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Abstract
We investigate the asymptotic properties of the trajectories generated by a second-order
dynamical system with Hessian driven damping and a Tikhonov regularization term
in connection with the minimization of a smooth convex function in Hilbert spaces.
We obtain fast convergence results for the function values along the trajectories. The
Tikhonov regularization term enables the derivation of strong convergence results of
the trajectory to the minimizer of the objective function of minimum norm.
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1 Introduction

The paper of Su et al. [20] was the starting point of intensive research of second order
dynamical systems with an asymptotically vanishing damping term of the form

ẍ(t) + α

t
ẋ(t) + ∇g(x(t)) = 0, t ≥ t0 > 0, (1)

where g : H −→ R is a convex and continuously Fréchet differentiable function
defined on a real Hilbert space H fulfilling argming �= ∅. The aim is to approach by
the trajectories generated by this system the solution set of the optimization problem

min
x∈H

g(x). (2)

The convergence rate of the objective function along the trajectory is in case α > 3
of

g(x(t)) − min g = o

(
1

t2

)
,

while in case α = 3 it is of

g(x(t)) − min g = O

(
1

t2

)
,

where min g ∈ R denotes the minimal value of g. Also in view of this fact, system (1)
is seen as a continuous version of the celebrated Nesterov accelerated gradient scheme
(see [16]). In what concerns the asymptotic properties of the generated trajectories,
weak convergence to a minimizer of g as the time goes to infinity has been proved by
Attouch et al. [7] (see also [6]) for α > 3. Without any further geometrical assumption
on g, the convergence of the trajectories in the case α ≤ 3 is still an open problem.

Second order dynamical systems with a geometrical Hessian driven damping term
have aroused the interest of the researchers, due to both their applications in optimiza-
tion and mechanics and their natural relations to Newton and Levenberg-Marquardt
iterative methods (see [2]). Furthermore, it has been observed for some classes of
optimization problems that a geometrical damping term governed by the Hessian can
induce a stabilization of the trajectories. In [11] the dynamical system with Hessian
driven damping term

ẍ(t) + α

t
ẋ(t) + β∇2g(x(t))ẋ(t) + ∇g(x(t)) = 0, t ≥ t0 > 0, (3)

where α ≥ 3 and β > 0, has been investigated in relation with the optimization
problem (2). Fast convergence rates for the values and the gradient of the objective
function along the trajectories are obtained and theweak convergence of the trajectories
to a minimizer of g is shown. We would also like to mention that iterative schemes
which result via (symplectic) discretizations of dynamical systemswithHessian driven
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damping terms have been recently formulated and investigated from the point of view
of their convergence properties in [5,18,19].

Another development having as a starting point (1) is the investigation of dynam-
ical systems involving a Tikhonov regularization term. Attouch, Chbani and Riahi
investigated in this context in [8] the system

ẍ(t) + α

t
ẋ(t) + ∇g(x(t)) + ε(t)x(t) = 0, t ≥ t0 > 0, (4)

where α ≥ 3 and ε : [t0,+∞) −→ [0,+∞). One of the main benefits of considering
such a regularized dynamical system is that it generates trajectories which converge
strongly to the minimum norm solution of (2). Besides that, in [8] it was proved that
the fast convergence rate of the objective function values along the trajectories remains
unaltered. For more insights into the role played by the Tikhonov regularization for
optimization problems and, more general, for monotone inclusion problems, we refer
the reader to [3,4,9,15].

This being said, it is natural to investigate a second order dynamical system which
combines aHessiandrivendamping and aTikhonov regularization termand to examine
if it inherits the properties of the dynamical systems (3) and (4). This is the aim of the
manuscript, namely the analysis in the framework of the general assumption stated
below of the dynamical system

ẍ(t) + α

t
ẋ(t) + β∇2g(x(t))ẋ(t) + ∇g(x(t)) + ε(t)x(t) = 0, t ≥ t0 > 0, x(t0) = u0, ẋ(t0) = v0, (5)

where α ≥ 3 and β ≥ 0, and u0, v0 ∈ H.
General assumption:

• g : H −→ R is a convex and twice Fréchet differentiable function with Lipschitz
continuous gradient on bounded sets and argming �= ∅;

• ε : [t0,+∞) −→ [0,+∞) is a nonincreasing function of class C1 fulfilling
limt−→+∞ ε(t) = 0.

The fact that the starting time t0 is taken as strictly greater than zero comes from the
singularity of the damping coefficient α

t . This is not a limitation of the generality of the
proposed approach, since we will focus on the asymptotic behaviour of the generated
trajectories. Notice that ifH is finite-dimensional, then the Lipschitz continuity of∇g
on bounded sets follows from the continuity of ∇2g.

To which extent the Tikhonov regularization does influence the convergence
behaviour of the trajectories generated by (5) can be seen even when minimizing a
one dimensional function. Consider the convex and twice continuously differentiable
function

g : R → R, g(x) =
⎧⎨
⎩

−(x + 1)3, if x < −1
0, if − 1 ≤ x ≤ 1

(x − 1)3, if x > 1.
(6)

It holds that argming = [−1, 1] and x∗ = 0 is its minimum norm solution. In
the second column of Fig. 1 we can see the behaviour of the trajectories generated
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Fig. 1 First column: the trajectories of the dynamical system with Tikhonov regularization ε(t) = t−γ are
approaching the minimum norm solution x∗ = 0. Second column: the trajectories of the dynamical system
without Tikhonov regularization the trajectory are approaching the optimal solution 1

by the dynamical system without Tikhonov regularization (which corresponds to the
case when ε is identically 0) for β = 1 and α = 3 and, respectively, α = 4. In both
cases the trajectories are approaching the optimal solution 1, which is a minimizer of
g, however, not the minimum norm solution.

In the first column of Fig. 1 we can see the behaviour of the trajectories generated by
the dynamical system with Tikhonov parametrizations of the form t �→ ε(t) = t−γ ,
for different values of γ ∈ (1, 2), which is in accordance to the conditions in Theorem
4.4, β = 1 and α = 3 and, respectively, α = 4. The trajectories are approaching the
minimum norm solution x∗ = 0.

The organization of the paper is as follows. We start the analysis of the dynamical
system (5) by proving the existence and uniqueness of a globalC2-solution. In the third
sectionwe provide two different settings for the Tikhonov parametrization t �→ ε(t) in
both of which g(x(t)) converges to min g, the minimal value of g, with a convergence

rate of O
(

1
t2

)
for α = 3 and of o

(
1
t2

)
for α > 3. The proof relies on Lyapunov

theory; the choice of the right energy functional plays a decisive role in this context.
Weak convergence of the trajectory is also derived for α > 3. In the last section we
focus on the proof of strong convergence to a minimum norm solution: firstly, in a
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general setting, for the ergodic trajectory, and, secondly, in a slightly restrictive setting,
for the trajectory x(t) itself.

2 Existence and uniqueness

In this section we will prove the existence and uniqueness of a global C2-solution of
the dynamical system (5). The proof of the existence and uniqueness theorem is based
on the idea to reformulate (5) as a particular first order dynamical system in a suitably
chosen product space (see also [11]).

Theorem 2.1 For every initial value (u0, v0) ∈ H × H, there exists a unique global
C2-solution x : [t0,+∞) → H to (5).

Proof Let (u0, v0) ∈ H×H. First we assume that β = 0, which gives the dynamical
system (4) investigated in [8]. The statement follows from [14, Proposition 2.2(b)]
(see also the discussion in [8, Section 2]).

Assume now that β > 0. We notice that x : [t0,+∞) −→ H is a solution of the
dynamical system (5), that is

ẍ(t) + α

t
ẋ(t) + β∇2g(x(t))ẋ(t) + ∇g(x(t)) + ε(t)x(t)=0, x(t0)=u0, ẋ(t0)=v0,

if and only if (x, y) : [t0,+∞) −→ H × H is a solution of the dynamical system

⎧⎨
⎩
ẋ(t) + β∇g(x(t)) − y(t) = 0
ẏ(t) + α

t ẋ(t) + ∇g(x(t)) + ε(t)x(t) = 0
x(t0) = u0, y(t0) = v0 + β∇g(u0),

which is further equivalent to

⎧⎪⎨
⎪⎩
ẋ(t) + β∇g(x(t)) − y(t) = 0

ẏ(t) + α
t y(t) +

(
1 − αβ

t

)
∇g(x(t)) + ε(t)x(t) = 0

x(t0) = u0, y(t0) = v0 + β∇g(u0).

(7)

We define F : [t0,+∞) × H × H → H × H by

F(t, u, v) =
(

−β∇g(u) + v,−α

t
v −

(
1 − αβ

t

)
∇g(u) − ε(t)u

)
,

and write (7) as {(
ẋ(t), ẏ(t)

) = F(t, x(t), y(t))(
x(t0), y(t0)

) = (
u0, v0 + β∇g(u0)

)
.

(8)

Since ∇g is Lipschitz continuous on bounded sets and continuously differentiable,
the local existence and uniqueness theorem (see [17, Theorems 46.2 and 46.3])
guarantees the existence of a unique solution (x, y) of (8) defined on a maximum
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intervall [t0, Tmax), where t0 < Tmax ≤ +∞. Furthermore, either Tmax = +∞ or
limt→Tmax ‖x(t)‖+‖y(t)‖ = +∞. We will prove that Tmax = +∞, which will imply
that x is the unique global C2-solution of (5).

Consider the energy functional (see [10])

E : [t0,+∞) → R, E(t) = 1

2
‖ẋ(t)‖2 + g(x(t)) + 1

2
ε(t)‖x(t)‖2.

By using (5) we get

d

dt
E(t) = −α

t
‖ẋ(t)‖2 − β〈∇2g(x(t))ẋ(t), ẋ(t)〉 + 1

2
ε̇(t)‖x(t)‖2,

and, since ε is nonincreasing and ∇2g(x(t)) is positive semidefinite, we obtain that

d

dt
E(t) ≤ 0 ∀t ≥ t0.

Consequently, E is nonincreasing, hence

1

2
‖ẋ(t)‖2 + g(x(t)) + 1

2
ε(t)‖x(t)‖2 ≤ 1

2
‖ẋ(t0)‖2 + g(x(t0)) + 1

2
ε(t0)‖x(t0)‖2 ∀t ≥ t0.

From the fact that g is bounded frombelowweobtain that ẋ is bounded on [t0, Tmax).
Let ‖ẋ‖∞ := supt∈[t0,Tmax)

‖ẋ(t)‖ < +∞.

Since ‖x(t) − x(t ′)‖ ≤ ‖ẋ‖∞|t − t ′| for all t, t ′ ∈ [t0, Tmax), there exists
limt−→Tmax x(t), which shows that x is bounded on [t0, Tmax). Since ẋ(t) +
β∇g(x(t)) = y(t) for all t ∈ [t0, Tmax) and ∇g is Lipschitz continuous on bounded
sets, it yields that y is also bounded on [t0, Tmax). Hence limt→Tmax ‖x(t)‖ + ‖y(t)‖
cannot be +∞, thus Tmax = +∞, which completes the proof. ��

3 Asymptotic analysis

In this section we will show to which extent different assumptions we impose to
the Tikhonov parametrization t �→ ε(t) influence the asymptotic behaviour of the
trajectory x generated by the dynamical system (5). In particular, we are looking at
the convergence of the function g along the trajectory and the weak convergence of
the trajectory.

We recall that the asymptotic analysis of the system (5) is carried out in the frame-
work of the general assumptions stated in the introduction.

We start with a result which provides a setting that guarantees the convergence of
g(x(t)) to min g as t → +∞.

Theorem 3.1 Let x be the unique global C2-solution of (5). Assume that one of the
following conditions is fulfilled:
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(a)
∫ +∞
t0

ε(t)
t dt < +∞ and there exist a > 1 and t1 ≥ t0 such that

ε̇(t) ≤ −aβ

2
ε2(t) for every t ≥ t1;

(b) there exists a > 0 and t1 ≥ t0 such that

ε(t) ≤ a

t
for every t ≥ t1.

If α ≥ 3, then

lim
t→+∞ g(x(t)) = min g.

Proof Let be x∗ ∈ argming and 2 ≤ b ≤ α − 1 be fixed. We introduce the following
energy functional Eb : [t0,+∞) → R,

Eb(t) = (t2 − β(b + 2 − α)t) (g(x(t)) − min g) + t2ε(t)

2
‖x(t)‖2

+ 1

2
‖b(x(t) − x∗) + t(ẋ(t) + β∇g(x(t)))‖2 + b(α − 1 − b)

2
‖x(t) − x∗‖2.

(9)

For every t ≥ t0 it holds

Ėb(t) = (2t − β(b + 2 − α)) (g(x(t)) − min g)

+ (t2 − β(b + 2 − α)t)〈∇g(x(t), ẋ(t)〉 + t2 ε̇(t) + 2tε(t)

2
‖x(t)‖2 + t2ε(t)〈ẋ(t), x(t)〉

+ 〈(b + 1)ẋ(t) + β∇g(x(t)) + t(ẍ(t) + β∇2g(x(t))ẋ(t)), b(x(t) − x∗) + t(ẋ(t) + β∇g(x(t)))〉
+ b(α − 1 − b)〈ẋ(t), x(t) − x∗〉. (10)

Now, by using (5), we get for every t ≥ t0

〈(b + 1)ẋ(t) + β∇g(x(t)) + t(ẍ(t) + β∇2g(x(t))ẋ(t)), b(x(t) − x∗) + t(ẋ(t) + β∇g(x(t)))〉
= 〈(b + 1 − α)ẋ(t) + (β − t)∇g(x(t)) − tε(t)x(t), b(x(t) − x∗) + t(ẋ(t) + β∇g(x(t)))〉
= b(b + 1 − α)〈ẋ(t), x(t) − x∗〉 + (b + 1 − α)t‖ẋ(t)‖2 + (−t2 + β(b + 2 − α)t〈ẋ(t), ∇g(x(t))〉

+ (β2t − βt2)‖∇g(x(t))‖2 − ε(t)t2〈ẋ(t), x(t)〉 − βε(t)t2〈∇g(x(t)), x(t)〉

− bt

〈(
1 − β

t

)
∇g(x(t)) + ε(t)x(t), x(t) − x∗

〉
. (11)

Let be t ′0 := max(β, t0). For all t ≥ t ′0 the function gt : H → R, gt (x) =(
1 − β

t

)
g(x) + ε(t)

2 ‖x‖2, is strongly convex, thus, one has

gt (y) − gt (x) ≥ 〈∇gt (x), y − x〉 + ε(t)

2
‖y − x‖2 ∀x, y ∈ H.
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By taking x := x(t) and y := x∗ we get for every t ≥ t ′0

−bt

〈(
1 − β

t

)
∇g(x(t)) + ε(t)x(t), x(t) − x∗

〉
≤ − bt

(
1 − β

t

)
(g(x(t)) − min g) − bt

ε(t)

2
‖x(t)‖2

− bt
ε(t)

2
‖x(t) − x∗‖2 + bt

ε(t)

2
‖x∗‖2. (12)

From (10), (11) and (12) it follows that for every t ≥ t ′0 it holds

Ėb(t) ≤ (
(2 − b)t − β(2 − α)

)
(g(x(t)) − min g) + bt

ε(t)

2
‖x∗‖2

+
(
t2

ε̇(t)

2
+ (2 − b)t

ε(t)

2

)
‖x(t)‖2 − bt

ε(t)

2
‖x(t) − x∗‖2

+ (b + 1 − α)t‖ẋ(t)‖2 + (β2t − βt2)‖∇g(x(t))‖2 − βε(t)t2〈∇g(x(t)), x(t)〉. (13)

At this point we treat the situations α > 3 and α = 3 separately.

The case α > 3 and 2 < b < α − 1. We will carry out the analysis by addressing
the settings provided by the conditions (a) and (b) separately.

Condition (a) holds: Assuming that condition (a) holds, there exist a > 1 and
t1 ≥ t ′0 such that

ε̇(t) ≤ −aβ

2
ε2(t) for every t ≥ t1.

Using that

−βε(t)t2〈∇g(x(t)), x(t)〉 ≤ βt2

a
‖∇g(x(t))‖2 + aβε2(t)t2

4
‖x(t)‖2, (14)

(13) leads to the following estimate

Ėb(t) ≤ (
(2 − b)t − β(2 − α)

)
(g(x(t)) − min g) + bt

ε(t)

2
‖x∗‖2

+
(
t2

ε̇(t)

2
+ (2 − b)t

ε(t)

2
+ aβε2(t)t2

4

)
‖x(t)‖2 − bt

ε(t)

2
‖x(t) − x∗‖2

+ (b + 1 − α)t‖ẋ(t)‖2 +
(

β2t − β

(
1 − 1

a

)
t2

)
‖∇g(x(t))‖2, (15)

which holds for every t ≥ t1.
Since a > 1 and b > 2, we notice that for every t ≥ t1 it holds

t2
ε̇(t)

2
+ (2 − b)t

ε(t)

2
+ aβε2(t)t2

4
≤ 0.
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On the other hand, we have that

β2t − β

(
1 − 1

a

)
t2 ≤ −β

a − 1

2a
t2 for every t ≥ 2aβ

a − 1

and

(2 − b)t − β(2 − α) ≤ 0 for every t ≥ β(α − 2)

b − 2
.

We define t2 := max
(
t1,

2aβ
a−1 ,

β(α−2)
b−2

)
. According to (15), it holds for every t ≥ t2

Ėb(t) − (
(2 − b)t − β(2 − α)

)
(g(x(t)) − min g) −

(
t2

ε̇(t)

2
+ (2 − b)t

ε(t)

2
+ aβε2(t)t2

4

)
‖x(t)‖2

+ bt
ε(t)

2
‖x(t) − x∗‖2 + (α − 1 − b)t‖ẋ(t)‖2 + β

a − 1

2a
t2‖∇g(x(t))‖2

≤ bt
ε(t)

2
‖x∗‖2. (16)

Condition (b) holds: Assuming now that condition (b) holds, there exist a > 0 and
t1 ≥ t ′0 such that

ε(t) ≤ a

t
for every t ≥ t1.

Further, the monotonicity of ∇g and the fact that ∇g(x∗) = 0 implies that

〈∇g(x(t)), x(t) − x∗〉 ≥ 0 for every t ≥ t0.

Using that

−βε(t)t2〈∇g(x(t)), x(t)〉 ≤ −βε(t)t2〈∇g(x(t)), x∗〉 ≤ βt3ε(t)

2a
‖∇g(x(t))‖2 + aβε(t)t

2
‖x∗‖2,

(17)

(13) leads to the following estimate

Ėb(t) ≤ (
(2 − b)t − β(2 − α)

)
(g(x(t)) − min g) + (b + aβ)t

ε(t)

2
‖x∗‖2

+
(
t2

ε̇(t)

2
+ (2 − b)t

ε(t)

2

)
‖x(t)‖2 − bt

ε(t)

2
‖x(t) − x∗‖2

+ (b + 1 − α)t‖ẋ(t)‖2 +
(

β2t − βt2 + βt3ε(t)

2a

)
‖∇g(x(t))‖2 (18)

for every t ≥ t1.
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Since b > 2, we have that for every t ≥ t1 it holds

t2
ε̇(t)

2
+ (2 − b)t

ε(t)

2
≤ 0.

On the other hand, since

−βt2 + βt3ε(t)

2a
≤ −β

2
t2

holds for every t ≥ t1, it follows that

β2t − βt2 + βt3ε(t)

2a
≤ −β

4
t2 for every t ≥ max(t1, 4β). (19)

We recall that

(2 − b)t − β(2 − α) ≤ 0 for every t ≥ β(α − 2)

b − 2
.

We define t2 := max
(
t1, 4β,

β(α−2)
b−2

)
. According to (18), it holds for every t ≥ t2

Ėb(t)−((2 − b)t − β(2 − α)) (g(x(t))−min g) −
(
t2

ε̇(t)

2
+(2 − b)t

ε(t)

2

)
‖x(t)‖2

+ bt
ε(t)

2
‖x(t) − x∗‖2 + (α − 1 − b)t‖ẋ(t)‖2 + β

4
t2‖∇g(x(t))‖2

≤ (b + aβ)t
ε(t)

2
‖x∗‖2. (20)

From now on we will treat the two cases together. According to (16), in case (a),
and to (20), in case (b), we obtain

Ėb(t) ≤ lt
ε(t)

2
‖x∗‖2

for every t ≥ t2, where l := b and t2 = max
(
t1,

2aβ
a−1 ,

β(α−2)
b−2

)
, in case (a), and

l := b + aβ and t2 = max
(
t1, 4β,

β(α−2)
b−2

)
in case (b).

By integrating the latter inequality on the interval [t2, T ], where T ≥ t2 is arbitrarily
chosen, we obtain

Eb(T ) ≤ Eb(t2) + l‖x∗‖2
2

∫ T

t2
tε(t)dt .

On the other hand,

Eb(t) ≥ (t2 − β(b + 2 − α)t) (g(x(T )) − min g) ∀t ≥ t0,
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hence, for every T ≥ max(β(b + 2 − α), t3) we get

0 ≤ g(x(T )) − min g ≤ Eb(t2)
T 2 − β(b + 2 − α)T

+ l‖x∗‖2
2

1

T 2 − β(b + 2 − α)T

∫ T

t2
tε(t)dt .

Obviously,

lim
T−→+∞

Eb(t3)
T 2 − β(b + 2 − α)T

= 0.

Further, Lemma A.1 applied to the functions ϕ(t) = t2 and f (t) = ε(t)
t provides

lim
T−→+∞

1

T 2

∫ T

t2
t2

ε(t)

t
dt = 0,

hence,

lim
T−→+∞

1

T 2 − β(b + 2 − α)T

∫ T

t2
tε(t)dt = 0

and, consequently,

lim
T−→+∞ g(x(T )) = min g.

The case α = 3 and b = 2. In this case the energy functional reads

E2(t) = (t2 − βt) (g(x(t)) − min g) + t2ε(t)

2
‖x(t)‖2 + 1

2
‖2(x(t) − x∗) + t(ẋ(t) + β∇g(x(t)))‖2

for every t ≥ t0. We will address again the settings provided by the conditions (a) and
(b) separately.

Condition (a) holds: Relation (15) becomes

Ė2(t) ≤ β (g(x(t)) − min g) + tε(t)‖x∗‖2 +
(
t2

ε̇(t)

2
+ aβε2(t)t2

4

)
‖x(t)‖2 − tε(t)‖x(t) − x∗‖2

+
(

β2t − β

(
1 − 1

a

)
t2

)
‖∇g(x(t))‖2

for every t ≥ t1. Consequently, for t3 := max
(
t1,

βa
a−1

)
, we have

Ė2(t) ≤ β
(
g(x(t)) − g∗) + tε(t)‖x∗‖2 (21)

for every t ≥ t3. After multiplication with (t − β), it yields

t(t − β)Ė2(t) ≤ βt(t − β)
(
g(x(t)) − g∗) + t2(t − β)ε(t)‖x∗‖2 ≤ βE2(t) + t2(t − β)ε(t)‖x∗‖2
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for every t ≥ t3. Dividing by (t − β)2 we obtain

t

t − β
Ė2(t) ≤ β

(t − β)2
E2(t) + t2

t − β
ε(t)‖x∗‖2

or, equivalently,

d

dt

(
t

t − β
E2(t)

)
≤ t2

t − β
ε(t)‖x∗‖2 for every t ≥ t3. (22)

Condition (b) holds: We define t3 := max (t1, 4β). Relation (18) becomes

Ė2(t) ≤ β
(
g(x(t)) − g∗) + 2 + aβ

2
tε(t)‖x∗‖2, (23)

for every t ≥ t3. Repeating the above steps for the inequality (23) we obtain

d

dt

(
t

t − β
E2(t)

)
≤ 2 + a1β

2

t2

t − β
ε(t)‖x∗‖2 for every t ≥ t3. (24)

From now on we will treat the two cases together. According to (22), in case (a),
and to (24), in case (b), we obtain

d

dt

(
t

t − β
E2(t)

)
≤ l

t2

t − β
ε(t)‖x∗‖2

for every t ≥ t3, where l := 1 and t3 = max
(
t1,

β(α−1)
b−2

)
, in case (a), and l :=

2+aβ
2 and t3 = max(t1, 4β) in case (b).
By integrating the latter inequality on an interval [t3, T ], where T ≥ t3 is arbitrarily

chosen, we obtain

T

T − β
E2(T ) ≤ t3

t3 − β
E2(t3) + l‖x∗‖2

∫ T

t3

t2

t − β
ε(t)dt .

On the other hand,

E2(t) ≥ (t2 − βt) (g(x(t)) − min g)

for every t ≥ t0, hence, for every T ≥ max(β, t3) = t3 we get

0 ≤ g(x(T )) − min g ≤ 1

T 2

t3
t3 − β

E2(t3) + l‖x∗‖2 1

T 2

∫ T

t3

t2

t − β
ε(t)dt .

Obviously,

lim
T−→+∞

1

T 2

t3
t3 − β

E2(t3) = 0.
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Lemma A.1, applied this time to the functions ϕ(t) = t3
t−β

and f (t) = ε(t)
t , yields

lim
T−→+∞

T − β

T 3

∫ T

t3

t3

t − β

ε(t)

t
dt = 0.

Consequently,

lim
T−→+∞

1

T 2

∫ T

t3

t2

t − β
ε(t)dt = 0,

hence

lim
T−→+∞ g(x(T )) = min g.

��
Remark 3.2 One can easily notice that, in caseβ > 0, the fact that there exist a > 1 and
t1 ≥ t0 such that ε̇(t) ≤ − aβ

2 ε2(t) for every t ≥ t1 implies that
∫ +∞
t0

ε(t)
t dt < +∞.

The next theorem shows that, by strengthening the integrability condition∫ +∞
t0

ε(t)
t dt < +∞ (which is actually required in both settings (a) and (b) of Theorem

3.1), a rate of O(1/t2) ca be guaranteed for the convergence of g(x(t)) to min g.

Theorem 3.3 Let x be the unique global C2-solution of (5). Assume that

∫ +∞

t0
tε(t)dt < +∞

and that one of the following conditions is fulfilled:

(a) there exist a > 1 and t1 ≥ t0 such that

ε̇(t) ≤ −aβ

2
ε2(t) for every t ≥ t1;

(b) there exist a > 0 and t1 ≥ t0 such that

ε(t) ≤ a

t
for every t ≥ t1.

If α ≥ 3, then

g(x(t)) − min g = O
(
1

t2

)
.

In addition, if α > 3, then the trajectory x is bounded and

t (g(x(t)) − min g) , t‖ẋ(t)‖2, tε(t)‖x(t) − x∗‖2, tε(t)‖x(t)‖2, t2‖∇g(x(t))‖2 ∈ L1([t0, +∞),R)
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for every arbitrary x∗ ∈ argming.

Proof Let be x∗argming and 2 ≤ b ≤ α − 1 fixed. We will use the energy functional
introduced in the proof of the previous theorem and some of the estimate we derived
for it. We will treat again the situations α > 3 and α = 3 separately.

The case α > 3 and 2 < b < α−1. As we already noticed in the proof of Theorem
3.1, according to (16), in case (a), and to (20), in case (b), we have

Ėb(t) ≤ lt
ε(t)

2
‖x∗‖2 for every t ≥ t2,

where l := b and t2 = max
(
t1,

2aβ
a−1 ,

β(α−2)
b−2

)
, in case (a), and l := b + aβ and t2 =

max
(
t1, 4β,

β(α−2)
b−2

)
in case (b).

Using that tε(t) ∈ L1([t0,+∞),R) and that t �→ Eb(t) is bounded from below,
from Lemma A.2 it follows that the limit limt−→+∞ Eb(t) exists. Consequently, t �→
Eb(t) is bounded, which implies that there exist K > 0 and t ′ ≥ t0 such that

0 ≤ g(x(t)) − min g ≤ K

t2
for every t ≥ t ′.

In addition, the function t �→ ‖x(t) − x∗‖2 is bounded, hence the trajectory x is
bounded. Since t �→ ‖b(x(t) − x∗) + t(ẋ(t) + β∇g(x(t)))‖2 is also bounded, the
inequality

‖t(ẋ(t) + β∇g(x(t)))‖2 ≤ 2‖b(x(t) − x∗) + t(ẋ(t) + β∇g(x(t)))‖2 + 2b2‖x(t) − x∗‖2,

which is true for every t ≥ t0, leads to

‖ẋ(t) + β∇g(x(t))‖ = O
(
1

t

)
.

By integrating relation (16), in case (a), and relation (20), in case (b), on an interval
[t2, s], where s ≥ t3 is arbitrarily chosen, and by letting afterwards s converge to+∞,
we obtain

t (g(x(t))−min g) , t‖ẋ(t)‖2, tε(t)‖x(t)−x∗‖2, t2‖∇g(x(t))‖2 ∈ L1([t0,+∞),R).

The boundedness of the trajectory and the condition on the Tikhonov parametriza-
tion guarantee that

tε(t)‖x(t)‖2 ∈ L1([t0,+∞),R).
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The case α = 3 and b = 2. As we already noticed in the proof of Theorem 3.1,
according to (22), in case (a), and to (24), in case (b), we obtain

d

dt

(
t

t − β
E2(t)

)
≤ l

t2

t − β
ε(t)‖x∗‖2 for every t ≥ t3,

where l = 1 and t3 = max
(
t1,

β(α−1)
b−2

)
, in case (a), and l = 2+aβ

2 and t3 =
max(t1, 4β) in case (b).

Since tε(t) ∈ L1([t0,+∞),R) and ε(t) is nonnegative, obviously t2
t−β

ε(t)‖x∗‖2 ∈
L1([t2,+∞),R). Using that t �→ t

t−β
E2(t) is bounded from below, from Lemma

A.2 it follows that the limit limt−→+∞ t
t−β

E2(t) exists. Consequently, the limit
limt−→+∞ E2(t) also exists and t �→ E2(t) is bounded. This implies that there exist
K > 0 and t ′ ≥ t0 such that

0 ≤ g(x(t)) − min g ≤ K

t2
for every t ≥ t ′.

��
The next result shows that the statements of Theorem 3.3 can be strengthened in

case α > 3.

Theorem 3.4 Let x be the unique global C2-solution of (5). Assume that

∫ +∞

t0
tε(t)dt < +∞

and that one of the following conditions is fulfilled:

(a) there exist a > 1 and t1 ≥ t0 such that

ε̇(t) ≤ −aβ

2
ε2(t) for every t ≥ t1;

(b) there exist a > 0 and t1 ≥ t0 such that

ε(t) ≤ a

t
for every t ≥ t1.

Let be an arbitrary x∗ ∈ argming. If α > 3, then

t〈∇g(x(t)), x(t) − x∗〉 ∈ L1([t0,+∞),R)

and the limits

lim
t−→+∞ ‖x(t) − x∗‖ ∈ R and lim

t−→+∞ t〈ẋ(t) + β∇g(x(t)), x(t) − x∗〉 ∈ R
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exist. In addition,

g(x(t)) − min g = o

(
1

t2

)
, ‖ẋ(t) + β∇g(x(t))‖ = o

(
1

t

)
and lim

t−→+∞ t2ε(t)‖x(t)‖2 = 0.

Proof Since α > 3 we can choose 2 < b < α − 1. From (10) and (11) we have that

Ėb(t) = (2t − β(b + 2 − α)) (g(x(t)) − min g) +
(
t2

ε̇(t)

2
+ tε(t)

)
‖x(t)‖2

+(b + 1 − α)t‖ẋ(t)‖2+(β2t − βt2)‖∇g(x(t))‖2−βε(t)t2〈∇g(x(t)), x(t)〉
− bt

〈(
1 − β

t

)
∇g(x(t))+ε(t)x(t), x(t) − x∗

〉
for every t ≥ t0. (25)

We will address the settings provided by the conditions (a) and (b) separately.
Condition (a) holds: In this case we estimate −βε(t)t2〈∇g(x(t)), x(t)〉 just as in

(14) and from (25) we obtain

Ėb(t) ≤ (2t − β(b + 2 − α)) (g(x(t)) − min g) +
(
t2

ε̇(t)

2
+ tε(t) + aβε2(t)t2

4

)
‖x(t)‖2

+ (b + 1 − α)t‖ẋ(t)‖2 +
(

β2t − β

(
1 − 1

a

)
t2

)
‖∇g(x(t))‖2

− bt

〈(
1 − β

t

)
∇g(x(t)) + ε(t)x(t), x(t) − x∗

〉
for every t ≥ t0. (26)

We define t2 := max
(
β, t1,

βa
a−1

)
. By using condition (a), neglecting the nonpos-

itive terms and afterwards integrating on the interval [t2, t], with arbitrary t ≥ t2, we
obtain

∫ t

t2
bs

〈(
1 − β

s

)
∇g(x(s)), x(s) − x∗

〉
≤ Eb(t2) − Eb(t) +

∫ t

t2
(2s − β(b + 2 − α)) (g(x(s)) − min g) ds

−
∫ t

t2
bs

(
1 − β

s

) 〈
ε(s)x(s), x(s) − x∗〉 +

∫ t

t2
sε(s)‖x(s)‖2ds.

(27)

For every s ≥ t2, by the monotonicity of ∇g, we have 〈∇g(x(s)), x(s) − x∗〉 ≥ 0.
Further, it holds

bs

(
1 − β

s

)
ε(s)

∣∣〈x(s), x(s) − x∗〉∣∣ ≤
(
1 − β

s

)
bsε(s)

2
(‖x(s)‖2 + ‖x(s) − x∗‖2).

By letting in (27) s converge to +∞ and by taking into account that, according to
Theorem 3.3,

tε(t)‖x(t)‖2, tε(t)‖x(t) − x∗‖2, (2t − β(b + 2 − α))
(
g(x(t)) − g∗) ∈ L1([t0, +∞),R)

t〈∇g(x(t)), x(t) − x∗〉 ∈ L1([t0,+∞),R). (28)
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Condition (b) holds: In this case we estimate −βε(t)t2〈∇g(x(t)), x(t)〉 just as in
(17) and from (25) we obtain

Ėb(t) ≤ (2t − β(b + 2 − α)) (g(x(t)) − min g) +
(
t2

ε̇(t)

2
+ tε(t)

)
‖x(t)‖2

+ (b + 1 − α)t‖ẋ(t)‖2 +
(

β2t − βt2 + βε(t)t3

2a

)
‖∇g(x(t))‖2 + a1βε(t)t

2
‖x∗‖2

− bt

〈(
1 − β

t

)
∇g(x(t)) + ε(t)x(t), x(t) − x∗

〉
for every t ≥ t0. (29)

We define t2 := max (4β, t1) . According to (19) we have that β2t − βt2 + βε(t)t3

2a1
≤

0 for every t ≥ t2. By using condition (b), neglecting the nonpositive terms and
afterwards integrating on the interval [t2, t], with arbitrary t ≥ t2, we obtain

∫ t

t2
bs

〈(
1 − β

s

)
∇g(x(s)), x(s) − x∗

〉
≤ Eb(t2) − Eb(t) +

∫ t

t2
(2s − β(b + 2 − α)) (g(x(s)) − min g) ds

−
∫ t

t2
bs

(
1 − β

s

) 〈
ε(s)x(s), x(s) − x∗〉 +

∫ t

t2
sε(s)‖x(s)‖2ds

+ aβ

2
‖x∗‖2

∫ t

t2
sε(s)ds. (30)

From here, by using the similar arguments as for the case (a), we obtain (28).
Consider now, b1, b2 ∈ (2, α − 1), b1 �= b2. Then for every t ≥ t0 we have

Eb1 (t) − Eb2 (t) = (b1 − b2)
(−βt(g(x(t)) − min g) + t〈ẋ(t) + β∇g(x(t)), x(t) − x∗〉

+ α − 1

2
‖x(t) − x∗‖2

)
.

According to Theorem 3.3, the limits

lim
t−→+∞(Eb1(t) − Eb2(t)) ∈ R and lim

t−→+∞ t(g(x(t)) − g∗) ∈ R

exist, consequently, the limit

lim
t−→+∞

(
t〈ẋ(t) + β∇g(x(t)), x(t) − x∗〉 + α − 1

2
‖x(t) − x∗‖2

)

also exists. For every t ≥ t0 we define

k(t) = t〈ẋ(t) + β∇g(x(t)), x(t) − x∗〉 + α − 1

2
‖x(t) − x∗‖2

and

q(t) = 1

2
‖x(t) − x∗‖2 + β

∫ t

t0
〈∇g(x(s)), x(s) − x∗〉ds.
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Then

(α − 1)q(t) + t q̇(t) = k(t) + β(α − 1)
∫ t

t0
〈∇g(x(s)), x(s) − x∗〉ds for every t ≥ t0.

From (28) and the fact that k(t) has a limit whenever t −→ +∞, we obtain that
(α − 1)q(t) + t q̇(t) has a limit when t −→ +∞. According to Lemma 4.6, q(t) has
a limit when t −→ +∞. By using (28) again we obtain that the limit

lim
t−→+∞ ‖x(t) − x∗‖ ∈ R

exists and, consequently, the limit

lim
t−→+∞ t〈ẋ(t) + β∇g(x(t)), x(t) − x∗〉 ∈ R

also exists. On the other hand, we notice that for every t ≥ t0 the energy functional
can be written as

Eb(t) = (t2 − β(b + 2 − α)t) (g(x(t)) − min g) + t2ε(t)

2
‖x(t)‖2

+ t2

2
‖ẋ(t) + β∇g(x(t))‖2 + bt〈ẋ(t) + β∇g(x(t)), x(t) − x∗〉 + b(α − 1)

2
‖x(t) − x∗‖2.

(31)

Since the limits

lim
t−→+∞Eb(t) ∈ R and lim

t−→+∞

(
bt〈ẋ(t) + β∇g(x(t)), x(t) − x∗〉 + b(α − 1)

2
‖x(t) − x∗‖2

)
∈ R

exist, it follows that the limit

lim
t−→+∞

(
(t2 − β(b + 2 − α)t) (g(x(t)) − min g) + t2ε(t)

2
‖x(t)‖2 + t2

2
‖ẋ(t) + β∇g(x(t))‖2

)
∈ R

exists, too.
We define

ϕ : [t0,+∞) −→ R, ϕ(t)=(t2−β(b+2−α)t)
(
g(x(t))−g∗) + t2ε(t)

2
‖x(t)‖2+ t2

2
‖ẋ(t)+β∇g(x(t))‖2,

and notice that for sufficiently large t it holds

0 ≤ ϕ(t)

t
≤ 2t (g(x(t)) − min g) + tε(t)

2
‖x(t)‖2 + t

2
‖ẋ(t) + β∇g(x(t))‖2.

According to Theorem 3.3 the right hand side of the above inequality is of class
L1([t0,+∞),R).
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Hence,

ϕ(t)

t
∈ L1([t0,+∞),R).

Since 1
t /∈ L1([t0,+∞),R) and the limit limt−→+∞ ϕ(t) ∈ R exists, it must hold that

limt−→+∞ ϕ(t) = 0. Consequently,

lim
t−→+∞(t2 − β(b + 2 − α)t) (g(x(t)) − min g) = lim

t−→+∞
t2ε(t)

2
‖x(t)‖2 = lim

t−→+∞
t2

2
‖ẋ(t) + β∇g(x(t))‖2 = 0

and the proof is complete. ��
Working in the hypotheses of Theorem 3.4 we can prove also the weak convergence

of the trajectories generated by (5) to a minimizer of the objective function g.

Theorem 3.5 Let x be the unique global C2-solution of (5). Assume that

∫ +∞

t0
tε(t)dt < +∞

and that one of the following conditions is fulfilled:

(a) there exist a > 1 and t1 ≥ t0 such that

ε̇(t) ≤ −aβ

2
ε2(t) for every t ≥ t1;

(b) there exist a > 0 and t1 ≥ t0 such that

ε(t) ≤ a

t
for every t ≥ t1.

If α > 3, then x(t) converges weakly to an element in argming as t −→ +∞.

Proof We will to apply the continuous version of the Opial Lemma (Lemma A.3) for
S = argming. According to Theorem 3.4, the limit

lim
t−→+∞ ‖x(t) − x∗‖ ∈ R

exists for every x∗ ∈ argming.
Further, let x ∈ H be a weak sequential limit point of x(t). This means that

there exists a sequence (tn)n∈N ⊆ [t0,+∞) such that limn−→∞ tn = +∞ and x(tn)
converges weakly to x as n −→ ∞. Since g is weakly lower semicontinuous, we have
that

g(x) ≤ lim inf
n−→+∞ g(x(tn)).
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On the other hand, according to Theorem 3.3,

lim
t−→+∞ g(x(t)) = min g,

consequently one has g(x) ≤ min g, which shows that x ∈ argming.
The convergence of the trajectory is a consequence of Lemma A.3. ��

Remark 3.6 We proved in this section that the convergence rate of o
(

1
t2

)
for g(x(t)),

the converge rate of o
( 1
t

)
for ‖ẋ(t) + β∇g(x(t))‖ and the weak convergence of the

trajectory to a minimizer of g that have been obtained in [11] for the dynamical system
with Hessian driven damping (3) are preserved when this system is enhanced with a
Tikhonov regularization term. In addition, in the casewhen theHessian driven damping
term is removed, which is the case when β = 0, we recover the results provided in [8]
for the dynamical system (4) with Tikhonov regularization term. In this setting, we
have to assume in Theorem 3.1 just that

∫ +∞
t0

ε(t)
t dt < +∞, and in the theorems 3.3

- 3.5 just that
∫ +∞
t0

tε(t)dt < +∞, since condition (a) is automatically fulfilled.

4 Strong convergence to theminimum norm solution

In this section we will continue the investigations we did at the end of Section 3, by
working in the same setting, on the behaviour of the trajectory of the dynamical system
(5) by concentrating on strong convergence. In particular, we will provide conditions
on the Tikhonov parametrization t �→ ε(t) which will guarantee that the trajectory
converges to a minimum norm solution of g, which is the element of minimum norm
of the nonempty convex closed set argming. We start with the following result.

Lemma 4.1 Let x be the unique global C2-solution of (5). For x∗ ∈ argming we
introduce the function

hx∗ : [t0,+∞) −→ R hx∗(t) = 1

2
‖x(t) − x∗‖2.

If α > 0 and β ≥ 0, then

sup
t≥t0

‖ẋ(t)‖ < +∞ and
1

t
‖ẋ(t)‖2 ∈ L1([t0,+∞),R).

In addition,

sup
t≥t0

1

t
|ḣx∗(t)| < +∞.

Proof We consider the following energy functional

W : [t0,+∞) → R, W (t) = g(x(t)) + 1

2
‖ẋ(t)‖2 + ε(t)

2
‖x(t)‖2. (32)
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By using (5) we have for every t ≥ t0

Ẇ (t) = 〈∇g(x(t), ẋ(t)〉 + 〈ẍ(t), ẋ(t)〉 + ε̇(t)

2
‖x(t)‖2 + ε(t)〈ẋ(t), x(t)〉

= 〈∇g(x(t), ẋ(t)〉 + ε̇(t)

2
‖x(t)‖2 + ε(t)〈ẋ(t), x(t)〉

+
〈
−α

t
ẋ(t) − β∇2g(x(t))ẋ(t) − ∇g(x(t)) − ε(t)x(t), ẋ(t)

〉

= − α

t
‖ẋ(t)‖2 + ε̇(t)

2
‖x(t)‖2 − β〈∇2g(x(t))ẋ(t), ẋ(t)〉.

From here, invoking the convexity of g, it follows

Ẇ (t) ≤ −α

t
‖ẋ(t)‖2 + ε̇(t)

2
‖x(t)‖2, (33)

for every t ≥ t0. Since ε is nonincreasing this leads further to

Ẇ (t) ≤ −α

t
‖ẋ(t)‖2 for every t ≥ t0, (34)

therefore the energyW is nonincreasing. SinceW is bounded from bellow, there exists
limt−→+∞ W (t) ∈ R. Consequently, t �→ W (t) is bounded on [t0,+∞) from which,
since g is bounded from bellow, we obtain that

sup
t≥t0

‖ẋ(t)‖ = K < +∞.

By integrating (34) on an interval [t0, t] for arbitrary t > t0 it yields

∫ t

t0

α

s
‖ẋ(s)‖2ds ≤ W (t0) − W (t),

which, by letting t −→ +∞, leads to

1

t
‖ẋ(t)‖2 ∈ L1([t0,+∞),R).

Further, for every t ≥ t0 we have that

|ḣx∗(t)| = |〈ẋ(t), x(t) − x∗〉| ≤ ‖ẋ(t)‖‖x(t) − x∗‖

and

‖|x(t) − x∗‖ ≤ ‖x(t) − x(t0)‖ + ‖x(t0) − x∗‖ ≤ sup
t≥t0

‖ẋ(t)‖(t − t0) + ‖x(t0) − x∗‖,
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hence,

1

t
|ḣx∗(t)| ≤ sup

t≥t0
‖ẋ(t)‖

(
sup
t≥t0

‖ẋ(t)‖
(
1 − t0

t

)
+ 1

t
‖x(t0) − x∗‖

)

≤ sup
t≥t0

‖ẋ(t)‖
(
sup
t≥t0

‖ẋ(t)‖ + 1

t0
‖x(t0) − x∗‖

)
∈ R.

��
For each ε > 0, we denote by xε the unique solution of the strongly convex

minimization problem

xε = argmin
x∈H

(
g(x) + ε

2
‖x‖2

)
.

In virtue of the Fermat rule, this is equivalent to

∇g(xε) + εxε = 0.

It is well known that the Tikhonov approximation curve ε −→ xε satisfies
limε−→0 xε = x∗, where x∗ = argmin{‖x‖ : x ∈ argming} is the element ofminimum
norm of the nonempty convex closed set argming. Since ∇g is monotone, for every
ε > 0 it holds 〈∇g(xε) − ∇g(x∗), xε − x∗〉 ≥ 0, that is 〈−εxε, xε − x∗〉 ≥ 0.
Hence,−‖xε‖2 + 〈xε, x∗〉 ≥ 0, which, by using the Cauchy-Schwarz inequality,
implies

‖xε‖ ≤ ‖x∗‖ for every ε > 0.

4.1 Strong ergodic convergence

We will start by proving a strong ergodic convergence result for the trajectory of (5).

Theorem 4.2 Let x be the unique global C2-solution of (5). Assume that

∫ +∞

t0

ε(t)

t
dt = +∞.

Let x∗ = argmin{‖x‖ : x ∈ argming} be the element of minimum norm of the
nonempty convex closed set argming. If α > 0, then

lim
t−→+∞

1∫ t
t0

ε(s)
s ds

∫ t

t0

ε(s)

s
‖x(s) − x∗‖2ds = 0 and lim inf

t−→+∞ ‖x(t) − x∗‖ = 0.

Proof We introduce the function

hx∗ : [t0,+∞) −→ R, hx∗(t) = 1

2
‖x(t) − x∗‖2.
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For every t ≥ t0 we have

ḧx∗(t) + α

t
ḣx∗(t) = ‖ẋ(t)‖2 +

〈
ẍ(t) + α

t
ẋ(t), x(t) − x∗〉 . (35)

Further, for every t ≥ t0, the function gt : H −→ R, gt (x) = g(x) + ε(t)
2 ‖x‖2, is

strongly convex, with modulus ε(t), hence

gt (x
∗) − gt (x(t)) ≥ 〈∇gt (x(t)), x

∗ − x(t)〉 + ε(t)

2
‖x(t) − x∗‖2. (36)

But ∇gt (x(t)) = ∇g(x(t)) + ε(t)x(t) and by using (5) we get

∇gt (x(t)) = −ẍ(t) − α

t
ẋ(t) − β∇2g(x(t))ẋ(t) for every t ≥ t0.

Consequently, (36) becomes

gt (x
∗) − gt (x(t)) ≥

〈
ẍ(t) + α

t
ẋ(t) + β∇2g(x(t))ẋ(t), x(t) − x∗〉 + ε(t)

2
‖x(t) − x∗‖2 for every t ≥ t0. (37)

By using (35), the latter relation leads to

gt (x
∗) − gt (x(t)) ≥ ḧx∗ (t) + α

t
ḣx∗ (t) + ε(t)hx∗ (t) + 〈β∇2g(x(t))ẋ(t), x(t) − x∗〉 − ‖ẋ(t)‖2 (38)

for every t ≥ t0.
For every t ≥ t0, let xε(t) the unique solution of the strongly convex minimization

problem

min
x∈H

(
g(x) + ε(t)

2
‖x‖2

)
.

Then

gt (x
∗)−gt (x(t)) ≤ gt (x

∗)−gt (xε(t))=g(x∗) + ε(t)

2
‖x∗‖2 − g(xε(t)) − ε(t)

2
‖xε(t)‖2 ≤ ε(t)

2
(‖x∗‖2 − ‖xε(t)‖2)

for every t ≥ t0 and taking into account (38) we get

ε(t)

2
(‖x∗‖2−‖xε(t)‖2) ≥ ḧx∗ (t)+ α

t
ḣx∗ (t)+ε(t)hx∗ (t)+〈β∇2g(x(t))ẋ(t), x(t)−x∗〉−‖ẋ(t)‖2 (39)

for every t ≥ t0. We have

ḧx∗(t) + α

t
ḣx∗(t) = 1

tα
d

dt

(
tα ḣx∗(t)

)

and

〈∇2g(x(t))ẋ(t), x(t) − x∗〉 = d

dt

(〈∇g(x(t)), x(t) − x∗〉 − g(x(t))
)
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hence (39) is equivalent to

ε(t)

t

(
hx∗ (t) − 1

2
(‖x∗‖2 − ‖xε(t)‖2)

)
≤ 1

t
‖ẋ(t)‖2− 1

tα+1

d

dt
(tα ḣx∗ (t))−β

t

d

dt
(〈∇g(x(t)), x(t)−x∗〉−g(x(t))),

(40)
for every t ≥ t0.

After integrating (40) on [t0, t], for arbitrary t > t0, it yields

∫ t

t0

ε(s)

s

(
hx∗ (s) − 1

2
(‖x∗‖2 − ‖xε(s)‖2)

)
ds ≤

∫ t

t0

(
1

s
‖ẋ(s)‖2 − 1

sα+1

d

ds

(
sα ḣx∗ (s)

))
ds

+
∫ t

t0

β

s

d

ds

(〈∇g(x(s)), x∗ − x(s)〉 + g(x(s))
)
ds. (41)

We show that the right-hand side of the above inequality is bounded from above.
Indeed, according to Lemma 4.1, one has

1

t
‖ẋ(t)‖2 ∈ L1([t0,+∞),R),

hence there exists C1 ≥ 0 such that
∫ t
t0

1
s ‖ẋ(s)‖2 ≤ C1 for every t ≥ t0. Further, for

every t ≥ t0,

∫ t

t0

1

sα+1

d

ds
(sα ḣx∗ (s))ds = ḣx∗ (t)

t
− ḣx∗ (t0)

t0
+ (α + 1)

∫ t

t0

ḣx∗ (s)

s2
ds

= ḣx∗ (t)

t
− ḣx∗ (t0)

t0
+ (α + 1)

(
hx∗ (t)

t2
− hx∗ (t0)

t20

)
+ 2(α + 1)

∫ t

t0

hx∗ (s)

s3
ds

≥ ḣx∗ (t)

t
− C2,

where C2 = ḣx∗ (t0)
t0

+ (α + 1) hx∗ (t0)
t20

. Consequently,

∫ t

t0

ε(s)

s

(
hx∗ (s) − 1

2
(‖x∗‖2 − ‖xε(s)‖2)

)
ds ≤ C1 + C2 − ḣx∗ (t)

t

+
∫ t

t0

β

s

d

ds
(〈∇g(x(s)), x∗ − x(s)〉 + g(x(s)))ds, (42)

for every t ≥ t0. According to Lemma 4.1, there exists C3 such that 1
t |ḣx∗(t)| ≤

C3 for all t ≥ t0, which combined with (42) guarantees the existence of C4 ≥ 0 such
that

∫ t

t0

ε(s)

s

(
hx∗ (s) − 1

2
(‖x∗‖2 − ‖xε(s)‖2)

)
ds ≤ C4 +

∫ t

t0

β

s

d

ds

(〈∇g(x(s)), x∗ − x(s)〉 + g(x(s))
)
ds

(43)
for every t ≥ t0.
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On the other hand, for every t ≥ t0,

∫ t

t0

β

s

d

ds
(〈∇g(x(s)), x∗ − x(s)〉 + g(x(s)))ds =

∫ t

t0

β

s2
(〈∇g(x(s)), x∗ − x(s)〉 + g(x(s))

)
ds

+ β

t

(〈∇g(x(t)), x∗ − x(t)〉 + g(x(t))
)

− β

t0

(〈∇g(x(t0)), x
∗ − x(t0)〉 + g(x(t0))

)
.

From the gradient inequality of the convex function g we have

〈∇g(x(t)), x∗ − x(t)〉 + g(x(t)) ≤ g(x∗),

hence

∫ t

t0

β

s

d

ds
(〈∇g(x(s)), x∗ − x(s)〉 + g(x(s)))ds ≤ β

t
g(x∗) +

∫ t

t0

β

s2
g(x∗)ds

− β

t0
(〈∇g(x(t0)), x

∗ − x(t0)〉 + g(x(t0))), (44)

for all t ≥ t0. Obviously the right-hand side of (44) is bounded from above, hence
there exists C5 > 0 such that

∫ t

t0

β

s

d

ds
(〈∇g(x(s)), x∗ − x(s)〉 + g(x(s)))ds ≤ C5 for every t ≥ t0. (45)

Combining (43) and (45) we obtain that there exists C > 0 such that

∫ t

t0

ε(s)

s

(
hx∗(s) − 1

2
(‖x∗‖2 − ‖xε(s)‖2)

)
ds ≤ C for every t ≥ t0. (46)

Since limt−→+∞ ε(t) = 0 we have limt−→+∞ xε(t) = x∗, hence limt−→+∞(‖x∗‖2 −
‖xε(t)‖2) = 0. Consequently, by using the l’Hospital rule and the fact that∫ +∞
t0

ε(t)
t dt = +∞, we get

lim
t−→+∞

1∫ t
t0

ε(s)
s ds

∫ t

t0

ε(s)

s
(‖x∗‖2 − ‖xε(s)‖2)ds = lim

t−→+∞
ε(t)
t (‖x∗‖2 − ‖xε(t)‖2)

ε(t)
t

= lim
t−→+∞(‖x∗‖2 − ‖xε(t)‖2) = 0.

Dividing (46) by
∫ t
t0

ε(s)
s ds and taking into account that

∫ +∞
t0

ε(t)
t dt = +∞, we obtain

that

lim
t−→+∞

1∫ t
t0

ε(s)
s ds

∫ t

t0

ε(s)

s
‖x(s) − x∗‖2ds = 0.
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The last equality immediately implies that

lim inf
t−→+∞ ‖x(t) − x∗‖ = 0.

��

Remark 4.3 The strong ergodic convergence obtained in [8] for the dynamical sys-
tem (4) is extended to the dynamical system with Hessian driven damping and
Tikhonov regularization term (5) under the same hypotheses concerning the Tikhonov
parametrization t �→ ε(t).

4.2 Strong convergence

In order to prove strong convergence for the trajectory generated by the dynamical
system (5) to an element of minimum norm of argming we have to strengthen the
conditions on the Tikhonov parametrization. This is done in the following result.

Theorem 4.4 Let be α ≥ 3 and x the unique global C2-solution of (5). Assume that

∫ +∞

t0

ε(t)

t
dt < +∞ and lim

t−→+∞
β

ε(t)t
α
3 +1

∫ t

t0
ε2(s)s

α
3 +1ds = 0,

and that there exist a > 1 and t1 ≥ t0 such that

ε̇(t) ≤ −aβ

2
ε2(t) for every t ≥ t1.

In addition, assume that

• in case α = 3: limt−→+∞ t2ε(t) = +∞;
• in case α > 3: there exists c > 0 such that t2ε(t) ≥ 2

3α
( 1
3α − 1 + βc2

)
for t

large enough.

If x∗ = argmin{‖x‖ : x ∈ argming} is the element of minimum norm of the nonempty
convex closed set argming, then

lim inf
t−→+∞ ‖x(t) − x∗‖ = 0.

In addition,

lim
t−→+∞ ‖x(t) − x∗‖ = 0,

if there exists T ≥ t0 such that the trajectory {x(t) : t ≥ T } stays either in the ball
B(0, ‖x∗‖), or in its complement.
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Proof Case I Assume that there exists T ≥ t0 such that the trajectory {x(t) : t ≥ T }
stays in the complement of the ball B(0, ‖x∗‖).

In other words, ‖x(t)‖ ≥ ‖x∗‖ for every t ≥ T . For p ≥ 0, we consider the energy
functional

E p
b (t) = t p+1(t + α − β − β p − b − 1)(g(x(t)) − min g) + t p+2 ε(t)

2
(‖x(t)‖2 − ‖x∗‖2)

+ t p

2
‖b(x(t) − x∗) + t(ẋ(t) + β∇g(x(t)))‖2 for every t ≥ t0. (47)

We define t2 := max (t1, 2(β + β p + b + 1 − α)). We have that

E p
b (t) ≥ t p+1(t + α − β − β p − b − 1)(g(x(t)) − min g) + t p+2 ε(t)

2
(‖x(t)‖2 − ‖x∗‖2)

≥ t p+2 1

2
(g(x(t)) − min g) + t p+2 ε(t)

2
(‖x(t)‖2 − ‖x∗‖2) for every t ≥ t2. (48)

For every t ≥ t0 consider the strongly convex function

gt : H −→ R, gt (x) = 1

2
g(x) + ε(t)

2
‖x‖2,

and denote

xε(t) := argmin
x∈H

gt (x).

Since x∗ is the element of minimum norm in argmin1
2g = argming, it holds‖xε(t)‖ ≤

‖x∗‖. Using the gradient inequality we have

gt (x) − gt (xε(t)) ≥ ε(t)

2
‖x − xε(t)‖2 for every x ∈ H.

On the other hand,

gt (xε(t)) − gt (x
∗) = 1

2
(g(xε(t)) − min g) + ε(t)

2
(‖xε(t)‖2 − ‖x∗‖2) ≥ ε(t)

2
(‖xε(t)‖2 − ‖x∗‖2).

By adding the last two inequalities we obtain

gt (x) − gt (x
∗) ≥ ε(t)

2
(‖x − xε(t)‖2 + ‖xε(t)‖2 − ‖x∗‖2) for every x ∈ H. (49)

From (48) and (49) we have that for every t ≥ t2 it holds

E p
b (t) ≥ t p+2(gt (x(t)) − gt (x

∗)) ≥ ε(t)

2
t p+2(‖x(t) − xε(t)‖2 + ‖xε(t)‖2 − ‖x∗‖2).

(50)
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The next step is to obtain an upper bound for t �→ E p
b (t), and to this end we will

evaluate its time derivative. For every t ≥ t0 we have

d

dt
E p
b (t) = t p((p + 2)t + (p + 1)(α − β − β p − b − 1))(g(x(t)) − min g)

+ t p+1(t + α − β − β p − b − 1)〈∇g(x(t)), ẋ(t)〉
+

(
(p + 2)t p+1 ε(t)

2
+ t p+2 ε̇(t)

2

)
(‖x(t)‖2 − ‖x∗‖2) + t p+2ε(t))〈ẋ(t), x(t)〉

+ pt p−1

2
‖b(x(t) − x∗) + t(ẋ(t) + β∇g(x(t)))‖2

+ t p〈(b + 1)ẋ(t) + β∇g(x(t)) + t(ẍ(t) + β∇2g(x(t))ẋ(t)), b(x(t) − x∗)

+ t(ẋ(t) + β∇g(x(t)))〉. (51)

By using (5) we have

ẍ(t) + β∇2g(x(t))ẋ(t) = −α

t
ẋ(t) − ∇g(x(t)) − ε(t)x(t),

hence

〈(b + 1)ẋ(t) + β∇g(x(t)) + t(ẍ(t) + β∇2g(x(t))ẋ(t)), b(x(t) − x∗) + t(ẋ(t) + β∇g(x(t)))〉
= 〈(b + 1 − α)ẋ(t) + β∇g(x(t)) − t(∇g(x(t)) + ε(t)x(t)), b(x(t) − x∗) + t(ẋ(t) + β∇g(x(t)))〉
= b(b + 1 − α)〈ẋ(t), x(t) − x∗〉 + (b + 1 − α)t(‖ẋ(t)‖2 + 〈∇g(x(t)), ẋ(t)〉)

+ βb〈∇g(x(t), x(t) − x∗〉 + βt〈∇g(x(t)), ẋ(t)〉 + β2t‖∇g(x(t))‖2
− bt〈∇g(x(t)) + ε(t)x(t), x(t) − x∗〉 − t2〈∇g(x(t)) + ε(t)x(t), ẋ(t)〉
− βt2〈∇g(x(t)) + ε(t)x(t), ∇g(x(t))〉 (52)

for every t ≥ t0. Further, for every t ≥ t0,

‖b(x(t) − x∗) + t(ẋ(t) + β∇g(x(t)))‖2 = b2‖x(t) − x∗‖2 + 2bt〈ẋ(t), x(t) − x∗〉
+ 2bβt〈∇g(x(t)), x(t) − x∗〉
+ t2‖ẋ(t)‖2 + 2βt2〈∇g(x(t)), ẋ(t)〉
+ β2t2‖∇g(x(t))‖2, (53)

which means that (51) becomes

d

dt
E p
b (t) = t p((p + 2)t + (p + 1)(α − β − β p − b − 1))(g(x(t)) − min g)

+
(

(p + 2)t p+1 ε(t)

2
+ t p+2 ε̇(t)

2

)
(‖x(t)‖2 − ‖x∗‖2) + b2 pt p−1

2
‖x(t) − x∗‖2

+ (p + 2)β2t p+1

2
‖∇g(x(t))‖2 +

(
b + 1 − α + p

2

)
t p+1‖ẋ(t)‖2

+ b(b + 1 − α + p)t p〈ẋ(t), x(t) − x∗〉 + bβ(p + 1)t p〈∇g(x(t)), x(t) − x∗〉
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− bt p+1〈∇g(x(t)) + ε(t)x(t), x(t) − x∗〉 − βt p+2〈∇g(x(t)) + ε(t)x(t), ∇g(x(t))〉.
(54)

The gradient inequality for the strongly convex function x → g(x) + ε(t)
2 ‖x‖2

gives

〈∇g(x(t)) + ε(t)x(t), x∗ − x(t)〉 + ε(t)

2
‖x(t) − x∗‖2 ≤

(
g(x∗) + ε(t)

2
‖x∗‖2

)

−
(
g(x(t)) + ε(t)

2
‖x(t)‖2

)
,

hence

−bt p+1〈∇g(x(t)) + ε(t)x(t), x(t) − x∗〉 ≤ −bt p+1(g(x(t)) − g∗)

− bt p+1 ε(t)

2
(‖x(t)‖2 − ‖x∗‖2) − bt p+1 ε(t)

2
‖x(t) − x∗‖2

for every t ≥ t0. Plugging this inequality into (54) gives

d

dt
E p
b (t) ≤ t p((p + 2 − b)t + (p + 1)(α − β − β p − b − 1))(g(x(t)) − min g)

+
(

(p + 2 − b)t p+1 ε(t)

2
+t p+2 ε̇(t)

2

)
(‖x(t)‖2 − ‖x∗‖2)+

(
b2 pt p−1

2
−bt p+1 ε(t)

2

)
‖x(t) − x∗‖2

+
(

(p + 2)β2t p+1

2
− βt p+2

)
‖∇g(x(t))‖2 +

(
b + 1 − α + p

2

)
t p+1‖ẋ(t)‖2

+ b(b + 1 − α + p)t p〈ẋ(t), x(t) − x∗〉 + bβ(p + 1)t p〈∇g(x(t)), x(t) − x∗〉
− βt p+2ε(t)〈∇g(x(t)), x(t)〉 (55)

for every t ≥ t0. Further we have for every t ≥ t0

bβ(p + 1)t p〈∇g(x(t)), x(t) − x∗〉 ≤ bβ(p + 1)

4c2
t p+1‖∇g(x(t))‖2 + bβ(p + 1)c2t p−1‖x(t) − x∗‖2

(56)

and

−βt p+2ε(t)〈∇g(x(t)), x(t)〉 ≤ β

a
t p+2‖∇g(x(t))‖2 + aβ

4
ε2(t)t p+2‖x(t)‖2, (57)

where a > 1 and c > 0 are the constants which are assumed to exist in the hypotheses
of the theorem, whereby in case α = 3 we will take c = 1.

Combining (55), (56) and (57) and neglecting the nonpositive terms we derive

d

dt
E p
b (t) ≤ t p((p + 2 − b)t + (p + 1)(α − β − β p − b − 1))(g(x(t)) − min g)

+
(

(p + 2 − b)t p+1 ε(t)

2
+ t p+2 ε̇(t)

2
+ aβ

4
ε2(t)t p+2

)
‖x(t)‖2
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−
(

(p + 2 − b)t p+1 ε(t)

2
+ t p+2 ε̇(t)

2

)
‖x∗‖2

+
(
b2 pt p−1

2
+ bβ(p + 1)c2t p−1 − bt p+1 ε(t)

2

)
‖x(t) − x∗‖2

+
(

(p + 2)β2t p+1

2
+ bβ(p + 1)

4c2
t p+1 − β

(
1 − 1

a

)
t p+2

)
‖∇g(x(t))‖2

+
(
b + 1 − α + p

2

)
t p+1‖ẋ(t)‖2 + b(b + 1 − α + p)t p〈ẋ(t), x(t) − x∗〉

(58)

for every t ≥ t0.
For the remaining of the proof we choose the parameters appearing in the definition

of the energy functional as

b := 2

3
α and p := 1

3
(α − 3).

Since α ≥ 3, we have

p + 2 − b = 1 − α

3
≤ 0, b + 1 + p − α = 0 and b + 1 + p

2
− α = − p

2
≤ 0.

Notice that, if α = 3, then (p + 2 − b)t + (p + 1)(α − β − β p − b − 1) = −β ≤ 0
and, if α > 3, then p + 2 − b < 0. This means that there exists t3 ≥ t2 such that
(p + 2− b)t + (p + 1)(α − β − β p − b − 1) < 0 for every t ≥ t3. This implies that
the term

t p((p + 2 − b)t + (p + 1)(α − β − β p − b − 1))(g(x(t)) − min g)

in (58) is nonpositive for every t ≥ t2 and therefore we will omit it. Further, using that
limt−→+∞ t2ε(t) = +∞, if α = 3, and that t2ε(t) ≥ 2

3α( 13α − 1 + βc2) for t large
enough, if α > 3, we immediately see that there exists t4 ≥ t3 such that

b2 pt p−1

2
+ bβ(p + 1)c2t p−1 − bt p+1 ε(t)

2
≤ 0 for every t ≥ t3.

Finally, since a > 1, it is obvious that there exists t5 ≥ t4 such that

(p + 2)β2t p+1

2
+ bβ(p + 1)

4c2
t p+1 − β

(
1 − 1

a

)
t p+2 ≤ 0 for every t ≥ t5.

Thus, (58) yields

d

dt
E p
b (t) ≤

(
(p + 2 − b)t p+1 ε(t)

2
+ t p+2 ε̇(t)

2
+ aβ

4
ε2(t)t p+2

)
‖x(t)‖2

−
(

(p + 2 − b)t p+1 ε(t)

2
+ t p+2 ε̇(t)

2

)
‖x∗‖2
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=
(

(p + 2 − b)t p+1 ε(t)

2
+ t p+2 ε̇(t)

2
+ aβ

4
ε2(t)t p+2

)
(‖x(t)‖2 − ‖x∗‖2) + aβ

4
ε2(t)t p+2‖x∗‖2,

(59)
for every t ≥ t5. By the hypotheses, we have that

(p + 2 − b)t p+1 ε(t)

2
+ t p+2 ε̇(t)

2
+ aβ

4
ε2(t)t p+2 ≤ 0,

for every t ≥ t5 and, taking into account the setting considered in this first case, it
follows there exists t6 ≥ t5 such that

‖x(t)‖2 − ‖x∗‖2 ≥ 0

for every t ≥ t6. Hence, (59) leads to

d

dt
E p
b (t) ≤ aβ

4
ε2(t)t p+2‖x∗‖2 for every t ≥ t6. (60)

By integrating (60) on the interval [t6, t], for arbitrary t ≥ t6, we get

E p
b (t) ≤ E p

b (t6) + aβ

4
‖x∗‖2

∫ t

t6
ε2(s)s p+2dt . (61)

Recall that from (50) we have

E p
b (t) ≥ ε(t)

2
t p+2(‖x(t) − xε(t)‖2 + ‖xε(t)‖2 − ‖x∗‖2),

which, combined with (61), gives for every t ≥ t6 that

‖x(t) − xε(t)‖2 ≤ ‖x∗‖2 − ‖xε(t)‖2 + 2E p
b (t6)

ε(t)t
1
3 α+1

+ aβ

2ε(t)t
1
3 α+1

‖x∗‖2
∫ t

t6
ε2(s)s

1
3 α+1dt . (62)

Using that limt−→+∞ ε(t)t
1
3α+1 = +∞, limt−→+∞ xε(t) = x∗ and taking into

account the hypotheses of the theorem,weget that the right-hand side of (62) converges
to 0 as t −→ +∞. This yields

lim
t−→+∞ x(t) = x∗.

Case II Assume that there exists T ≥ t0 such that the trajectory {x(t) : t ≥ T }
stays in the ball B(0, ‖x∗‖).

In other words, ‖x(t)‖ < ‖x∗‖ for every t ≥ T . Since

∫ +∞

t0

ε(t)

t
dt < +∞,
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according to Theorem 3.1, we have

lim
t−→+∞ g(x(t)) = min g.

Consider x ∈ H a weak sequential cluster point of the trajectory x , which exists since
the trajectory is bounded. This means that there exists a sequence (tn)n∈N ⊆ [T ,+∞)

such that tn −→ +∞ and x(tn) converges weakly to x as n −→ +∞.
Since g is weakly lower semicontinuous, it holds

g(x) ≤ lim inf
n→+∞ g(x(tn)) = min g, thus x ∈ argming.

Since the norm is weakly lower semicontinuous, it holds

‖x‖ ≤ lim inf
n→+∞ ‖x(tn)‖ ≤ ‖x∗‖,

which, by taking into account that x∗ is the unique element of minimum norm in
argming, implies x = x∗. This shows that the whole trajectory x converges weakly to
x∗.

Thus,

‖x∗‖ ≤ lim inf
t→+∞ ‖x(t)‖ ≤ lim sup

t→+∞
‖x(t)‖ ≤ ‖x∗‖, hence lim

t−→+∞ ‖x(t)‖ = ‖x∗‖.

But by taking into account that x(t)⇀x∗ as t −→ +∞, we obtain that the convergence
is strong, that is

lim
t−→+∞ x(t) = x∗.

Case III Assume that for every T ≥ t0 there exists t ≥ T such that ‖x∗‖ > ‖x(t)‖
and there exists s ≥ T such that ‖x∗‖ ≤ ‖x(s)‖.

By the continuity of x it follows that there exists a sequence (tn)n∈N ⊆ [t0,+∞)

such that tn −→ +∞ as n −→ +∞ and

‖x(tn)‖ = ‖x∗‖ for every n ∈ N.

We will show that x(tn) −→ x∗ as n −→ +∞. To this end we consider x ∈ H a
weak sequential cluster point of the sequence (x(tn))n∈N. By repeating the arguments
used in theprevious case (notice that the sequence is bounded) it follows that (x(tn))n∈N
converges weakly to x∗ as n −→ +∞. Since ‖x(tn)‖ −→ ‖x∗‖ as n −→ +∞, it
yields ‖x(tn) − x∗‖ −→ 0 as n −→ +∞. This shows that

lim inf
t−→+∞ ‖x(t) − x∗‖ = 0.

��
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Remark 4.5 Theorem 4.4 can be seen as an extension of a result given in [8] for the
dynamical system (4) to the dynamical system with Hessian driven damping and
Tikhonov regularization term (5). One can notice that for the choice β = 0, which
means that the Hessian driven damping is removed, the lower bound we impose for
t �→ t2ε(t) in case α > 3 is less tight than the one considered in [8, Theorem 4.1]
for the system (4). As we will see later, this lower bound influences the asymptotic
behaviour of the trajectory.

In case β > 0, in order to guarantee that

lim
t−→+∞

β

ε(t)t
α
3 +1

∫ t

t0
ε2(s)s

α
3 +1ds = 0,

one just have to additionally assume that

∫ +∞

t0
ε(t)dt < +∞

and that the function

t −→ t
1
3α+1ε(t) is nondecreasing for t large enough.

This follows fromLemmaA.1, by also taking into account that limt−→+∞ ε(t)t
α
3 +1 =

+∞.
Combining the main results in the last two sections, one can see that if

∫ +∞

t0
tε(t)dt < +∞,

the function

t −→ t
1
3α+1ε(t) is nondecreasing for t large enough,

there exist a > 1 and t1 ≥ t0 such that

ε̇(t) ≤ −aβ

2
ε2(t) for every t ≥ t1,

and

• in case α = 3: limt−→+∞ t2ε(t) = +∞;
• in case α > 3: there exists c > 0 such that t2ε(t) ≥ 2

3α
( 1
3α − 1 + βc2

)
for t

large enough,

then one obtains both fast convergence of the function values and strong convergence
of the trajectory to the minimal norm solution. This is for instance the case when
ε(t) = t−γ for all γ ∈ (1, 2).
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Fig. 2 The behaviour of the trajectories generated by the dynamical system (5) in relation with the mini-
mization of the function given in (6) for α = 200, β = 1, ε(t) = t−γ and different values for γ ∈ (1, 2)

In the following, we would like to comment on the role on the condition in Theorem
4.4 which asks, in case α > 3, for the existence of a positive constant c such that
t2ε(t) ≥ 2

3α( 13α−1+βc2) for t large enough. To this end it is very helpful to visualize
the trajectories generated by the dynamical system (5) in relationwith theminimization
of the function given in (6) for a fixed large value of α and Tikhonov parametrizations
of the form t �→ ε(t) = t−γ , for different values of γ ∈ (1, 2). The trajectories in the
plot in Fig. 2 have been generated for α = 200 and β = 1 and are all approaching the
minimumnorm solution x∗ = 0. The normof the difference between the trajectory and
the minimum norm solution is guaranteed to be bounded from above by a function
which converges to zero, after the time point t is reached at which the inequality
t2ε(t) ≥ 2

3α( 13α − 1 + βc2) “starts” being fulfilled. For large α and the Tikhonov
parametrizations considered in our experiment, the closer γ is to 1 is, the faster is this
inequality fulfilled.This is reflectedby thebehaviour of the trajectories plotted inFig. 2.

Finally, we would like to formulate some possible questions of future research
related to the dynamical sytem (5):

• In [7, Theorem 3.4] it has been proved for the dynamical system (1) that, when g is
strongly convex, the rates of convergence of the function values and the tracjectory

are both of O(t− 2
3α), thus they can be made arbitrarily fast by taking α large. It is

natural to ask if similar rates of convergence can be obtained in a similar setting
for the dynamical system (5) (see, also, [8, Section 5.4]).

• In the literature, in the context of dynamical systems, regularization terms have
been considered not only in open-loop, but also in closed-loop form (see, for
instance, [12]). It is an interesting question if one can obtain for the dynamical
system (5) similar results if the Tikhonov regularization term is taken in closed-
loop form.
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• A natural question is to formulate proper numerical algorithms via time discretiza-
tion of (5), to investigate their theoretical convergence properties, and to validate
them with numerical experiments.
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Appendix

In this appendix, we collect some lemmas and technical results which we will use in
the analysis of the dynamical system (5). The following lemma was stated for instance
in [8, LemmaA.3] and is used to prove the convergence of the objective function along
the trajectory to its minimal value.

Lemma A.1 Let δ > 0 and f ∈ L1((δ,+∞),R) be a nonnegative and continu-
ous function. Let ϕ : [δ,+∞) −→ [0,+∞) be a nondecreasing function such that
limt−→+∞ ϕ(t) = +∞. Then it holds

lim
t−→+∞

1

ϕ(t)

∫ t

δ

ϕ(s) f (s)ds = 0.

The following statement is the continuous counterpart of a convergence result of
quasi-Fejér monotone sequences. For its proofs we refer to [1, Lemma 5.1].

Lemma A.2 Suppose that F : [t0,+∞) → R is locally absolutely continuous and
bounded from below and that there exists G ∈ L1([t0,+∞),R) such that

d

dt
F(t) ≤ G(t)

for almost every t ∈ [t0,+∞). Then there exists limt−→+∞ F(t) ∈ R.

The following technical result is [11, Lemma 2].

Lemma 4.6 Let u : [t0,+∞) −→ H be a continuously differentiable function satis-
fying u(t) + t

α
u̇(t) −→ u ∈ H as t −→ +∞, where α > 0. Then u(t) −→ u as

t −→ +∞.

The continuous version of the Opial Lemma (see [7]) is the main tool for proving
weak convergence for the generated trajectory.
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Lemma A.3 Let S ⊆ H be a nonempty set and x : [t0,+∞) → H a given map such
that:

(i) for every z ∈ S the limit lim
t−→+∞ ‖x(t) − z‖ exists;

(ii) every weak sequential limit point of x(t) belongs to the set S.

Then the trajectory x(t) converges weakly to an element in S as t → +∞.

References

1. Abbas, B., Attouch, H., Svaiter, B.F.: Newton-like dynamics and forward-backward methods for struc-
tured monotone inclusions in Hilbert spaces. J. Optim. Theory Appl. 161(2), 331–360 (2014)

2. Alvarez, F., Attouch, H., Bolte, J., Redont, P.: A second-order gradient-like dissipative dynamical
system with Hessian-driven damping. Application to optimization and mechanics. Journal de Mathé-
matiques Pures et Appliquées 81(8), 747–779 (2002)

3. Alvarez, F., Cabot, A.: Asymptotic selection of viscosity equilibria of semilinear evolution equations
by the introduction of a slowly vanishing term. Discrete Contin. Dyn. Syst. 15, 921–938 (2006)

4. Attouch, H.: Viscosity solutions of minimization problems. SIAM J. Optim. 6(3), 769–806 (1996)
5. Attouch, H., Chbani, Z., Fadili, J., Riahi, H.: First-order optimization algorithms via inertial systems

with Hessian driven damping (2019). arXiv:1907.10536v1
6. Attouch, H., Chbani, Z., Riahi, H.: Rate of convergence of the Nesterov accelerated gradient method

in the subcritical case α ≤ 3. ESAIM: Control Optim. Calc. Var. 25(2) (2019)
7. Attouch, H., Chbani, Z., Peypouquet, J., Redont, P.: Fast convergence of inertial dynamics and algo-

rithms with asymptotic vanishing viscosity. Math. Program. Ser. B 168(1–2), 123–175 (2018)
8. Attouch, H., Chbani, Z., Riahi, H.: Combining fast inertial dynamics for convex optimization with

Tikhonov regularization. J. Math. Anal. Appl. 457(2), 1065–1094 (2018)
9. Attouch, H., Cominetti, R.: A dynamical approach to convex minimization coupling approximation

with the steepest descent method. J. Differ. Equ. 128(2), 519–540 (1996)
10. Attouch, H., Czarnecki, M.-O.: Asymptotic control and stabilization of nonlinear oscillators with

non-isolated equilibria. J. Differ. Equ. 197, 278–310 (2002)
11. Attouch, H., Peypouquet, J., Redont, P.: Fast convex optimization via inertial dynamics with Hessian

driven damping. J. Differ. Equ. 261(10), 5734–5783 (2016)
12. Attouch, H., Redont, P., Svaiter, B.F.: Global convergence of a closed-loop regularized Newtonmethod

for solving monotone inclusions in Hilbert spaces. J. Optim. Theory Appl. 157, 624–650 (2013)
13. Attouch, H., Svaiter, B.F.: A continuous dynamical Newton-like approach to solving monotone inclu-

sions. SIAM J. Control Optim. 49(2), 574–598 (2011)
14. Cabot, A., Engler, H., Gadat, S.: On the long time behavior of second order differential equations with

asymptotically small dissipation. Trans. Am. Math. Soc. 361, 5983–6017 (2009)
15. Cominetti, R., Peypouquet, J., Sorin, S.: Strong asymptotic convergence of evolution equations gov-

erned by maximal monotone operators with Tikhonov regularization. J. Differ. Equ. 245, 3753–3763
(2008)

16. Nesterov, Y.: A method of solving a convex programming problem with convergence rate O(1/k2).
Soviet Math. Doklady 27, 372–376 (1983)

17. Sell, G.R., You, Y.: Dynamics of Evolutionary Equations. Springer, New York (2002)
18. Shi, B., Du, S.S., Jordan, M.I., Su, W.J.: Understanding the acceleration phenomenon via high-

resolution differential equations (2018). arXiv:1810.08907v3
19. Shi, B., Du, S.S., Su, W.J., Jordan, M.I.: Acceleration via symplectic discretization of high-resolution

differential equations. Adv. Neural Inf. Process. Syst. 32(NIPS 2019), 5745–5753 (2019)
20. Su, W., Boyd, S., Candès, E.J.: A differential equation for modeling Nesterov’s accelerated gradient

method: theory and insights. J. Mach. Learn. Res. 17(153), 1–43 (2016)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://arxiv.org/abs/1907.10536v1
http://arxiv.org/abs/1810.08907v3

	Tikhonov regularization of a second order dynamical system with Hessian driven damping
	Abstract
	1 Introduction
	2 Existence and uniqueness
	3 Asymptotic analysis
	4 Strong convergence to the minimum norm solution
	4.1 Strong ergodic convergence
	4.2 Strong convergence

	Acknowledgements
	Appendix
	References




