma 2.1, [1]), which

implies that problem with dual variable taken from (RN+)′ is equivalent to the finite
support one. Let us see this in the case of set constrained problem discussed in Sect.
5 when Xi = R, i ∈ N and K is a convex cone. We consider the following conic
optimization problem

(CP)
inf f ((xi )i )

s.t . (xi )i ∈ K ,

where f ((xi )i ) := ∑
i∈N fi (xi ) with fi : R → R, i ∈ N proper convex functions,

is assumed to be proper, and K is a convex cone in R
N that contains RN+. We recall

that the algebraic conjugate h# of a convex function h on R
N is defined by the same

formula as for the usual Fenchel conjugate h∗, that is,

h#(φ) := sup
(xi )i ∈RN

(
φ((xi )i ) − h((xi )i )

)
, φ ∈ (RN)′.
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By applying the method of Sect. 5 and by using the algebraic conjugate, we obtain an
algebraic dual of (CP) in the form

(AD)
sup − f #(φ)

s.t. φ ∈ K #,

where K # := {φ ∈ (RN)′ : φ((xi )i ) ≥ 0 for all (xi )i ∈ K }. Because R
N+ ⊆ K ,

elements of K # are positive onRN+. In view of Lemma 2.1, [1], one may express K # =
K # ∩ R

[N]
+ . In other words, K # = K + where K + := {(x∗

i )i ∈ R
[N] : ∑

i∈N x∗
i xi ≥

0 for all (xi )i ∈ K }. It is clear that if φ ∈ K # is represented by (x∗
i )i ∈ R

[N]
+ , then

f #(φ) = f ∗((x∗
i )i ). In view of Proposition 1, problem (AD) becomes

sup −∑
i∈N f ∗

i (x∗
i )

s.t. (x∗
i )i ∈ K +,

which is the finite support dual studied in the frame of the present work.

8 Minimum cost flows on infinite networks

In this section we discuss the problem of minimum cost flows on infinite networks
introduced and studied in [8,14]. Let G := (N , A) denote an infinite directed network
in which N is a countable set of nodes and A is the set of arcs consisting of ordered
tuples (i, j) for i, j ∈ N . Arc flows are denoted xi j on arc (i, j) ∈ A and satisfy
capacity constraints 0 ≤ xi j ≤ ui j with ui j ∈ (0,+∞). Cost functions on arcs are
denoted ci j for (i, j) ∈ A and assumed to be defined and nonnegative on [0, ui j ]. It is
commonly assumed that G is locally finite in the sense that there are only finite number
of arcs connected to a node. The minimum cost flow problem on G is formulated as
follows

(P′)
inf

∑
(i, j)∈A ci j (xi j )

s.t . (xi j )(i, j) ∈ Q
0 ≤ xi j ≤ ui j , (i, j) ∈ A,

where Q is the set of flows that satisfy the supply-demand constraints

∑

{ j :(i, j)∈A}
xi j −

∑

{ j :( j,i)∈A}
x ji = si , i ∈ N . (11)

The real numbers si are given and known as sources at nodes i ∈ N . If si > 0, node i
is called a supply node; if si < 0, node i is called a demand node; and when si = 0,
node i is called a transshipment node. The constraints (11) are named supply, demand
and transshipment constraints accordingly. We refer the interested readers to [8,14]
for more details on infinite networks.

Since the set Q in (P’) is not a linear space, Ghate [8] has proposed an approach of
introducing a countable set of artificial nodes Nk to every non-transshipment node k,
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which generates a set Ak of artificial arcs. The capacity constraints on artificial arcs
(i, j) ∈ Ak are set to be sk ≤ xi j ≤ sk . Problem (P’) is then equivalent to the so-called
circulation problem

(P′′)

inf
∑

(i, j)∈ Ã ci j (xi j )

s.t . (xi j )(i, j) ∈ Q̃
0 ≤ xi j ≤ ui j , (i, j) ∈ A
sk ≤ xi j ≤ sk, (i, j) ∈ Ak for k with sk �= 0,

where Ã = A∪(∪k∈N Ak
)
, Ñ = N ∪(∪k∈N Nk

)
, ci j (xi j ) = 0 for (i, j) ∈ Ã\ A, and

Q̃ consists of flows on the enlarged network G̃ := (Ñ , Ã) satisfying the transshipment
constraints only ∑

{ j :(i, j)∈ Ã}
xi j −

∑

{ j :( j,i)∈ Ã}
x ji = 0, i ∈ Ñ . (12)

Observe that by extending ci j on R with ci j (xi j ) = +∞ for xi j /∈ [0, ui j ] when
(i, j) ∈ A and for xi j �= sk when (i, j) ∈ Ak , problem (P”) is an infinite monotropic

problem in which Q̃ is a linear subspace of R Ã. We should underline that the sets
of artificial nodes and artificial arcs must be chosen so that the enlarged network G̃
remains locally finite. If G̃ is locally finite, for each i ∈ Ñ the sets { j : (i, j) ∈ Ã} and
{ j : ( j, i) ∈ Ã} are finite. Hence, the solution set of each equation in (12) is a closed
linear subspace, which implies that Q̃ is a closed subspace of R Ã (see also Lemma
7.1 [8]). When G̃ is not locally finite, Q̃ is not necessarily closed. Of course, if Q̃ is
closed, then the results of Sect. 7 can be applied to (P”). Every optimal solution of (P”)
produces an optimal solution of (P’) by omitting all flows on artificial arcs. Moreover,
(P’) and (P”) have the same optimal value. We notice also that despite the introduction
of countable numbers of artificial nodes and arcs, (G̃) remains a countably infinite
network. This being said, when one examines a finite subnetwork of G, its associated
enlarged subnetwork is no longer finite because of infinite artificial nodes and flows
added to that subnetwork.

We now present an approach to solve (P’) without using the circulation problem.
Fix a solution (̂xi j )i j from Q and define K to be the set of flows that satisfy the
transshipment constraints

∑

{ j :(i, j)∈A}
xi j −

∑

{ j :( j,i)∈A}
x ji = 0, i ∈ N .

Then Q = (̂xi j )i j + K and (P’) is equivalent to the following problem

(̂P)
inf

∑
(i, j)∈A ĉi j (yi j )

s.t . (yi j )i j ∈ K ,

where

ĉi j (yi j ) =
{

ci j (yi j + x̂i j ) if yi j ∈ [−x̂i j , ui j − x̂i j ]
+∞ else.
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According to the construction of dual developed in Sect. 5, the dual of (P̂) is given
by

(D̂)
sup −∑

(i, j)∈A

(
c∗

i j (y∗
i j ) − 〈y∗

i j , x̂i j 〉
)

s.t . (y∗
i j )i j ∈ K ⊥.

By the technique of layers [14,22] one decomposes N into finite subsets Nn, n ≥ 1
such that Nn ⊂ Nn+1 and N = ∪n≥1Nn . The sets of arcs connected to the nodes
of Nn are denoted by An, n ≥ 1. The sets Kn are defined from K as before; that is,
(xi j )(i, j)∈An ∈ Kn if and only if there is some (yi j )(i, j)∈A ∈ K such that xi j = yi j for
all (i, j) ∈ An . This produces a sequence of truncated problems

(̂Pn)
inf

∑
(i, j)∈An

ĉi j (yi j )

s.t . (yi j )i j ∈ Kn,

and their duals

(D̂n)
sup −∑

(i, j)∈An

(
c∗

i j (y∗
i j ) − 〈y∗

i j , x̂i j 〉
)

s.t . (y∗
i j )i j ∈ K ⊥

n .

Proposition 5 Assume that (P’) has a feasible flow and that the cost functions ci j

are convex, continuous and nonnegative functions on [0, ui j ], (i, j) ∈ A and∑
(i, j)∈A ‖ci j‖ < +∞. Then min(P ′) = sup(D̂).

Proof Since (P’) has a feasible solution, (P̂) has a feasible solution too. Moreover,
‖̂ci j‖ = ‖ci j‖ for all (i, j) ∈ A. Hence the functions ĉi j , (i, j) ∈ A satisfy (H”).
Furthermore, since ĉi j (yi j ) = ci j (yi j + x̂i j ) ≥ 0 on domĉi j = [−x̂i j , ui j − x̂i j ], we
may apply Theorem 4 to obtain min(P̂) = sup(D̂), which gives min(P ′) = sup(D̂)

because (P’) and (P̂) have the same optimal value. ��
Remark 8 Wewish to highlight the fact that the dual problem (D̂) differs in two aspects
from the dual problem studied in [8]. First, the dual (D̂) is constructed for (P̂) while
the dual of [8] is constructed for the circulation problem. Second, the dual variable of
(D̂) takes values in R

[A] that only have finite support, while the dual variable of [8]
takes values in a particular subspace of RA with infinite support in general.

Remark 9 The conclusion of Proposition 5 can also be obtained from the results of
Sect. 5, without recourse to truncated problems. In fact, let us express (P̂) in form of
unconstrained problem

inf
∑

(i, j)∈A ĉi j (yi j ) + δK ((yi j )i j )

(yi j )i j ∈ R
A.

Denote the set
∑w

(i, j)∈A Mi j
(
epi ĉi j

)+ K ×R+ by Z . We prove that this set is closed
regarding the set {0X } × R. Assume {zν}ν is a sequence in Z converging to (0X , t̄)
with t̄ ∈ R. Let zν = ∑

(i, j)∈A Mi j (yν
i j , rν

i j )+(bν, tν)with (yν
i j , rν

i j ) ∈ epîci j , bν ∈ K
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and tν ∈ R+ for all ν and for (i, j) ∈ A. Then (yν
i j )ν is a sequence in [−x̂i j , ui j − x̂i j ]

and rν
i j ≥ 0. Since tν ≥ 0, we may assume that {rν

i j }ν converges to some ri j ≥
0, (i, j) ∈ A, and {tν}ν converges to t := t̄ − ∑

(i, j)∈A ri j ∈ R+. Furthermore, as
the epigraph of ĉi j is closed, we may also suppose that {(yν

i j , rν
i j )}ν converges to some

(yi j , ri j ) ∈ epîci j . Then {bν}ν converges to b := −∑
(i, j)∈A mi j yi j ∈ K due to the

fact that K is closed.We deduce that (0X , t̄) = ∑
(i, j)∈A Mi j (yi j , ri j )+(b, t) ∈ Z . By

this, Z is closed regarding the set {0X }×R. In view of Theorem 2, min(P̂) = sup(D̂),
and hence min(P ′) = sup(D̂).
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