
Mathematical Programming (2021) 188:523–537
https://doi.org/10.1007/s10107-020-01547-5

FULL LENGTH PAPER

Series B

The confined primal integral: a measure to benchmark
heuristic MINLP solvers against global MINLP solvers

Timo Berthold1 · Zsolt Csizmadia2

Received: 30 January 2020 / Accepted: 17 July 2020 / Published online: 29 July 2020
© Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2020

Abstract
It is a challenging task to fairly compare local solvers and heuristics against each other
and against global solvers. How does one weigh a faster termination time against a
better quality of the found solution? In this paper, we introduce the confined primal
integral, a new performancemeasure that rewards a balance of speed and solution qual-
ity. It emphasizes the early part of the solution process by using an exponential decay.
Thereby, it avoids that the order of solvers can be inverted by choosing an arbitrarily
large time limit. We provide a closed analytic formula to compute the confined primal
integral a posteriori and an incremental update formula to compute it during the run
of an algorithm. For the latter, we show that we can drop one of the main assumptions
of the primal integral, namely the knowledge of a fixed reference solution to compare
against. Furthermore, we prove that the confined primal integral is a transitive measure
when comparing local solves with different final solution values. Finally, we present
a computational experiment where we compare a local MINLP solver that uses cer-
tain classes of cutting planes against a solver that does not. Both versions show very
different tendencies w.r.t. average running time and solution quality, and we use the
confined primal integral to argue which of the two is the preferred setting.

Keywords MINLP · Optimization software · Performance measure

Mathematics Subject Classification 90C30 Nonlinear programming

1 Introduction

When working with optimization software, there is a natural desire to compare differ-
ent solvers to each other, with respect to both their speed and their solution quality.

B Timo Berthold
timoberthold@fico.com

1 Fair Isaac Germany GmbH, Takustr. 7, 14195 Berlin, Germany

2 Fair Isaac Europe Ltd, International Square, Starley Way, Birmingham B37 7GN, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10107-020-01547-5&domain=pdf
http://orcid.org/0000-0002-6320-8154

524 T. Berthold, Z. Csizmadia

This goes back to the early days of operations research: Hoffman et al. reported a
first computational experiment to compare different implementations of linear pro-
gramming algorithms in 1953 [14]. Just as researchers and software vendors want to
distinguish their code on general test sets, a user wants to tune an optimization soft-
ware for a particular set of problems. However, all parties require suitable criteria for
measuring the performance of a software implementation.

With the rise of computational research, standards and guidelines for conducting
computational experiments were proposed [10,15–17]. One key issue of the cited
articles is the choice of suitable performance indicators. Common measures are the
running time to find a first feasible solution, the running time to proven optimality,
the objective value after a certain time limit, the number of branch-and-bound nodes
(for branch-and-bound based algorithms) or the number of iterations (e.g., for interior
point algorithms). Recently, Berthold suggested a measure called the primal integral
[4] which combines the running time of an algorithm with the solution quality of a
series of improving solutions it produces. The author used global solvers for mixed-
integer linear programs as a showcase. Since the primal integral takes the development
of the incumbent solution over time into account, it favors algorithms that find good
solutions early. The author argues that it is less prone, though not immune, against
the dependence on an (arbitrarily chosen) time limit, which is a weakness of many
performance measures.

In the present paper, we suggest an extension of the primal integral which will
diminish the time limit dependence even more. There are two major motivations for
our work.

Our first motivation comes from taking the perspective of a user of optimization
software. For a user, the early phases of a solution process are often perceived as the
most important ones. The change in solution quality (and in the bound) during the
first minutes appear more relevant than a change after several hours, even though both
might have a comparable impact. This leads to the idea of scaling measures like the
primal integral to put an emphasis on the early solution phases. In our experience, users
of optimization software tend to think in orders of magnitudes: What can I achieve in
a few seconds, what can I achieve in a few minutes, what can I achieve in a few hours?
Ultimately, the solver developers do not know which time limits the solver users will
employ, thus it is preferable to have a measure that is mostly independent of the time
limit.

Our second, even stronger, motivation comes from the desire to compare heuristics
and local solvers against global solvers. We will use mixed-integer nonlinear pro-
gramming (MINLP) as a showcase. An MINLP is an optimization problem of the
form

min{ f (x) | gk(x) ≤ 0 ∀k ∈ K, l ≤ x ≤ u, x j ∈ Z ∀ j ∈ I} (1)

with objective function f : R
n �→ R, constraint functions gk : R

n �→ R, k ∈ K :=
{1, . . . ,m}, continuously differentiable, and possibly nonconvex, and variable bounds
l, u ∈ R

n
, where R := R ∪ {±∞}. Furthermore, let N = {1, . . . , n} be the index

set of all variables and I ⊆ N the set of variables that need to be integral in every
feasible solution. We call an MINLP convex when all of its constraint functions gk

123

The confined primal integral… 525

are convex.1 Otherwise, we call the MINLP nonconvex. Finally, an NLP is an MINLP
with I = ∅.

Even more than for other problem classes, local solvers are commonly used for
MINLP, since global solvers are often not tractable for problems of practically relevant
size and complexity. Loosely speaking,we call a solver global, if given infinite time and
other resources, itwill find a global optimum to a given optimization problemandprove
its optimality. The differentiation between heuristic solvers and local solvers is more
subtle, and not well established. Sometimes these terms are even used interchangeably.

For this article, we call a solver local if it may terminate with a suboptimal solution
without hitting any user imposed limit (such as a time limit), but is designed to provide a
formof local optimality guarantee at least in the casewhen certain regularity conditions
are satisfied. Examples of this include that the KKT conditions are satisfied, optimality
in the local continuous relaxation of the problem, or optimality once a certain set of
variables is fixed to the computed solution values. As an example of a local solver
consider Xpress-Nonlinear which performs a tree search over the discrete decision
variables using sequential linear programming at each node of the search tree. It might
terminate once the reference solution appears locally optimal or the error in the KKT
conditions can no longer be reduced. At the same time, this locally optimal solution
will typically not be globally optimal.

Finally, we call a solver heuristicwhen it may terminate with a suboptimal solution
without hitting any user imposed limit and does not provide any additional dual infor-
mation or follow any local optimality criterion. As an example, consider the various
Feasibility Pump heuristics that have been proposed in the literature, for an overview
see [7]. All of them perform a sequence of rounding and projection steps, producing
two series of points and terminate, once these series coincide in a member. For those
rounding and projection steps, constraints or integrality conditions are relaxed, new
constraints are added to the problem and auxiliary objectives, like L1- and L2-norms
are introduced. By throwing away the original objective of the problem, feasibility
pump algorithms do not provide a local optimality condition w.r.t. this original objec-
tive.

When using the sheer running time as a measure, global solvers are at a clear
disadvantage to local and heuristic solvers. The latter can always terminate prematurely
and are not designed to explore the full search space, so they can by design be expected
to run faster than a global solver. By choosing a large enough time limit, one can most
likely make the global solver lose, once some problems are in the mix which are hard
to solve to global optimality. Note that nevertheless, measuring running times is often
seen in scientific publications when problem-specific heuristics are compared against
MIP solvers like Xpress, Cplex, or Gurobi.

For a measure like the primal integral—designed to work well with heuristics—the
question occurs of how to treat the nonzero gap at the point of termination w.r.t. the
time limit. If we accounted the period between termination and time limit as constantly
keeping the gap at termination, this would put the heuristic at a disadvantage. By
choosing a large enough time limit, one could always make the global solver win

1 This is a slight, but common, abuse of notation. Of course, the feasible set of a convex MINLP will be
nonconvex in general, due to the discrete variables.

123

526 T. Berthold, Z. Csizmadia

the comparison. If the gap was considered zero, the issue would be the same as with
measuring running times. All of the mentioned points also hold for comparisons of
local solvers or heuristics against other local solvers or heuristics, given that each of
the solvers might use a very different trade-off of running time against solution quality.

In this paper, we suggest a new measure, the confined primal integral which incor-
porates an exponential decay in accounting the primal gap over time. This addresses
both challenges: The perception of optimization software users and the tailing-off
behavior that needs to be taken into account when comparing heuristics to global
solvers.

2 The confined primal integral

To measure the quality of a given feasible solution for an MINLP against its known
optimal solution, we define the primal gap.

Definition 1 Let x̃ be a solution for anMINLP, and x̃opt be an optimal (or best known)
solution for that MINLP. We define the primal gap γ ∈ [0, 1] of x̃ w.r.t. x̃opt as:

γx̃opt(x̃) :=

⎧
⎪⎪⎨

⎪⎪⎩

0, if
∣
∣ f (x̃opt)

∣
∣ = | f (x̃)| = 0,

1, if f (x̃opt) · f (x̃) < 0,
| f (x̃opt)− f (x̃)|

max{| f (x̃opt)|, | f (x̃)|} , else.

We assume that f (x̃opt) ≤ f (x̃). For a computational evaluation this means that
x̃opt needs to be “updated” in case that an improved solution is found for an unsolved
instance.

Note that for two feasible MINLP solutions x̃1, x̃2 with f (x̃1) < f (x̃2) and
sign(f (x̃2)) = sign(f (x̃opt)) it holds that γx̃opt(x̃1) < γx̃opt(x̃2).

Now assume that we have available the objective function values of intermediate
incumbent solutions and the points in time when those have been found – for a given
MINLP solver, a certain problem instance and a fixed computational environment. For
defining the confined primal integral, we will consider the primal gap as a function
over time, apply a time-dependent exponential scaling and compute the integral of
that function.

Definition 2 Let tmax ∈ R≥0 be a limit on the solution time of a MINLP solver. Its
primal gap function p : [0, tmax] �→ [0, 1] is defined as:

px̃opt(t) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, if no incumbent until point t,

γx̃opt(x̃(t)),
with x̃(t) being the
incumbent solution at point t ,
otherwise.

and its confined primal gap function is defined as

p̃x̃opt,α(t) := px̃opt(t) · exp(t/α)

123

The confined primal integral… 527

where α < 0 is a scaling parameter.

For a fixed time limit tmax, a practical choice of α, due to its interpretability, is
to set it to α = tmax/ log ι with ι ∈ (0, 1) (hence, α < 0). We will refer to the
value ι as importance since, loosely speaking, it expresses how “important” a solution
improvement at the time limit is considered in comparison to an improvement in the
beginning of the solution process. E.g., when ι = 0.01, the primal gap at the time limit
will be divided by 100, which means that having a primal bound improvement close
to the time limit would only have about 1% of the impact (per time) on the (yet to
be defined) confined primal integral compared to what it would have had right in the
beginning.

The confined primal gap function px̃opt,α(t) is a non-smooth, piecewise exponential
function with breakpoints whenever a new incumbent is found. It is strictly monoton-
ically decreasing until the point at which the optimal solution is found and constant
zero from that point on. In contrast, the primal gap function as described in [4] is a
(non-strictly) monotonically decreasing step function.

A run of a solver in our sense essentially consists of a finite series of time stamps
T = t1, t2, . . . , tk corresponding to a time where a new incumbent solution has been
found and its associated primal bound series C = c1, c2, . . . , ck which represents the
objective function value of the new incumbents being found at the respective points in
time. For practical reasons, we extend both series by the elements t0 := 0 and c0 := ∞
to represent the initial state of the solver and by elements tk+1 and ck+1. The latter
might have two different interpretations which, however, can be treated identically
from a theoretical point of view. Depending on the situation, the (k + 1)-th elements
might either represent the final state of the solver, in which case tk+1 := tmax and
ck+1 := ck , or they might represent the situation that the solver finds a new incumbent
solution during run time, in which case tk+1 corresponds to the elapsed run time and
ck+1 to the new incumbent value, respectively.

Definition 3 Let tmax ∈ R≥0 be a time limit and let C be a series of incumbent
solutions, together with a series of time stamps T with tk+1 = tmax. For a fixed scaling
parameter α < 0, we define the confined primal integral (CPI) Pα(T ,C) of a run as:

Pα(T ,C) :=
tmax∫

t=0

p̃x̃opt,α(t) dt = α

k+1∑

i=1

px̃opt(ti−1)(exp(ti/α) − exp(ti−1/α)).

Figure 1 shows the difference between the “regular” and the confined primal inte-
gral. While all gap functions start at the same point (0, 100%), the confined gap
functions constantly decrease, creating a larger and larger relative difference to the
primal gap. At points t1, t2, and t3, where new solutions are found, all functions have
a discontinuity and “jump” to a lower level. From t3 onwards, where the optimal solu-
tion has been found, all functions coincide in being constant zero. Different values
of the importance value ι create different confined primal gap functions and hence
different CPIs, as depicted by the green and blue areas. Each part of those areas can
be computed analytically as the integral of an exponential function.

123

528 T. Berthold, Z. Csizmadia

Fig. 1 Regular primal integral (red) and confined primal integral with two different importance values
(yellow) (color figure online)

Note that we will always compute the CPI by extending the gap of the last found
solution until the time limit, even if the underlying solution process stopped prema-
turely, e.g., because it was a local solver or a heuristic. The following lemma helps to
put such a “penalty term” in perspective.

Lemma 1 For any series T ,C, any fixed α < 0 and any time limit tmax, Pα(T ,C) ≤
−α .

Proof It holds that Pα(T ,C) is monotonically increasing in the time limit tmax. Hence,
it is sufficient to prove that limtmax→∞(Pα(T ,C)) ≤ −α for any series T ,C . Since
γ ∈ [0, 1], the estimation can be conducted independently of T ,C , overestimating γ

with a constant primal gap of 1. Therefore, limtmax→∞(Pα(T ,C)) ≤
∞∫

t=0
exp(t/α) dt =

−α. ��
The CPI being bounded independent of the time limit is a major difference to

the original primal integral. An important consequence is that one cannot necessarily
make a global solver (that will reach gap zero eventually) win against a local solver
(that stopped with a nonzero gap) just by making the time limit arbitrarily large. This
makes the extension of the final gap until the time limit reasonable since the additional
penalty term can be expected to be comparably small, at least when the local solver
found a reasonably good solution. Note that the CPI is a parametrized measure, with
α being the degree of freedom.

As a numerical example consider the situation that we compare a heuristic and a
global solver with the following solution processes. The heuristic starts, finds a 10%
gap solution after one second, a 1% gap solution after ten seconds and terminates after
a minute. The global solver starts, also finds a 10% gap solution after one second, but
takes two minutes (instead of 10 seconds) to find a 1% gap solution and it finds a 0.8%
gap solution after half an hour. Then it keeps running without improvement until an
imposed time limit of two hours. In many cases, one would prefer the heuristic which
is not onlymuch faster in reaching a good solution, but also gives a definite termination
before the global solver even found that solution.However, the classical primal integral
would favor the global solver with a value of 72.9 compared to 73.99 for the heuristic.

123

The confined primal integral… 529

With a very moderate choice of ι = 0.5, the confined primal integral would favor the
heuristic with a value2 of 53.73 compared to 56.49 for the global solver.With a slightly
more aggressive choice of ι = 0.1, the difference would be 29.93 compared to 36.74,
clearly favoring the heuristic. In fact, if we fixed the corresponding scaling factor of
α = −3126 and extended the time limit to an arbitrarily large value, the global solver
could never win, since the confined primal integral of the heuristic is bounded by
33.06. In marked contrast, the classical primal integral could grow arbitrarily large.

Finally, this is the reason for choosing the term confined primal integral: Once the
scaling factor α is determined, the value of the CPI is bounded by that very scaling
factor, independent of the solution process and the time limit.

3 Calculating the confined primal integral

The CPI as defined above assumes, just like the primal integral in the original publi-
cation [4], the existence of a fixed reference optimal (or best known) solution. This is
a reasonable assumption when thinking of fixed benchmark sets like MIPLIB [12] or
MINLPLib [8], where such solution values are known in advance. However, when one
wants to measure performance on new instances, in the closed formula given above, it
is only possible to evaluate the CPI a posteriori, once all runs are finished. This might
be considered impractical for a testing system where results are presented and stored
immediately when they become available, as it is typically the case for commercial
solver development.

Therefore, we further refine the notation of the confined primal integral and show
how it can be dynamically updated. We define the observed CPI Pobs

α (T ,C) anal-
ogously to Pα(T ,C), with the restriction that we use the final incumbent ck as
reference, “best known” solution value f (x̃opt). Further, we define the correlated
CPI Pcor

α (T ,C, c̃) of run (T ,C) and a solution value c̃ ∈ R analogously to Pα(T ,C),
with the amendment that we use min(c̃, ck) as reference solution value. This subtle
distinction comes from the mindset that we might run a solver on a new, unknown
problem instance for which we do not have a known optimal reference solution, hence
we can only measure the observed CPI, and the reference solution will change during
the run of the solver. When we run � different solvers on such an instance, we would
like to correlate the observations and update all observed CPIs to the same reference
solution c̃ = min(ck1 , . . . , ck�

), with ck1 , . . . , ck�
being the best found solution of each

of the � runs, hence we need the notation of a correlated CPI.
Two questions now arise: How can we update an existing observed CPI value “on

the fly”when a new incumbent solution ck+1 is found?How canwe consolidate several
individual observed CPI values to correlated CPI values that all use the same reference
solution value? Actually, the former case corresponds to a special case of the latter
when setting � = 1, c̃ = {ck+1} and interpreting the time point tk+1 as if it was the
time limit.

It turns out, that such an update can be done independently of the exact solution
sequence that led to the observed CPI, by using at most five attributes of the solution

2 The following numbers are transcendental and have been rounded to four digits.

123

530 T. Berthold, Z. Csizmadia

process, most of which are typically recorded anyway by commercial solvers. Those
attributes are the (old) observed CPI, the (old) incumbent solution value, the new
solution value, the time at which the new solution was found and in some cases a
dynamic scaling factor. The update formula depends on the sign of the objective (and
whether we are maximizing or minimizing, if we do not assume the optimization
sense). For brevity of notation, we will use a series T̃ = t̃0, . . . , t̃k+1 with t̃i :=
exp(ti/α) for the terms that appear in the sum from Definition 3.

Lemma 2 Consider a series C = {c1, . . . , ck} of incumbent solutions and a new
incumbent ck+1 with ck+1 < ck being found at time tk+1. If c1 < 0 (and hence all other
ci < 0) , then Pcor

α (tk+1,C, {ck+1}) = ck
ck+1

Pobs
α (tk,C) + α · t̃k+1

ck+1−ck
ck+1

. If ck+1 > 0

(and hence all other ci > 0), then Pcor
α (tk+1,C, {ck+1}) = Pobs

α (tk,C)+D(ck−ck+1)

with a dynamic scaling factor D = α
∑k+1

i=2
t̃i−t̃i−1

ci
.

Proof See “Appendix”. ��

Note that the scaling factor D can be dynamically updated.Whenever a new incum-
bent is found, a new term needs to be added. Hence an MINLP solver only needs to
store this single value D during the course of optimization, not a whole sequence of
incumbent solution values and the points in time when they have been found. Further-
more, an update w.r.t. a new incumbent can be done in constant time.

We described how to update the CPI when adding new reference solutions. An
important application for this is to compare runs without a fixed a-priori reference
solution, but instead just using the better solution found in either of the runs. This then
raises the question of how we can relate comparisons made with different reference
solution to each other. Here, we observe that theCPI is transitive. Thismeans that when
we have three runs A, B, C and A has a smaller CPI than B (using the best solution of
these two runs as a reference) and B has a smaller CPI thanC (best solution of B,C as a
reference), then A has a smaller CPI thanC (best solution of A,C as a reference). This
is a non-trivial observation, given that all the comparisons are made w.r.t. a different
solution set. We formally state and prove it in the following proposition.

The important step in our proof of transitivity is to consider a different way of
computing the CPI of a run.

Proposition 1 Let three runs (TA,CA), (TB,CB) and (TC ,CC) with best solu-
tion values ca, cb, cc be given. If Pcor

α (TA,CA, cb) < Pcor
α (TB,CB, ca) and

Pcor
α (TB,CB, cc) < Pcor

α (TC ,CC , cb), then Pcor
α (TA,CA, cc) < Pcor

α (TC ,CC , ca).

Proof Note that c0 = ∞ requires a special handling when rolling out the definition
of the confined primal gap function. According to Definition 2, the primal gap is
considered to be 1 in this case.

123

The confined primal integral… 531

Case 1, all objective values ci < 0 for i > 0. First, we reformulate Pobs
α (TA,CA).

Pobs
α (TA,CA) = α

(
(t̃1 − t̃0) +

k+1∑

i=2

(t̃i − t̃i−1)
ca − ci−1

ca

)

= α
(
(t̃1 − t̃0) +

k+1∑

i=2

(t̃i − t̃i−1)

(
ca
ca

− ci−1

ca

))

= α

k+1∑

i=1

(t̃i − t̃i−1) − α

k+1∑

i=2

(t̃i − t̃i−1)
ci−1

ca

= α(t̃k+1 − t̃0) − α

ca

k+1∑

i=2

(t̃i − t̃i−1)ci−1

=
∫ tmax

0
exp(t/s) dt − α

ca
DA−

where DA− = ∑k+1
i=1 (t̃i − t̃i−1)ci−1 ≤ 0.

The value DA− is independent of the reference solution ca ; the same holds for DB−
and DC−. Further, it holds that

Pcor
α (TA,CA, cb) < Pcor

α (TB,CB, ca)

⇔
∫ tmax

0
exp(t/s) dt − α

min(ca, cb)
DA− <

∫ tmax

0
exp(t/s) dt − α

min(ca, cb)
DB−

⇔ DA− < DB−

The same argument implies that

Pcor
α (TB,CB, cc) < Pcor

α (TC ,CC , cb) ⇔ DB− < DC−

From DA− < DB− and DB− < DC−, it follows that DA− < DC−, which in turn proves
Case 1.

Case 2, all objective values ci ≥ 0:

Pobs
α (TA,CA) = α

(
(t̃1 − t̃0) +

k+1∑

i=2

(t̃i − t̃i−1)
ci−1 − ca

ci−1

)

= α
(
(t̃1 − t̃0) +

k+1∑

i=2

(t̃i − t̃i−1)

(
ci−1

ci−1
− ca

ci−1

))

= α

k+1∑

i=1

(t̃i − t̃i−1) − α

k+1∑

i=2

(t̃i − t̃i−1)
ca
ci−1

=
∫ tmax

0
exp(t/s) dt − caαD

A+

123

532 T. Berthold, Z. Csizmadia

Fig. 2 For an update of the primal integral, it is easier to compute the white area (color figure online)

where DA+ = ∑k+1
i=1

(t̃i−t̃i−1)/ci−1 ≥ 0. Again, the values DA+, DB+ and DC+ are
independent of the reference solution and the same argument as in Case 1 can be
made. As before, the case that the objective switches sign can be broken down into
individual cases before and after the sign switch. ��

Hence, we can compare independent test runs to each other while only storing three
values per test run and instance: the final incumbent solution value, the observed CPI
value and the scaling factor D. This is an important observation when there are many
test runs (and instances) forwhich information is archived. In commercial optimization
software development, these can easily be tens of thousands of test runswith thousands
of instances per run. Here, having to store a dynamic list of incumbent solutions would
be considered impractical.

Note that the proof of Proposition 1 gives rise to an alternative formula to update
the CPI w.r.t. a new reference solution. Figure 2 sketches the idea for the “regular”
primal integral without an exponential decay. The primal integral can be computed as
the difference of the whole box (

∫ tmax
t=0 100% = tmax) and the white bars which are the

difference between the current gap and 100%. As shown in the proof of Proposition 1,
the rescaling of the white area can be done by multiplying with a factor that only
depends on the old and new reference solution.

Also, it is a direct consequence from the proof of Proposition 1 that the CPI will
increase when correlated to a strictly better reference solution:

Corollary 1 Consider a series C = {c1, . . . , ck} of incumbent solutions and a new
incumbent ck+1 < ck . Then, Pcor

α (T ,C, {ck+1}) > Pobs
α (T ,C).

Furthermore, a new reference solutionwill not change the order of two confined primal
integrals.

Corollary 2 Let three runs (TA,CA), (TB,CB) with best solution values ca, cb
be given and cc < min(ca, cb). If Pcor

α (TA,CA, cb) < Pcor
α (TB,CB, ca), then

Pcor
α (TA,CA, cc) < Pcor

α (TB,CB, cc).

There are various possibilities to extend the CPI, one of them is using a primal-dual
gap. For MIP solvers and global MINLP solvers, it is common to report a primal-dual
gap between the current incumbent solution and a dual bound that is, e.g., computed by

123

The confined primal integral… 533

solving a continuous relaxation of the problem. The integral over the primal-dual gap
can serve as ameasure of their convergence speed and comeswith the added advantage
that it does not even require a priori knowledge of an optimal or best-known solution
as an input. Using a confined primal-dual integral offers again the advantage that more
emphasis is put on the early stages of the solution process. This makes it a valuable
measure for MIP solving for applications where a quick convergence is key. It has
been pointed out before that a portfolio of performance measures is good practice
for optimization software development [5] and a confined primal-dual integral adds
another point of view that nicely complements existing measures.

4 Computational experiments

We chose a comparison between two drastically different variants of a local solver as
a test case to see whether the newly defined measure gives insights that are otherwise
hard to get. The local solver that we chose is a pre-release version of FICO Xpress
8.9 [6]. For MINLP problems, Xpress implements a branch-and-bound algorithm
based on a sequential linear programming [19] approach to solve NLP relaxations
at every node, see also [3]. If there are nonconvex constraints in the MINLP, this
will only provide a local optimum, making the approach a local solver. Branching
will be conducted on integer variables with fractional values. No spatial branching
is performed; leaf nodes without a fractional branching candidate will be pruned.
Cuts are derived from the linearization at each node. On the one hand, those are the
classical MINLP underestimator and approximation cuts [11]. On the other hand,
one can generate standard MIP-cuts, like Gomory [13], flow-cover [18], knapsack
cover [2], {0, 1/2}-cuts [9] etc. The separation of MIP-cuts has been added as a new
feature for the solution of nonconvex MINLPs in Xpress 8.9 and we want to analyze
in this computational study whether it is a worthwhile feature to activate by default.
Hence, we compare versions of the nonlinear solver of Xpress with and without the
separation of MIP-cuts at local nodes against each other. Linear underestimators and
approximations for nonlinear functions will be separated in either version.

Like in the MIP case, we expect a significant speed-up of the solution process
from using MIP cutting planes. However, they will typically not be globally valid;
adding them to the problem might cut away the globally optimal solution or make
the remaining problem infeasible. While this is acceptable behavior for a local solver,
the question stands how much of an (assumed) speed-up is to be attributed to such
rather undesired side effects and how the (assumed) loss in the solution quality can be
weighed against the change in running time. Hence, we hypothesize that the confined
primal integral is a suitable measure to use for comparing these two variants of a
local solver and helps to resolve potentially contradicting results for running time and
solution quality.

Our experiments were run on a cluster of identical machines equipped with Intel
Xeon E5-2640 CPUs with 2.4 GHz and 64 GB of RAM. A time limit of 1800 seconds
was set and each solve could use up to 20 threads. We used a test set of 795 MINLPs,
which is a mix of publicly available instances, like those from MINLPLib [8], and
customer instances. We used an importance value of ι = 10%. From the results we

123

534 T. Berthold, Z. Csizmadia

Table 1 Aggregated
computational results

Running time (s) Better obj CPI

No MIP cuts 54.81 209:113 10.94

With MIP cuts 11.67 113:209 16.06

Factor 0.21 – 1.47

removed all instances where the solution path did not differ between the two runs.
E.g., both paths will be identical when an integer solution is found at the root node
before MIP cutting.

An aggregation of the results can be found in Table 1. Row noMIP cuts corresponds
to a run with the Xpress control Xslp_Cutstrategy set to 0, row with MIP cuts
corresponds to a run with Xslp_Cutstrategy set to 1. Columns running time and
CPI show the shifted geometric mean [1] of the respective measures over all instances,
using a shift value of 10. Column better obj counts the number of times that one run
terminated with a solution that was at least 10% better than the best solution provided
by the other run (including cases where only one version found a solution). Finally,
Row factor shows the relative difference between the two settings. For running time
and CPI, a factor larger than 1 means that no MIP cuts is better, a factor smaller than
1 means that with MIP cuts is better.

As expected, we see that adding MIP cuts during the MINLP tree search clearly
improves the running time, by a factor of almost 5.At the same time, the solutionquality
clearly suffers. In roughly two out of three cases (209/323), the version without MIP
cuts finds a better solution. Both performance measures show a significant difference
between the two runs, but in opposite directions.

The question is standing whether the impressive gain in speed justifies finding a
worse solution on many models. The CPI measure indicates that this might not be the
case. It is 47% larger for the version that used MIP cuts during the MINLP search.
While also giving a clear tendency, the CPI is less extreme than the other twomeasures,
which is not surprising given that it takes aspects of both into account simultaneously.
Interestingly, the picture did not change much when we increased the importance to
ι = 50% or decreased it to ι = 5%.

At this point the question arises, how a certain difference in the confined primal
integral should be judged: Do we typically expect smaller or larger changes than for
other performance measures? Due to the exponential scaling, the characteristic of the
original primal integral representing the average solution quality is lost.What is true in
either case is that the (confined) primal integral can be understood as scaled/weighted
time, given that it is an integral of a function between zero and one over time. Hence,
a relative change of the confined primal integral should be considered similarly sig-
nificant as relative changes in solving time.

The confined primal integral was used to decide that Xslp_Cutstrategy will be
set to 0 by default in the Xpress 8.9 release. Furthermore, it is nowadays used as a
standard measure to benchmark our MINLP solver in the daily working routine of the
Xpress developer team.

123

The confined primal integral… 535

5 Conclusion

We introduced the confined primal integral, a new performance measure which is an
extension of the primal integral by Berthold [4]. We argued why it is particularly well-
suited for comparing local and heuristic solvers against each other and against global
solvers. Further, we proved that it is a transitive measure and presented an incremental
updating formula that is independent of an a-priori knowledge of a reference solution.
These two new results can be easily adapted for the original primal integral. In a brief
computational experiment, using local solvers for nonconvex MINLP as a showcase,
we demonstrated how the confined primal integral can help to compare two local
solvers that show a very different balancing of solution quality versus running time.

We believe that the confined primal integral is a useful tool for computational
experiments in nonlinear optimization and havemade it part of the default performance
evaluation criteria for the Xpress MINLP solver.

Acknowledgements We would like to thank the two anonymous reviewers for their constructive feedback
that improved the quality of the paper a lot.

Appendix

Lemma 2 Consider a series C = {c1, . . . , ck} of incumbent solutions and a new
incumbent ck+1 with ck+1 < ck being found at time tk+1. If c1 < 0 (and hence all other
ci < 0) , then Pcor

α (tk+1,C, {ck+1}) = ck
ck+1

Pobs
α (tk,C) + α · t̃k+1

ck+1−ck
ck+1

. If ck+1 > 0

(and hence all other ci > 0), then Pcor
α (tk+1,C, {ck+1}) = Pobs

α (tk,C)+D(ck−ck+1)

with a dynamic scaling factor D = α
∑k+1

i=2
t̃i−t̃i−1

ci
.

Proof Case 1, c1 < 0:

Pcor
α (tk+1,C, {ck+1})

= α

k+1∑

i=1

(exp(ti/α) − exp(ti−1/α))px̃opt(ti−1)

= α
(
t̃1 +

k+1∑

i=2

(t̃i − t̃i−1)
ck+1 − ci−1

ck+1

)

= α
(
t̃1 +

k∑

i=2

(t̃i − t̃i−1)
ck+1 − ci−1

ck+1
+ (t̃k+1 − t̃k)

ck+1 − ck
ck+1

)

= α
(
t̃1 +

k∑

i=2

(t̃i − t̃i−1)
ck − ci−1 + ck+1 − ck

ck+1
+ (t̃k+1 − t̃k)

ck+1 − ck
ck+1

)

= α
(
t̃1 +

k∑

i=2

(t̃i − t̃i−1)
ck − ci−1

ck+1
+

k∑

i=1

(t̃i − t̃i−1)
ck+1 − ck

ck+1
+ (t̃k+1 − t̃k)

ck+1 − ck
ck+1

)

123

536 T. Berthold, Z. Csizmadia

= α
(
t̃1 +

k∑

i=2

(t̃i − t̃i−1)
ck − ci−1

ck+1
+ t̃k+1

ck+1 − ck
ck+1

)

= α
ck

ck+1

(
t̃1 +

k∑

i=2

(t̃i − t̃i−1)
ck − ci−1

ck

)
+ α · t̃k+1

ck+1 − ck
ck+1

= ck
ck+1

Pobs
α (tk ,C) + α · t̃k+1

ck+1 − ck
ck+1

Case 2, ck+1 > 0:

Pcor
α (tk+1,C, {ck+1})

= α
(
t̃1 +

k+1∑

i=2

(t̃i − t̃i−1)
ci−1 − ck+1

ci−1

)

= α
(
t̃1 +

k∑

i=2

(t̃i − t̃i−1)
ci−1 − ck+1

ci−1
+ (t̃k+1 − t̃k)

ck − ck+1

ck

)

= α
(
t̃1 +

k∑

i=2

(t̃i − t̃i−1)
ci−1 − ck + ck − ck+1

ci−1
+ (t̃k+1 − t̃k)

ck − ck+1

ck

)

= α
(
t̃1 +

k∑

i=2

(t̃i − t̃i−1)
ci−1 − ck

ci−1

+ (ck − ck+1)

k∑

i=2

(t̃i − t̃i−1)
1

ci−1
+ (t̃k+1 − t̃k)

ck − ck+1

ck

)

= Pobs
α (tk,C) + α(ck − ck+1)

k+1∑

i=2

(t̃i − t̃i−1)
1

ci−1

��

Note that in the above proof, all sums including a ck start with 2, since the case
c0 = ∞ requires a special handling. According toDefinition 2, the primal gap function
is defined to be 1 in this case instead of being a difference of two objective function
values divided by the larger one. Since t̃0 = 0, the summand for i = 0 becomes t̃1 in
both cases of the proof, instead of (t̃i − t̃i−1)

ck+1−ci−1
ck+1

in Case 1 or (t̃i − t̃i−1)
ci−1−ck+1

ci−1
in Case 2.

Also note that the case that the incumbent solution switches the sign during opti-
mization allows for an easy update, too. If the new incumbent at point tk+1 is the first
one with a negative sign, then Pcor

α (T ,C, {ck+1}) = tk+1. If the sign switch happens
at some point ti with 2 < i < k + 1, then the first part (until point i) of both primal
integral sums is identical, and the second part (all summands greater i) can be updated
as in Case 2 of the proof.

123

The confined primal integral… 537

References

1. Achterberg, T.: SCIP: solving constraint integer programs. Math. Program. Comput. 1(1), 1–41 (2009)
2. Balas, E.: Facets of the knapsack polytope. Math. Program. 8(1), 146–164 (1975)
3. Belotti, P., Berthold, T., Neves, K.: Algorithms for discrete nonlinear optimization in FICO Xpress.

In: 2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM), pp. 1–5. IEEE
(2016)

4. Berthold, T.: Measuring the impact of primal heuristics. Oper. Res. Lett. 41(6), 611–614 (2013)
5. Berthold, T.: Heuristic Algorithms in Global MINLP Solvers. Verlag Dr, Hut Munich (2014)
6. Berthold, T., Farmer, J., Heinz, S., Perregaard,M.: Parallelization of the FICOxpress-optimizer. Optim.

Methods Softw. 33(3), 518–529 (2018)
7. Berthold, T., Lodi, A., Salvagnin, D.: Ten years of feasibility pump, and counting. EURO J. Comput.

Optim. 7(1), 1–14 (2019)
8. Bussieck, M.R., Drud, A.S., Meeraus, A.: MINLPLib—a collection of test models for mixed-integer

nonlinear programming. INFORMS J. Comput. 15(1), 114–119 (2003)
9. Caprara, A., Fischetti, M.: {0, 1/2}-Chvátal–Gomory cuts. Math. Program. 74(3), 221–235 (1996)

10. Crowder, H.P., Dembo, R.S., Mulvey, J.M.: Reporting computational experiments in mathematical
programming. Math. Program. 15, 316–329 (1978)

11. Duran,M.A.,Grossmann, I.E.:Anouter-approximation algorithm for a class ofmixed-integer nonlinear
programs. Mathematical programming 36(3), 307–339 (1986)

12. Gleixner, A., Hendel, G., Gamrath, G., Achterberg, T., Bastubbe, M., Berthold, T., Christophel, P.,
Jarck, K., Koch, T., Linderoth, J., et al.: MIPLIB 2017: data-driven compilation of the 6th mixed-
integer programming library. Tech. rep, Technical report, Optimization Online (2019)

13. Gomory, R.E.: Outline of an algorithm for integer solutions to linear programs and an algorithm for
the mixed integer problem. In: 50 Years of Integer Programming 1958–2008, pp. 77–103. Springer
(2010)

14. Hoffman, A.,Mannos,M., Sokolowsky, D.,Wiegmann, N.: Computational experience in solving linear
programs. J. Soc. Ind. Appl. Math. 1(1), 17–33 (1953)

15. Hooker, J.: Needed: an empirical science of algorithms. Oper. Res. 42(2), 210–212 (1993)
16. Jackson, R.H.F., Boggs, P.T., Nash, S.G., Powell, S.: Guidelines for reporting results of computational

experiments. Report of the ad hoc committee. Math. Program. 49, 413–425 (1991)
17. McGeoch, C.C.: Toward an experimental method for algorithm simulation. INFORMS J. Comput.

8(1), 1–15 (1996)
18. Padberg, M.W., Van Roy, T.J., Wolsey, L.A.: Valid linear inequalities for fixed charge problems. Oper.

Res. 33(4), 842–861 (1985)
19. Palacios-Gomez, F., Lasdon, L., Engquist, M.: Nonlinear optimization by successive linear program-

ming. Manag. Sci. 28(10), 1106–1120 (1982)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

	The confined primal integral: a measure to benchmark heuristic MINLP solvers against global MINLP solvers
	Abstract
	1 Introduction
	2 The confined primal integral
	3 Calculating the confined primal integral
	4 Computational experiments
	5 Conclusion
	Acknowledgements
	Appendix
	References

