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Abstract
We investigate an inertial algorithm of gradient type in connection with the mini-
mization of a non-convex differentiable function. The algorithm is formulated in the
spirit of Nesterov’s accelerated convex gradient method. We prove some abstract con-
vergence results which applied to our numerical scheme allow us to show that the
generated sequences converge to a critical point of the objective function, provided
a regularization of the objective function satisfies the Kurdyka–Łojasiewicz property.
Further, we obtain convergence rates for the generated sequences and the objective
function values formulated in terms of the Łojasiewicz exponent of a regularization
of the objective function. Finally, some numerical experiments are presented in order
to compare our numerical scheme and some algorithms well known in the literature.

Keywords inertial algorithm · Non-convex optimization · Kurdyka–Łojasiewicz
inequality · Convergence rate · Łojasiewicz exponent

Mathematics Subject Classification 90C26 · 90C30 · 65K10

1 Introduction

Inertial optimization algorithms deserve special attention in both convex and non-
convex optimization due to their better convergence rates compared to non-inertial
ones, as well as due to their ability to detect multiple critical points of non-convex
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functions via an appropriate control of the inertial parameter [1,8,14,24,29,32,36,39,
42,43,47,51]. Non-inertial methods lack the latter property [25].

With the growing use of non-convex objective functions in some applied fields,
such as image processing or machine learning, the need for non-convex numerical
methods increased significantly. However, the literature of non-convex optimization
methods is still very poor, we refer to [46] (see also [45]), [26,52] for some algorithms
that can be seen as extensions of Polyak’s heavy ball method [47] to the non-convex
case and the papers [4,5] for some abstract non-convex methods.

In this paper we investigate an algorithm, with a possibly non-convex objective
function, which has a form similar to Nesterov’s accelerated convex gradient method
[29,43].

Let g : Rm −→ R be a (not necessarily convex) Fréchet differentiable function
with Lg-Lipschitz continuous gradient, that is, there exists Lg ≥ 0 such that ‖∇g(x)−
∇g(y)‖ ≤ Lg‖x − y‖ for all x, y ∈ R

m . We deal with the optimization problem

(P) inf
x∈Rm

g(x). (1)

Of course regarding this possibly non-convex optimization problem, in contrast to
the convex case where every local minimum is also a global one, we are interested to
approximate the critical points of the objective function g. To this end we associate
to the optimization problem (1) the following inertial algorithm of gradient type.
Consider the starting points x0, x−1 ∈ R

m and for all n ∈ N let

⎧
⎪⎨

⎪⎩

yn = xn + βn

n + α
(xn − xn−1)

xn+1 = yn − s∇g(yn),

(2)

where α > 0, β ∈ (0, 1) and 0 < s <
2(1−β)

Lg
.

We underline that the main difference between Algorithm (2) and the already men-
tioned non-convex versions of the heavy ball method studied in [26,46] is the same as
the difference between the methods of Polyak [47] and Nesterov [43], that is, mean-
while the first one evaluates the gradient in xn the second one evaluates the gradient
in yn . One can observe at once the similarity between the formulation of Algorithm
(2) and the algorithm considered by Chambolle and Dossal [29] (see also [2,6,12]) in
order to prove the convergence of the iterates of the modified FISTA algorithm [14].
Indeed, the algorithm studied byChambolle andDossal in the context of a convex opti-
mization problem can be obtained from Algorithm (2) by violating its assumptions
and allowing the case β = 1 and s ≤ 1

Lg
.

Unfortunately, due to the form of the stepsize s, we cannot allow the case β = 1
in Algorithm (2), but what is lost at the inertial parameter it is gained at the stepsize,
since in the case β < 1

2 one may allow a better stepsize than 1
Lg
, more precisely the

stepsize in Algorithm (2) satisfies s ∈
(

1
Lg

, 2
Lg

)
.
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Let us mention that to our knowledge Algorithm (2) is the first attempt in the
literature to extend the Nesterov accelerated convex gradient method to the case when
the objective function g is possibly non-convex.

Another interesting fact about Algorithm (2) which enlightens the relation with
Nesterov’s accelerated convex gradient method is that both methods are modeled by
the same differential equation that governs the so called continuous heavy ball system
with vanishing damping, that is,

ẍ(t) + α

t
ẋ(t) + ∇g(x(t)) = 0. (3)

We recall that (3) (with α = 3) has been introduced by Su, Boyd and Candès [50] as
the continuous counterpart of Nesterov’s accelerated gradient method and from then it
was the subject of an intensive research. Attouch and his co-authors [6,10] proved that
if α > 3 in (3) then a generated trajectory x(t) converges to a minimizer of the convex
objective function g as t −→ +∞, meanwhile the convergence rate of the objective
function along the trajectory is o(1/t2). Further, in [7] some results concerning the
convergence rate of the convex objective function g along the trajectory generated by
(3) in the subcritical case α ≤ 3 have been obtained.

In one hand, in order to obtain optimal convergence rates of the trajectories gen-
erated by (3), Aujol, Dossal and Rondepierre [11] assumed that beside convexity the
objective function g satisfies also somegeometrical conditions, such as theŁojasiewicz
property.

On the other hand, Aujol and Dossal obtained in [12] some general convergence
rates and also the convergence of the trajectories generated by (3) to a minimizer of
the objective function g by dropping the convexity assumption on g but assuming that
the function (g(x(t))− g(x∗))β is convex, where β is strongly related to the damping
parameter α and x∗ is a global minimizer of g. In case β = 1 they results reduce to
the results obtained in [6,7,10].

However, the convergence of the trajectories generated by the continuous heavy
ball system with vanishing damping in the general case when the objective function g
is possibly non-convex is still an open question. Some important steps in this direction
have been made in [27] (see also [25]), where convergence of the trajectories of a
system, that can be viewed as a perturbation of (3), have been obtained in a non-convex
setting. More precisely, in [27] is considered the continuous dynamical system

ẍ(t) +
(
γ + α

t

)
ẋ(t) + ∇g(x(t)) = 0, x(t0) = u0, ẋ(t0) = v0, (4)

where t0 > 0, u0, v0 ∈ R
m, γ > 0 and α ∈ R. Note that here α can take nonpositive

values. For α = 0 we recover the dynamical system studied in [15]. According to [27]
the trajectory generated by the dynamical system (4) converges to a critical point of g
if a regularization of g satisfies the Kurdyka–Łojasiewicz property.

The connection between the continuous dynamical system (4) and Algorithm (2)
is that the latter one can be obtained via discretization from (4), as it is shown in
“Appendix”. Further, following the same approach as Su et al. [50] (see also [27]), we
show in “Appendix” that by choosing appropriate values of β the numerical scheme

123



288 S. C. László

(2) has the exact limit the continuous second order dynamical system governed by (3)
and also the continuous dynamical system (4). Consequently, our numerical scheme
(2) can be seen as the discrete counterpart of the continuous dynamical systems (3)
and (4) in a full non-convex setting.

The paper is organized as follows. In the next section we prove an abstract conver-
gence result that may become useful in the future in the context of related researches.
Our result is formulated in the spirit of the abstract convergence result from [5], how-
ever it can also be used in the case when we evaluate the gradient of the objective
function in iterations that contain inertial terms. Further, we apply the abstract con-
vergence result obtained to (2) by showing that its assumptions are satisfied by the
sequences generated by the numerical scheme (2), see also [5,16,26]. In sect. 3 we
obtain several convergence rates both for the sequences (xn)n∈N and (yn)n∈N gener-
ated by the numerical scheme (2), as well as for the function values g(xn) and g(yn) in
the terms of the Łojasiewicz exponent of the objective function g and a regularization
of g, respectively (for some general results see [34,35]). As an immediate conse-
quence we obtain linear convergence rates in the case when the objective function
is strongly convex. Further, in Sect. 4 via some numerical experiments we show that
Algorithm (2) has a very good behavior compared with some well known algorithms
from the literature. Finally, we conclude our paper with some future research plans. In
“Appendix” we show that Algorithm (2) and the second order differential equations
(3) and (4) are strongly connected.

2 Convergence analysis

The central question that we are concerned in this section regards the convergence
of the sequences generated by the numerical method (2) to a critical point of the
objective function g,which in the non-convex case critically depends on the Kurdyka–
Łojasiewicz property [38,41] of an appropriate regularization of the objective function.
The Kurdyka–Łojasiewicz property is a key tool in non-convex optimization (see [3–
5,16,17,21–23,25–27,31,34,37,46,49]), andmight look restrictive, but from a practical
point of view in problems appearing in image processing, computer vision or machine
learning this property is always satisfied.

We prove at first an abstract convergence result which applied to Algorithm (2)
ensures the convergence of the generated sequences. The main result of this section is
the following.

Theorem 1 In the settings of problem (1), for some starting points x0, x−1 ∈ R
m,

consider the sequence (xn)n∈N generated by Algorithm (2). Assume that g is bounded
from below and consider the function

H : Rm × R
m −→ R, H(x, y) = g(x) + 1

2
‖y − x‖2.

Let x∗ be a cluster point of the sequence (xn)n∈N and assume that H has the Kurdyka–
Łojasiewicz property at a z∗ = (x∗, x∗).
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Then, the sequence (xn)n∈N converges to x∗ and x∗ is a critical point of the objective
function g.

2.1 An abstract convergence result

In what follows, by using some similar techniques as in [5], we prove an abstract
convergence result. For other works where these techniques were used we refer to
[34,46].

Let us denote byω((xn)n∈N) the set of cluster points of the sequence (xn)n∈N ⊆ R
m,

that is,

ω((xn)n∈N) :=
{

x∗ ∈ R
m : there exists a subsequence (xn j ) j∈N ⊆ (xn)n∈N such that

lim
j−→+∞ xn j = x∗

}

.

Further, we denote by crit(g) the set of critical points of a smooth function g :
R

m −→ R, that is,

crit(g) := {x ∈ R
m : ∇g(x) = 0}.

In order to continue our analysis we need the concept of a KL function. For
η ∈ (0,+∞], we denote by �η the class of concave and continuous functions
ϕ : [0, η) −→ [0,+∞) such that ϕ(0) = 0, ϕ is continuously differentiable on
(0, η), continuous at 0 and ϕ′(s) > 0 for all s ∈ (0, η).

Definition 1 (Kurdyka–Łojasiewicz property) Let g : Rm −→ R be a differentiable
function. We say that g satisfies the Kurdyka–Łojasiewicz (KL) property at x ∈ R

m if
there exist η ∈ (0,+∞], a neighborhood U of x and a function ϕ ∈ �η such that for
all x in the intersection

U ∩ {x ∈ R
m : g(x) < g(x) < g(x) + η}

the following, so called KL inequality, holds

ϕ′(g(x) − g(x))‖∇g(x)‖ ≥ 1. (5)

If g satisfies the KL property at each point in Rm , then g is called a KL function.

Of course, if g(x) = 0 then the previous inequality can be written as

‖∇(ϕ ◦ g)(x)‖ ≥ 1.

The origins of this notion go back to the pioneeringwork of Łojasiewicz [41], where
it is proved that for a real-analytic function g : Rm −→ R and a critical point x ∈ R

m

there exists θ ∈ [1/2, 1) such that the function x � |g(x) − g(x)|θ‖∇g(x)‖−1
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is bounded around x . This corresponds to the situation when the function ϕ(s) =
C(1−θ)−1s1−θ . The result of Łojasiewicz allows the interpretation of theKL property
as a re-parametrization of the function values in order to avoid flatness around the
critical points, therefore ϕ is called a desingularizing function [15]. Kurdyka [38]
extended this property to differentiable functions definable in an o-minimal structure.
Further extensions to the nonsmooth setting can be found in [4,18–20,33].

A simple example of a KL function is a Morse function [4], that is, a function
of class C2(Rm) for which the Hessian has full rank in each critical point and in two
different critical points the function values are different. In this case the desingularizing
function has the form ϕ(s) = C

√
s, for some C > 0.

Probably the most important KL functions are the semi-algebraic functions, that
is, the functions g : Rm −→ R whose graph are semi-algebraic sets in R

m+1. Recall
that a subset of Rm+1 is called semi-algebraic, if it can be written as a finite union of
sets of the form

{x ∈ R
m+1 : Pi (x) = 0, Qi (x) < 0, i = 1, . . . , p},

where Pi and Qi , i = 1, . . . , p, p ∈ N are real polynomial functions. The desingu-
larizing function of a semi-algebraic function has the form ϕ(s) = Cs1−θ , for some
θ ∈ [0, 1) ∩ Q and C > 0, [18,19].

Further, to the class of KL functions belong real sub-analytic, semi-convex, uni-
formly convex and convex functions satisfying a growth condition.We refer the reader
to [3–5,15,16,18–20] and the references therein for more details regarding all the
classes mentioned above and illustrating examples.

In what follows we formulate some conditions that beside the KL property at a
point of a continuously differentiable function lead to a convergence result. Consider a
sequence (xn)n∈N ⊆ R

m and fix the positive constants a, b > 0, c1, c2 ≥ 0, c21+c22 �=
0.Let F : Rm ×R

m −→ R be a continuously Fréchet differentiable function. Consider
further a sequence (zn)n∈N := (vn, wn)n∈N ⊆ R

m × R
m which is related to the

sequence (xn)n∈N via the conditions (H1)-(H3) below.

(H1) For each n ∈ N it holds

a‖xn+1 − xn‖2 ≤ F(zn) − F(zn+1).

(H2) For each n ∈ N, n ≥ 1 one has

‖∇F(zn)‖ ≤ b(‖xn+1 − xn‖ + ‖xn − xn−1‖).

(H3) For each n ∈ N , n ≥ 1 and every z = (x, x) ∈ R
m × R

m one has

‖zn − z‖ ≤ c1‖xn − x‖ + c2‖xn−1 − x‖.

Remark 2 One can observe that the conditions (H1) and (H2) are very similar to
those in [5,34,46], however there are some major differences. First of all observe
that the conditions in [5] or [34] can be rewritten into our setting by considering
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that the sequence (zn)n∈N has the form zn = (xn, xn) for all n ∈ N and the lower
semicontinuous function f considered in [5] satisfies f (xn) = F(zn) for all n ∈ N.

Further, in [46] the sequence (zn)n∈N has the special form zn = (xn, xn−1) for all
n ∈ N.

• Our condition (H3) is automatically satisfied for the sequence considered in [5]
that is zn = (xn, xn) with c1 = √

2, c2 = 0 and also for the sequence considered
in [46] zn = (xn, xn−1) with c1 = c2 = 1.

• In [5] and [34] the condition (H1) reads as

an‖xn+1 − xn‖2 ≤ F(zn) − F(zn+1),

where an = a > 0 in [5] and an > 0 in [34], which are formally identical to our
assumption but our sequence zn has a more general form, meanwhile in [46] (H1)
is

a‖xn − xn−1‖2 ≤ F(zn) − F(zn+1).

• The corresponding relative error (H2) in [5] is

‖∇F(zn+1)‖ ≤ b‖xn+1 − xn‖

consequently, in some sense, our condition may have a larger relative error. In [34]
the condition (H2) has the form

‖∇F(zn+1)‖ ≤ bn‖xn+1 − xn‖ + cn, where bn > 0, cn ≥ 0.

Moreover, in [46] is considered (zn)n∈N = (xn, xn−1)n∈N, hence their condition
(H2) has the form

‖∇F(xn+1, xn)‖ ≤ b(‖xn+1 − xn‖ + ‖xn − xn−1‖).

• Further, since in [5,46] F is assumed to be lower semicontinuous only, their con-
dition (H3) has the form: there exists a subsequence (zn j ) j∈N of (zn)n∈N such
that zn j −→ z∗ and F(zn j ) −→ F(z∗), as j −→ +∞. Of course in our case
this condition holds whenever ω((zn)n∈N) is nonempty since F is continuous.
In [34] condition (H3) refers to some properties of the sequences (an∈N), (bn∈N)

and (cn)n∈N.

Consequently, at least in the smooth setting, our abstract convergence result stated
in Lemma 3 below is an extension of the corresponding result in [5,34,46].

Lemma 3 Let F : Rm × R
m −→ R be a continuously Fréchet differentiable function

which satisfies the Kurdyka–Łojasiewicz property at some point z∗ = (x∗, x∗) ∈
R

m × R
m .

Let us denote by U, η and ϕ : [0, η) −→ R+ the objects appearing in the definition
of the KL property at z∗. Let σ > ρ > 0 be such that B(z∗, σ ) ⊆ U . Furthermore,
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consider the sequences (xn)n∈N, (vn)n∈N, (wn)n∈N and let (zn)n∈N = (vn, wn)n∈N ⊆
R

m × R
m be a sequence that satisfies the conditions (H1), (H2), and (H3).

Assume further that

∀n ∈ N : zn ∈ B(z∗, ρ) �⇒ zn+1 ∈ B(z∗, σ ) with F(zn+1) ≥ F(z∗). (6)

Moreover, the initial point z0 is such that z0 ∈ B(z∗, ρ), F(z∗) ≤ F(z0) < F(z∗)+η

and

‖x∗ − x0‖ + 2

√
F(z0) − F(z∗)

a
+ 9b

4a
ϕ(F(z0) − F(z∗)) <

ρ

c1 + c2
. (7)

Then, the following statements hold.
One has that zn ∈ B(z∗, ρ) for all n ∈ N . Further,

∑+∞
n=1 ‖xn − xn−1‖ < +∞ and

the sequence (xn)n∈N converges to a point x ∈ R
m . The sequence (zn)n∈N converges

to z = (x, x), moreover, we have z ∈ B(z∗, σ ) ∩ crit(F) and F(zn) −→ F(z) =
F(z∗), n −→ +∞.

Due to the technical details of the proof of Lemma 3, we will first present a sketch of
it in order to give a better insight.

1. At first, our aim is to show by classical induction that zk ∈ B(z∗, ρ), F(zk) <

F(z∗) + η and the inequality

2‖xk+1 − xk‖ ≤ ‖xk − xk−1‖ + 9b

4a
(ϕ(F(zk) − F(z∗)) − ϕ(F(zk+1) − F(z∗)))

holds, for every k ≥ 1.
To this end we show that the assumptions in the hypotheses of Lemma 3 assures

that z1 ∈ B(z∗, ρ) and F(z1) < F(z∗) + η.

Further, we show that if zk ∈ B(z∗, ρ), F(zk) < F(z∗) + η for some k ≥ 1, then

2‖xk+1 − xk‖ ≤ ‖xk − xk−1‖ + 9b

4a
(ϕ(F(zk) − F(z∗)) − ϕ(F(zk+1) − F(z∗))),

which combined with the previous step assures that the base case, k = 1, in our
induction process holds.

Next, we take the inductive step and show that the previous statement holds for
every k ≥ 1.

2. By summing up the inequality obtained at 1. from k = 1 to k = n and letting
n −→ +∞ we obtain that the sequence (xn)n∈N is convergent and from here the
conclusion of the Lemma easily follows.

We now pass to a detailed presentation of this proof.

Proof We divide the proof into the following steps.

Step I.We show that z1 ∈ B(z∗, ρ) and F(z1) < F(z∗) + η.

Indeed, z0 ∈ B(z∗, ρ) and (6) assures that F(z1) ≥ F(z∗). Further, (H1) assures
that ‖x1 − x0‖ ≤

√
F(z0)−F(z1)

a and since ‖x1 − x∗‖ = ‖(x1 − x0) + (x0 − x∗)‖ ≤
‖x1 − x0‖ + ‖x0 − x∗‖ and F(z1) ≥ F(z∗) the condition (7) leads to
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‖x1 − x∗‖ ≤ ‖x0 − x∗‖ +
√

F(z0) − F(z∗)
a

<
ρ

c1 + c2
.

Now, from (H3) we have ‖z1 − z∗‖ ≤ c1‖x1 − x∗‖ + c2‖x0 − x∗‖ hence

‖z1 − z∗‖ < c1
ρ

c1 + c2
+ c2

ρ

c1 + c2
= ρ.

Thus, z1 ∈ B(z∗, ρ), moreover (6) and (H1) provide that F(z∗) ≤ F(z2) ≤ F(z1) ≤
F(z0) < F(z∗) + η.

Step II. Next we show that whenever for a k ≥ 1 one has zk ∈ B(z∗, ρ), F(zk) <

F(z∗) + η then it holds that

2‖xk+1 − xk‖ ≤ ‖xk − xk−1‖ + 9b

4a
(ϕ(F(zk) − F(z∗)) − ϕ(F(zk+1) − F(z∗))).

(8)

Hence, let k ≥ 1 and assume that zk ∈ B(z∗, ρ), F(zk) < F(z∗) + η. Note that from
(H1) and (6) one has F(z∗) ≤ F(zk+1) ≤ F(zk) < F(z∗) + η, hence

F(zk) − F(z∗), F(zk+1) − F(z∗) ∈ [0, η),

thus (8) is well stated. Now, if xk = xk+1 then (8) trivially holds.
Otherwise, from (H1) and (6) one has

F(z∗) ≤ F(zk+1) < F(zk) < F(z∗) + η. (9)

Consequently, zk ∈ B(z∗, ρ) ∩ {z ∈ R
m : F(z∗) < F(z) < F(z∗) + η} and by using

the KL inequality we get

ϕ′(F(zk) − F(z∗))‖∇F(zk)‖ ≥ 1.

Since ϕ is concave, and (9) assures that F(zk+1) − F(z∗) ∈ [0, η), one has

ϕ(F(zk) − F(z∗)) − ϕ(F(zk+1) − F(z∗)) ≥ ϕ′(F(zk) − F(z∗))(F(zk) − F(zk+1)),

consequently,

ϕ(F(zk) − F(z∗)) − ϕ(F(zk+1) − F(z∗)) ≥ F(zk) − F(zk+1)

‖∇F(zk)‖ .

Now, by using (H1) and (H2) we get that

ϕ(F(zk) − F(z∗)) − ϕ(F(zk+1) − F(z∗)) ≥ a‖xk+1 − xk‖2
b(‖xk+1 − xk‖ + ‖xk − xk−1‖) .
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Consequently,

‖xk+1 − xk‖ ≤
√

b

a
(ϕ(F(zk) − F(z∗)) − ϕ(F(zk+1) − F(z∗))) (‖xk+1 − xk‖ + ‖xk − xk−1‖)

and by arithmetical-geometrical mean inequality we have

‖xk+1 − xk‖ ≤ ‖xk+1 − xk‖ + ‖xk − xk−1‖
3

+ 3b

4a
(ϕ(F(zk) − F(z∗)) − ϕ(F(zk+1) − F(z∗))),

which leads to (8), that is

2‖xk+1 − xk‖ ≤ ‖xk − xk−1‖ + 9b

4a
(ϕ(F(zk) − F(z∗)) − ϕ(F(zk+1) − F(z∗))).

Step III.Nowwe show by induction that (8) holds for every k ≥ 1. Indeed, Step II. can
be applied for k = 1 since according to Step I. z1 ∈ B(z∗, ρ) and F(z1) < F(z∗)+η.

Consequently, for k = 1 the inequality (8) holds.
Assume that (8) holds for every k ∈ {1, 2, . . . , n} and we show also that (8) holds

for k = n + 1. Arguing as at Step II., the condition (H1) and (6) assure that F(z∗) ≤
F(zn+1) ≤ F(zn) < F(z∗) + η, hence it remains to show that zn+1 ∈ B(z∗, ρ). By
using the triangle inequality and (H3) one has

‖zn+1 − z∗‖ ≤ c1‖xn+1 − x∗‖ + c2‖xn − x∗‖
= c1‖(xn+1 − xn) + (xn − xn−1) + · · · + (x0 − x∗)‖

+ c2‖(xn − xn−1) + (xn−1 − xn−2) + · · · + (x0 − x∗)‖

≤ c1‖xn+1 − xn‖ + (c1 + c2)‖x0 − x∗‖ + (c1 + c2)
n∑

k=1

‖xk − xk−1‖.
(10)

By summing up (8) from k = 1 to k = n we obtain

n∑

k=1

‖xk − xk−1‖ ≤ 2‖x1 − x0‖ − 2‖xn+1 − xn‖ + 9b

4a
(ϕ(F(z1) − F(z∗))

−ϕ(F(zn+1) − F(z∗))). (11)

Combining (10) and (11) and neglecting the negative terms we get

‖zn+1 − z∗‖ ≤ (2c1 + 2c2)‖x1 − x0‖ + (c1 + c2)‖x0 − x∗‖
+ (c1 + c2)

9b

4a
ϕ(F(z1) − F(z∗)).
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But ϕ is strictly increasing and F(z1) − F(z∗) ≤ F(z0) − F(z∗), hence

‖zn+1 − z∗‖ ≤ (2c1 + 2c2)‖x1 − x0‖ + (c1 + c2)‖x0 − x∗‖
+(c1 + c2)

9b

4a
ϕ(F(z0) − F(z∗)).

According to (H1) one has

‖x1 − x0‖ ≤
√

F(z0) − F(z1)

a
≤

√
F(z0) − F(z∗)

a
, (12)

hence, from (7) we get

‖zn+1 − z∗‖ ≤ (c1 + c2)

(

‖x0 − x∗‖ + 2

√
F(z0) − F(z∗)

a
+ 9b

4a
ϕ(F(z0) − F(z∗))

)

< ρ.

Hence, we have shown so far that zn ∈ B(z∗, ρ) for all n ∈ N.

Step IV. According to Step III. the relation (8) holds for every k ≥ 1. But this implies
that (11) holds for every n ≥ 1. By using (12) and neglecting the nonpositive terms,
(11) becomes

n∑

k=1

‖xk − xk−1‖ ≤ 2

√
F(z0) − F(z∗)

a
+ 9b

4a
ϕ(F(z1) − F(z∗)). (13)

Now letting n −→ +∞ in (13) we obtain that

∞∑

k=1

‖xk − xk−1‖ < +∞.

Obviously the sequence Sn = ∑n
k=1 ‖xk − xk−1‖ is Cauchy, hence, for all ε > 0

there exists Nε ∈ N such that for all n ≥ Nε and for all p ∈ N one has

Sn+p − Sn ≤ ε.

But

Sn+p − Sn =
n+p∑

k=n+1

‖xk − xk−1‖ ≥
∥
∥
∥
∥
∥

n+p∑

k=n+1

(xk − xk−1)

∥
∥
∥
∥
∥

= ‖xn+p − xn‖

hence the sequence (xn)n∈N is Cauchy, consequently is convergent. Let

lim
n−→+∞ xn = x .
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Let z = (x, x). Now, from (H3) we have

lim
n−→+∞ ‖zn − z‖ ≤ lim

n−→+∞(c1‖xn − x‖ + c2‖xn−1 − x‖) = 0,

consequently (zn)n∈N converges to z.
Further, (zn)n∈N ⊆ B(z∗, ρ) and ρ < σ , hence z ∈ B(z∗, σ ).Moreover, from (H2)

we have

‖∇F(z)‖ = lim
n−→+∞ ‖∇F(zn)‖ ≤ lim

n−→+∞ b(‖xn+1 − xn‖ + ‖xn − xn−1‖) = 0

which shows that z ∈ crit(F). Consequently, z ∈ B(z∗, σ ) ∩ crit(F).
Finally, since zn −→ z, n −→ +∞ an F is continuous it is obvious that

limn−→+∞ F(zn) = F(z). Further, since F(z∗) ≤ F(zn) < F(z∗) + η for all n ≥ 1
and the sequence (F(zn))n≥1 is decreasing, obviously F(z∗) ≤ F(z) < F(z∗) + η.

Assume that F(z∗) < F(z). Then, one has

z ∈ B(z∗, σ ) ∩ {z ∈ R
m : F(z∗) < F(z) < F(z∗) + η}

and by using the KL inequality we get

ϕ′(F(z) − F(z∗))‖∇F(z)‖ ≥ 1,

impossible since ‖∇F(z)‖ = 0. Consequently F(z) = F(z∗). ��
Remark 4 One can observe that our conditions in Lemma 3 are slightly different to
those in [5,46]. Indeed, we must assume that z0 ∈ B(z∗, ρ) and in the right hand side
of (7) we have ρ

c1+c2
.

Though does not fit into the framework of this paper, we are confident that Lemma 3
can be extended to the case when we do not assume that F is continuously Fréchet
differentiable but only that F is proper and lower semicontinuous. Then, the gradient
of F can be replaced by the limiting subdifferential of F . These assumptions will
imply some slight modifications in the conclusion of Lemma 3 and only the lines of
proof at Step IV. must be substantially modified.

Corollary 5 Assume that the sequences from the definition of (zn)n∈N satisfy vn =
xn+αn(xn−xn−1) and wn = xn+βn(xn−xn−1) for all n ≥ 1, where (αn)n∈N, (βn)n∈N
are bounded sequences. Let c = supn∈N(|αn|+|βn|). Then (H3) holds with c1 = 2+c
and c2 = c. Further, Lemma 3 holds true if we replace (6) in its hypotheses by

η <
a(σ − ρ)2

4(1 + c)2
and F(zn) ≥ F(z∗), for all n ∈ N, n ≥ 1.

Proof The claim that (H3) holds with c1 = 2 + c and c2 = c is an easy verification.
We have to show that (6) holds, that is, zn ∈ B(z∗, ρ) implies zn+1 ∈ B(z∗, σ ) for all
n ∈ N.
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According to (H1), the assumption that F(zn) ≥ F(z∗) for all n ≥ 1 and the
hypotheses of Lemma 3, we have

‖xn − xn−1‖ ≤
√

F(zn−1) − F(zn)

a
≤

√
F(z0) − F(zn)

a
≤

√
F(z0) − F(z∗)

a
<

√
η

a

and

‖xn+1 − xn‖ ≤
√

F(zn) − F(zn+1)

a
≤

√
F(z0) − F(zn+1)

a
≤

√
F(z0) − F(z∗)

a
<

√
η

a

for all n ≥ 1.
Assume now that n ≥ 1 and zn ∈ B(z∗, ρ). Then, by using the triangle inequality

we get

‖zn+1 − z∗‖ = ‖(zn+1 − zn) + (zn − z∗)‖ ≤ ‖zn+1 − zn‖ + ‖zn − z∗‖
≤ ‖zn+1 − zn‖ + ρ.

Further,

‖zn+1 − zn‖ = ‖(vn+1 − vn, wn+1 − wn)‖
≤ ‖xn+1 + αn+1(xn+1 − xn) − xn − αn(xn − xn−1)‖

+ ‖xn+1 + βn+1(xn+1 − xn) − xn − βn(xn − xn−1)‖
≤ (2 + |αn+1| + |βn+1|)‖xn+1 − xn‖ + (|αn| + |βn|)‖xn − xn−1‖
≤ (2 + c)‖xn+1 − xn‖ + c‖xn − xn−1‖,

where c = supn∈N(|αn| + |βn|).
Consequently, we have

‖zn+1 − z∗‖ ≤ (2 + c)‖xn+1 − xn‖ + c‖xn − xn−1‖ + ρ < (2 + 2c)

√
η

a
+ ρ ≤ σ,

which is exactly zn+1 ∈ B(z∗, σ ). Further, arguing analogously as at Step I. in the
proof of Lemma 3, we obtain that z1 ∈ B(z∗, ρ) ⊆ B(z∗, σ ) and this concludes the
proof. ��

Now we are ready to formulate the following result.

Theorem 6 (Convergence to a critical point). Let F : Rm × R
m −→ R be a contin-

uously Fréchet differentiable function and let (zn)n∈N = (xn + αn(xn − xn−1), xn +
βn(xn − xn−1))n∈N be a sequence that satisfies (H1) and (H2), (with the convention
x−1 ∈ R

m), where (αn)n∈N, (βn)n∈N are bounded sequences. Moreover, assume that
ω((zn)n∈N) is nonempty and that F has the Kurdyka–Łojasiewicz property at a point
z∗ = (x∗, x∗) ∈ ω((zn)n∈N). Then, the sequence (xn)n∈N converges to x∗, (zn)n∈N
converges to z∗ and z∗ ∈ crit(F).
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Proof We will apply Corollary 5. Since z∗ = (x∗, x∗) ∈ ω((zn)n∈N) there exists a
subsequence (znk )k∈N such that

znk −→ z∗, k −→ +∞.

From (H1) we get that the sequence (F(zn))n∈N is decreasing and obviously
F(znk ) −→ F(z∗), k −→ +∞, which implies that

F(zn) −→ F(z∗), n −→ +∞ and F(zn) ≥ F(z∗), for all n ∈ N. (14)

We show next that xnk −→ x∗, k −→ +∞. Indeed, from (H1) one has

a‖xnk − xnk−1‖2 ≤ F(znk−1) − F(znk )

and obviously the right side of the above inequality goes to 0 as k −→ +∞. Hence,

lim
k−→+∞(xnk − xnk−1) = 0.

Further, since the sequences (αn)n∈N, (βn)n∈N are bounded we get

lim
k−→+∞ αnk (xnk − xnk−1) = 0

and

lim
k−→+∞ βnk (xnk − xnk−1) = 0.

Finally, znk −→ z∗, k −→ +∞ is equivalent to

xnk − x∗ + αnk (xnk − xnk−1) −→ 0, k −→ +∞

and

xnk − x∗ + βnk (xnk − xnk−1) −→ 0, k −→ +∞,

which lead to the desired conclusion, that is

xnk −→ x∗, k −→ +∞. (15)

The KL property around z∗ states the existence of quantities ϕ, U , and η as in Defini-
tion 1. Let σ > 0 be such that B(z∗, σ ) ⊆ U and ρ ∈ (0, σ ). If necessary we shrink

η such that η <
a(σ−ρ)2

4(1+c)2
, where c = supn∈N(|αn| + |βn|).

Now, since the functions F and ϕ are continuous and F(zn) −→ F(z∗), n −→
+∞, further ϕ(0) = 0 and znk −→ z∗, xnk −→ x∗, k −→ +∞ we conclude

123



Convergence rates for an inertial algorithm of gradient… 299

that there exists n0 ∈ N, n0 ≥ 1 such that zn0 ∈ B(z∗, ρ) and F(z∗) ≤ F(zn0) <

F(z∗) + η, moreover

‖x∗ − xn0‖ + 2

√
F(zn0) − F(z∗)

a
+ 9b

4a
ϕ(F(zn0) − F(z∗)) <

ρ

c1 + c2
.

Hence, Corollary 5 and consequently Lemma 3 can be applied to the sequence
(un)n∈N, un = zn0+n .

Thus, according to Lemma 3, (un)n∈N converges to a point (x, x) ∈ crit(F), con-
sequently (zn)n∈N converges to (x, x). But then, since ω((zn)n∈N) = {(x, x)} one has
x∗ = x . Hence, (xn)n∈N converges to x∗, (zn)n∈N converges to z∗ and z∗ ∈ crit(F). ��
Remark 7 We emphasize that the main advantage of the abstract convergence results
from this section is that can be applied also for algorithms where the the gradient of
the objective is evaluated in iterations that contain the inertial therm. This is due to
the fact that the sequence (zn)n∈N may have the form proposed in Corollary 5 and
Theorem 6.

2.2 The convergence of the numerical method (2)

Based on the abstract convergence results obtained in the previous section, in this
section we show the convergence of the sequences generated by Algorithm (2). The
main tool in our forthcoming analysis is the so called descent lemma, see [44], which
in our setting reads as

g(y) ≤ g(x) + 〈∇g(x), y − x〉 + Lg

2
‖y − x‖2, ∀x, y ∈ R

m . (16)

Now we are able to obtain a decrease property for the iterates generated by (2).

Lemma 8 In the settings of problem (1), for some starting points x0, x−1 ∈ R
m, let

(xn)n∈N, (yn)n∈N be the sequences generated by the numerical scheme (2). Consider
the sequences

An−1 = 2 − sLg

2s

(
(1 + β)n + α

n + α

)2

− βn((1 + β)n + α)

s(n + α)2
,

Bn = 2 − sLg

2s

(
βn

n + α

)2

,

Cn−1 = 2 − sLg

2s

βn − β

n + α − 1

(1 + β)n + α

n + α
− 1

2s

βn − β

n + α − 1

βn

n + α

and

δn = 1

2
(An−1 − Cn−1 − Bn + Cn),

for all n ∈ N, n ≥ 1.
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Then, there exists N ∈ N such that

(i) The sequence
(
g(yn) + δn‖xn − xn−1‖2

)

n≥N is nonincreasing and δn > 0 for all
n ≥ N.
Assume that g is bounded from below. Then, the following statements hold.

(ii) The sequence
(
g(yn) + δn‖xn − xn−1‖2

)

n∈N is convergent;
(iii)

∑
n≥1 ‖xn − xn−1‖2 < +∞.

Due to the technical details of the proof of Lemma 8, we will first present a sketch of
it in order to give a better insight.

1. We start from (2) and (16) to obtain

g(yn+1) − Lg

2
‖yn+1 − yn‖2 ≤ g(yn) + 1

s
〈yn − xn+1, yn+1 − yn〉, for all n ∈ N.

From here, by using equalities only, we obtain the key inequality

�n+1

2
‖xn+1 − xn‖2 + �n

2
‖xn − xn−1‖2 ≤ (g(yn) + δn‖xn − xn−1‖2)

−(g(yn+1) + δn+1‖xn+1 − xn‖2),

for all n ∈ N, n ≥ 1, where �n = An−1 − Cn−1 + Bn − Cn . Further, we show that
Cn,�n and δn are positive after an index N .

2. Now, the key inequality emphasized at 1. implies at once (i), and if we assume
that g is bounded from below also (ii) and (iii) follows in a straightforward way.

We now pass to a detailed presentation of this proof.

Proof From (2) we have ∇g(yn) = 1
s (yn − xn+1), hence

〈∇g(yn), yn+1 − yn〉 = 1

s
〈yn − xn+1, yn+1 − yn〉, for all n ∈ N.

Now, from (16) we obtain

g(yn+1) ≤ g(yn) + 〈∇g(yn), yn+1 − yn〉 + Lg

2
‖yn+1 − yn‖2,

consequently we have

g(yn+1) − Lg

2
‖yn+1 − yn‖2 ≤ g(yn) + 1

s
〈yn − xn+1, yn+1 − yn〉, for all n ∈ N.

(17)

Further, for all n ∈ N one has

〈yn − xn+1, yn+1 − yn〉 = −‖yn+1 − yn‖2 + 〈yn+1 − xn+1, yn+1 − yn〉,
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and

yn+1 − xn+1 = β(n + 1)

n + α + 1
(xn+1 − xn),

hence,

g(yn+1) +
(
1

s
− Lg

2

)

‖yn+1 − yn‖2 ≤ g(yn) +
β(n+1)
n+α+1

s
〈xn+1 − xn, yn+1 − yn〉.

(18)

Since

yn+1 − yn = (1 + β)n + α + β + 1

n + α + 1
(xn+1 − xn) − βn

n + α
(xn − xn−1),

we have,

‖yn+1 − yn‖2

=
∥
∥
∥
∥
(1 + β)n + α + β + 1

n + α + 1
(xn+1 − xn) − βn

n + α
(xn − xn−1)

∥
∥
∥
∥

2

=
(

(1 + β)n + α + β + 1

n + α + 1

)2

‖xn+1 − xn‖2 +
(

βn

n + α

)2

‖xn − xn−1‖2

− 2
(1 + β)n + α + β + 1

n + α + 1

βn

n + α
〈xn+1 − xn, xn − xn−1〉,

and

〈xn+1 − xn, yn+1 − yn〉
=

〈

xn+1 − xn,
(1 + β)n + α + β + 1

n + α + 1
(xn+1 − xn)

− βn

n + α
(xn − xn−1)

〉

= (1 + β)n + α + β + 1

n + α + 1
‖xn+1 − xn‖2 − βn

n + α
〈xn+1 − xn, xn − xn−1〉,

for all n ∈ N.

Replacing the above equalities in (18), we obtain

g(yn+1) +
(
2 − sLg

2s

(
(1 + β)n + α + β + 1

n + α + 1

)2

−β(n + 1)((1 + β)n + α + β + 1)

s(n + α + 1)2

)

‖xn+1 − xn‖2
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≤ g(yn) − 2 − sLg

2s

(
βn

n + α

)2

‖xn − xn−1‖2

+
(
2 − sLg

s

βn

n + α

(1 + β)n + α + β + 1

n + α + 1

−1

s

βn

n + α

β(n + 1)

n + α + 1

)

〈xn+1 − xn, xn − xn−1〉,

for all n ∈ N.

Hence, for every n ∈ N, n ≥ 1, we have

g(yn+1) + An‖xn+1 − xn‖2 − 2Cn〈xn+1 − xn, xn − xn−1〉 ≤ g(yn) − Bn‖xn − xn−1‖2.

By using the equality

− 2〈xn+1 − xn, xn − xn−1〉 = ‖xn+1 + xn−1 − 2xn‖2 − ‖xn+1 − xn‖2 − ‖xn − xn−1‖2
(19)

we obtain

g(yn+1) + (An − Cn)‖xn+1 − xn‖2 + Cn‖xn+1 + xn−1 − 2xn‖2
≤ g(yn) + (Cn − Bn)‖xn − xn−1‖2,

for all n ∈ N, n ≥ 1.
Note that δn = 1

2 (An−1 − Cn−1 − Bn + Cn), hence we have

g(yn+1) + δn+1‖xn+1 − xn‖2 + (An − Cn − δn+1)‖xn+1 − xn‖2
+ Cn‖xn+1 + xn−1 − 2xn‖2

≤ g(yn) + δn‖xn − xn−1‖2 + (Cn − Bn − δn)‖xn − xn−1‖2,

for all n ∈ N, n ≥ 1.
Let us denote �n = An−1 − Cn−1 + Bn − Cn for all n ≥ 1. Then,

An − Cn − δn+1 = 1

2
(An − Cn + Bn+1 − Cn+1) = �n+1

2

and

Cn − Bn − δn = −�n

2
,

for all n ≥ 1, consequently the following inequality holds.

Cn‖xn+1 + xn−1 − 2xn‖2 + �n

2
‖xn − xn−1‖2 + �n+1

2
‖xn+1 − xn‖2
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≤ (g(yn) + δn‖xn − xn−1‖2) − (g(yn+1) + δn+1‖xn+1 − xn‖2), (20)

for all n ∈ N, n ≥ 1.
Since 0 < β < 1 and s <

2(1−β)
Lg

we have

lim
n−→+∞ An = (2 − sLg)(β + 1)2 − 2β − 2β2

2s
> 0,

lim
n−→+∞ Bn = (2 − sLg)β

2

2s
> 0,

lim
n−→+∞ Cn = (2 − sLg)(β

2 + β) − β2

2s
> 0,

lim
n−→+∞ �n = 2 − sLg − 2β

2s
> 0, and

lim
n−→+∞ δn = 2 + 2β − 2β2 − sLg(2β + 1)

2s
> 0.

Hence, there exists N ∈ N, N ≥ 1 and C > 0, D > 0 such that for all n ≥ N one
has

Cn ≥ C,
�n

2
≥ D and δn > 0

which, in the view of (20), shows (i), that is, the sequence g(yn) + δn‖xn − xn−1‖2 is
nonincreasing for n ≥ N .

By using (20) again, we obtain

0 ≤ C‖xn+1 + xn−1 − 2xn‖2 + D‖xn − xn−1‖2 + D‖xn+1 − xn‖2
≤ (g(yn) + δn‖xn − xn−1‖2) − (g(yn+1) + δn+1‖xn+1 − xn‖2), (21)

for all n ≥ N , or more convenient, that

0≤ D‖xn+1−xn‖2≤(g(yn)+δn‖xn − xn−1‖2)−(g(yn+1) + δn+1‖xn+1 − xn‖2),
(22)

for all n ≥ N . Let r > N . By summing up the latter relation from n = N to n = r
we get

D
r∑

n=N

‖xn+1 − xn‖2≤(g(yN )+δN ‖xN − xN−1‖2)−(g(yr+1)+δr+1‖xr+1 − xr‖2)

which leads to

g(yr+1) + D
r∑

n=N

‖xn+1 − xn‖2 ≤ g(yN ) + δN ‖xN − xN−1‖2. (23)
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Now, if we assume that g is bounded from below, by letting r −→ +∞ we obtain

∞∑

n=N

‖xn+1 − xn‖2 < +∞

which proves (iii).
The latter relation also shows that

lim
n−→+∞ ‖xn − xn−1‖2 = 0,

hence

lim
n−→+∞ δn‖xn − xn−1‖2 = 0.

But then, by using the assumption that the function g is bounded from below we
obtain that the sequence (g(yn) + δn‖xn − xn−1‖2)n∈N is bounded from below. On
the other hand, from (i) we have that the sequence (g(yn) + δn‖xn − xn−1‖2)n≥N is
nonincreasing, hence there exists

lim
n−→+∞ g(yn) + δn‖xn − xn−1‖2 ∈ R. ��

Remark 9 Observe that conclusion (iii) in Lemma 8 assures that the sequence (xn −
xn−1)n∈N ∈ l2, in particular that

lim
n−→+∞(xn − xn−1) = 0. (24)

Note that according the proof of Lemma 8, one has δn‖xn − xn−1‖2 −→ 0, n −→
+∞. Thus, (ii) assures that there exists the limit limn−→+∞ g(yn) ∈ R.

In what follows, in order to apply our abstract convergence result obtained at The-
orem 6, we introduce a function and a sequence that will play the role of the function
F and the sequence (zn) studied in the previous section. Consider the sequence

un = √
2δn(xn − xn−1) + yn , for all n ∈ N, n ≥ N

and the sequence zn = (yn+N , un+N ) for all n ∈ N, where N and δn were defined in
Lemma 8. Let us introduce the following notations:

x̃n = xn+N and ỹn = yn+N ,

αn = β(n + N )

n + N + α
and βn = √

2δn+N + β(n + N )

n + N + α
,

123



Convergence rates for an inertial algorithm of gradient… 305

for all n ∈ N. Then obviously the sequences (αn)n∈N and (βn)n∈N are bounded,
(actually they are convergent), and for each n ∈ N, the sequence zn has the form

zn = (x̃n + αn(x̃n − x̃n−1), x̃n + βn(x̃n − x̃n−1)) . (25)

Consider further the following regularization of g

H : Rm × R
m −→ R, H(x, y) = g(x) + 1

2
‖y − x‖2.

Then, for every n ∈ N one has

H(zn) = g(ỹn) + δn+N ‖x̃n − x̃n−1‖2.

Now, (22) becomes

D‖x̃n+1 − x̃n‖ ≤ H(zn) − H(zn+1), for all n ∈ N, (26)

which is exactly our condition (H1) applied to the function H and the sequences
(x̃n)n∈N and (zn)n∈N.

Remark 10 We emphasize that H is strongly related to the total energy of the continu-
ous dynamical systems (3) and (4), (for other works where a similar regularization has
beenusedwe refer to [25,26,46]). Indeed, the total energyof the systems (3) and (4) (see
[6,9]), is given by E : [t0,+∞) → R, E(t) = g(x(t))+ 1

2‖ẋ(t)‖2. Then, the explicit
discretization of E (see [9]), leads to En = g(xn) + 1

2‖xn − xn−1‖2 = H(xn, xn−1)

and this fact was thoroughly exploited in [46]. However, observe that H(zn) cannot be
obtained via the usual implicit/explicit discretization of E . Nevertheless, H(zn) can
be obtained from a discretization of E by using the method presented in [6] which
suggest to discretize E in the form

En = g(μn) + 1

2
‖ηn‖2,

where μn and ηn are linear combinations of xn and xn−1. In our case we take μn = ỹn

and ηn = √
2δn+N (x̃n − x̃n−1) and we obtain

En = g(ỹn) + δn+N ‖x̃n − x̃n−1‖2 = H(zn).

The fact that H and the sequences (x̃n)n∈N and (zn)n∈N are satisfying also condition
(H2) is underlined in Lemma 11 (ii).

Lemma 11 Consider the function H and the sequences (x̃n)n∈N and (zn)n∈N defined
above. Then, the following statements hold true.

(i) crit(H) = {(x, x) ∈ R
m × R

m : x ∈ crit(g)};
(ii) There exists b > 0 such that ‖∇H(zn)‖ ≤ b(‖x̃n+1 − x̃n‖ + ‖x̃n − x̃n−1‖), for

all n ∈ N.
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Proof For (i) observe that ∇H(x, y) = (∇g(x) + x − y, y − x), hence, ∇H(x, y) =
(0, 0) leads to x = y and ∇g(x) = 0. Consequently

crit(H) = {(x, x) ∈ R
m × R

m : x ∈ crit(g)}.

(ii) By using (2), for every n ∈ N, n ≥ N we have

‖∇ H(yn, un)‖ =
√

‖∇g(yn) + yn − un‖2 + ‖un − yn‖2

≤
√

2‖∇g(yn)‖2 + 2‖yn − un‖2 + ‖un − yn‖2

=
√

2‖∇g(yn)‖2 + 6δn‖xn − xn−1‖2 ≤ √
2‖∇g(yn)‖ + √

6δn‖xn − xn−1‖

=
√
2

s

∥
∥
∥
∥

(

xn + βn

n + α
(xn − xn−1)

)

− xn+1

∥
∥
∥
∥ + √

6δn‖xn − xn−1‖

≤
√
2

s
‖xn+1 − xn‖ +

( √
2βn

s(n + α)
+ √

6δn

)

‖xn − xn−1‖.

Let b = max
{√

2
s , supn≥N

( √
2βn

s(n+α)
+ √

6δn

)}
. Then, obviously b > 0 and for all

n ∈ N it holds

‖∇H(zn)‖ ≤ b(‖x̃n+1 − x̃n‖ + ‖x̃n − x̃n−1‖).

��
Remark 12 Till now we did not take any advantage from the conclusions (ii) and (iii)
of Lemma 8. In the next result we show that under the assumption that g is bounded
from below, the limit sets ω((xn)n∈N) and ω((zn)n∈N) are strongly connected. This
connection is due to the fact that in case g is bounded from below then (24) holds, that
is, one has limn−→+∞(xn − xn−1) = 0.

Moreover, we emphasize some useful properties of the regularization H which
occur when we assume that g is bounded from below.

In the following result we use the distance function to a set, defined for A ⊆ R
m as

dist(x, A) = inf
y∈A

‖x − y‖ for all x ∈ R
m .

Lemma 13 In the settings of problem (1), for some starting points x0 = x−1 ∈ R
m,

consider the sequences (xn)n∈N, (yn)n∈N generated by Algorithm (2). Assume that g
is bounded from below. Then, the following statements hold true.

(i) ω((un)n∈N) = ω((yn)n∈N) = ω((xn)n∈N) ⊆ crit(g), further ω((zn)n∈N) ⊆
crit(H) and ω((zn)n∈N) = {(x, x) ∈ R

m × R
m : x ∈ ω((xn)n∈N)};

(ii) (H(zn))n∈N is convergent and H is constant on ω((zn)n∈N);

(iii) ‖∇H(yn, un)‖2 ≤ 2
s2

‖xn+1−xn‖2+2

((
βn

s(n+α)
− √

2δn

)2 + δn

)

‖xn−xn−1‖2
for all n ∈ N, n ≥ N.
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Assume that (xn)n∈N is bounded. Then,

(iv) ω((zn)n∈N) is nonempty and compact;
(v) limn−→+∞ dist(zn, ω((zn)n∈N)) = 0.

Proof (i) Let x ∈ ω((xn)n∈N). Then, there exists a subsequence (xnk )k∈N of (xn)n∈N
such that

lim
k→+∞ xnk = x .

Since by (24) limn−→+∞(xn − xn−1) = 0 and the sequences (
√
2δn)n∈N,

(
βn

n+α

)

n∈N
converge, we obtain that

lim
k→+∞ ynk = lim

k→+∞ unk = lim
k→+∞ xnk = x,

which shows that

ω((xn)n∈N) ⊆ ω((un)n∈N) and ω((xn)n∈N) ⊆ ω((yn)n∈N).

Further, from (2), the continuity of ∇g and (24), we obtain that

∇g(x) = lim
k−→+∞ ∇g(ynk ) = 1

s
lim

k−→+∞(ynk − xnk+1)

= 1

s
lim

k−→+∞

[

(xnk − xnk+1) + βnk

nk + α
(xnk − xnk−1)

]

= 0.

Hence, ω((xn)n∈N) ⊆ crit(g). Conversely, if y ∈ ω((yn)n∈N) then, from (24) results
that y ∈ ω((xn)n∈N). Further, if u ∈ ω((un)n∈N) then by using (24) again we obtain
that u ∈ ω((yn)n∈N). Hence,

ω((yn)n∈N) = ω((un)n∈N) = ω((xn)n∈N) ⊆ crit(g).

Obviously ω((x̃n)n∈N) = ω((xn)n∈N) and since the sequences (αn)n∈N, (βn)n∈N
are bounded, (convergent), from (24) one gets

lim
n−→+∞ αn(x̃n − x̃n−1) = lim

n−→+∞ βn(x̃n − x̃n−1) = 0. (27)

Let (x, y) ∈ ω((zn)n∈N). Then, there exists a subsequence (znk )k∈N such that znk −→
(x, y), k −→ +∞. But we have zn = (x̃n + αn(x̃n − x̃n−1), x̃n + βn(x̃n − x̃n−1)) ,

for all n ∈ N, consequently from (27) we obtain

x̃nk −→ x and x̃nk −→ y, k −→ +∞.

Hence, x = y and x ∈ ω((xn)n∈N) which shows that

ω((zn)n∈N) ⊆ {(x, x) ∈ R
m × R

m : x ∈ ω((xn)n∈N)}.
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Conversely, if x ∈ ω((x̃n)n∈N) then there exists a subsequence (x̃nk )k∈N such
that limk→+∞ x̃nk = x . But then, by using (27) we obtain at once that znk −→
(x, x), k −→ +∞, hence by using the fact thatω((x̃n)n∈N) = ω((xn)n∈N)we obtain

{(x, x) ∈ R
m × R

m : x ∈ ω((xn)n∈N)} ⊆ ω((zn)n∈N).

Finally, from Lemma 11 (i) and since ω((xn)n∈N) ⊆ crit(g) we have

ω((zn)n∈N) ⊆ {(x, x) ∈ R
m × R

m : x ∈ crit(g)} = crit(H).

(ii) Follows directly by (ii) in Lemma 8.
(iii) We have:

‖∇H(yn, un)‖2
= ‖(∇g(yn) + yn − un, un − yn)‖2 = ‖∇g(yn) + yn − un‖2 + ‖un − yn‖2

=
∥
∥
∥
∥
1

s
(xn − xn+1) +

(
βn

s(n + α)
− √

2δn

)

(xn − xn−1)

∥
∥
∥
∥

2

+ 2δn‖xn − xn−1‖2

≤ 2

s2
‖xn+1 − xn‖2 + 2

((
βn

s(n + α)
− √

2δn

)2

+ δn

)

‖xn − xn−1‖2,

for all n ∈ N, n ≥ N .

Assumenow that (xn)n∈N is bounded and let us prove (iv), (see also [27]).Obviously
it follows that (zn)n∈N is also bounded, hence according to Weierstrass Theorem
ω((zn)n∈N), (and also ω((xn)n∈N)), is nonempty. It remains to show that ω((zn)n∈N)

is closed. From (i) we have

ω((zn)n∈N) = {(x, x) ∈ R
m × R

m : x ∈ ω((xn)n∈N)}, (28)

hence it is enough to show that ω((xn)n∈N) is closed.
Let be (x p)p∈N ⊆ ω((xn)n∈N) and assume that lim p−→+∞ x p = x∗. We show

that x∗ ∈ ω((xn)n∈N). Obviously, for every p ∈ N there exists a sequence of natural
numbers n p

k −→ +∞, k −→ +∞, such that

lim
k−→+∞ xn p

k
= x p.

Let be ε > 0. Since limp−→+∞ x p = x∗, there exists P(ε) ∈ N such that for every
p ≥ P(ε) it holds

‖x p − x∗‖ <
ε

2
.

Let p ∈ N be fixed. Since limk−→+∞ xn p
k

= x p, there exists k(p, ε) ∈ N such that
for every k ≥ k(p, ε) it holds

‖xn p
k

− x p‖ <
ε

2
.
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Let be kp ≥ k(p, ε) such that n p
kp

> p. Obviously n p
kp

−→ ∞ as p −→ +∞ and for
every p ≥ P(ε)

‖xn p
k p

− x∗‖ ≤ ‖xn p
k p

− x p‖ + ‖x p − x∗‖ < ε.

Hence limp−→+∞ xn p
k p

= x∗, thus x∗ ∈ ω((xn)n∈N).

(v) By using (28) we have

lim
n−→+∞ dist(zn, ω((zn)n∈N)) = lim

n−→+∞ inf
x∈ω((xn)n∈N)

‖zn − (x, x)‖.

Since there exists the subsequence (znk )k∈N such that limk−→∞ znk = (x0, x0) ∈
ω((zn)n∈N) it is straightforward that

lim
n−→+∞ dist(zn, ω((zn)n∈N)) = 0.

��
Nowwe are ready to prove Theorem 1 concerning the convergence of the sequences

generated by the numerical scheme (2).

Proof (Proof of Theorem 1) Let (zn)n∈N be the sequence defined by (25). Since x∗ ∈
ω((xn)n∈N) according to Lemma 13 (i) one has x∗ ∈ crit(g) and z∗ = (x∗, x∗) ∈
ω((zn)n∈N).

It can easily be checked that the assumptions of Theorem 6 are satisfied with the
continuously Fréchet differentiable function H , the sequences (zn)n∈N and (x̃n)n∈N.

Indeed, according to (26) and Lemma 11 (ii) the conditions (H1) and (H2) from the
hypotheses of Theorem 6 are satisfied. Hence, the sequence (x̃n)n∈N converges to x∗ as
n −→ +∞. But then obviously the sequence (xn)n∈N converges to x∗ as n −→ +∞.
��
Remark 14 Note that under the assumptions of Theorem 1 we also have that

lim
n−→+∞ yn = x∗ and lim

n−→+∞ g(xn) = lim
n−→+∞ g(yn) = g(x∗).

Corollary 15 In the settings of problem (1), for some starting points x0, x−1 ∈ R
m,

consider the sequence (xn)n∈N generated by Algorithm (2). Assume that g semi-
algebraic and bounded from below. Assume further that ω((xn)n∈N) �= ∅.

Then, the sequence (xn)n∈N converges to a critical point of the objective function
g.

Proof Since the class of semi-algebraic functions is closed under addition (see for
example [16]) and (x, y) �→ 1

2‖x − y‖2 is semi-algebraic, we obtain that the the
function

H : Rm × R
m −→ R, H(x, y) = g(x) + 1

2
‖y − x‖2
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is semi-algebraic. Consequently H is a KL function. In particular H has the Kurdyka–
Łojasiewicz property at a point z∗ = (x∗, x∗), where x∗ ∈ ω((xn)n∈N). The
conclusion follows from Theorem 1. ��
Remark 16 In order to apply Theorem 1 or Corollary 15 we need to assume that
ω((xn)n∈N) is nonempty. Obviously, this condition is satisfied whenever the sequence
(xn)n∈N is bounded. Next we show that the boundedness of (xn)n∈N is guaranteed if
we assume that the objective function g is coercive, that is, lim‖x‖→+∞ g(x) = +∞.

Proposition 17 In the settings of problem (1), for some starting points x0, x−1 ∈ R
m,

consider the sequence (xn)n∈N generated by Algorithm (2). Assume that the objective
function g is coercive.

Then, g is bounded from below, and the sequence (xn)n∈N is bounded.

Proof Indeed, g is bounded from below, being a continuous and coercive function
(see [48]). Note that according to (23) the sequence D

∑r
n=N ‖xn+1−xn‖2 is bounded.

Consequently, from (23) it follows that yr+1 is contained in a lower level set of g,
for every r ≥ N , (N was defined in the hypothesis of Lemma 8). But the lower level
sets of g are bounded since g is coercive. Hence, (yn)n∈N is bounded and taking into
account (24), it follows that (xn)n∈N is also bounded. ��

An immediate consequence of Theorem1 and Proposition 17 is the following result.

Corollary 18 Assume that g is a coercive function. In the settings of problem (1), for
some starting points x0, x−1 ∈ R

m, consider the sequence (xn)n∈N generated by
Algorithm (2). Assume further that

H : Rm × R
m −→ R, H(x, y) = g(x) + 1

2
‖y − x‖2

is a KL function.
Then, the sequence (xn)n∈N converges to a critical point of the objective function

g.

3 Convergence rates via the Łojasiewicz exponent

In this section we will assume that the regularization function H , introduced in the
previous section, satisfies the Łojasiewicz property, which corresponds to a particular
choice of the desingularizing function ϕ (see [3,4,18,20,30,41]).

Definition 2 Let g : Rm −→ R be a differentiable function. The function g is said
to fulfill the Łojasiewicz property at a point x ∈ crit(g) if there exist K , ε > 0 and
θ ∈ [0, 1) such that

|g(x) − g(x)|θ ≤ K‖∇g(x)‖ for every x fulfilling ‖x − x‖ < ε.

The number K is called the Łojasiewicz constant, meanwhile the number θ is called
the Łojasiewicz exponent of g at the critical point x .
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Note that the above definition corresponds to the case when in the KL property the
desingularizing function ϕ has the form ϕ(t) = K

1−θ
t1−θ . For θ = 0 we adopt the

convention 00 = 0, such that if |g(x) − g(x)|0 = 0 then g(x) = g(x), (see [3]).
In the following theoremwe provide convergence rates for the sequences generated

by (2), but also for the objective function values in these sequences, in terms of the
Łojasiewicz exponent of the regularization H (see also [3,4,11,18,35]).

More precisely we obtain finite convergence rates if the Łojasiewicz exponent of
H is 0, linear convergence rates if the Łojasiewicz exponent of H belongs to

(
0, 1

2

]

and sublinear convergence rates if the Łojasiewicz exponent of H belongs to
( 1
2 , 1

)
.

Theorem 19 In the settings of problem (1), for some starting points x0, x−1 ∈ R
m,

consider the sequences (xn)n∈N, (yn)n∈N generated by Algorithm (2). Assume that g
is bounded from below and consider the function

H : Rm × R
m −→ R, H(x, y) = g(x) + 1

2
‖x − y‖2.

Let (zn)n∈N be the sequence defined by (25) and assume that ω((zn)n∈N) is nonempty
and that H fulfills the Łojasiewicz property with Łojasiewicz constant K and
Łojasiewicz exponent θ ∈ [0, 1) at a point z∗ = (x∗, x∗) ∈ ω((zn)n∈N). Then
limn−→+∞ xn = x∗ ∈ crit(g) and the following statements hold true:
If θ = 0 then

(a0) (g(yn))n∈N, (g(xn))n∈N, (yn)n∈N and (xn)n∈N converge in a finite number of
steps;

If θ ∈ (
0, 1

2

]
then there exist Q ∈ [0, 1), a1, a2, a3, a4 > 0 and k ∈ N such that

(a1) g(yn) − g(x∗) ≤ a1Qn for every n ≥ k,
(a2) g(xn) − g(x∗) ≤ a2Qn for every n ≥ k,
(a3) ‖xn − x∗‖ ≤ a3Q

n
2 for every n ≥ k,

(a4) ‖yn − x∗‖ ≤ a4Q
n
2 for all n ≥ k;

If θ ∈ ( 1
2 , 1

)
then there exist b1, b2, b3, b4 > 0 and k ∈ N such that

(b1) g(yn) − g(x∗) ≤ b1n− 1
2θ−1 , for all n ≥ k,

(b2) g(xn) − g(x∗) ≤ b2n− 1
2θ−1 , for all n ≥ k,

(b3) ‖xn − x∗‖ ≤ b3n
θ−1
2θ−1 , for all n ≥ k,

(b4) ‖yn − x∗‖ ≤ b4n
θ−1
2θ−1 , for all n ≥ k.

Due to the technical details of the proof of Theorem 19, we will first present a sketch
of it in order to give a better insight.

1. After discussing a straightforward case, we introduce the discrete energy En =
H(zn) − H(z∗) where En > 0 for all n ∈ N, and we show that Lemma 15 from
[28] (see also [3]), can be applied to En .

2. This immediately gives the desired convergence rates (a0), (a1) and (b1).
3. For proving (a2) and (b2) we use the identity g(xn) − g(x∗) = (g(xn) − g(yn)) +

(g(yn) − g(x∗)) and we derive an inequality between g(xn) − g(yn) and En .
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4. For (a3) and (b3) we use the Eq. (8) and the form of the desingularizing function
ϕ.

5. Finally, for proving (a4) and (b4) we use the results already obtained at (a3) and
(b3) and the form of the sequence (yn)n∈N.

We now pass to a detailed presentation of this proof.

Proof Obviously, according to Theorem 1 one has limn−→+∞ xn = x∗ ∈ crit(g),
which combined with Lemma 13 (i) furnishes limn−→+∞ zn = z∗ ∈ crit(H). We
divide the proof into two cases.

Case I. Assume that there exists n ∈ N, such that H(zn) = H(z∗). Then, since
H(zn) is decreasing for all n ∈ N and limn−→+∞ H(zn) = H(z∗) we obtain that

H(zn) = H(z∗) for all n ≥ n.

The latter relation combined with (26) leads to

0 ≤ D‖x̃n+1 − x̃n‖2 ≤ H(zn) − H(zn+1) = H(z∗) − H(z∗) = 0

for all n ≥ n.

Hence (x̃n)n≥n is constant, in otherwords xn = x∗ for all n ≥ n + N . Consequently
yn = x∗ for all n ≥ n + N + 1 and the conclusion of the theorem is straightforward.

Case II. In what follows we assume that H(zn) > H(z∗), for all n ∈ N.

For simplicity let us denote En = H(zn) − H(z∗) and observe that En > 0 for all
n ∈ N. From (21) we have that the sequence (En)n∈N is nonincreasing, that is, there
exists D > 0 such that

D‖x̃n − x̃n−1‖2 ≤ En − En+1, for all n ∈ N. (29)

Further, since limn−→+∞ zn = z∗, one has

lim
n−→+∞ En = lim

n−→+∞(H(zn) − H(z∗)) = 0. (30)

From Lemma 13 (iii) we have

‖∇H(zn)‖2 ≤ 2

s2
‖x̃n+1 − x̃n‖2

+ 2

((
β(n + N )

s(n + N + α)
− √

2δn+N

)2

+ δn+N

)

‖x̃n − x̃n−1‖2,
(31)

for all n ∈ N. Let Sn = 2
(

β(n+N )
s(n+N+α)

− √
2δn+N

)2 + δn+N , for all n ∈ N.

Combining (29) and (31) it follows that, for all n ∈ N one has

‖x̃n − x̃n−1‖2 ≥ 1

Sn
‖∇H(zn)‖2 − 2

s2Sn
‖x̃n+1 − x̃n‖2
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≥ 1

Sn
‖∇H(zn)‖2 − 2

s2DSn
(En+1 − En+2). (32)

Now by using the Łojasiewicz property of H at z∗ ∈ crit(H), and the fact that
limn−→+∞ zn = z∗, we obtain that there exists ε > 0 and N 1 ∈ N, such that for all
n ≥ N 1 one has

‖zn − z∗‖ < ε,

and

‖∇H(zn)‖2 ≥ 1

K 2 |H(zn) − H(z∗)|2θ = 1

K 2 E2θ
n . (33)

Consequently (29), (32) and (33) leads to

En − En+1 ≥ D‖x̃n − x̃n−1‖2 ≥ D

Sn
‖∇H(zn)‖2 − 2

s2Sn
(En+1 − En+2)

≥ D

K 2Sn
E2θ

n − 2

s2Sn
(En+1 − En+2) = anE2θ

n − bn(En+1 − En+2), (34)

for all n ≥ N 1, where an = D
K 2Sn

and bn = 2
s2Sn

.

Since the sequence (En)n∈N is nonincreasing, one has

En − En+2 ≥ En − En+1,

anE2θ
n ≥ anE2θ

n+2

and

−bn(En+1 − En+2) ≥ −bn(En − En+2),

thus, (34) becomes

En − En+2 ≥ an

1 + bn
E2θ

n+2, (35)

for all n ≥ N1.

It is obvious that the sequences (an)n≥N1
and (bn)n≥N1

are positive and convergent,
further

lim
n−→+∞ an > 0 and lim

n−→+∞ bn > 0,

hence, there exists N 2 ∈ N, N 2 ≥ N 1, and C0 > 0 such that

an

1 + bn
≥ C0, for all n ≥ N 2.
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Consequently, (35) leads to

En − En+2 ≥ C0E2θ
n+2, (36)

for all n ≥ N2.

Now we can apply Lemma 15 [28] with en = En+2, l0 = 2 and n0 = N 2. Hence,
by taking into account that En > 0 for all n ∈ N, that is, in the conclusion of Lemma
15 (ii) from [28] one has Q �= 0, we have:

(K0) if θ = 0, then (En)n≥N converges in finite time;
(K1) if θ ∈ (

0, 1
2

]
, then there exists C1 > 0 and Q ∈ (0, 1), such that for every

n ≥ N 2 + 2

En ≤ C1Qn;

(K2) if θ ∈ [ 1
2 , 1

)
, then there exists C2 > 0, such that for every n ≥ N 2 + 4

En ≤ C2(n − 3)−
1

2θ−1 .

The case θ = 0.
For proving (a0) we use (K0). Since in this case (En)n≥N converges in finite time

after an index N0 ∈ N we have En − En+1 = 0 for all n ≥ N0, hence (29) implies
that x̃n = x̃n−1 for all n ≥ N0. Consequently, xn = xn−1 and yn = xn for all
n ≥ N0 + N , thus (xn)n∈N, (yn)n∈N converge in finite time which obviously implies
that (g(xn))n∈N , (g(yn))n∈N converge in finite time.

The case θ ∈ (
0, 1

2

]
.

We apply (K1) and we obtain that there exists C1 > 0 and Q ∈ (0, 1), such that for
every n ≥ N 2+2, one has En ≤ C1Qn .But, En = g(ỹn)−g(x∗)+δn+N ‖x̃n − x̃n−1‖2
for all n ∈ N, consequently g(yn+N ) − g(x∗) ≤ C1Qn, for all n ≥ N 2 + 2. Thus, by
denoting C1

QN = a1 we get

g(yn) − g(x∗) ≤ a1Qn, for all n ≥ N 2 + N + 2. (37)

For (a2) we start from (16) and Algorithm (2) and for all n ∈ N we have

g(xn) − g(yn) ≤ 〈∇g(yn), xn − yn〉 + Lg

2
‖xn − yn‖2

= 1

s

〈

(xn − xn+1) + βn

n + α
(xn − xn−1),− βn

n + α
(xn − xn−1)

〉

+ Lg

2

(
βn

n + α

)2

‖xn − xn−1‖2

= −
(

βn

n + α

)2 2 − sLg

2s
‖xn − xn−1‖2 + 1

s

〈

xn+1 − xn,
βn

n + α
(xn − xn−1)

〉

.
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By using the inequality 〈X , Y 〉 ≤ 1
2

(
a2‖X‖2 + 1

a2
‖Y‖2

)
for all X , Y ∈ R

m, a ∈
R \ {0}, we obtain

〈

xn+1 − xn,
βn

n + α
(xn − xn−1)

〉

≤ 1

2

(
1

2 − sLg
‖xn+1 − xn‖2

+ (2 − sLg)

(
βn

n + α

)2

‖xn − xn−1‖2
)

,

consequently

g(xn) − g(yn) ≤ 1

2s(2 − sLg)
‖xn+1 − xn‖2, for all n ∈ N. (38)

Taking into account that En > 0 for all n ∈ N, from (29) we have

‖x̃n − x̃n−1‖2 ≤ 1

D
En for all n ∈ N. (39)

Hence, for all n ≥ N − 1 one has

g(xn) − g(yn) ≤ 1

2s D(2 − sLg)
En−N+1. (40)

Now, the identity g(xn) − g(x∗) = (g(xn) − g(yn)) + (g(yn) − g(x∗)) and (37)
lead to

g(xn) − g(x∗) ≤ 1

2s D(2 − sLg)
En−N+1 + a1Qn

for every n ≥ N 2 + N + 2, which combined with (K1) gives

g(xn) − g(x∗) ≤ a2Qn, (41)

for every n ≥ N 2 + N + 2, where a2 = C1
2s D(2−sLg)QN−1 + a1.

For (a3) we will use (8). Since zn ∈ B(z∗, ε) for all n ≥ N 2 and zn −→ z∗, n −→
+∞, we get that there exists N 3 ∈ N, N 3 ≥ N 2 such that (8) holds for every
n ≥ N 3. In this setting, by taking into account that the desingularizing function is
ϕ(t) = K

1−θ
t1−θ , the inequality (8) has the form

2‖x̃k+1 − x̃k‖ ≤ ‖x̃k − x̃k−1‖ + 9b

4D
· K

1 − θ
(E1−θ

k − E1−θ
k+1 ), (42)

where D was defined at (26) and b was defined at Lemma 11 (ii). Observe that by
summing up (42) from k = n ≥ N 3 to k = P > n and using the triangle inequality
we obtain
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‖x̃P+1 − x̃n‖ ≤
P∑

k=n

‖x̃k+1 − x̃k‖

≤ ‖x̃n − x̃n−1‖ − ‖x̃P+1 − x̃P‖ + 9b

4D
· K

1 − θ
(E1−θ

n − E1−θ
P+1).

By letting P −→ +∞ and taking into account that x̃P −→ x∗, EP+1 −→
0, P −→ +∞, further using (39) we get

‖x̃n − x∗‖ ≤ ‖x̃n − x̃n−1‖ + 9b

4D
· K

1 − θ
E1−θ

n ≤ 1√
D

√
En + M0E1−θ

n , (43)

where M0 = 9bK
4D(1−θ)

.

But (En)n∈N is a decreasing sequence and according to (30) (En)n∈N converges
to 0, hence there exists N 4 ≥ max{N 3, N 2 + 2} such that 0 ≤ En ≤ 1, for all
n ≥ N 4. The latter relation combined with the fact that θ ∈ (

0, 1
2

]
leads to E1−θ

n ≤√En, for all n ≥ N 4. Consequently we have ‖x̃n − x∗‖ ≤ M1
√En, for all n ≥ N 4,

where M1 = 1√
D

+ M0. The conclusion follows via (K1) since we have

‖xn+N − x∗‖ ≤ M1

√
C1Q

n
2 = M1

√
C1

QN
Q

n+N
2 , for every n ≥ N 4

and consequently

‖xn − x∗‖ ≤ a3Q
n
2 , (44)

for all n ≥ N 4 + N , where a3 = M1

√
C1
QN .

Finally, for n ≥ N 4 + N + 1 we have

‖yn − x∗‖ =
∥
∥
∥
∥xn + βn

n + α
(xn − xn−1) − x∗

∥
∥
∥
∥

≤
(

1 + βn

n + α

)

‖xn − x∗‖ + βn

n + α
‖xn−1 − x∗‖

≤
(

1 + βn

n + α

)

a3Q
n
2 + βn

n + α
a3Q

n−1
2

=
(

1 + βn

n + α
+ βn

n + α

1√
Q

)

a3Q
n
2 .

Let a4 =
(
1 + β + β√

Q

)
a3. Then, for all n ≥ N 4 + N + 1 one has

‖yn − x∗‖ ≤ a4Q
n
2 . (45)
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Now, if we take k = N 4 + N +1 then (37), (41), (44) and (45) lead to the conclusions
(a1)–(a4).

The case θ ∈ ( 1
2 , 1

)
.

According to (K2) there exists C2 > 0, such that for every n ≥ N 2 + 4 one has

En ≤ C2(n − 3)−
1

2θ−1 = C2

(
n

n − 3

) 1
2θ−1

n− 1
2θ−1 .

Let M2 = C2 supn≥N2+4

(
n

n−3

) 1
2θ−1 = C2

(
N2+4
N2+1

) 1
2θ−1

. Then, En ≤ M2n− 1
2θ−1 , for

all n ≥ N 2+4.But En = g(ỹn)−g(x∗)+δn+N ‖x̃n − x̃n−1‖2, hence g(ỹn)−g(x∗) ≤
M2n− 1

2θ−1 , for every n ≥ N 2 + 4. Consequently, for every n ≥ N 2 + 4 we have

g(yn+N ) − g(x∗) ≤ M2

(
n + N

n

) 1
2θ−1

(n + N )−
1

2θ−1 .

Let b1 = M2

(
N2+4+N

N2+4

) 1
2θ−1 =C2

(
N2+4
N2+1

) 1
2θ−1

(
N2+4+N

N2+4

) 1
2θ−1 =C2

(
N2+4+N

N2+1

) 1
2θ−1

.

Then,

g(yn) − g(x∗) ≤ b1n− 1
2θ−1 , for all n ≥ N2 + N + 4. (46)

For (b2) note that (40) holds for every n ≥ N 2 + 4, hence

g(xn) − g(yn) ≤ 1

2s D(2 − sLg)
En−N+1.

Further,

En−N+1 ≤ M2(n − N + 1)−
1

2θ−1 = M2

(
n

n − N + 1

) 1
2θ−1

n− 1
2θ−1

≤ C2

(
N 2 + N + 3

N 2 + 1

) 1
2θ−1

n− 1
2θ−1 ,

for all n ≥ N 2 + N + 3. Consequently, g(xn) − g(yn) ≤ M3n− 1
2θ−1 , for all n ≥

N 2 + N + 3, where M3 = 1
2s D(2−sLg)

C2

(
N2+N+3

N2+1

) 1
2θ−1

. Therefore, by using the

latter inequality and (46) one has

g(xn) − g(x∗) = (g(xn) − g(yn)) + (g(yn) − g(x∗)
≤ (M3 + b1) n

−1
2θ−1 , for every n ≥ N 2 + N + 4.
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Let b2 = M3 + b1. Then,

g(xn) − g(x∗) ≤ b2n
−1

2θ−1 , for every n ≥ N 2 + N + 4. (47)

For (b3) we use (43) again. Arguing as at (a3) we obtain that 0 ≤ En ≤ 1, for all
n ≥ N 5, where N 5 = max{N 4, N 2 + 4}.

Now, by using the fact that θ ∈ ( 1
2 , 1

)
, we get that E1−θ

n ≥ √En, for all n ≥ N 5.

Consequently, from (43) we get ‖x̃n − x∗‖ ≤ M1E1−θ
n , for all n ≥ N 5.

Since E1−θ
n ≤ (M2n

−1
2θ−1 )1−θ , for all n ≥ N 5 we get

‖xn+N − x∗‖ ≤ M1M
θ−1
2θ−1
2

(
n

n + N

) θ−1
2θ−1

(n + N )
θ−1
2θ−1 , for all n ≥ N 5.

Let b3 = M1M
θ−1
2θ−1
2

(
N5

N5+N

) θ−1
2θ−1

. Then,

‖xn − x∗‖ ≤ b3n
θ−1
2θ−1 , for all n ≥ N 5 + N . (48)

For the final estimate observe that for all n ≥ N 5 + N + 1 one has

‖yn − x∗‖ =
∥
∥
∥
∥xn + βn

n + α
(xn − xn−1) − x∗

∥
∥
∥
∥ ≤

(

1 + βn

n + α

)

· ‖xn − x∗‖

+ βn

n + α
· ‖xn−1 − x∗‖

≤
(

1 + βn

n + α

)

b3n
θ−1
2θ−1 + βn

n + α
b3(n − 1)

θ−1
2θ−1

≤
(

1 + 2
βn

n + α

)

b3(n − 1)
θ−1
2θ−1 .

Let b4 = b3 supn≥N5+N+1

(
1 + 2 βn

n+α

)
( n

n−1 )
1−θ
2θ−1 > 0. Then,

‖yn − x∗‖ ≤ b4n
θ−1
2θ−1 , for all n ≥ N 5 + N + 1. (49)

Now, if we take k = N 5 + N +1 then (46), (47), (48) and (49) lead to the conclusions
(b1)-(b4). ��
Remark 20 According to [40] (see also [15]), there are situations when it is enough to
assume that the objective function g has the Łojasiewicz property instead of consid-
ering this assumption for the regularization function H . More precisely in [40] it was
obtained the following result, reformulated to our setting.

Proposition 21 (Theorem 3.6. [40]) Suppose that g has the Łojasiewicz property with
Łojasiewicz exponent θ ∈ [ 1

2 , 1
)

at x ∈ R
m . Then the function H : Rm × R

m −→
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R, H(x, y) = g(x) + 1
2‖y − x‖2 has the Łojasiewicz property at (x, x) ∈ R

m ×R
m

with the same Łojasiewicz exponent θ.

Corollary 22 In the settings of problem (1), for some starting points x0, x−1 ∈ R
m,

consider the sequences (xn)n∈N, (yn)n∈N generated by Algorithm (2). Assume that
g is bounded from below and g has the Łojasiewicz property at x∗ ∈ ω((xn)n∈N),
(which obviously must be assumed nonempty), with Łojasiewicz exponent θ ∈ [ 1

2 , 1
)
.

If θ = 1
2 then the convergence rates (a1)–(a4), if θ ∈ ( 1

2 , 1
)

then the convergence
rates (b1)-(b4) stated in the conclusion of Theorem 19 hold.

Proof Indeed, from Lemma 13 (i) one has z∗ = (x∗, x∗) ∈ ω((zn)n∈N) and according
to Proposition 21 H has the Łojasiewicz property at z∗ with Łojasiewicz exponent θ.

Hence, Theorem 19 can be applied. ��
As an easy consequence of Theorem 19 we obtain linear convergence rates for

the sequences generated by Algorithm (2) in the case when the objective function
g is strongly convex. For similar results concerning Polyak’s algorithm and ergodic
convergence rates we refer to [36,51].

Theorem 23 In the settings of problem (1), for some starting points x0, x−1 ∈ R
m,

consider the sequences (xn)n∈N, (yn)n∈N generated by Algorithm (2). Assume that g
is strongly convex and let x∗ be the unique minimizer of g. Then, there exists Q ∈ [0, 1)
and there exist a1, a2, a3, a4 > 0 and k ∈ N such that the following statements hold
true:

(a1) g(yn) − g(x∗) ≤ a1Qn for every n ≥ k,
(a2) g(xn) − g(x∗) ≤ a2Qn for every n ≥ k,
(a3) ‖xn − x∗‖ ≤ a3Q

n
2 for every n ≥ k,

(a4) ‖yn − x∗‖ ≤ a4Q
n
2 for all n ≥ k.

Proof We emphasize that a strongly convex function is coercive, see [13]. According
to Proposition 17 the function g is bounded from bellow. According to [3], g satisfies
the Łojasiewicz property at x∗ with the Łojasiewicz exponent θ = 1

2 . Then, according
to Proposition 21, H satisfies the Łojasiewicz property at (x∗, x∗)with the Łojasiewicz
exponent θ = 1

2 . The conclusion now follows from Theorem 19. ��

4 Numerical experiments

The aim of this section is to highlight via numerical experiments some interesting
features of the generic Algorithm (2). To this purposewe implement Algorithm (2) and
several other known algorithms from literature in MATLAB R2016b. We underline
that, though in the following numerical experiments we use some simple objective
functions since our scope is to show the excellent behaviour of Algorithm (2), our
numerical scheme is meant for a very large-scale of problems.

In order to give a better perspective on the advantages and disadvantages of Algo-
rithm (2) for different choices of stepsizes and inertial coefficients, in our numerical
experiments we consider the following algorithms, all associated to the minimization
problem (1).
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(a) A particular form of Nesterov’s algorithm (see [29]), that is,

xn+1 = xn + n

n + 3
(xn − xn−1) − s∇g

(

xn + n

n + 3
(xn − xn−1)

)

, (50)

where s = 1
Lg

. According to [29,43], for optimization problems with convex

objective function, Algorithm (50) provides convergence rates of order O
(

1
n2

)

for the energy error g(xn) − min g.

(b) Nesterov’s algorithm associated to optimization problems with aμ−strongly con-
vex function (see [44]), that is,

xn+1 = xn +
√

Lg − √
μ

√
Lg + √

μ
(xn − xn−1) − s∇g

(

xn + n

n + 3
(xn − xn−1)

)

,(51)

where s = 1
Lg

. According to [44] Algorithm (51) provides linear convergence
rates.

(c) The gradient descent algorithm with a μ−strongly convex objective function, that
is,

xn+1 = xn − s∇g (xn) , (52)

where the maximal admissible stepsize is s = 2
Lg+μ

. According to some recent
results [11] depending by the geometrical properties of the objective function the
gradient descent method may have a better convergence rate than Algorithm (50).

(d) A particular form of Polyak’s algorithm (see [26,46]), that is,

xn+1 = xn + βn

n + 3
(xn − xn−1) − s∇g (xn) , (53)

with β ∈ (0, 1) and 0 < s <
2(1−β)

Lg
. For a strongly convex objective function this

algorithm provides linear convergence rates [45].
(e) Algorithm (2) studied in this paper, with α = 3, which in the view of Theorem 23

assures linear convergence rates whenever the objective function is strongly con-
vex.

1. In our first numerical experimentwe consider as an objective function the strongly
convex function

g : R2 −→ R, g(x, y) = 8x2 + 50y2.

Since ∇g(x, y) = (16x, 100y), we infer that the Lipschitz constant of its gradient
is Lg = 100 and the strong convexity parameter μ = 16. Observe that the global
minimum of g is attained at (0, 0), further g(0, 0) = 0.
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(a) (β, s) = (0.33, 0.0133)
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Fig. 1 Comparing the energy error |g(xn) − min g| for Algorithm (50) (magenta), Algorithm (51) (blue),
Algorithm (52) (green), Algorithm (53) (black) and Algorithm (2) (red), in the framework of the minimiza-
tion of the strongly convex function g(x, y) = 8x2 + 50y2, by considering different stepsizes and different
inertial coefficients (colour figure online)
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Fig. 2 Comparing the iteration error ‖xn − x∗‖ for Algorithm (50) (magenta), Algorithm (51) (blue), Algo-
rithm (52) (green), Algorithm (53) (black) and Algorithm (2) (red), in the framework of the minimization
of the strongly convex function g(x, y) = 8x2 + 50y2, by considering different stepsizes and different
inertial coefficients (colour figure online)

Obviously, for this choice of the objective function g, the stepsize will become
s = 1

Lg
= 0.01 in Algorithm (50) and Algorithm (51), meanwhile in Algorithm (52)

the stepsize is s = 2
Lg+μ

≈ 0.0172.
In Algorithm (53) and Algorithm (2) we consider the instances

(β, s) ∈ {(0.33, 0.0133), (0.5, 0.009), (0.66, 0.0067)}.

Obviously for these values we have β ∈ (0, 1) and 0 < s <
2(1−β)

Lg
.

We run the simulations, by considering the same starting points x0 = x−1 =
(1,−1) ∈ R

2 until the energy error |g(xn) − min g| attains the value 10−150. The
results are shown in Fig. 1, where the horizontal axis measures the number of iterations
and the vertical axis shows the error |g(xn) − min g|.

Further, we are also interested in the behaviour of the generated sequences xn . To
this end, we run the algorithms until the absolute error ‖xn − x∗‖ attains the value
10−150, where x∗ = (0, 0) is the unique minimizer of the strongly convex function
g. The results are shown in Fig. 2, where the horizontal axis measures the number of
iterations and the vertical axis shows the error ‖xn − x∗‖.

The experiments, depicted in Figs. 1 and 2, show that Algorithm (2) has a good
behaviour since may outperform Algorithm (50), Algorithm (52) and also Algorithm
(53). However Algorithm (51) seems to have in all these cases a better behaviour.

Remark 24 Nevertheless, for an appropriate choice of the parameters α and β Algo-
rithm (2) outperforms Algorithm (51). In order to sustain our claim observe that the
inertial parameter in Algorithm (2) is βn

n+α
≈ β when n is big enough, (or α is very
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0 500 1000 1500 2000
10-200

10-100

100

10100

(a) (β, s) = (0.4, 0.0119)
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Fig. 3 Algorithm (2) outperforms Algorithm (51) for an appropriate choice of parameters

small). Consequently, if one takes β ≈
√

Lg−√
μ√

Lg+√
μ
, then for n big enough the inertial

parameters in Algorithm (2) and Algorithm (51) are very close. However if β < 1
2

then the stepsize in Algorithm (2) is clearly better then the stepsize in Algorithm (51).

This happens whenever
√

Lg−√
μ√

Lg+√
μ

< 1
2 , that is Lg < 9μ.

In the case of the strongly convex function g considered before, one has
√

Lg−√
μ√

Lg+√
μ

=
3
7 ≈ 0.428. Therefore, in the following numerical experiment we consider Algorithm
(53) and Algorithm (2) with β = 0.4 and optimal admissible constant stepsize s =
0.0119 <

2(1−0.6)
Lg

= 0.012, and all the other instances we let unchanged. We run the

simulations until the energy error |g(xn) − min g| and the absolute error ‖xn − x∗‖
attains the value 10−150, Fig. 3a, b. Observe that in this case Algorithm (2) clearly
outperforms Algorithm (51).

2. In our second numerical experimentwe consider a non-convex objective function

g : R2 −→ R, g(x, y) = x2 + y2(1 − x).

Then, ∇g(x, y) = (2x − y2, 2y(1− x)), which is obviously not Lipschitz continuous
on R2, but the restriction of ∇g on [−1, 1] × [−1, 1] is Lipschitz continuous. Indeed,
for (x1, y1), (x2, y2) ∈ [−1, 1] × [−1, 1] one has

|(2x1 − y21 ) − (2x2 − y22 )| ≤ 2|x1 − x2| + 2|y1 − y2| ≤ 2
√
2‖(x1, y1) − (x2, y2)‖

and

|2y1(1 − x1) − 2y2(1 − x2)| = 2|(y1 − y2) − y1(x1 − x2) − x2(y1 − y2)|
≤ 2|x1 − x2| + 4|y1 − y2|
≤ 4

√
2‖(x1, y1) − (x2, y2)‖,

consequently,
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Fig. 4 Comparing the energy error |g(xn) − g(x∗)| for Algorithm (50) (blue), Algorithm (53) (black) and
Algorithm (2) (red), in the framework of the minimization of a non-convex function (colour figure online)

‖∇g(x1, y1) − ∇g(x2, y2)‖
=

√

|(2x1 − y21 ) − (2x2 − y22 )|2 + |2y1(1 − x1) − 2y2(1 − x2)|2

≤
√

8‖(x1, y1) − (x2, y2)‖2 + 32‖(x1, y1) − (x2, y2)‖2
= √

40‖(x1, y1) − (x2, y2)‖.

Hence, one can consider that the Lipschitz constant of g on [−1, 1] × [−1, 1] is
Lg = √

40.
It is easy to see that the critical point of g on [−1, 1] × [−1, 1] is x∗ = (0, 0).

Further, the Hessian of g is

∇2g(x, y) =
(

2 −2y
−2y 2 − 2x

)

which is indefinite on [−1, 1] × [−1, 1], hence g is neither convex nor concave on
[−1, 1] × [−1, 1].

Since det∇2g(x∗) = 4 > 0 and gxx (x∗) = 2 > 0, we obtain that x∗ is a local
minimumof g and actually is the uniqueminimumof g on [−1, 1]×[−1, 1]. However,
x∗ is not a global minimum of g since for instance g(2, 3) = −9 < 0 = g(x∗).

In our following numerical experiments we will use different inertial parameters
in order to compare Algorithm (2), Algorithm (50) and Algorithm (53). In these
experiments we run the algorithms until the energy error |g(xn) − g(x∗)| attains the
value 10−50 and the iterate error ‖xn − x∗‖ attains the value 10−50.

Since Lg = √
40 we take in Algorithm (50) the stepsize s = 0.158 ≈ 1√

40
. In

Algorithm (53) and Algorithm (2) we consider the instances

(β, s) ∈ {(0.33, 0.210), (0.5, 0.157), (0.66, 0.107)}.

Obviously for these values we have β ∈ (0, 1) and 0 < s <
2(1−β)

Lg
. Further, we

consider the same starting points x0 = x−1 = (0.5,−0.5) from [−1, 1] × [−1, 1].
The results are shown in Figs. 4a–c and 5a–c, where the horizontal axes measure

the number of iterations and the vertical axes show the error |g(xn) − g(x∗)| and the
error ‖xn − x∗‖, respectively.

Consequently, also for this non-convex function, Algorithm (2) outperforms both
Algorithm (53) and Algorithm (50).
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β, s) = (0.33, 0.210) β, s) = (0.5, 0.157)(a) ( (b) ( (c) (β, s) = (0.66, 0.107)
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Fig. 5 Comparing the iteration error ‖xn − x∗‖ for Algorithm (50) (blue), Algorithm (53) (black) and
Algorithm (2) (red), in the framework of the minimization of a non-convex function (colour figure online)

5 Conclusions

In this paper we show the convergence of a Nesterov type algorithm in a full non-
convex setting by assuming that a regularization of the objective function satisfies the
Kurdyka–Łojasiewicz property. For this purpose we prove some abstract convergence
results and we show that the sequences generated by our algorithm satisfy the condi-
tions assumed in these abstract convergence results. More precisely, as a starting point
we show a sufficient decrease property for the iterates generated by our algorithm and
then via the KL property of a regularization of the objective in a cluster point of the
generated sequence, we obtain the convergence of this sequence to this cluster point.
Though our algorithm is asymptotically equivalent to Nesterov’s accelerated gradi-
ent method, we cannot obtain full equivalence due to the fact that in order to obtain
the above mentioned decrease property we cannot allow the inertial parameter, more
precisely the parameter β, to attain the value 1. Nevertheless, we obtain finite, linear
and sublinear convergence rates for the sequences generated by our numerical scheme
but also for the function values in these sequences, provided the objective function,
or a regularization of the objective function, satisfies the Łojasiewicz property with
Łojasiewicz exponent θ ∈ [0, 1) .

A related future research is the study of amodified FISTAalgorithm in a non-convex
setting. Indeed, let f : R

m −→ R be a proper convex and lower semicontinuous
function and let g : Rm −→ R be a (possibly non-convex) smooth function with Lg

Lipschitz continuous gradient. Consider the optimization problem

inf
x∈Rm

f (x) + g(x).

We associate to this optimization problem the following proximal-gradient algorithm.
For x0, x−1 ∈ R

m consider

⎧
⎨

⎩

yn = xn + βn

n + α
(xn − xn−1),

xn+1 = proxs f (yn − s∇g(yn)),
(54)

where α > 0, β ∈ (0, 1) and 0 < s <
2(1−β)

Lg
.
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Here

proxs f : Rm → R
m, proxs f (x) = argmin

y∈Rm

{

f (y) + 1

2s
‖y − x‖2

}

,

denotes the proximal point operator of the convex function s f .
Obviously, when f ≡ 0 then (54) becomes the numerical scheme (2) studied in the

present paper.
We emphasize that (54) has a similar formulation as the modified FISTA algorithm

studied by Chambolle andDossal [29] and the convergence of the generated sequences
to a critical point of the objective function f + g would open the gate for the study of
FISTA type algorithms in a non-convex setting.

Acknowledgements The author is thankful to two anonymous referees for their valuable remarks and
suggestions which led to the improvement of the quality of the paper.

A Appendix

A.1 Second order continuous dynamical systems that are modelling Algorithm (2)

In what follows we emphasize the connections between Algorithm (2) and the con-
tinuous dynamical systems (3) and (4).

Consider (4) with the initial conditions x(t0) = u0, ẋ(t0) = v0, u0, v0 ∈ R
m and

the governing second order differential equation

ẍ(t) +
(
γ + α

t

)
ẋ(t) + ∇g(x(t)) = 0, γ > 0, α ∈ R.

We will use the time discretization presented in [6], that is, we take the fixed stepsize
h > 0, and consider β = 1 − γ h > 0, tn = 1

β
nh and xn = x(tn). Then the

implicit/explicit discretization of (3) leads to

1

h2 (xn+1 − 2xn + xn−1) +
(

γ

h
+ αβ

nh2

)

(xn − xn−1) + ∇g(yn) = 0, (55)

where yn is a linear combination of xn and xn−1 and will be defined below.
Now, (55) can be rewritten as

xn+1 = xn +
(

β − αβ

n

)

(xn − xn−1) − h2∇g(yn),

which suggest to choose yn in the form

yn = xn +
(

β − αβ

n

)

(xn − xn−1).
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However, for practical purposes, it is convenient to work with the re-indexation n �
n + α and we obtain the following equivalent formulation

yn = xn + βn

n + α
(xn − xn−1).

Hence, by taking h2 = s we get

xn+1 = xn + βn

n + α
(xn − xn−1) − s∇g(yn),

which is exactly Algorithm (2).

Remark 25 Obviously, already the form β = 1 − γ h > 0 shows that β ∈ (0, 1).
We could not obtain Algorithm (2) via some similar discretization of the continuous
dynamical system (3) as the discretization method presented above. Nevertheless, we
can show that (3) is the exact limit of Algorithm (2) in the sense of Su, Boyd and
Candès [50].

In what follows we show that by choosing appropriate values of β, both the con-
tinuous second order dynamical systems (3) and the continuous dynamical system (4)
are the exact limit of the numerical scheme (2).

To this end we take in (2) small step sizes and follow the same approach as Su,
Boyd and Candès in [50], (see also [27] for similar approaches). For this purpose we
rewrite (2) in the form

xn+1 − xn√
s

= βn

n + α
· xn − xn−1√

s
− √

s∇g(yn) ∀n ≥ 1 (56)

and introduce the Ansatz xn ≈ x(n
√

s) for some twice continuously differentiable
function x : [0,+∞) → R

m . We let n = t√
s
and get x(t) ≈ xn, x(t + √

s) ≈
xn+1, x(t − √

s) ≈ xn−1. Then, as the step size s goes to zero, from the Taylor
expansion of x we obtain

xn+1 − xn√
s

= ẋ(t) + 1

2
ẍ(t)

√
s + o(

√
s)

and

xn − xn−1√
s

= ẋ(t) − 1

2
ẍ(t)

√
s + o(

√
s).

Further, since

√
s‖∇g(yn) − ∇g(xn)‖ ≤ √

sLg‖yn − xn‖ = √
sLg

∣
∣
∣
∣

βn

n + α

∣
∣
∣
∣ ‖xn − xn−1‖ = o(

√
s),

123



Convergence rates for an inertial algorithm of gradient… 327

it follows
√

s∇g(yn) = √
s∇g(xn) + o(

√
s). Consequently, (56) can be written as

ẋ(t) + 1

2
ẍ(t)

√
s + o(

√
s)

= βt

t + α
√

s

(

ẋ(t) − 1

2
ẍ(t)

√
s + o(

√
s)

)

− √
s∇g(x(t)) + o(

√
s)

or, equivalently

(t + α
√

s)

(

ẋ(t) + 1

2
ẍ(t)

√
s + o(

√
s)

)

= βt

(

ẋ(t) − 1

2
ẍ(t)

√
s + o(

√
s)

)

− √
s(t + α

√
s)∇g(x(t)) + o(

√
s).

Hence,

1

2

(
α
√

s + (1 + β)t
)

ẍ(t)
√

s + (
(1 − β)t + α

√
s
)

ẋ(t) + √
s(t + α

√
s)∇g(x(t)) = o(

√
s).

(57)

Now, if we take β = 1 − γ s < 1 in (57) for some 1
s > γ > 0, we obtain

1

2

(
α
√

s+(2 − γ s)t
)

ẍ(t)
√

s+(
γ st + α

√
s
)

ẋ(t)+√
s(t + α

√
s)∇g(x(t)) = o(

√
s).

After dividing by
√

s and letting s → 0, we obtain

t ẍ(t) + α ẋ(t) + t∇g(x(t)) = 0,

which after division by t gives (3), that is,

ẍ(t) + α

t
ẋ(t) + ∇g(x(t)) = 0.

Similarly, by taking β = 1 − γ
√

s < 1 in (57), for some 1√
s

> γ > 0, we obtain

1

2

(
α
√

s + (2 − γ
√

s)t
)

ẍ(t)
√

s + (
γ
√

st + α
√

s
)

ẋ(t) + √
s(t + α

√
s)∇g(x(t)) = o(

√
s).

After dividing by
√

s and letting s → 0, we get

t ẍ(t) + (γ t + α)ẋ(t) + t∇g(x(t)) = 0,

which after division by t gives (4), that is,

ẍ(t) +
(
γ + α

t

)
ẋ(t) + ∇g(x(t)) = 0.

123



328 S. C. László

References

1. Alvarez, F., Attouch, H.: An inertial proximal method for maximal monotone operators via discretiza-
tion of a nonlinear oscillator with damping. Set Valued Anal. 9, 3–11 (2001)

2. Apidopoulos, V., Aujol, J.F., Dossal, Ch.: Convergence rate of inertial Forward–Backward algorithm
beyond Nesterov’s rule. Math. Program. 180, 137–156 (2020)

3. Attouch, H., Bolte, J.: On the convergence of the proximal algorithm for nonsmooth functions involving
analytic features. Math. Program. Ser. B 116(1–2), 5–16 (2009)

4. Attouch, H., Bolte, J., Redont, P., Soubeyran, A.: Proximal alternating minimization and projection
methods for non-convex problems: an approach based on the Kurdyka–Łojasiewicz inequality. Math.
Oper. Res. 35(2), 438–457 (2010)

5. Attouch, H., Bolte, J., Svaiter, B.F.: Convergence of descent methods for semi-algebraic and tame
problems: proximal algorithms, forward–backward splitting, and regularized Gauss–Seidel methods.
Math. Program. 137(1–2), 91–129 (2013)

6. Attouch, H., Chbani, Z., Peypouquet, J., Redont, P.: Fast convergence of inertial dynamics and algo-
rithms with asymptotic vanishing viscosity. Math. Program. Ser. B 168(1–2), 123–175 (2018)

7. Attouch, H., Chbani, Z., Riahi, H.: Rate of convergence of the Nesterov accelerated gradient method
in the subcritical case α ≤ 3, ESAIM: COCV, 25, Article number 2 (2019)

8. Attouch, H., Goudou, X., Redont, P.: The heavy ball with friction method, I. The continuous dynamical
system: global exploration of the local minima of real-valued function by asymptotic analysis of a
dissipative dynamical system. Commun. Contemp. Math. 2(1), 1–34 (2000)

9. Attouch, H., Peypouquet, J., Redont, P.: A dynamical approach to an inertial forward–backward algo-
rithm for convex minimization. SIAM J. Optim. 24(1), 232–256 (2014)

10. Attouch, H., Peypouquet, J., Redont, P.: Fast convex optimization via inertial dynamics with Hessian
driven damping. J. Differ. Equ. 261(10), 5734–5783 (2016)

11. Aujol, J.F., Dossal, Ch., Rondepierre, A.: Optimal convergence rates for Nesterov acceleration. SIAM
J. Optim. 29(4), 3131–3153 (2019)

12. Aujol, J.F., Dossal, C.: Optimal rate of convergence of an ODE associated to the Fast Gradient Descent
schemes for b>0. HAL preprint https://hal.inria.fr/hal-01547251v2/document

13. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces.
Springer, New York (2011)

14. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems.
SIAM J. Imaging Sci. 2(1), 183–202 (2009)

15. Bégout, P., Bolte, J., Jendoubi, M.A.: On damped second-order gradient systems. J. Differ. Equ. 259,
3115–3143 (2015)

16. Bolte, J., Sabach, S., Teboulle, M.: Proximal alternating linearized minimization for non-convex and
nonsmooth problems. Math. Program. 146(1–2), 459–494 (2014)

17. Bolte, J., Nguyen, T.P., Peypouquet, J., Suter, B.W.: From error bounds to the complexity of first-order
descent methods for convex functions. Math. Program. 165(2), 471–507 (2017)

18. Bolte, J., Daniilidis, A., Lewis, A.: The Łojasiewicz inequality for nonsmooth subanalytic functions
with applications to subgradient dynamical systems. SIAM J. Optim. 17(4), 1205–1223 (2006)

19. Bolte, J., Daniilidis, A., Lewis, A., Shiota, M.: Clarke subgradients of stratifiable functions. SIAM J.
Optim. 18(2), 556–572 (2007)

20. Bolte, J., Daniilidis, A., Ley, O., Mazet, L.: Characterizations of Łojasiewicz inequalities: subgradient
flows, talweg, convexity. Trans. Am. Math. Soc. 362(6), 3319–3363 (2010)
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