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Abstract
This paper develops new extremal principles of variational analysis that are motivated
by applications to constrained problems of stochastic programming and semi-infinite
programming without smoothness and/or convexity assumptions. These extremal
principles concern measurable set-valued mappings/multifunctions with values in
finite-dimensional spaces and are established in both approximate and exact forms.
The obtained principles are instrumental to derive via variational approaches integral
representations and upper estimates of regular and limiting normals cones to essential
intersections of sets defined by measurable multifunctions, which are in turn crucial
for novel applications to stochastic and semi-infinite programming.
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1 Introduction

Variational and extremal principles of modern variational analysis have been widely
recognized as fundamental ingredients to deal with theoretical and numerical issues
arising in optimization theory and its applications; see, e.g., the books [13,14,21] and
the references therein. Despite numerous successful applications of variational prin-
ciples and techniques to various classes of constrained optimization problems, some
important areas are still largely underinvestigated, while advanced methods of varia-
tional analysis seem to be very appropriate and promising for required applications.
Among such areas wemention broad classes of constrained problems in stochastic and
semi-infinite programming. We refer the reader to [6,22] for fundamental aspects of
these disciplines and to [2,3,7,14–17,20] for some publications that apply variational
analysis and generalized differentiation to problems of such types.

In this paper we study optimization problems given in the form

minimize h(x) subject to
x ∈ M(ω) for almost all ω ∈ Ω,

(1)

where (Ω,A, μ) is a σ -finite measure space, where M : Ω →→ R
n is a measurable

multifunction with closed values, and where h : Rn → R := (−∞,∞] is a lower
semicontinuous (l.s.c.) extended-real-valued function. The framework of (1) is quite
general and includes—among other classes—robust optimization problems, bilevel
programs, and semi-infinite programs with some uncertainties in the data of M(ω). It
is obvious that problem (1) can be equivalently written in the unconstrained format:

minimize h(x) + δM∩(x) over x ∈ R
n, (2)

where M∩ is the essential intersection of M defined by

M∩ := {
x ∈ R

n
∣∣ x ∈ M(ω) for almost all ω ∈ Ω

}
, (3)

andwhere δΘ(x) stands for the indicator function of the setΘ that is equal to 0 if x ∈ Θ

and ∞ otherwise. Note that the constrained problem (2) is intrinsically nonsmooth,
even when h is a smooth function. As a rule of thumb, necessary optimality conditions
for local minimizers of (2) are formulated as

0 ∈ ∂h(x) + N (x; M∩)

via appropriate subdifferential and normal cone notions under suitable qualification
conditions. To proceed efficiently in this direction, we have to select adequate sub-
differential and normal cone constructions and to be able to calculate (or at least to
estimate from above) the normal cone to sets of type (3). To the best of our knowledge,
it has not been done in the literature, except for the cases where Ω consists of finitely
many or countably many points.

The main goals of this paper are to establish efficient calculus rules of regular and
limiting normal cones (see Sect. 2 for the definitions) to the set M∩ from (3) gener-
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New extremal principles with applications... 529

ated by measurable multifunctions and then to apply the obtained results to deriving
necessary optimal conditions in general constrained problems of stochastic and semi-
infinite programming. These issues happen to be very challenging, and we accomplish
our goals by establishing new extremal principles for measurable multifunctions that
are certainly of their independent interest, besides the applications presented below.
Our developments in this direction follow the lines of [18] (see also [14]), where the
notion of extremality and appropriate versions of the extremal principle were given
for countable systems of sets. In the case of finitely many sets, these notions and
results reduce to those originated in [10] and then have been extensively developed
and applied in variational analysis and optimization; see, e.g., [13,14] with compre-
hensive commentaries and references therein. Note the sequential extremal principle
obtained below for measurable multifunctions in new even for systems of countably
many sets. The latter corresponds to the setting of (3), where the set Ω consists of
countably many points with the measure μ being atomic at these points. The case of
an arbitrary measureμ and aμ-measurable multifunction M in (3) defined on an arbi-
trary set Ω allows us to cover in the framework of (1) general problems of stochastic
programming, which has never been done before, and also to significantly extend the
applications of [19] from countable to general constraint systems in nonsmooth and
nonconvex semi-infinite programming.

The rest of the paper is organized as follows. In Sect. 2 we present some construc-
tions and preliminaries from variational analysis and generalized differentiation that
are widely used below.

Section 3 is devoted to the introduction and study of new concepts of extremality for
measurablemultifunctions and deriving extremal principles for them.We establish two
extremal principles that play crucial roles in deriving the subsequent calculus rules and
applications. The first extremal principle addresses general measurable multifunctions
with closed values and is expressed in the sequential/approximating form via regular
normals at nearby random points. The second principle concerns measurable cone-
valued multifunctions extremal at the origin and is given in the exact form, i.e., it is
expressed in terms of the limiting normal cone exactly at the origin in L p(Ω,Rn),
1 ≤ p < ∞, as the extremal point. The statements of both extremal principles involve
integrals over Ω with respect to the given measure on Ω .

In Sect. 4 we develop a variational approach, based on employing the obtained
extremal principles and related variational results, to derive integral representations
and upper estimates of regular and limiting normals to essential intersections of mea-
surablemultifunctions with themain results obtained here for cone-valuedmeasurable
mappings.

The next Sect. 5 extends this approach to evaluating the normal cones to essential
intersections (3) of arbitrary measurable multifunctions with closed values in finite-
dimensional spaces by involving in addition an appropriate extension of the so-called
conical hull intersection property (CHIP) to the case of measurable multifunctions
that is introduced and studied in this section. A typical calculus rule of this type is

123



530 B. S. Mordukhovich, P. Pérez-Aros

given by

N (x̄; M∩) ⊂ cl
( ∫

Ω

N
(
x̄; M(ω)

)
dμ(ω)

)

in terms of the closure of the Aumann integral of set-valued mappings. The obtained
calculus results are crucial for the subsequent applications.

Section 6 is devoted to applications of the results developed above to general prob-
lems of stochastic programming. First we derive necessary optimality conditions for
nonsmooth and nonconvex stochastic programs with random constraints described
by measurable set-valued mappings M : Ω →→ R

n . Then we specify these condi-
tions in the case of stochastic programs with inequality constraints under appropriate
constraint qualifications. All the obtained qualification and optimality conditions are
expressed in terms of limiting normals and subgradients calculated precisely at the
local minimizer in question.

Section 7 concerns general problems of semi-infinite programmingwith nonsmooth
and nonconvex data and index sets given by an arbitrary metric space. Similarly to
Sect. 6, we derive pointwise necessary optimality conditions for such problems con-
sidering first programs with set-valued constraints and then specifying the results in
the case of infinite inequality systems.

2 Preliminaries from variational analysis

In this sectionwe present some preliminaries from variational analysis and generalized
differentiation that are broadly used in what follows. Our notation and terminology
are standard; see, e.g., [14,21]. Recall that B stands for the closed unit ball of the
finite-dimensional Euclidean space in question, that Br (x) := x + rB for x ∈ R

n

and r > 0, and that N := {1, 2, . . .}. Given a nonempty set Θ ⊂ R
n , we use the

symbols intΘ , riΘ , clΘ , coΘ , and coneΘ to denote the interior, relative interior,
closure, convex hull, and conic hull of Θ , respectively. The symbol ∗ indicates the
duality correspondence. In particular, Θ∗ := {v ∈ R

n| 〈v, x〉 ≤ 0 for all x ∈ Θ},
and A∗ stands for the matrix transposition (adjoint operator). The distance function of
Θ is denoted by dΘ(x) := infu∈Θ ‖x − u‖ for all x ∈ R

n .
Given further a set-valued mapping F : R

n →→ R
m , define the (Painlevé–

Kuratowski) outer limit of F as x → x̄ by

Lim sup
x→x̄

F(x) := {
y ∈ R

m
∣∣ ∃ xk → x̄, yk → y with yk ∈ F(xk), k ∈ N

}
.

In this paper we use the following collections of generalized normals to arbitrary
sets. The (Fréchet) regular normal cone to Θ at x̄ ∈ Θ is defined by

N̂ (x̄;Θ) :=
{
x∗ ∈ R

n
∣∣∣ lim sup

x
Θ→x̄

〈x∗, x − x̄〉
‖x − x̄‖ ≤ 0

}
, (4)
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where the symbol x
Θ→ x̄ means that x → x̄ with x ∈ Θ . The (Mordukhovich)

basic/limiting normal cone to Θ at x̄ ∈ Θ is defined by

N (x̄;Θ) := Lim sup
x

Θ→x̄

N̂ (x;Θ). (5)

Recall the well-known duality relation N̂ (x̄;Θ) = T ∗(x̄;Θ) between (4) and the
(Bouligand–Severi) tangent/contingent cone to Θ at x̄ given by

T (x̄;Θ) := Lim sup
τ↓0

Θ − x̄

τ
.

Note that, due to its nonconvexity, the limiting normal cone (5) cannot be dual to
any tangential approximation of Θ at x̄ . Nevertheless, the normal cone (5) and the
associated subdifferential and coderivative constructions for functions and mappings
enjoy comprehensive calculus rules based on variational/extremal principles of vari-
ational analysis; see [13,14,21]. The set Θ is called normally regular at x̄ ∈ Θ if
N̂ (x̄;Θ) = N (x̄;Θ).

Let f : Rn → R be an extended-real-valued function with the domain dom f :=
{x ∈ R

n| f (x) < ∞} and the epigraph epi f := {(x, α) ∈ R
n+1| α ≥ f (x)}. The

(Fréchet) regular subdifferential of f at x̄ ∈ dom f is given by

∂̂ f (x̄) := {
x∗ ∈ R

n
∣∣ (x∗,−1) ∈ N̂

(
(x̄, f (x̄)); epi f )}. (6)

Usingnow the limitingnormal cone (5),wedefine the limiting subdifferential construc-
tions known as the (Mordukhovich) basic subdifferential and singular subdifferential
of f at x̄ ∈ dom f , respectively:

∂ f (x̄) := {
x∗ ∈ R

n
∣∣ (x∗,−1) ∈ N

(
(x̄, f (x̄)); epi f )}, (7)

∂∞ f (x̄) := {
x∗ ∈ R

n
∣∣ (x∗, 0) ∈ N

(
(x̄, f (x̄)); epi f )}. (8)

The construction ∂̂∞ f (x̄) is defined similarly to (8) by using N̂ therein.
If f is convex, then (6) and (7) reduce to the subdifferential of convex analysis. If

f is l.s.c. around x̄ , then the condition ∂∞ f (x̄) = {0} fully characterizes the local
Lipschitz continuity of f around this point. We refer the reader to the books [13,14,21]
and the bibliographies therein for various results and applications of the subdifferential
constructions (6)–(8) including full calculi for the limiting ones (7) and (8).

Nextwe consider a complete σ -finitemeasure space (Ω,A, μ)withμ(Ω) > 0. For
any p ∈ [1,∞], denote by ‖·‖p the norm of the classical Lebesgue space L p(Ω,Rn).
A set-valued mapping M : Ω →→ R

n is said to be measurable if for every open set
U ⊂ R

n the inverse image M−1(U ) is measurable, i.e., M−1(U ) ∈ A. The essential
intersection M∩ of M was defined in (3). Recall also that the (Aumann) integral of
M : Ω →→ R

n over A ∈ A is given by

∫

A
M(ω)dμ(ω) :=

{∫

A
x∗(ω)dμ(ω)

∣∣∣∣x
∗ ∈ L1(Ω,Rn) and x∗(ω) ∈ M(ω) a.e.

}
.
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Let us now formulate two known results on subdifferentiation of integral functionals
needed in what follows. The first result is classical in convex analysis of integral
functionals; see, e.g., [21, Chapter 14]. Amapping f : Ω×R

n → R is called a normal
integrand if it is A ⊗ B(Rn)-measurable (where B(Rn) is the Borel σ -algebra, i.e.,
the σ -algebra generated by all open sets ofRn), and if fω := f (ω, ·) is l.s.c. for every
ω ∈ Ω . If in addition fω is convex for all ω ∈ Ω , then it is said to be a convex normal
integrand.

Proposition 2.1 (generalized Leibniz rule for convex integrals)Given a convex normal
integrand f : Ω × R

n → R, define the integral E f (x) := ∫
Ω

f (ω, x)dμ(ω). If x̄ is
a point where E f is continuous, then we have

∂E f (x̄) =
∫

Ω

∂ fω(x̄)dμ(ω). (9)

Hence E f is differentiable at x̄ if the right-hand side of (9) is a singleton.

The second result has been recently established in [4]; it provides a sequential
evaluation of regular subgradients of integral functionals involving nonconvex normal
integrands.

Proposition 2.2 (sequential subdifferentiation of nonconvex integral functionals) Let
μ be a finite measure onΩ , and let f : Ω ×R

n → [0,∞] be a normal integrand. Take
p, q ∈ [1,∞] with 1/p + 1/q = 1. Then for every x∗ ∈ ∂̂E f (x̄) with x̄ ∈ dom E f

there exist sequences of elements yk ∈ R
n, xk ∈ L p(Ω,Rn), and x∗

k ∈ Lq(Ω,Rn) as
k → ∞ such that:

(i) x∗
k (ω) ∈ ∂̂ f (ω, xk(ω)) a.e., ‖x̄ − yk‖ → 0, ‖x̄ − xk(·)‖p → 0;

(ii)
∫

Ω

‖x∗
k (ω)‖ · ‖xk(ω) − yk‖dμ(ω) → 0,

∫

Ω

〈x∗
k (ω), xk(ω) − x̄〉dμ(ω) → 0;

(iii)
∫

Ω

x∗
k (ω)dμ(ω) → x∗,

∫

Ω

| f (ω, xk(ω)) − f (ω, x̄)|dμ(ω) → 0.

The final result of this section provides simple subdifferential relations concerning
the distance functions to cones.

Proposition 2.3 (subdifferentiation of distance functions for cones) Let K ⊂ R
n be a

closed cone. Then we have the inclusions

∂̂dK (x̄) ⊂ ∂dK (0) for all x̄ ∈ R
n and N̂ (x̄; K ) ⊂ N (0; K ) for all x̄ ∈ K .

Proof Picking x∗ ∈ ∂̂dK (x̄) gives us

lim inf
x→x̄

dK (x) − dK (x̄) − 〈x∗, x − x̄〉
‖x − x̄‖ ≥ 0.

Since the mapping x �→ dK (x) is positive homogeneous, for every s > 0 we get

dK (sx) − dK (sx̄) − 〈x∗, sx − sx̄〉
‖sx − sx̄‖ = dK (x) − dK (x̄) − 〈x∗, x − x̄〉

‖x − x̄‖ ,

123



New extremal principles with applications... 533

which implies by denoting x̃ := sx the following inequality:

lim inf
x̃→sx̄

dK (x̃) − dK (sx̄) − 〈x∗, x̃ − sx̄〉
‖x̃ − sx̄‖ ≥ 0

that ensures in turn that x∗ ∈ ∂̂dK (sx̄). By passing to the limit s → 0, we readily
arrive at x∗ ∈ ∂dK (0).

The second claimed inclusion follows from the relationships between the regular
and limiting subdifferentials of the distance function and the corresponding normal
cones; see, e.g., [13, Corollary 1.96 and Theorem 1.97]. ��

3 Extremal principles for measurable set-valuedmappings

The concept of extremality for finitely many sets and the extremal principle for them
were first formulated by Kruger and Mordukhovich [10]; see also [12] where this
notion was coined and [13,14] for further developments, references, and applications.
Such an extremal principle formulated via the limiting normal cone (5) can be viewed
as a far-going variational counterpart of the classical separation theorem in the case
of nonconvex sets. Various extensions of this extremal principle to countably many
sets can be found in [9,14,18,19].

Following the line of [18], we introduce a new notion of extremality for measurable
mappings and obtain an extremal principle for this notion.

Definition 3.1 (local extremality for set-valued mappings) Consider a measure space
(Ω,A, μ) and a measurable set-valued mapping M : Ω →→ R

n , and let M∩ be taken
from (3). Then M(·) is said to be locally extremal at x̄ ∈ M∩ in L p(Ω,Rn) with
some p ∈ (1,∞) if there exists a sequence of ak ∈ L p(Ω,Rn) with ‖ak(·)‖p → 0
as k → ∞ and an (open) neighborhood U of x̄ such that for all k ∈ N we have

⋂

ω∈Ω a.e.

(
M(ω) − ak(ω)

) ∩U = ∅, (10)

where the notation in the left-hand side of (10) means that

⋂

ω∈Ω a.e.

(
M(ω) − ak(ω)

) ∩U := {
x ∈ U

∣∣ x ∈ M(ω) − ak(ω) a.e.
}
.

The crucial result of this paper establishes necessary conditions for extremality in
the sense of Definition 3.1. This novel extremal principle for measurable multifunc-
tions is basic for the subsequent applications to generalized differential calculus of
integral functionals derived via a variational approach, as well as to necessary condi-
tions for general constrained problems of stochastic and semi-infinite programming.
It is expressed in terms of sequences and involves regular normals to the values of
the given set-valued mapping M(·). Note that the extremal principle of the following
theorem is new even for the case of countably many sets considered in [14,18], where
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this result was not established. In the case of finitely many sets, the obtained sequential
extremal principle can be equivalently reduced to the exact one given in [10,13,14].

Theorem 3.2 ( sequential extremal principle) Let M : Ω →→ R
n be a closed-valued

measurable multifunction with respect to a finite measure μ. Assume that M is locally
extremal at x̄ in L p(Ω,Rn) with some p ∈ (1,∞), and that the following nonover-
lapping condition holds at x̄: there exists neighborhood U around x̄ such that

⋂

ω∈Ω a.e.

M(ω) ∩U = {x̄}. (11)

Then we get the sequential extremal principle in L p(Ω,Rn)meaning that there
exist sequences of x∗

k ∈ Lq(Ω,Rn) and xk ∈ L p(Ω,Rn) satisfying the conditions
x∗
k (ω) ∈ N̂ (xk(ω); M(ω)) a.e., ‖xk(·) − x̄‖p → 0 as k → ∞,

∫

Ω

x∗
k (ω)dμ(ω) = 0, and ‖x∗

k ‖q = 1 for all k ∈ N,

where 1
p + 1

q = 1. Furthermore, we can find εk ↓ 0 such that

‖xk(ω) − x̄‖ ≤ 2‖ak(ω)‖ + εk a.e. ω ∈ Ω, k ∈ N. (12)

Proof For each k ∈ N define the function

ϕk(x) :=
∫

Ω

d p
M(ω)

(
x + ak(ω)

)
dμ(ω) + δclU (x), x ∈ R

n, (13)

where ak ∈ L p(Ω,R) and a neighborhoodU of x̄ fromDefinition 3.1.We also assume
that U is the one for which the nonoverlapping condition (11) holds. Let us split the
subsequent proof into six claims.

Claim 1 For each k ∈ N the function ϕk from (13) is proper, l.s.c., and attains its
minimum on Rn.

To verify the claim, observe first that due to the fact that x̄ ∈ M(ω) a.e.

ϕk(x̄) ≤
∫

Ω

‖ak(ω)‖pdμ(ω) < ∞. (14)

Furthermore, for fixed k ∈ N and for any sequence z j → x we get by using Fatou’s
lemma that

ϕk(x) =
∫

Ω

d p
M(ω)

(
x + ak(ω)

)
dμ(ω) + δclU (x)

≤ lim inf
j→∞

(∫

Ω

d p
M(ω)

(
z j + ak(ω)

)
dμ(ω)

)
+ lim inf

j→∞ δclU (z j )

≤ lim inf
j→∞ ϕk(z j ),
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which shows that the function ϕk is proper and l.s.c. Since U is bounded, it follows
that ϕk attains its minimum on R

n .

Claim 2 Let x̂k be a minimizer of ϕk . Then ϕk(x̂k) > 0, x̂k → x̄ , and ϕk(x̂k) → 0 as
k → ∞.

Indeed, due to the construction of ϕk in (13) we have x̂k ∈ clU for all k ∈ N, which
yields the boundedness of {x̂k}. Moreover, it follows from the extremality condition
(10) that ϕk(x̂k) > 0 as k ∈ N, since the negation of it tells us that x̂k ∈ M(ω)−ak(ω)

for almost all ω ∈ Ω , a contradiction. Considering now a cluster point x̂ of {x̂k}, we
assumewithout relabeling that x̂k → x̂ and ak(ω) → 0 a.e. (recall that ‖ak(·)‖p → 0)
as k → ∞; therefore

d p
M(ω)(x̂) = lim inf

k→∞ d p
M(ω)

(
x̂k + ak(ω)

)
.

Hence, by employing Fatou’s lemma again, we get

∫

Ω

d p
M(ω)(x̂)dμ(ω) ≤

∫

Ω

lim inf
k→∞ d p

M(ω)

(
x̂k + ak(ω)

)
dμ(ω)

≤ lim inf
k→∞

∫

Ω

d p
M(ω)

(
x̂k + ak(ω)

)
dμ(ω) ≤ lim inf

k→∞ ϕk(x̂k)

≤ lim inf
k→∞ ϕk(x̄) ≤ lim

k→∞

∫

Ω

‖ak(ω)‖pdμ(ω) = 0,

where in the last line we used (14) and the fact that ‖ak(·)‖p → 0. This implies that
ϕk(x̂k) → 0 and x̂ ∈ M(ω) for almost allω ∈ Ω , which ensures by the nonoverlapping
condition (11) that x̂ = x̄ . From now on we suppose without loss of generality that
x̂k ∈ U for all k ∈ N.

Claim 3 There exists a sequence of measurable selections xk(ω) ∈ M(ω) such that
for all k ∈ N we have

‖x̂k + ak(ω) − xk(ω)‖ = dM(ω)

(
x̂k + ak(ω)

)
for a.e. ω ∈ Ω, (15)

xk ∈ L p(Ω,Rn), and ‖xk(·) − x̄‖p → 0 as k → ∞ with estimate (12).

Indeed, it follows from, e.g., [21, Theorem 14.37] that for each k ∈ N there exists a
measurable selection xk(ω) ∈ M(ω) satisfying (15). Furthermore

‖x̄ − xk(ω)‖ ≤ ‖x̂k + ak(ω) − xk(ω)‖ + ‖x̂k − x̄‖ + ‖ak(ω)‖
= dM(ω)

(
x̂k + ak(ω)

) + ‖x̂k − x̄‖ + ‖ak(ω)‖
≤ ‖x̂k + ak(ω) − x̄‖ + ‖x̂k − x̄‖ + ‖ak(ω)‖
≤ 2‖x̂k − x̄‖ + 2‖ak(ω)‖ for almost all ω ∈ Ω.

This readily yields estimate (12) considering εk := 2‖x̂k − x̄‖, and also ensures that

∫

Ω

‖x̄ − xk(ω)‖pdμ(ω) ≤ 22p−1
(

‖x̂k − x̄‖pμ(Ω) +
∫

Ω

‖ak(ω)‖pdμ(ω)

)
,
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which verifies the claimed properties of the measurable selections xk(ω).

Claim 4 For each k ∈ N the function

ψk(x) :=
∫

Ω

ψω,k(x)dμ(ω) + δclU (x) with ψω,k(x) := ‖x + ak(ω) − xk(ω)‖p

admits a minimizer x̂k over the whole space Rn.

To verify this claim, observe that

ψk(x) ≥ ϕk(x) ≥ ϕk(x̂k) = ψk(x̂k) for all x ∈ R
n,

which tells us that x̂k is a minimizer of ψk on Rn .

Claim 5 For every k ∈ N there exists a measurable selection u∗
k(ω) ∈ ∂ψω,k(x̂k) such

that u∗
k(·) ∈ Lq(Ω,Rn),

∫

Ω

u∗
k(ω)dμ(ω) = 0, and

∫

Ω

‖u∗
k‖q(ω)dμ(ω) > 0. (16)

To verify it, recall from Claim 4 that x̂k is a minimizer of the function ψk defined
therein. Employing then Proposition 2.1 and the subdifferential Fermat rule, with
taking into account that x̂k ∈ U , gives us a measurable selection u∗

k(ω) ∈ ∂ψω,k(x̂k)
such that

∫
Ω
u∗
k(ω)dμ(ω) = 0. Define further the set

Ak := {
ω ∈ Ω

∣∣ dM(ω)(x̂k + ak(ω)) > 0
}

and deduce from Claim 2 that μ(Ak) > 0. Moreover, we have

u∗
k(ω) = p‖x̂k + ak(ω) − xk(ω)‖p−1 x̂k + ak(ω) − xk(ω)

dM(ω)

(
x̂k + ak(ω)

) for a.e. ω ∈ Ak .

On the other hand, u∗
k(ω) = 0 for almost all ω ∈ Ω\A, which yields

∫

Ω

‖u∗
k(ω)‖qdμ(ω) = pqϕk(x̂k).

Consequently, we get u∗
k ∈ Lq(Ω,Rn), and hence (16) holds.

Claim 6 Define x∗
k (ω) := u∗

k (ω)

‖u∗
k‖q , k ∈ N. Then

x∗
k (ω) ∈ N̂

(
xk(ω); M(ω)

)
a.e. on Ω and

∫

Ω

x∗(ω)dμ(ω) = 0. (17)
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Indeed, it follows from (15) that x̂k + ak(ω) − xk(ω) ∈ N̂
(
xk(ω); M(ω)

)
a.e. on Ω;

see, e.g., the statement and proof in [14, Theorem 1.6, Step 1]. Since N̂
(
xk(ω); M(ω)

)

is a cone, we get x∗
k (ω) ∈ N̂

(
xk(ω); M(ω)

)
a.e. on Ω . Furthermore, (16) tells us that

the function x∗
k is well-defined and satisfies the second part of (17). This completes

the proof of the theorem. ��
Next we consider measurable multifunctions with cone values and define for them

another notion of extremality, which extends the one from [18] formulated for count-
able systems of cones.

Definition 3.3 (conic extremality at the origin) Let (Ω,A, μ) be a measure space,
and let Λ : Ω →→ R

n be a measurable multifunction with cone values. We say that
Λ(·) is extremal at the origin in L p(Ω,Rn) with some p ∈ (1,∞) if there exists
a(·) ∈ L p(Ω,Rn) such that

⋂

ω∈Ω a.e.

(
Λ(ω) − a(ω)

) := {
x ∈ R

n
∣∣ x ∈ Λ(ω) − a(ω) a.e.

} = ∅.

The following result provides an extension of [18, Theorem 4.2] from countable
set systems to measurable multifunctions. In contrast to Theorem 3.2, we now obtain
the result in terms of the limiting normal cone (5) calculated exactly at the extremal
point x̄ = 0; this motivates the name of the result.

Theorem 3.4 (exact extremal principle for cone-valued multifunctions) Let
Λ : Ω →→ R

n be a measurable multifunction defined on a finite measure space and
taking closed cone values. Assume that Λ is extremal at 0 ∈ L p(Ω,Rn) with some
p ∈ (1,∞), and that the nonoverlapping condition

⋂

ω∈Ω a.e.

Λ(ω) = {0}

fulfills. Then the (exact) conic extremal principle holds in L p(Ω,Rn) with 1
p +

1
q = 1, i.e., there exists x∗(·) ∈ Lq(Ω,Rn) such that x∗(ω) ∈ N (0;Λ(ω)) for almost
all w ∈ Ω together with the equalities

∫

Ω

x∗(ω)dμ(ω) = 0 and
∫

Ω

‖x∗(ω)‖q(ω)dμ(ω) = 1. (18)

Furthermore, we can find w(·) ∈ L p(Ω,Rn) for which

x∗(ω) ∈ N̂
(
w(ω);Λ(ω)

)
a.e. ω ∈ Ω.

Proof Let us show that the conic extremality of themappingΛ imposed inTheorem3.4
implies that Λ is locally extremal at the origin in the sense of Definition 3.1. Indeed,
take αk ↓ 0 as k → ∞ and define ak(ω) := αka(ω). Then for all k ∈ N we get the
relationship
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⋂

ω∈Ω a.e.

(
Λ(ω) − ak(ω)

) = ∅,

which verifies the claim. Applying now Theorem 3.2 to Λ with taking into account
Proposition 2.3 gives us x∗(ω) ∈ N̂ (xk(ω);Λ(ω)) ⊂ N (0;Λ(ω)) such that the con-
ditions in (18) are satisfied. This completes the proof. ��

It is easy to see that the case of countably many cones in [18, Theorem 4.2] and
[14, Theorem 2.9] follows from Theorem 3.4 with p = 2 by considering the measure
space (N,P(N), μ), where P(N) denotes the power set of N, and where μ is the
atomic measure given by μ({m}) := (2m)−1, m ∈ N. Note that the proofs in [14,18]
are significantly different from the one given above.

Remark 3.5 (on nonoverlapping condition) The nonoverlapping conditionwas intro-
duced in [18] for developing extremal principles for countably many sets. It is needed
to bypass the intrinsic infinite dimensionality of essential intersections. Observe that
this condition is not so restrictive because, as shown in the next section, we can con-
struct while proving calculus rules a family of sets that automatically satisfies the
nonoverlapping property.

In what follows we are going to focus on applications of the sequential extremal
principle for measurable multifunctions established in Theorem 3.2 while planning to
present various applications of the conic extremal principle from Theorem 3.4 in our
subsequent work; cf. some developments in [14,18,19] for the case of countably many
sets.

4 Normals to essential intersections via optimization

The major goal of this section is to obtain efficient upper estimates and exact formulas
for generalized normals to essential intersections (3) for measurable multifunctions
by using a variational approach, which is mainly based on the extremal principle
established above. Some of the results obtained here concern cone-valued mappings,
and then they will be used in the next section in connection with the conical hull
intersection property (CHIP).

We begin with presenting such a result employed in what follows. It provides
sequential optimality conditions for problems of type (2).

Lemma 4.1 (sequential optimality conditions) Let x̄ locally minimize an l.s.c. function
h : Rn → R subject to x ∈ M(ω) a.e., where M : Ω →→ R

n is a closed-valued
measurable multifunction on a σ -finite measure space (Ω,A, μ). Then for any p, q ∈
[1,∞]with 1/p+1/q = 1 there exist sequences yk, zk, z∗k ∈ R

n, xk(·) ∈ L p(Ω,Rn),
and x∗

k (·) ∈ Lq(Ω,Rn) satisfying the conditions

z∗k ∈ ∂̂h(zk), x∗
k (ω) ∈ N̂

(
xk(ω); M(ω)

)
a.e.,

zk
h→ x̄, ‖yk − x̄‖ → 0, ‖xk(·) − x̄‖p → 0,

∫

Ω

‖x∗
k (ω)‖ · ‖xk(ω) − yk‖dμ(ω) → 0, z∗k +

∫

Ω

x∗
k (ω)dμ(ω) → 0,
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where the symbol zk
h→ x̄ means that zk → x̄ with h(zk) → h(x̄) as k → ∞.

Proof Assume without loss of generality that the measure μ is finite. We can always
suppose that Ω is a subset of a larger set; e.g., the collections of all its subsets.
Then Cantor’s theorem from measure theory (see, e.g., [8, Theorem 161]) tells us the
cardinal number of the latter set is strictly larger than that of Ω , and so there exists
ω0 /∈ Ω . Picking such a point ω0, define the measure space (Ω̃, Ã, μ̃) as follows:
Ω̃ := Ω ∪ {ω0} and Ã is the σ -algebra generated by A ∪ {{ω0}}, which is nothing
else than Ã = A ∪ {A ∪ {ω0}| A ∈ A} with the measure

μ̃(A) :=
{

μ(A) if ω0 /∈ A,

μ(A\{ω0}) + 1 if ω0 ∈ A.

Define now the integrand f : Ω̃ × R
n → R by

f (ω, x) :=
{

h(x) if ω = ω0,

δM(ω)(x) if ω �= ω0

and consider the function E f (x) := ∫
Ω̃

f (ω, x)dμ̃(ω) for which E f (x) = h(x) if
x ∈ M(ω) a.e. and E f (x) = ∞ otherwise. It is easy to see that x̄ is a local minimizer
of E f . Thus the subdifferential Fermat rule yields 0 ∈ ∂̂E f (x̄). Applying finally
Proposition 2.2 completes the proof of the lemma. ��

Nowwe are ready to derive integral upper estimates of regular and limiting normals
to the essential intersection M∩ by using the closure operation.

Theorem 4.2 (upper estimates of normals via integral closures) Let M : Ω →→ R
n be

a measurable multifunction with closed cone values. Then

N (x; M∩) ⊂ cl

(∫

Ω

N
(
0; M(ω)

)
dμ(ω)

)
for all x ∈ R

n . (19)

Proof To justify (19), let us first verify the inclusion with the regular normal cone on
the left-hand side. Indeed, take any x∗ ∈ N̂ (x; M∩) with x ∈ R

n and for every ε > 0
find by definition (4) such η ∈ (0, ε) that the function

y �→ −〈x∗, y − x〉 + ε‖y − x‖ + δBη(x)(y) + δM∩(y)

attains itsminimum at x . Applying Lemma 4.1 gives us sequences v∗
k ∈ B and x∗

k (ω) ∈
N̂ (xk(ω); M(ω)) a.e. for which ‖ − x∗ + εv∗

k + ∫
Ω
x∗
k (ω)dμ(ω)‖ → 0 as k → ∞.

Since M(ω) are cones, we deduce from Proposition 2.3 that x∗
k (ω) ∈ N (0; M(ω))

a.e. It implies therefore that

x∗ ∈
∫

Ω

N
(
0; M(ω)

)
dμ(ω) + 2εB.
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Taking into account that ε > 0was chosen arbitrarily,we arrive at the claimed inclusion
(19). The regular normal cone therein can be clearly replaced by the limiting one by
definition (5). ��

The next result, which is a consequence of Theorem 4.2 and basic convex analysis,
establishes the normal regularity of M∩ and gives us the precise formulas for calcu-
lating the normal cone and its relative interior under the normal regularity assumption
imposed on M(ω) for almost all ω ∈ Ω .

Corollary 4.3 (precise formulas for normals under normal regularity)Let M : Ω →→ R
n

be a measurable multifunction with closed cone values. Assume that M(ω) is normally
regular at the origin for a.e. ω ∈ Ω . Then the set M∩ is normally regular at the origin,
and we have the equalities

N (0; M∩) = cl

(∫

Ω

N
(
0; M(ω)

)
dμ(ω)

)
, (20)

ri (N (0; M∩)) = ri

(∫

Ω

N
(
0; M(ω)

)
dμ(ω)

)
. (21)

Proof Take u∗ ∈ ∫
Ω
N (0; M(ω))dμ(ω) and find integrable selection x∗(ω) ∈

N (0; M(ω)) a.e. with u∗ = ∫
Ω
x∗(ω)dμ(ω). It follows from the assumed nor-

mal regularity of M(ω) a.e. and the definition of M∩ that u∗ ∈ N̂ (0; M∩), and so∫
Ω
N (0; M(ω))dμ(ω) ⊂ N̂ (0; M∩). Applying Theorem 4.2 yields

N̂ (0; M∩) = N (0; M∩) = cl

(∫

Ω

N
(
0; M(ω)

)
dμ(ω)

)
,

which verifies the normal regularity of M∩ at 0 together with (20). Since the set∫
Ω
N

(
0; M(ω)

)
dμ(ω) is convex, the relative interior formula (21) follows from (20)

due to the classical fact of convex analysis. ��
Our further intention is to find verifiable conditions that allow us to drop the closure

operation in the normal cone evaluations of type (19). It is done below by using the
extremal principle for measurable set-valued mappings established in Section 3. First
we present the following lemma, which holds for general closed-valued measurable
multifunctions.

Lemma 4.4 (sequential optimality conditions for strict minimizers) Let x̄ ∈ R
n be a

strict localminimizer of the optimization problem fromLemma 4.1, and let p ∈ (1,∞).
Then we have the alternative conditions:

(i) either there exist sequences of functions xk(·) ∈ L p(Ω,Rn)with ‖xk(·)− x̄‖∞ →
0 and vectors yk ∈ R

n with ‖yk − x̄‖ → 0 as k → ∞ such that 0 ∈ ∂̂h(yk) +∫
Ω
N̂ (xk(ω); M(ω))dμ(ω), k ∈ N;

(ii) or there exist sequences of functions xk(·) and vectors yk as in (i), and also
sequences of nonzero adjoint functions x∗

k (·) ∈ Lq(Ω,Rn) with 1/p + 1/q = 1
and x∗

k (ω) ∈ N̂ (xk(ω); M(ω)) for a.e. ω ∈ Ω as well as vectors u∗
k ∈ ∂̂∞h(yk)

such that u∗
k + ∫

Ω
x∗
k (ω)dμ(ω) = 0 for all k ∈ N.
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Proof Assume without loss of generality that the measure μ is finite and pick ω0 /∈
Ω . Then we construct a new measure space (Ω̃, Ã, μ̃) exactly as in the proof of
Lemma 4.1. Define further the measurable multifunction M̃ : Ω →→ R

n+1 on the new
measure space by

M̃(ω) :=
{

epi h if ω = ω0,

M(ω) × (−∞, h(x̄)] if ω �= ω0

and take a neighborhood V of x̄ on which this vector is a unique minimizer in the
optimization problem under consideration.

Let us check that the mapping M̃ is locally extremal at the origin in L p(Ω̃,Rn)

in the sense of Definition 3.1. Indeed, denote U := V × R and consider the measur-
able functions ak(ω) := −(0, k−11{ω=ω0}(ω)) a.e., where 1A(ω) is the characteristic
function of the set A, i.e., it equals to 1 on A and 0 outside of A. Then we have that
‖ak‖p = k−1 → 0. It is also easy to verify that

⋂
ω∈Ω̃ a.e.(M̃(ω) − ak(ω)) ∩ U = ∅,

k ∈ N, which justifies the claim.
Next we show that the nonoverlapping condition (11) holds for M̃ with U defined

above. Take any (x, α) ∈ M̃∩ ∩ U and observe that α ≥ h(x) due to (x, α) ∈
M(ω0) = epi h. On the other hand, we have x ∈ M∩ ∩ U and α ≤ h(x̄). Since x̄ is
a strict minimizer of our problem, it implies that (x, α) = (x̄, h(x̄)), which readily
verifies (11).

Applying now Theorem 3.2 gives us sequences (xk, αk) ∈ L p(Ω,Rn+1) and
(x∗

k , α
∗
k ) ∈ Lq(Ω,Rn+1) such that ‖(xk, αk)‖p → 0 as k → ∞, (x∗

k (ω), α∗
k (ω)) ∈

N̂ ((xk(ω), αk(ω)); M̃(ω)) a.e. on Ω , and

(x∗
k (ω0), α

∗
k (ω0)) +

∫

Ω

(
x∗
k (ω), α∗

k (ω)
)
dμ(ω) = 0, (22)

‖x∗
k (ω0)‖q + ‖α∗

k (ω0)‖q +
∫

Ω

(‖x∗
k (ω)‖q + ‖α∗

k (ω)‖q)dμ(ω) = 1. (23)

Note that estimate (12) of Theorem 3.2 ensures actually the stronger convergence
‖(xk, αk)‖∞ → 0 as k → ∞ due to the above choice of the sequence {ak(ω)} in the
extremality definition.

It follows from the constructions of M̃ that x∗
k (ω) ∈ N̂ (xk(ω); M(ω)) and α∗

k (ω) ≥
0 a.e. on Ω . Thus (22) yields α∗

k (ω0) ≤ 0 for all k ∈ N. Furthermore

N̂
(
(xk(ω0), h(xk(ω0)); M̃(ω0)

) = N̂
(
(xk(ω0), h(xk(ω0)); epi h

)
, k ∈ N.

Supposing that α∗
k (ω0) = 0 for infinitely many k gives us u∗

k := x∗
k (ω0) ∈ ∂̂∞h(yk)

with yk := xk(ω0) → 0 as k → ∞. Using (22) and (23) yields

u∗
k +

∫

Ω

x∗
k (ω)dμ(ω) = 0 and ‖u∗

k‖q +
∫

Ω

‖x∗
k (ω)‖qdμ(ω) = 1
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for all k ∈ N, which verifies assertion (ii) in this case. In the remaining case where
α∗
k (ω0) < 0 for infinitely many k we get |α∗

k (ω0)
−1|x∗

k (ω0) ∈ ∂̂h(yk). Then (22)
readily ensures the fulfillment of assertion (i). ��

To proceed further with dismissing the closure operation in the normal cone rep-
resentations by employing Lemma 4.4, we need some qualification conditions for
measurable multifunctions. Let us introduce two of them in the case of arbitrary
closed-valued multifunctions.

Definition 4.5 (normal qualification conditions) Let M : Ω →→ R
n be a measurable

multifunction with closed values. We say that:

(i) The regular normal qualification condition holds for M at x̄ ∈ M∩ if there exists
ε > 0 such that for all x(ω) ∈ B(x̄, ε) with a.e. ω ∈ Ω we have

[∫

Ω

x∗(ω)dμ(ω) = 0, x∗(ω) ∈ N̂
(
x(ω); M(ω)

)] �⇒ [
x∗(ω) = 0

]
. (24)

(ii) The limiting normal qualification condition holds for M at x̄ ∈ M∩:
[∫

Ω

x∗(ω)dμ(ω) = 0, x∗(ω) ∈ N
(
x̄; M(ω)

)
a.e.

]
�⇒ [

x∗(ω) = 0 a.e.
]
.

Both qualification conditions of Definition 4.5 are new, while the limiting one is a
natural extension of that in [18, Definition 3.11] and [14, Definition 8.69] given for
countablymany sets, which extends in turn the standard normal qualification condition
of variational analysis [13,14,21] for finite systems.

It is easy to see that the limiting qualification condition in Definition 4.5(ii) implies
the regular one in (i) if the set Ω is finite. It also happens when M is cone-valued
and x̄ = 0. Indeed, we can deduce the latter directly from the second inclusion of
Proposition 2.3.

Let us present useful sufficient conditions for the validity of the limiting normal
qualification condition from Definition 4.5(ii) that also imply the one in (24) in the
conic case of our main interest in this section.

Proposition 4.6 (sufficient conditions for normal qualification) Let M : Ω →→ R
n be

a measurable multifunction with closed values, let x̄ ∈ M∩, and let
⋂

ω∈Ω a.e. int
(M(ω)) �= ∅. Assume that either M is convex-valued, or the sets M(ω) are cones
which are normally regular at x̄ = 0 for a.e. ω ∈ Ω . Then M(·) satisfies the limiting
normal qualification condition at x̄ .

Proof Considering the case of convex-valued mappings, take x∗(ω) ∈ N (x̄; M(ω))

with
∫
Ω
x∗(ω)dμ(ω) = 0. Fix any x ∈ ⋂

ω∈Ω a.e. int(M(ω)) and A ∈ A and then get
by the convexity of M(ω) that

0 ≥
∫

A

〈
x∗(ω), x − x̄

〉
dμ(ω) = −

∫

Ac

〈
x∗(ω), x − x̄

〉
dμ(ω) ≥ 0,
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where Ac stands for the complement of A. Since A ∈ A was chosen arbitrarily, it
shows that 〈x∗(ω), x − x̄〉 = 0 for almost all ω ∈ Ω .

For any set A ∈ A with μ(A) = 0 and for any ω ∈ Ω̂ := Ω\A with x ∈ intM(ω)

we get the relationships

〈x∗(ω), x − x̄〉 = 0 and x∗(ω) ∈ N
(
x̄; M(ω)

)
.

Furthermore, for each selected ω there exists a number rω > 0 such that B(x, rω) ⊂
M(ω). Thus 〈x∗(ω), h〉 ≤ 〈x∗(ω), x̄ − x〉 = 0 whenever h ∈ B(0, rω), which implies
in turn that x∗(ω) = 0 for almost all ω ∈ Ω and hence verifies the claimed nor-
mal regularity for convex-valued mappings. The proof for the case of cone-valued
multifunctions is similar. ��

Finally in this section, we derive desired representations of the regular normal cone
to essential intersections and its interior without using the closure operation. The first
part of this theorem holds for general measurable mappings, while the second one
addresses cone-valued multifunctions.

Theorem 4.7 (normal cone formulas without closure) Let M : Ω →→ R
n be a mea-

surable multifunction with closed values satisfying the regular normal qualification
condition (24) at x̄ ∈ M∩. Then the following hold:

(i) Take any x∗ ∈ N̂ (x̄; M∩) for which there is ε > 0 with

〈x∗, x − x̄〉 < 0 whenever x ∈ M∩ ∩ B(x̄, ε)\{x̄}. (25)

Then there exists a measurable selection x(ω) ∈ M(ω) ∩ B(x̄, ε) such that

x∗ ∈
∫

Ω

N̂
(
x(ω); M(ω)

)
dμ(ω). (26)

(ii) If the values of M(·) are closed cones, then we have

intN̂ (0; M∩) ⊂
∫

Ω

N
(
0; M(ω)

)
dμ(ω). (27)

Proof To verify (i), observe that for the vector x∗ satisfying the assumptions therein
we get that the function h(x) := −〈x∗, x〉 attains its strict local minimum at x̄ subject
to the constraints x ∈ M(ω) a.e. on Ω . Then Lemma 4.4 gives us the two alternative
conditions. It is easy to see that the second among them is ruled out by the imposed
regular normal qualification condition (24). Thus we arrive at the necessary condition
in Lemma 4.4(i), which reduces to inclusion (26) in the case of the selected function
h(x).

To verify now assertion (ii), we show first that the inclusion

intN̂ (0; M∩) ⊂
⋂

ε>0

⋃

x∈L∞(Ω,B(0,ε))

∫

Ω

N̂
(
x(ω); M(ω)

)
dμ(ω) (28)
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holds for any closed cone-valued measurable multifunction. To proceed, pick any
ε > 0 and x∗ ∈ intN̂ (0; M∩), and then find r > 0 such that B(x∗, r) ⊂ N̂ (0; M∩).
Fixing x ∈ M∩\{x̄} and defining u∗ := r x

‖x‖ , we get from the above constructions

that x∗ + u∗ ∈ N̂ (0; M∩) and therefore

〈x∗, x〉 = 〈x∗ + u∗, x〉 − 〈u∗, x〉 ≤ −r‖x‖ < 0.

It tells us that (25) holds, which yields (26) with some measurable selection x(ω) ∈
B(x̄, ε) a.e. on Ω by assertion (i) established above. This clearly justifies (28). Fur-
thermore, it follows from Proposition 2.3 that

N̂
(
x(ω); M(ω)

) ⊂ N
(
0; M(ω)

)
a.e. on ω ∈ Ω (29)

due to the cone-valuedness assumption on M(·). Hence (29) implies that the right-
hand side of (28) is included in the right-hand side of (27), and thus we complete the
proof of the theorem. ��

Note that assertion (ii) of Theorem 4.7 is a counterpart of formula (21) in Corol-
lary 4.3 obtained without imposing any regularity condition.

5 Normals to essential intersections via CHIP

In this section we extend the major normal cone formulas obtained in Sect. 4 for cone-
valued multifunctions to a general class of closed-valued multifunctions on measure
spaces. To furnish this, we first introduce and investigate the so-called CHIP (conical
hull intersection property) for measurable multifunctions, which has been studied in
the literature under this name for the classes of finitely many convex sets (see, e.g.,
[1,5] and the references therein) as well as countablymany convex [11] and nonconvex
[14,19] sets.

Definition 5.1 (CHIP for measurable multifunctions) Let M : Ω →→ R
n be a mea-

surable multifunction on the measure space (Ω,A, μ). We say that the measurable
CHIP (conical hull intersection property) holds for M(·) with respect to (Ω,A, μ) at
x̄ ∈ M∩ if

T (x̄; M∩) =
⋂

ω∈Ω a.e.

T
(
x̄; M(ω)

)
. (30)

When no confusion arises about the measure space, we simple say that themeasurable
CHIP holds for M(·) at x̄ .

It is important to mention that CHIP holds automatically for multifunctions which
values at the original are closed cones.

Let us present some sufficient conditions for the fulfillment of CHIP. The following
new property postulates a certain uniformity over the set of tangential directions.
Having in mind applications to semi-infinite programming in Sect. 7, we consider
below arbitrary index sets, not just measure spaces.
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Definition 5.2 (tangential stability) We say that a set Θ ⊂ R
n is tangentially stable

at x̄ ∈ Θ with respect to some U ⊂ R
n if

T (x̄;Θ) ∩U ⊂ (Θ − x̄). (31)

A family of sets {Θt }t∈T ⊂ R
n is uniformly tangentially stable at a common point x̄

if there exists an (open) neighborhoodU of zero such that the sets Θt are tangentially
stable at x̄ with respect to U for all t ∈ T . In the case where T is a measure space,
{Θt }t∈T is (uniformly) almost everywhere tangentially stable at x̄ provided that the
previous property holds for almost all t ∈ T .

Note that the tangential stability property (31) holds for Θ at x̄ if either x̄ ∈ intΘ ,
or Θ is a cone with x̄ = 0, or Θ is the complement of an open convex set. The next
lemma establishes the validity of CHIP under the uniform tangential stability of set
systems.

Lemma 5.3 (tangential stability implies CHIP) Consider a family of closed sets
{Θt }t∈T with x̄ ∈ ⋂

t∈T Θt and assume that the system {Θt }t∈T is uniformly tan-
gentially stable at x̄ . Then we have

T
(
x̄;

⋂

t∈T
Θt

)
=

⋂

t∈T
T (x̄;Θt ). (32)

If T is a measure space and the family {Θt }t∈T is almost everywhere tangentially
stable at x̄ , then (32) holds with t ∈ T a.e. therein.

Proof It is sufficient to verify the nontrivial inclusion “⊃” in (32). By the assumed
uniform tangential stability of {Θt } we can take an open neighborhoodU of zero such
that (31) holds. It clearly yields, by taking into account that the set

⋂
t∈T T (x̄;Θt ) is

a cone, the relationships

⋂

t∈T
T (x̄;Θt ) = T

(

0;
⋂

t∈T
T (x̄;Θt )

)

= T

(

0;
(

⋂

t∈T
T (x̄;Θt )

)
⋂

U

)

⊂ T

(

0;
⋂

t∈T
(Θt − x̄)

)

= T

(

x̄;
⋂

t∈T
Θt

)

,

which ensure in turn the claimed CHIP of the family {Θt }t∈T . ��
The following consequence of Lemma 5.3 is useful for applications to optimization

problems with inequality constraints.

Corollary 5.4 (CHIP for infinite inequality systems) Let Θt := {x ∈ R
n| f (t, x) ≤ 0}

with an arbitrary index set T , where f (t, x) := 〈a(t), x〉 − b(t) with a : T → R
n

and b : T → R. Taking x̄ ∈ R
n and the collection of active indexes T f := {t ∈

T | f (t, x̄) = 0}, suppose that x̄ ∈ int
⋂

t∈T \T f
{x ∈ R

n| f (t, x) < 0}. Then we have
that CHIP (32) holds for {Θt }t∈T at x̄ . If T is a measure space with a(·) and b(·)
being measurable on it, then the measurable CHIP is satisfied with t ∈ T a.e. therein.
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Proof To verify the CHIP (32), it is sufficient to show by Lemma 5.3 that the system
(Θt )t∈T is uniformly tangentially stable at x̄ . Indeed, consider the open set U :=
int

(⋂
t∈T \T f

{x ∈ R
n| f (t, x) < 0} − x̄

)
and observe that for every t ∈ T f the set

Θt − x̄ is a cone. This implies that T (x̄;Θt ) = Θt − x̄ . Furthermore, for all t /∈ T f we
have that x̄ is an interior point of Θt , and hence T (x̄;Θt ) = R

n . It tells us therefore
that T (x̄;Θt ) ∩U ⊂ U ⊂ Θt − x̄ . ��

The next theorem presents major counterparts for general measurable multifunc-
tions of the normal cone formulas from Theorem 4.2 and Corollary 4.3 obtained above
for cone-valued multifunctions.

Theorem 5.5 (normal cone evaluations for measurable multifunctions) Let
M : Ω →→ R

n be a measurable multifunction with closed values, and let x̄ ∈ M∩
for its essential intersection (3). Assume that the measurable CHIP holds for M(·) at
x̄ . Then we have the upper estimate

N̂ (x̄; M∩) ⊂ cl

(∫

Ω

N
(
x̄; M(ω)

)
dμ(ω)

)
. (33)

If in addition M(ω) is normally regular at x̄ for almost all ω ∈ Ω , then inclusion (33)
holds as equality, and we also get

ri
(
N̂ (x̄; M∩)

) = ri

(∫

Ω

N
(
x̄; M(ω)

)
dμ(ω)

)
. (34)

Proof It follows from the definitions that N̂ (x̄; M∩) = N̂ (0; T (x̄; M(ω))). Further-
more, the imposed CHIP yields the fulfillment of (30). Hence, by the duality between
T (·;Θ) and N̂ (·;Θ), we get

N̂
(
x̄; M∩

) = N̂
(
0; T (x̄; M∩)

) = N̂
(
0;

⋂

ω∈Ω a.e

T
(
x̄; M(ω)

))
. (35)

Then applying Theorem 4.2 to the cones in (35) gives us the inclusion

N̂
(
0;

⋂

ω∈Ω a.e.

T
(
x̄; M(ω)

)) ⊂ cl

(∫

Ω

N
(
0; T (x̄; M(ω))

)
dμ(ω)

)
,

which yields (33) due to N (0; T (x̄; M(ω))) ⊂ N (x̄; M(ω)) for all ω ∈ Ω .
Proceeding now in the case where M(·) is normally regular at x̄ , we can easily

observe that the tangent cone T (x̄; M(ω)) is also normally regular at the origin for
almost all ω ∈ Ω . Applying then Corollary 4.3 together with (30) and (35) tells us
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that

N̂
(
x̄; M∩) = N̂

(
0; T (x̄; M∩)

) = cl

(∫

Ω

N̂
(
0; T (x̄; M(ω))

)
dμ(ω)

)

= cl

(∫

Ω

N̂
(
x̄; M(ω)

)
dμ(ω)

)
,

which justifies the equality in (33). The relative interior formula (34) is verified simi-
larly by employing Corollary 4.3. ��

Finally, we use CHIP and the conic result of Theorem 4.7(ii) to dismiss the closure
operation in the normal cone estimate for general multifunctions.

Proposition 5.6 (normal cone estimate without closure) Let M : Ω →→ R
n be a mea-

surablemultifunctionwith closed values, and let x̄ ∈ M∩. Suppose that themeasurable
CHIP holds for M(·) at x̄ . Then we have the interior estimate

intN̂ (x̄; M∩) ⊂
∫

Ω

N
(
x̄; M(ω)

)
dμ(ω).

Proof First N̂ (x̄; M∩) = N̂ (0; T (x̄; M∩)). Then using the assumed CHIP and Theo-
rem 4.7(ii) for cone-valued mappings gives us

intN̂ (0; M∩) ⊂
∫

Ω

N
(
0; T (x̄; M(ω))

)
dμ(ω) ⊂

∫

Ω

N
(
x̄; M(ω)

)
dμ(ω),

which verifies the claimed upper estimate. ��

6 Applications to stochastic programming

In this section we consider the stochastic optimization problem with the random
constraint sets formulated in (1). Suppose in what follows that M : Ω → R

n is a
measurable multifunction with closed values and that h : Rn → R is an l.s.c. function
around the reference point.

Based on the normal cone formulas for the essential intersection of M obtained in
Sects. 4 and 5, we are now ready to derive new necessary optimality conditions for
local minimizers of (1).

Theorem 6.1 (necessary optimality conditions for general stochastic programs) For a
local minimizer x̄ ∈ M∩ of (1) the following hold:

(i) Assume that M∩ is normally regular at x̄ , that M(·) satisfies the measurable CHIP
at x̄ , and that the qualification condition

( − ∂∞h(x̄)
) ∩ cl

( ∫

Ω

N
(
x̄; M(ω)

)
dμ(ω)

)
= {0} (36)
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is satisfied. Then we have the necessary optimality condition

0 ∈ ∂h(x̄) + cl
( ∫

Ω

N
(
x̄; M(ω)

)
dμ(ω)

)
. (37)

(ii) Assume that the sets M(ω) are cones for a.e. ω ∈ Ω and that x̄ = 0. Then the
fulfilment of (36) ensures that (37) holds at this point.

Proof It follows from basic variational analysis (see, e.g., [13, Proposition 5.3]) that
0 ∈ ∂h(x̄)+N (x̄; M∩) if (−∂∞h(x̄))∩N (x̄; M∩) = {0}. EmployingnowTheorem5.5
under the assumptions made in (i), we get

N (x̄; M∩) = N̂ (x̄; M∩) ⊂ cl
( ∫

Ω

N
(
x̄; M(ω)

)
dμ(ω)

)
,

which clearly ensures the fulfillment of condition (37) if (36) holds.
To verify (ii) in the case of cone values, we proceed similarly by using the second

statement of Theorem 4.2 instead of Theorem 5.5. Note that in this case neither CHIP
nor normal regularity assumptions are needed. ��

Let us discuss the obtained estimates and their consequences.

Remark 6.2 (discussions on optimality conditions) Observe the following:

(a) The qualification condition (36) holds automatically if h is locally Lipschitzian
around x̄ due the characterization ∂∞h(x̄) = {0} of this property.

(b) The result of Theorem 6.1(i) clearly yields those from [19, Theorem 4.2] and [14,
Theorem 8.77] for problem (1) with countablymany geometric constraints.More-
over, we significantly extend the previous developments in the case of countable
constraints by dropping the normal qualification condition from Definition 4.5(ii)
imposed in [14,19]. The result of Theorem 6.1(ii) for cone-valued multifunctions
without the normal regularity has never been observed earlier even for countably
many constraints.

(c) The result of Theorem 4.7(i) allows us, under the additional assumption therein,
to avoid the closure operation in both assertions of Theorem 6.1.

(d) Finally, let us mention that the normal regularity of M∩ and the normal qual-
ification condition (36) can be replaced by the assumption that h is Fréchet
differentiable at x̄ . Indeed, we get it by using [13, Proposition 1.107] instead
of [13, Proposition 5.3] to derive the necessary optimality conditions.

We conclude this section by specifying the results of Theorem 6.1 to the class of
stochastic optimization problems with random inequality constraints

M(ω) := {
x ∈ R

n
∣∣ f (ω, x) ≤ 0

}
, (38)

where f : Ω × R
n → R is a normal integrand such that fω(·) := f (ω, ·) is locally

Lipschitzian around x̄ for almost all ω ∈ Ω .
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Corollary 6.3 (necessary optimality conditions for stochastic programswith inequality
constraints) Let x̄ be a local minimizer of problem (1) with the inequality constraints
(38). The following assertions hold:

(i) In addition to the normal regularity andCHIPassumptions of Theorem6.1, impose
the qualification conditions

0 /∈ ∂ fω(x̄) for almost all ω ∈ Ω f := {
ω ∈ Ω

∣∣ f (ω, x̄) = 0
}
, (39)

( − ∂∞h(x̄)
) ∩ cl

( ∫

Ω f

cone
(
∂ fω(x̄)

)
dμ(ω)

)
= {0}. (40)

Then we have the necessary optimality condition

0 ∈ ∂h(x̄) + cl
( ∫

Ω f

cone
(
∂ fω(x̄)

)
dμ(ω)

)
. (41)

(ii) Assume that f (ω, λx) ≤ λ f (ω, x) for all λ ≥ 0, all x ∈ R
n, and a.e. ω ∈ Ω .

Then the fulfillment of (40) ensures that (41) holds at x̄ = 0.

Proof It follows from (39) by [21, Proposition 10.3] that

N
(
x̄; M(ω)

) ⊂ R+∂ fω(x̄) for almost all ω ∈ Ω with fω(x̄) = 0.

If fω(x̄) < 0, we get by the continuity of fω that N (x̄; M(ω)) = {0}. Thus
∫

Ω

N
(
x̄; M(ω)

)
dμ(ω) ⊂ cl

( ∫

Ω f

cone
(
∂ fω(x)

)
dμ(ω)

)
,

which allows us to deduce assertion (i) from Theorem 6.1(i). To verify assertion (ii),
it is sufficient to observe that the additional assumption therein ensures that the sets
M(ω) in (38) are cones, and then apply Theorem 6.1(ii). ��

Note that the normal regularity assumption on the mapping (38) can be replaced
by the subdifferential/lower regularity of fω at x̄ (see [13,21]) and that the sufficient
conditions for the CHIP assumption for inequality constraints are given in Proposi-
tion 5.4.

7 Applications to semi-infinite programming

The concluding section of the paper is devoted to applications of the results obtained
above to general problems of semi-infinite programming given by

minimize h(x) subject to x ∈ M(t) for all t ∈ T , (42)

where M : T →→ R
n is a multifunction with closed values, and where the index set

T is a metric space. The conventional setting of (42) concerns linear and convex

123



550 B. S. Mordukhovich, P. Pérez-Aros

problems with inequality constraints defined on compact sets T , while more recently
various classes of semi-infinite programs with inequality constraints on noncompact
sets have been also under consideration; see, e.g., [3,6,11,14,19] and the references
therein. Problems of type (42) with countable set constraints were studied in [14,19].

Note that, in contrast to problem (1) from the previous section, program (42) does
not explicitly contain any measure. However, we can associate with (42) a measure
space constructed as follows. For a closed set A ⊂ T , let B(A) be the Borel σ -algebra
on A. We say that a measure onB(A) is strictly positive if every nonempty open subset
of A has strictly positive measure and then denote by M+(A) the set of all the finite
strictly positive measures on B(A). For simplicity, we confine ourselves to the case
where M is an outer semicontinuous, i.e., Lim sups→t M(s) ⊂ M(t) for all t ∈ T .

The next theorem presents general necessary optimality conditions for nonsmooth
and nonconvex semi-infinite programs of type (42) with infinitely many set constraints
indexed via arbitrary metric spaces.

Theorem 7.1 (necessary optimality conditions for semi-infinite programswith set con-
straints) Let x̄ be a local minimizer of problem (42), where the cost function h(·) is
locally Lipschitzian around x̄.

(i) Assume that the set
⋂

t∈T M(t) is normally regular at x̄ and that for each dense
set A ⊂ T the CHIP condition

T
(
x̄;

⋂

t∈A

M(t)
)

=
⋂

t∈A

T
(
x̄; M(t)

)
(43)

is satisfied. Then for every measure ν ∈ M+(T ) we have

0 ∈ ∂h
(
x̄
) + cl

( ∫

T
N

(
x̄; M(t)

)
dν(t)

)
. (44)

(ii) Assume that the set M(t) is a cone for each t ∈ T , and that x̄ = 0. Then the
optimality condition (37) holds at the origin.

Proof Denote by (T ,A, μ) the completion of (T ,B(T ), ν) and consider the following
optimization problem of type (1) from Sect. 6:

minimize h(x) subject to x ∈ M∩. (45)

Let us check that x̄ is a local minimizer of (45) and that all the assumptions of Theo-
rem6.1 are satisfied for (45). Indeed, the imposed outer semicontinuity ofM(·) ensures
that the distance function t �→ dM(t)(x) is l.s.c. on T for all x ∈ R

n , which yields the
measurability of M(·) with respect to (T ,A, μ) by employing [21, Theorems 14.2
and 14.8].

It is easy to see that M∩ contains the feasible set of (42). Furthermore, if x ∈ M∩,
then there exists a set A ∈ A such that μ(T \A) = 0 and x ∈ M(s) for all s ∈ A.
Observe that A is dense onT ; otherwise there exists an open setU such that A∩U �= ∅,
which contradicts the strict positivity of μ. In particular, for every t ∈ T there exists
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a sequence tk → t as k → ∞ with x ∈ M(tk) for all k ∈ N, and then the outer
semicontinuity of M(·) yields x ∈ M(t). This shows that x ∈ M(t) for all T if and
only if x ∈ M∩. It follows also from the above arguments that x̄ is a local minimizer
of (45).

To verify now assertion (i) of the theorem, we are going to apply Theorem 6.1(i) to
problem (45). As follows from the above, M∩ is normally regular at x̄ . Furthermore,
the qualification condition (36) holds due the imposed Lipschitz continuity of h(·)
around x̄ ; see Remark 6.2(a). To apply the result of Theorem 6.1(i), it remains to show
that the assumed CHIP (43) yields the validity of the measurable CHIP for M∩ at x̄
with respect to μ. To proceed, pick any v ∈ ⋂

t∈T μ-a.e. T (x̄; M(t)) and find a dense
set A ⊂ T of full measure such that v ∈ ⋂

t∈A T (x̄; M(t)). Hence (43) tells us that
v ∈ T (x̄;⋂

t∈A M(t)). It follows from the outer semicontinuity of M(·) that
⋂

t∈A

M(t) =
⋂

t∈T
M(t), and so

⋂

t∈T μ-a.e.

T
(
x̄; M(t)

) ⊂ T (x̄; M∩),

which justifies themeasurableCHIP forM∩ at x̄ . Usingfinally the necessary optimality
condition (37) of Theorem 6.1(i), we arrive at (44) and thus complete the proof of
assertion (i). Assertion (ii) of the theorem follows directly from Theorem 6.1(ii) and
the arguments above. ��
Remark 7.2 (Fréchet differentiable costs) It easily follows from the proof of Theo-
rem 7.1 that the normal regularity of

⋂
t∈T M(t) at x̄ therein is not needed if the cost

function h is Fréchet differentiability at x̄ ; see Remark 6.2(d).

Next we consider semi-infinite programs with inequality constraints:

minimize h(x) subject to x ∈ M(t) := {
x
∣∣ f (t, x) ≤ 0

}
, t ∈ T , (46)

where h : Rn → R is continuously differentiable while f : T ×R
n → R is continuous

with respect to t and continuously differentiable with respect to x .

Theorem 7.3 (optimality conditions for semi-infinite programs with inequality con-
straints) Let x̄ be a local minimizer of (46) such that

x̄ ∈ int
( ⋂

t∈T \T f

{
x ∈ R

n
∣∣ f (t, x) < 0

})
with T f := {

t ∈ T
∣∣ f (t, x̄) = 0

}
,

that ∇x f (t, x̄) �= 0 for all t ∈ T f , and that the mapping t �→ ∇x f (t, x̄) is continuous
on T f . Furthermore, suppose that the CHIP assumption (43) is satisfied at x̄ with
A := T f therein. Then we have

0 ∈ ∇h(x̄) + cl
( ∫

T f

cone
{∇x f (t, x̄)

}
dν(t)

)
for any ν ∈ M+(T f ). (47)

Proof Without loss of generality, from now on we consider problem (46) for t ∈ T f .
Applying to this problem the results of Theorem 7.1 and Remark 7.2), observe that all
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the corresponding assumptions can be easily verified with the exception of CHIP (43)
over the set T f . Thus it remains to check that the imposed CHIP assumption yields
the fulfillment of CHIP (43) for any dense subset A ⊂ T f . Indeed, it follows from
[21, Exercise 6.7] that

T
(
x̄; M(t)

) = {
w ∈ R

n
∣∣ 〈∇x f (t, x̄), w

〉 ∈ T
(
f (t, x̄);R−

)}
, t ∈ T f ,

which implies in turn the representation

T
(
x̄, M(t)

) = {
w ∈ R

n
∣∣ 〈∇x f (t, x̄), w

〉 ≤ 0
}
,

and hence
⋂

t∈T f
T (x̄; M(t)) = {w| 〈∇x f (t, x̄), w〉 ≤ 0 for all t ∈ T f }. Taking

now any dense set A ⊂ T f , we have that
⋂

t∈A M(t) = ⋂
t∈T f

M(t). Furthermore,
the continuity of t �→ ∇x f (t, x̄) ensures that

T
(
x̄;

⋂

t∈A

M(t)
)

= T
(
x̄;

⋂

t∈T f

M(t)
)

=
⋂

t∈T f

T
(
x̄; M(t)

)

= {
w ∈ R

n
∣∣ 〈∇x f (t, x̄), w

〉 ≤ 0 for all t ∈ A
} =

⋂

t∈A

T
(
x̄; M(t)

)
,

which verifies the CHIP assumption of Theorem 7.1. Applying finally Theorem 7.1
to (46) and arguing as in the proof of Corollary 6.3, we finish the verification of both
assertions of the theorem. ��

To conclude, let us present a useful consequence of Theorem 7.3(i), where the CHIP
assumption is automatically satisfied.

Corollary 7.4 (optimality conditions for semi-infinite programs with linear inequality
constraints) Let x̄ be a local minimizer of the problem:

minimize h(x) subject to 〈a(t), x〉 ≤ b(t) for all t ∈ T ,

where a : T → R
n and b : T → R are continuous functions with a(t) �= 0 for

all t ∈ T f from Theorem 7.3 with f (t, x) := 〈a(t), x〉 − b(t). Assume that x̄ ∈
int

⋂
t∈T \T f

{x ∈ R
n| 〈a(t), x〉 < b(t)}. Then we have

0 ∈ ∇h(x̄) + cl
( ∫

T f

cone
{
a(t)

}
dν(t)

)
for any ν ∈ M+(T f ).

Proof It follows directly fromTheorem 7.3(i), where the normal regularity assumption
is replaced by the Fréchet differentiability of h by Remark 6.2(d), and the CHIP
assumption holds by Corollary 5.4. ��

We refer the reader to [3,6,11,14–17] and the bibliographies therein for various
qualification conditions that lead to the possibility to avoid the closure operation
in necessary optimality conditions of type (47) for particular forms of semi-infinite
programs with inequality constraints.
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22. Shapiro, A., Dentcheva, D., Ruszczyński, A.: Lectures on Stochastic Programming, 2nd edn. SIAM

Publications, Philadelphia, PA (2014)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1007/s10107-018-1237-9

	New extremal principles with applications to stochastic and semi-infinite programming
	Abstract
	1 Introduction
	2 Preliminaries from variational analysis
	3 Extremal principles for measurable set-valued mappings
	4 Normals to essential intersections via optimization
	5 Normals to essential intersections via CHIP
	6 Applications to stochastic programming
	7 Applications to semi-infinite programming
	Acknowledgements
	References




