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Abstract
We propose a Branch-and-Cut algorithm for the robust influence maximization prob-
lem. The influence maximization problem aims to identify, in a social network, a set
of given cardinality comprising actors that are able to influence the maximum number
of other actors. We assume that the social network is given in the form of a graph with
node thresholds to indicate the resistance of an actor to influence, and arc weights to
represent the strength of the influence between two actors. In the robust version of the
problem that we study, the node thresholds and arc weights are affected by uncertainty
and we optimize over a worst-case scenario within given robustness budgets.We study
properties of the robust solution and show that even computing the worst-case scenario
for given robustness budgets is NP-hard. We implement an exact Branch-and-Cut as
well as a heuristic Branch-Cut-and-Price. Numerical experiments show that we are
able to solve to optimality instances of size comparable to other exact approaches in
the literature for the non-robust problem, and we can tackle the robust version with
similar performance. On larger instances (≥ 2000 nodes), our heuristic Branch-Cut-
and-Price significantly outperforms a 2-opt heuristic. An extended abstract of this
paper appeared in the proceedings of IPCO 2019.
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1 Introduction

Social networks are an integral part of social analysis, because they play an important
role in the spread of, e.g., information, innovation, or purchase decisions. A social net-
work is defined as a graphwith actors (or groups of actors) corresponding to nodes, and
arcs corresponding to interactions between actors. Interactions may represent differ-
ent concepts such as friendship, mentor-apprentice, one- or two-way communication,
and so on. Recent years have witnessed growing interest in the definition and study
of mathematical models to represent the propagation of influence – broadly defined
– in a social network, as well as in the identification of the actors that can play an
important role in facilitating such propagation. This paper concerns the identification
of such actors.

The influence maximization problem is defined on a graph with an associated
diffusion process that models the spread of influence on the graph. A node is defined
as activated if it is affected by the diffusion process. A subset of the nodes are selected
as seeds, and their role is to initialize the diffusion process. Influence propagates in
a breadth-first manner starting from the seeds. Several rules can be used to model
the activation of a node. A commonly used model associates an activation threshold
to each node, and a nonnegative weight to each arc representing the strength of the
interaction; this paper uses such amodel. The condition underwhich a node is activated
by its neighbors is often described by an activation function, several types of which
are discussed in the literature. The Influence Maximization Problem (IMP) is defined
as the problem of identifying a subset of nodes of a given cardinality that maximizes
the number of nodes activated at the end of the influence propagation process.

Literature review The idea of identifying the set of nodes that maximizes influence
on a network dates back to Domingos and Richardson [9] and Richardson and Domin-
gos [23]. Several variants of the IMP have been presented in the literature; we refer
to the recent surveys Banerjee et al. [2], Kempe et al. [17] and Li et al. [19] for an
extensive analysis of these variants.

The majority of the literature models the diffusion of influence on the graph using
a threshold model or a cascade model, see e.g., Kempe et al. [16]. In the threshold
model, a node becomes active if and only if a function of the weights on arcs incoming
from activated neighbors is larger than the node threshold. In the cascade model, a
node becomes active if at least one of its neighbors is activated. We further distin-
guish between deterministic, stochastic and robust models. In deterministic models,
the graph parameters (i.e., weights and thresholds) are given and immutable. In the
stochastic model, some of them are random variables and we optimize the expected
number of activated nodes. In the robust model, some parameters are uncertain and we
optimize theworst case over a given uncertainty set (several comprehensive surveys on
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robust optimization are available in the literature, see e.g., Ben-Tal and Nemirovski
[4], Bertsimas et al. [6], Buchheim and Kurtz [7], Li et al. [20]). The distinction
between deterministic, stochastic, and robust models is crucial, because the stochas-
tic version of the problem leads to a monotone submodular maximization problem
under reasonable assumptions Mossel and Roch [22]. Hence, it admits an efficient
(1 − 1

e )-approximation using a greedy algorithm, see e.g., Kempe et al. [16], Mossel
and Roch [22]. The deterministic and robust version are not known to admit such an
approximation in general, and they tend to be much harder to solve in practice (but
see Chen et al. [8] for an approximation algorithm for a robust version of IMP under
some conditions, that still requires submodularity).

Kempe et al. [16,17] study the greedy approach for the threshold and cascade
model in the stochastic setting. Wu and Küçükyavuz [26] proposes an exact cutting
plane approach for the same class of models, using strong optimality cuts exploiting
submodularity. Chen et al. [8], He and Kempe [15] present a greedy algorithm for a
robust version of the cascade models, optimizing a measure of regret regarding the set
of chosen seeds.

Among the variants of IMP, we mention the Target Set Selection Problem (TSSP)
Ackerman et al. [1], the (Generalized) Least Cost Influence Problem (GLCIP) Fischetti
et al. [12], Gunnec [14], and the Technology Diffusion Problem (TDP) Goldberg and
Liu [13], Könemann et al. [18]. The TSSP looks for the minimum-cost set of seed
nodes that guarantees activation of a given percentage of the total number of nodes. The
TSSP and the IMP are in some sense two different formulations for the same problem
Ackerman et al. [1]: in TSSP, the total number of activated nodes is a constraint and
the number of seed nodes is the objective function, while for IMP it is the other way
around. GLCIP is a generalization of TSSP that allows incentives to decrease node
activation thresholds paying a cost Fischetti et al. [12]. Both Ackerman et al. [1] and
Fischetti et al. [12] use integer programming formulations with an exponential size. In
the TDP, a nodes activates if it is adjacent to a connected component of active nodes of
size at least equal to its threshold. The goal is to find a seed set whose initial activation
would trigger a cascade activating the entire graph. Goldberg and Liu [13] propose
an O(rl log(n))-approximation algorithm, where r is the diameter of the given graph,
and l is the number of distinct thresholds used in the instance. This result is improved
in Könemann et al. [18] to a O(min{r , l} log(n))-approximation algorithm; to the best
of our knowledge, exact algorithms for TDP are not discussed in the literature.

Contributions of this paper We present an exact algorithm for the deterministic
and robust IMP assuming a linear threshold model. The algorithm that we propose
is based on a mixed-integer linear program (MILP) and Branch-and-Cut. The model
of uncertainty for the robust IMP is akin to the Γ -robustness of Bertsimas and Sim
[5]: we assume that the node activation thresholds and the arc weights are allowed
to vary within a certain range, but the total amount of deviation from the nominal
problem data is limited by two robustness parameters (one for node thresholds, one
for arc weights); our goal is to choose seeds so as to optimize the total influence on
the graph, assuming the worst-case realization of the problem data allowed by the
given robustness parameters. It is known that the influence maximization problem is
NP-hard Kempe et al. [17]; we show that computing the total influence under our
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robust model, given the set of seeds, is NP-hard as well. We study properties of the
robust solutions, formalizing the intuition that the price of robustness is higher for
changes in the node thresholds than for changes in the arc weights. To the best of our
knowledge, this is the first time that an exact algorithm for a robust version of IMP is
proposed in the literature. Furthermore, even the non-robust version of the MILP used
in this paper is novel. Our algorithm for the robust IMP is not simply the application
of the ideas of Bertsimas and Sim [5] to the non-robust model: indeed, for reasons
that will become apparent after discussing the mathematical model for IMP in more
detail, it is not clear how to apply the procedure of Bertsimas and Sim [5] to our model.
We therefore propose a full Branch-and-Cut algorithm that computes, at each node, a
valid bound for the robust problem, and progressively refines such bound.

The MILP that we propose for IMP originates from a bilevel formulation of the
problem, where the inner problem (a linear problem with an exponential number
of constraints and a provably integer optimum) is dualized, leading to a quadratic
problem with binary and linear variables. This formulation is linearized with the use
of indicator constraints. The final model contains an exponential number of variables.
We show that they can be generated within a column generation framework. The
number of variables depends on the density of the graph and the arc weights. To make
the problem robust, we use valid dual bounds that are progressively refined using the
solution of a sub-MILP.

We test the proposed Branch-and-Cut algorithm on a set of instances comprising
social network graphs taken from Fischetti et al. [12]. We show that our integer
programming formulation for the non-robust model is competitive with the exact
algorithm of Fischetti et al. [12] for the related GLCIP problem, and we are able
to solve the robust IMP to optimality for instances of similar size (≤ 100 nodes).
Furthermore, we implement a heuristic Branch-Cut-and-Price algorithm that works
with a subset of the columns (i.e., decision variables). We apply this heuristic to larger
graphs (up to 5000 nodes), which are out of reach for our implementation of the
exact algorithm because the set of all columns is prohibitively large. We compare the
heuristic Branch-Cut-and-Price to a 2-opt heuristic, and show that it consistently finds
significantly better solutions within the same amount of time.

The rest of this paper is organized as follows. Section 2 formally describes the robust
IMP. Section 3 discusses the computational complexity of the problem and some prop-
erties of the robust solution. Section 4 presents a new formulation for the deterministic
version of the IMP. Section 5 extends the formulation to the robust case, proposing
a Branch-Cut-and-Price algorithm for its solution. Section 6 gives implementation
details about the algorithm presented in the previous section and introduces a heuris-
tic version of the Branch-Cut-and-Price. Section 7 provides a numerical evaluation of
the proposed methodology and Sect. 8 concludes the paper.

2 Problem formulation

To formulate the problem of maximizing the influence on a graph G = (V , E), we
start by considering the problem of computing the amount of influence spread once
the activation seeds are given. Assume w.l.o.g. that V = {1, . . . , n}, and denote by
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1: A0 ← { j ∈ V : y j = 1}
2: for k = 1, . . . , n do
3: Ak ← Ak−1
4: for every j ∈ V : Ak−1 ∩ δ−( j) �= ∅ do
5: if

∑
i ′∈δ−( j):i ′∈Ak−1

wi ′ j ≥ t j then Ak ← Ak ∪ { j}
return An

Algorithm 1: Function InfluenceSpread(y, t, w).

δ−( j) and δ+( j) the instar and outstar of node j . In the rest of this paper, we will use
y ∈ {0, 1}n as the incidence vector of the seeds.
Definition 1 Given seeds y, a vector of nonnegative node thresholds t , and nonnegative
arc weights w, we define the set of active nodes as the set returned by Algorithm 1,
and the corresponding influence as its cardinality.

Notice that the main influence diffusion loop is repeated n times, but clearly it can be
stopped at iteration k < n if no node is added to Ak . A summary of this notation, as
well as all the notation used in this paper, can be found in “Appendix A”.

The activation function used in Algorithm 1 is known as the linear thresholdmodel.
If the node activation thresholds t and arc weights w are given as input, the model
is deterministic. This paper studies a robust counterpart of linear threshold model, in
which the activation threshold t j of each node j can deviate by some fractionΔN from
its nominal value, and the total amount of threshold variations is upper bounded by
a given number BN . Similary, each arc weight wi j can deviate by some fraction ΔA

from its nominal value, and the total amount of weight variations is upper bounded by
BA. Because we want to optimize over a worst-case scenario, the activation thresholds
can only increase and the arc weights can only decrease. Throughout the rest of the
paper, we assume w.l.o.g. that ΔN ∈ [0,∞) and ΔA ∈ [0, 1]. Given a vector of seeds
ȳ ∈ {0, 1}n , the total amount of influence that spreads on the graph under this robust
setting is the optimum of the following problem:

RIx,θ,ϕ(ȳ) := minx,ϕ
∑

j∈V x j
∀ j ∈ V

∑
i∈δ−( j)(wi j xi − ϕi j ) − θ j + ε − Mx j ≤ t j

∀ j ∈ V x j ≥ ȳ j∑
j∈V θ j ≤ BN

∀ j ∈ V 0 ≤ θ j ≤ ΔN t j∑
i, j∈V ,i �= j ϕi j ≤ BA

∀i, j ∈ V , i �= j 0 ≤ ϕi j ≤ ΔAwi j xi
∀ j ∈ V x j ∈ {0, 1},

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1)

where a tight big-M coefficient can be computed as
∑

i∈δ−( j) wi j + ε. In the above
formulation, ε is a small enough value ensuring that if x j = 0 then

∑
i∈δ−( j) wi j xi <

t j . For example, if the node thresholds and arc weights are decimal numbers with d
digits of precision after the decimal dot, one can pick ε = 10−d because the difference
between the two sides of the equation will be at least 10−d . Notice that this effectively
imposes a lower bound on the minimum node threshold change. We use 10−d/2 in
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our numerical tests. (In our numerical experiments, the integrality tolerance used by
the solver is several orders of magnitude smaller than this value.)

For each node j , we use variable θ j to denote the increase of node threshold t j ,
and for each arc (i, j), we use variable ϕi j to represent the decrease of weight wi j .
The constraints

∑
j∈V θ j ≤ BN , 0 ≤ θ j ≤ ΔN t j , ∀ j ∈ V and

∑
j∈V ϕi j ≤ BA, 0 ≤

ϕi j ≤ ΔAwi j xi , ∀ j ∈ V define a polyhedral uncertainty set in a manner similar to
Bertsimas and Sim [5]. We need the binary variable x j in the upper bound for ϕi j
because otherwise, due to the first constraint in (1), the activation of a node could be
influenced by an arc coming from an inactive neighbor.

Proposition 1 The optimum of RIx,θ,ϕ(ȳ) is the total influence spread on G from seeds
ȳ under our robustness model, and the variables x j indicate which nodes are active
at the end of the influence propagation process.

Proof It suffices to show that for a given choice of the threshold change θ j and arc
weight change ϕi j , problemRIx,θ,ϕ(ȳ) computes the total influence spread as if we had
applied InfluenceSpread(ȳ, t + θ,w + ϕ); the result then follows because we are
minimizing over θ and ϕ, thereby yielding the influence in the worst-case realization
of uncertainty.

Notice that RIx,θ,ϕ(ȳ) is a minimization problem and each x j is lower bounded by

two quantities only: ȳ j , and
∑

i∈δ−( j)(wi j xi−ϕi j )−t j−θ j+ε
∑

i∈δ−( j) wi j
. The latter quantity is > 0 if

and only if
∑

i∈δ−( j)(wi j xi − ϕi j ) ≥ t j + θ j . Notice that, because of the constraints
ϕi j ≤ ΔN xi , this expression is equivalent to

∑
i∈δ−( j)(wi j−ϕi j )xi ≥ t j+θ j , implying

that x j = 1 if and only if its linear activation rule (with weights w + ϕ and threshold
t + θ ) is triggered by its neighbors. If we apply InfluenceSpread(ȳ, t + θ,w + ϕ),
it is easy to see by induction over the main loop that for each x j ∈ Ak there is an
implied lower bound x j ≥ 1 (recall that x j is binary), and for all nodes /∈ An there
is no such implied lower bound. It follows that in the optimal solution x j = 1 if and
only if j ∈ An . �

The above formulation does not suffer from self-activating loops (which require
additional caution in some other formulations, see e.g., Fischetti et al. [12]), and it has
n binary variables only. Problem RIx,θ,ϕ(ȳ) is stated as a MILP; Sect. 3.1 shows that
computing its value is NP-hard, hence using a MILP formulation is justified. Because
of Proposition 1, the robust IMPwith q activation seeds can be solved as the following
bilevel optimization problem:

maxy RIx,θ,ϕ(y)∑
j∈V y j = q

∀ j ∈ V y j ∈ {0, 1}.

⎫
⎬

⎭
(R-IMP)

Notice that if we fix θ = 0 and ϕ = 0, solving RIx,θ=0,ϕ=0(ȳ) yields x j = 1
exactly for the nodes returned by InfluenceSpread(ȳ, t, w). It is easy to show by
counterexample that RIx,θ,ϕ(y), taken as a set function of the incidence vector y, is
not submodular even for fixed θ and ϕ. The robust approach of Bertsimas and Sim [5]
is difficult to apply here because we do not even have a single-level formulation for the
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problem. It may be possible to overcome this difficulty with a different formulation
with an increased number of variables: in particular, a time-expanded graph with n2

nodes to represent the n iterations of Algorithm 1 would in principle lead to a single-
level formulation, which might allow different strategies to make the problem robust.
Our approach keeps a model with n binary variables: this is the subject of Sects. 4 and
5.

3 Properties of the robust problem

Before developing an algorithm for (R-IMP), we study some of its properties. More
specifically, we show that the inner problem RIx,θ,ϕ(ȳ) is NP-hard given ȳ. We then
turn our attention to properties of the robust solution under different uncertainty sets,
formalizing the natural intuition that the price of robustness is higher for node threshold
uncertainty than it is for arc weight uncertainty.

3.1 Hardness

We define the decision version of RIx,θ,ϕ(y) as follows:

Problem (Robust Influence): determine the influence spread under a
robust model.
Input: graph G = (V , E) with node thresholds t , arc weights w, vector of
seed nodes ȳ ∈ {0, 1}n , robustness budget BN , BA, maximum node threshold
and arc weight deviation ΔN ,ΔA, and an integer k.
Output: is RIx,θ,ϕ(ȳ) ≤ k?

Theorem 1 The problem “Robust Influence” is NP-complete, even if BN = 0 or
BA = 0.

Proof Membership in NP is straightforward: a polynomial-size certificate for the
answer can be constructed by providing the optimal θ ȳ and ϕ ȳ . The answer can be ver-
ified by running the polynomial-time algorithm InfluenceSpread(ȳ, t + θ,w + ϕ).
To show hardness, we provide a reduction from “Exact Cover by 3-Sets.”

Problem (Exact Cover by 3-Sets): determine an exact set covering.
Input: Ground set X with |X | = 3q, collection C ⊂ 2X of subsets of X with
cardinality 3.
Output: does there exist C ⊂ C such that

⋃
S∈C S = X , and |C | = q?

We first examine the case BA = 0; the case BN = 0 is similar. We construct an
instance of Robust Influence as follows; an example is given in Fig. 1. The graphG has
|C| + 3q + 1 nodes and has three layers, with arcs always directed toward subsequent
layers. The first layer contains only a special node, selected as the only seed node for
the influence spread. The special node is connected to |C| nodes in the second layer,
representing the collection of subsets of X with an arc with weight 2. The |C| nodes
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are connected to |X | nodes in the third layer, representing th elements of X . A node in
the second layer, corresponding to S ∈ C, is connected to the nodes representing the
three elements of X that it contains. All the arcs between the second and third layer
have weight 1. All node thresholds in the second layer are 1, all node thresholds in the
third layer are equal to the respective indegree.We set BN = q(1+ε), k = |C|−q+1,
ΔN = 2,ΔA = 1.

Suppose there exists an exact cover C of X . Then we can set θ j = 1 + ε for all
j ∈ C ; in other words, we increase by 1 + ε the threshold of all nodes in the graph
corresponding to the subsets in C that yield an exact cover of X . By doing so, these
nodes cannot be activated. In the third layer, a node is active if and only if all the
entering arcs are coming from active nodes. But because C is an exact cover, there
will be exactly one inactive arc for each node in the third layer. Thus, all nodes in the
third layer are inactive. It follows that the total influence spread is |C| − q + 1: there
is one active node in the first layer (the seed), and |C| − q in the second layer.

Conversely, suppose the influence spread is |C| − q + 1. Notice that the node in the
first layer (chosen as the seed) and at least |C|−q nodes in the second layer are always
active, because the budget BN allows us to deactivate at most q nodes in the second
layer. Hence, these must be the only active nodes. But then all nodes in the third layer
must be adjacent to an inactive node in the second layer. It follows that we found an
exact cover C of X .

The proof for BN = 0, BA > 0 is similar: we simply set BN = 0, BA = q(1 + ε).
In this case, we can ensure nodes in the second layer are inactive by decreasing the
weight of the corresponding entering arc by (1 + ε). �

3.2 Sensitivity analysis

Given a set of robustness parameters P = {BN ,ΔN , BA,ΔA}, we denote by
RIPx,θ,ϕ(y) the problem RIx,θ,ϕ(y) with those parameters. In this section we study
the impact of P on the optimal value.

We start by noting that if the upper bounds on the relative deviations ΔN ,ΔA are
nonrestrictive, the price of robustness for a single unit of robustness budget on the
node thresholds is larger than on arc weights.

Proposition 2 Let P1 = {B1
N ,Δ1

N = +∞, B1
A,Δ1

A = 1}, P2 = {B2
N ,Δ2

N
= +∞, B2

A,Δ2
A = 1}. We have the following implication:

{
B1
N + B1

A = B2
N + B2

A
B1
N ≤ B2

N
�⇒ RIP

1

x,θ,ϕ(y) ≥ RIP
2

x,θ,ϕ(y).

Proof We show that for any feasible solution of RIP1x,θ,ϕ(y), we can construct a feasi-

ble solution for RIP2x,θ,ϕ(y) with the same objective function value. This immediately

implies the claim. Let (x1, θ1, ϕ1) be feasible for RIP1x,θ,ϕ(y).We construct (x2, θ2, ϕ2)
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Fig. 1 Example of the reduction from“ExactCover by 3-Sets.” The ground set is X = {a, b, c, d, e, f }, q =
2,C = {S1, S2, S3, S4} with S1 = {a, b, e}, S2 = {b, c, d}, S3 = {c, d, f }, S4 = {d, e, f }. Node thresh-
olds are indicated next to each node, and arc weights that are not shown in the figure are 1

feasible for RIP2x,θ,ϕ(y) as follows:

x2 = x1; ϕ2 = B2
A

B1
A

ϕ1; θ2j = θ1j + B1
A − B2

A

B1
A

∑

i∈δ−( j)

ϕ1
i j , ∀ j ∈ V . (2)

It is immediate to check that RIP
1

x,θ,ϕ(y) = RIP
2

x,θ,ϕ(y), and that the point satisfies the

constraints 0 ≤ θ2j , 0 ≤ ϕ2
i j and

∑
i∈δ−( j)(wi j x2i − ϕ2

i j ) − θ2j + ε − (
∑

i∈δ−( j) wi j +
ε)x2j ≤ t j . �

To prove Proposition 2 we had to assumeΔN = ∞ andΔA = 1. If these conditions
are not satisfied, the argument fails because the point constructed in the proof for P2

may not satisfy the constraints θ ≤ ΔN t andϕ ≤ ΔAwx in the definition ofRIx,θ,ϕ(y).
The next two results give sufficient conditions on ΔN and ΔA to be able to perform
similar constructions. While the statements are technical, we will discuss some more
intuitive special cases at the end of this section.
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Theorem 2 Let P1 = {B1
N ,Δ1

N , B1
A,Δ1

A}, P2 = {B2
N ,Δ2

N , B2
A,Δ2

A}. We have the
following implication:

⎧
⎪⎪⎨

⎪⎪⎩

Δ2
N ≥ Δ1

N + B1
A−B2

A
B1
A

Δ1
A max j∈V {

∑
i∈δ−( j) wi j

t j
}

B1
N + B1

A = B2
N + B2

A

B1
N ≤ B2

N

�⇒ RIP
1

x,θ,ϕ(y) ≥ RIP
2

x,θ,ϕ(y).

Proof As for Proposition 2, we show that for any feasible solution of RIP1x,θ,ϕ(y)we can

construct a feasible solution forRIP2x,θ,ϕ(y)with the sameobjective function value. For a

feasible solution (x1, θ1, ϕ1), define (x2, θ2, ϕ2) as in Eq. (2).We have to show that the
upper bounding constraints in RIP2x,θ,ϕ(y) hold for the proposed solution (x2, θ2, ϕ2).
We have:

∑

j∈V
θ2j =

∑

j∈V
θ1j + B1

A − B2
A

B1
A

∑

j∈V

∑

i∈δ−( j)

ϕ1
i j ≤ B1

N + B1
A − B2

A

B1
A

B1
A = B2

N

and

ϕ2
i j = B2

A

B1
A

ϕ1 ≤ B2
A

B1
A

B1
A = B2

A.

Finally, since (x1, θ1, ϕ1) is feasible, we have:

θ2j

t j
= θ1j

t j
+ B1

A − B2
A

B1
A

∑

i∈δ−( j)

ϕ1
i j

t j
≤ Δ1

N + B1
A − B2

A

B1
A

∑

i∈δ−( j)

Δ1
Awi j xi j
t j

≤ Δ2
N .

Thus, θ2 satisfies the constraints θ2j ≤ Δ2
N t j . �

Theorem 3 Let P1 = {B1
N ,Δ1

N , B1
A,Δ1

A}, P2 = {B2
N ,Δ2

N , B2
A,Δ2

A}. We have the
following implication:

⎧
⎪⎪⎨

⎪⎪⎩

Δ2
N ≥ Δ1

N + B1
A−B2

A
B1
A

1
1−Δ1

A

B1
N + B1

A = B2
N + B2

A

B1
N ≤ B2

N

�⇒ RIP
1

x,θ,ϕ(y) ≥ RIP
2

x,θ,ϕ(y).

Proof Weuse the same approach and notation as in the proof of Theorem (2). Construct
the following solution (x2, θ2, ϕ2) for RIP

2

x,θ,ϕ(y):

x2 = x1; ϕ2 = B2
A

B1
A

ϕ1; θ2j =
⎧
⎨

⎩

θ1j + B1
A−B2

A
B1
A

∑
i∈δ−( j) ϕ1

i j if x1j = 1

0 if x1j = 0
, ∀ j ∈ V .
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It is immediate to check that RIP
1

x,θ,ϕ(y) = RIP
2

x,θ,ϕ(y), and that all the constraints of

RIP
2

x,θ,ϕ(y) except for θ2j ≤ Δ2
N t j are respected. Since (x1, θ1, ϕ1) is feasible, we have

ϕ1 ≤ Δ1
Awx1i ≤ Δ1

Aw, which implies:

(1 − Δ1
A)

∑

i∈δ−( j)

wi j ≤
∑

i∈δ−( j)

(wi j − ϕ1
i j ).

Notice that if node j is not active (i.e., x2j = x1j = 0), we must have
∑

i∈δ−( j)(wi j −
ϕ1
i j ) < t j , and therefore:

t j
(1 − Δ1

A)
≥

∑

i∈δ−( j)

wi j ≥
∑

i∈δ−( j)

ϕ1
i j ,

where we used the fact that ϕ1
i j ≤ Δ1

Awi j x1i ≤ Δ1
Awi j and 0 ≤ ΔA ≤ 1. Finally, this

implies:

θ2j

t j
= θ1j

t j
+ B1

A − B2
A

B1
A

∑

i∈δ−( j)

ϕ1
i j

t j
≤ Δ1

N + B1
A − B2

A

B1
A

∑

i∈δ−( j)

ϕ1
i j

t j
≤ Δ2

N .

�

The sufficient conditions given in Theorems 2 and 3 can be unintuitive to grasp.
We now give two special cases (one for each of the two sufficient conditions) that
consider either BN = 0 or BA = 0. These special cases are easier to parse and still
capture the essence of the results: as long as themaximum deviation parameters satisfy
certain conditions, then the solution to the robust problem, with a given node threshold
robustness budget, will beworse (i.e., more conservative) than a solution obtainedwith
the same robustness budget assigned to on arc weight robustness.

Corollary 1 Let P A = {0, 0, BA,ΔA}, PN = {BN ,ΔN , 0, 0}. We have the following
implication:

⎧
⎪⎨

⎪⎩

ΔN ≥ ΔA max j∈V
{∑

i∈δ−( j) wi j

t j

}

BN ≥ BA

�⇒ RIP
A

x,θ,ϕ(y) ≥ RIP
N

x,θ,ϕ(y).

Corollary 2 Let P A = {0, 0, BA,ΔA}, PN = {BN ,ΔN , 0, 0}. We have the following
implication: {

ΔN ≥ 1
1−ΔA

BN ≥ BA
�⇒ RIP

A

x,θ,ϕ(y) ≥ RIP
N

x,θ,ϕ(y).
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4 Activation set formulation for the non-robust problem

Our first step toward solving (R-IMP) is a formulation for the non-robust counterpart
of the problem. In this section we therefore assume that θ, ϕ = 0 for simplicity. The
node activation threshold at node j is then t j and the arc weights are given by the
vector w. The formulation that we use relies on the following definition:

Definition 2 For all j ∈ V , we define the corresponding collection of minimal activa-
tion sets C j as:

C j =
{

S ⊆ δ−( j) :
∑

i∈S
wi j ≥ t j , S is minimal

}

It is obvious that a node j is active if and only if there exists S ∈ C j such that all
nodes in S are active. The concept of minimal activation set was first introduced in the
recent paper Fischetti et al. [12]. We developed the idea independently and we use our
simpler definition, but it is easy to verify that the definition above corresponds to the
minimal influencing set of Fischetti et al. [12] in the context of the linear threshold
model and no incentives. We can reformulate RIx,θ=0,ϕ=0(ȳ) (see Eq. (1)) using the
collection of minimal activation sets.

ASx (ȳ) := min
∑

j∈V x j

∀ j ∈ V ,∀S ∈ C j
∑

i∈S xi − x j ≤ |S| − 1

∀ j ∈ V x j ≥ ȳ j .

⎫
⎪⎬

⎪⎭
(3)

Proposition 3 If ȳ is a 0–1 vector, the optimal solution x∗ to ASx (ȳ) is integer and
x j = 1 if and only if j ∈ An as returned by InfluenceSpread(ȳ, t, w).

Proof Every x j is lower bounded by ȳ j and by
∑

i∈S xi − |S| + 1 for some subset of
nodes S adjacent to node j .

We first show by induction for k = 1, . . . , n that for every node j ∈ Ak in
InfluenceSpread(ȳ, t, w), we have an implied lower bound x j ≥ 1 in ASx (ȳ).

For k = 1 the claim is obvious because of the constraints x j ≥ ȳ j . To go from k−1
to k, notice that if node j is added to Ak at step k of InfluenceSpread(ȳ, t, w), it
must be that

∑
i∈δ−( j):i∈Ak−1

wi j ≥ t j . By the induction hypothesis for all i ∈ Ak−1

we have xi ≥ 1, hence
∑

i∈δ−( j) wi j xi ≥ t j . By definition of minimal activation set,

there must exist some S ∈ C j , say S̄, such that S̄ ⊆ Ak−1. Then the corresponding
constraint

∑
i∈S̄ xi − x j ≤ |S̄|−1 in the formulation ASx (ȳ) reads |S̄|− x j ≤ |S̄|−1,

implying x j ≥ 1.
Finally, for every j /∈ An , all the constraints

∑
i∈S xi − x j ≤ |S| − 1 are slack

because there does not exist S ∈ C j , S ⊆ Ak for some k. Hence, the implied lower
bound for x j is 0. Since we are minimizing

∑
j∈V x j , at the optimum x j = 1 if and

only if j ∈ An . �
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We can use ASx (ȳ) to obtain a single-level linear formulation for the restriction
of (OPT) in which θ = 0 and ϕ = 0. More specifically, we consider the following
problem:

maxy ASx (y)∑
j∈V y j = q

∀ j ∈ V y j ∈ {0, 1}.

⎫
⎬

⎭
(IMP-θ0-ϕ0)

We first take the dual of the inner problem ASx (ȳ) for a fixed ȳ. The dual is:

maxπ,μ

∑
j∈V

∑
S∈C j

(|S| − 1)π j,S + ∑
j∈V μ j ȳ j

∀ j ∈ V
∑

k∈δ+( j)
∑

S∈Ck : j∈S πk,S − ∑
S∈C j

π j,S + μ j ≤ 1
∀ j ∈ V ,∀S ∈ C j π j,S ≤ 0

∀ j ∈ V μ j ≥ 0.

⎫
⎪⎪⎬

⎪⎪⎭

The solution of this problem has value equal to that of its primal problem and therefore,
by Proposition 3, to InfluenceSpread(ȳ, t, w) whenever ȳ ∈ {0, 1}n . It follows that
a valid formulation for (IMP-θ0-ϕ0) is the following:

maxπ,μ,y
∑

j∈V
∑

S∈C j
(|S| − 1)π j,S + ∑

j∈V μ j y j
∀ j ∈ V

∑
k∈δ+( j)

∑
S∈Ck : j∈S πk,S − ∑

S∈C j
π j,S + μ j ≤ 1
∑

j∈V y j = q
∀ j ∈ V ,∀S ∈ C j π j,S ≤ 0

∀ j ∈ V μ j ≥ 0
∀ j ∈ V y j ∈ {0, 1}.

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

This is a quadratic problem, but we can easily reformulate it as a linear problem with
indicator constraints. To do so, we simply notice that whenever y j = 0, μ j has no
contribution in the objective function; since μ j appears in a single constraint and
increasing μ j reduces the feasible region for the remaining variables, there exists an
optimal solution in which y j = 0 implies μ j = 0. Thus, we obtain the following
formulation for (IMP-θ0-ϕ0):

maxπ,μ,y
∑

j∈V
∑

S∈C j
(|S| − 1)π j,S + ∑

j∈V μ j

∀ j ∈ V
∑

k∈δ+( j)
∑

S∈Ck : j∈S πk,S − ∑
S∈C j

π j,S + μ j ≤ 1
∀ j ∈ V y j = 0 ⇒ μ j = 0∑

j∈V y j = q
∀ j ∈ V ,∀S ∈ C j π j,S ≤ 0

∀ j ∈ V μ j ≥ 0
∀ j ∈ V y j ∈ {0, 1}.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

(DUAL-θ0-ϕ0)
The advantage with respect to (R-IMP) is of course that we now have a single-level
problem, rather than bilevel. To achieve this result we had to fix θ = 0 and ϕ = 0.
This restriction will be lifted in the next section.

An alternative approach to deal with bilinear terms is to linearize them via
McCormick envelopes (see McCormick [21]), which are exact when y is binary
and μ is bounded. It is also possible to explicitly model the logical implication
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y j = 0 ⇒ μ j = 0 with a big-M constraints. With these last two approaches it is
necessary to find valid upper bounds for the μ variables, since these upper bounds
appear explicitly in the linearizations. Unfortunately, the required upper bounds are
large: in “Appendix B” we show that n is not a valid bound, and numerically we found
cases where even n2 was not enough. Hence, explicit computation of upper bounds
of μ seems difficult and would in any case lead to weak formulations. We note, how-
ever, that in a Branch-and-Bound framework the upper bounds could be iteratively
tightened, see, e.g., Belotti et al. [3].

We prove an additional result that we could not successfully exploit from an empir-
ical point of view, but may be interesting for future research.

Proposition 4 For every ȳ ∈ {0, 1}n, the polyhedron corresponding to the LP obtained
by fixing y = ȳ in (DUAL-θ0-ϕ0) is an integral polyhedron.

Proof We show that for a given 0-1 vector ȳ, the remaining system in (DUAL-θ0-ϕ0)
is total dual integral. This implies that it defines an integral polyhedron Edmonds and
Giles [10].

The discussion in this section shows that the dual of (DUAL-θ0-ϕ0) for fixed
y = ȳ is the problem ASx (ȳ) defined in (3). To show total dual integrality of the
desired system, we need to show that for any integer value of the r.h.s. of the first set
of constraints in ASx (ȳ), either ASx (ȳ) is infeasible, or it has an optimal solution that
is integer.

Let b be a given vector of integer r.h.s. values for the first set of constraints, which
are indexed by j ∈ V , S ∈ C j . First, notice that if b j,S < 0 for any j, S, the problem is
infeasible; hence, we only need to consider the case b ≥ 0. We show how to construct
an integer optimal solution.

Define x0 := ȳ. Apply the following algorithm: for k = 1, . . . , n, (i) set xkj ← 0 ∀ j ;

(ii) for j ∈ V , S ∈ C j , set xkj ← max{xkj ,
∑

i∈S x
k−1
i − b j,S}. It is clear that this

defines an integral vector xn . We now show that this solution is optimal. Let x∗ be
an optimal solution for the problem with r.h.s. b. We first show by induction that
xk ≤ x∗. For k = 0 this is obvious as x ≥ ȳ = x0 is among the constraints.
Assume xk−1 ≤ x∗ and suppose xkh > x∗

h for some h. Since xkh is initially 0, it
must be that for some S, xkh is set to

∑
i∈S x

k−1
i − bh,S > x∗

h for the first time. But
∑

i∈S x
k−1
i − bh,S ≤ ∑

i∈S x∗
i − bh,S ≤ x∗

h , because x
∗ satisfies the constraints; this

is a contradiction. It follows that xk ≤ x∗ for all k = 1, . . . , n. It is easy to check that
xn is feasible by construction, and therefore it must be optimal. �

The proof of Proposition 4 shows that the LP obtained from (DUAL-θ0-ϕ0) for
integral y is total dual integral. Hence, variables π,μ are automatically integer when
y is integer. However, empirically we did not observe any advantage by imposing π,μ

integer in the MILP solver used in our numerical experiments. It is an open question
whether this can be exploited in some solution method.
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5 Branch-Cut-and-Price for robust influencemaximization

For the robust version of the problem it is no longer sufficient to consider only the
case θ = 0 and ϕ = 0. In fact, we would like to optimize over θ and ϕ as in the
original formulation (R-IMP), but it is not obvious how to use the dualization trick
described in the previous section when θ and ϕ are not fixed. This is because the
activation sets may change with θ and ϕ, since θ directly affects the node activation
thresholds, while ϕ affects the edges values. To overcome this difficulty, we propose
to work with a modification of (DUAL-θ0-ϕ0) that includes dual π j,S variables for all
the activation sets that may be minimal for any of the possible values of θ and ϕ. We
choose an objective function that provides a valid upper (dual) bound for any choice
of seed nodes ȳ, and that encodes the objective function for a specific choice of θ and
ϕ. This objective function is iteratively changed in the course of Branch-and-Cut to
tighten the upper bound. At the same time, we keep track of primal solutions so that
at termination we have the vector ȳ attaining the maximum possible RIx,θ,ϕ(ȳ), i.e.,
the maximum influence spread when simultaneously minimizing over θ and ϕ.

It will be convenient to introduce the following sets.

Definition 3 For all j ∈ V and robustness parameters ΔN and ΔA, we define the
corresponding extended collection of minimal activation sets Cej as:

Cej =
{

S ⊆ δ−( j) : ∃ θ j ∈ [0,ΔN t j ], ϕi j ∈ [0,ΔAwi j ] such that

∑

i∈S
(wi j − ϕi j ) ≥ t j + θ j , S is minimal

}

In other words, Cej contains all subsets of δ−( j) that are a minimal activation set for
some value of the random data (i.e., θ and ϕ) within the uncertainty set. By definition,
C j ⊆ Cej . Moreover, it is easy to check that Cej coincides with C j whenever ΔN = 0
andΔA = 0. An algorithm to compute Cej is given in Algorithm 2. For a given node j ,
the algorithm starts with an empty set. It recursively adds nodes from δ−( j), starting
from the one connected with the arc of maximum weight, and checking whether each
new set is an activation set. The algorithm stops when adding new nodes would make
the activation set non-minimal for every possible value of the node threshold and of
the arc weights. Indeed, minimality is guaranteed by the fact that nodes are added in
decreasing order of the corresponding arc weights.

We then define a family of 2n possible objective functions, each of which defines
a problem equivalent to RIx,θ=θ̄ ,ϕ=ϕ̄(y) for a fixed choice of θ̄ and ϕ̄. In practice the
optimization considers one objective function at a time, but this can be locally changed
at certain nodes of the Branch-and-Bound tree as long as we ensure that pruning
decisions based on the dual bound are correct. This will be explained in Sect. 5.1.

Note that the number of sets in Cej grows exponentially with the maximum degree
of a node in the graph. In the next subsection, we show that our approach based on
row generation and replacement is correct under the assumption that all the sets in

123



434 G. Nannicini et al.

Cej are known. In practice, to deal with large graphs we propose a column generation
approach, discussed in Sects. 5.2 and 6.

1: if first_to_add > |δ−( j)| then return false
2: any_generated ← false
3: if

∑
i∈S wi j ≥ t j then

4: Cej ← Cej ∪ S
5: any_generated ← true
6: if

∑
i∈S wi j ≥ t j + min{BN , ΔN t j } + min{BA,

∑
i∈S ΔAwi j } then return true /* If S is

an activation set for any possible threshold of node j , we do not need to add more items to the set */
7: for i ← first_to_add to |δ−( j)| do
8: next_generated ← RecGenExt( j, S ∪ {i}, i + 1,Cej ) /* Check if adding the next largest item

would make S a valid activation set */
9: if next_generated = false then break else any_generated ← true

return any_generated

Algorithm 2: Function RecGenExt( j, S,first_to_add, Cej ). We assume w.l.o.g. (up
to relabeling) that δ−( j) := {1, . . . , |δ−( j)|}, and δ−( j) is sorted by decreasing value
ofwi j . For a given node j , the first call to the function should beRecGenExt( j, S ←
∅,first_to_add ← 1, Cej ← ∅).

5.1 Row generation and replacement

We now discuss the solution of (R-IMP) via Branch-and-Cut assuming that the sets in
Cej are known explicitly. To do so, we introduce some additional notation.

Definition 4 For every ȳ ∈ {0, 1}n , let θ ȳ, ϕ ȳ be the optimal values of θ, ϕ for prob-
lem RIx,θ,ϕ(ȳ). We define the corresponding collection of seed-dependent minimal

activation sets C ȳ
j as:

C ȳ
j =

{

S ⊆ δ−( j) :
∑

i∈S
(wi j − ϕ

ȳ
i j ) ≥ t j + θ

ȳ
j , S is minimal

}

.

In other words, C ȳ
j is the collection of activation sets that are minimal for a given

θ ȳ, ϕ ȳ . Notice that C ȳ
j ⊆ Cej for all ȳ.

We show that (R-IMP) can be solved via the solution of an exponential number of
problems of the form (DUAL-θ0-ϕ0), with different objective functions. Furthermore,
this can in principle be solved using just one Branch-and-Bound tree. Consider the
following problem, where ȳ ∈ {0, 1}n .
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maxπ,μ,y z∑
j∈V

∑
S∈C ȳ

j
(|S| − 1)π j,S +

∑
j∈V

∑
S∈Ce

j\C ȳ
j
|S|π j,S + ∑

j∈V μ j − z ≥ 0

∀ j ∈ V
∑

k∈δ+( j)
∑

S∈Ce
k : j∈S πk,S − ∑

S∈Ce
j
π j,S + μ j ≤ 1

∀ j ∈ V y j = 0 ⇒ μ j = 0∑
j∈V y j = q

∀ j ∈ V ,∀S ∈ Cej π j,S ≤ 0
∀ j ∈ V μ j ≥ 0
∀ j ∈ V y j ∈ {0, 1}.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(R-IMP-ȳ)

Theorem 4 For any ȳ ∈ {0, 1}n, the value of (R-IMP-ȳ) at every integer solution ỹ is
an upper bound to RIx,θ,ϕ(ỹ) [Eq. (1)], and if ỹ = ȳ, then the value of (R-IMP-ȳ) is
exactly RIx,θ,ϕ(ȳ).

Proof Consider the following LP, obtained by fixing y = ỹ in (R-IMP-ȳ) and elimi-
nating the redundant variable z:

maxπ,μ

∑
j∈V

∑
S∈C ȳ

j
(|S| − 1)π j,S+

∑
j∈V

∑
S∈Ce

j\C ȳ
j
|S|π j,S + ∑

j∈V μ j

∀ j ∈ V
∑

k∈δ+( j)
∑

S∈Ce
k : j∈S πk,S − ∑

S∈Ce
j
π j,S + μ j ≤ 1

∀ j ∈ V , ỹ j = 0 μ j = 0
∀ j ∈ V ,∀S ∈ Cej π j,S ≤ 0

∀ j ∈ V μ j ≥ 0.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4)

This problem is feasible as the all-zero solution is feasible. Using the reverse of the
transformations discussed in Sect. 4, we can show that the dual of such an LP is
equivalent to the following problem:

min
∑

j∈V x j
∀ j ∈ V ,∀S ∈ C ȳ

j

∑
i∈S xi − x j ≤ |S| − 1

∀ j ∈ V ,∀S ∈ Cej\C ȳ
j

∑
i∈S xi − x j ≤ |S|

∀ j ∈ V x j ≥ y∗
j

∀ j ∈ V x j ≤ 1
∀ j ∈ V x j ≥ 0.

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(5)

The constraints with r.h.s. value |S| are redundant and can be dropped. As a result,
with the same argument used for Proposition 3, the optimum value of (5) and therefore
(4) is equal to RIx,θ=θ ȳ ,ϕ=ϕ ȳ (ỹ). The statement then follows: this value is an upper
bound for RIx,θ,ϕ(ỹ) (because RI is a minimization problem and θ = θ ȳ, ϕ = ϕ ȳ is
just a feasible solution), and is equal to RIx,θ,ϕ(ȳ) when evaluated at ỹ = ȳ because
the optimal θ, ϕ are θ ȳ, ϕ ȳ by definition. �
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Fig. 2 Graph discussed in the example related to Theorem 4. Node labels are indicated inside each node,
node thresholds are indicated above and to the right of each node, and arc weights are indicated next to
each arc

Theorem (4) shows a way to obtain valid upper bounds. We can exploit this in
the following algorithm for (R-IMP). First, generate the extended collection Cej of
activation sets for all j ∈ V , using Algorithm 2. It is easy to see that for a given ȳ,
each activation set S ∈ Cej is valid in the range [t j ,min{(1+ΔN )t j ,

∑
i∈S(wi j −ϕ

ȳ
i j )}]

and it isminimal if the threshold is strictly greater than
∑

i∈S(wi j−ϕ
ȳ
i j )−mini∈S{wi j−

ϕ
ȳ
i j }. Then, implement problem (R-IMP-ȳ) within a Branch-and-Bound solver for an

arbitrary initial vector ȳ ∈ {0, 1}n . At every node of the Branch-and-Bound tree we
do the following:

– If the solution to the node LP is not integer, decide if ȳ used in the first row of
(R-IMP-ȳ) to define the objective function should be updated, with an arbitrary
decision rule.

– If the solution to the node LP is integer, say, ỹ, then:

– If ȳ = ỹ for that node, accept the solution;
– Otherwise, update ȳ = ỹ for that node and its potential children, and put the
node back in the list of open nodes. (The solution ỹ is thus not accepted.)

Correctness of this algorithm follows by Theorem 4 and standard Branch-and-Bound
arguments: we just need to observe that pruning decisions are correct, because an
integer solution ỹ is only accepted if the corresponding LP has value RIx,θ,ϕ(ỹ), and
at every node we have a valid upper bound. There are several valid strategies to choose
when to replace the objective function that depends on ȳ. For example, it is reasonable
to replace ȳ every few levels of the Branch-and-Bound tree with a ȳ (corresponding to
a choice of θ, ϕ) that improves the dual bound. This can be computed solving a prob-
lem of the form RIx,θ,ϕ(ŷ) where ŷ is, e.g., the current vector of upper bounds on the
y variables: the cardinality constraint on y can be temporarily relaxed, since the goal
is simply to obtain a choice of θ, ϕ that can be used to compute the objective function.
In practice, our implementation uses IBM ILOG CPLEX, and CPLEX does not allow
changing the objective function in the course of Branch-and-Bound. Thus, we imple-
ment a variant of the above algorithm, based on restarts. This is described in Sect. 6.

As every distinct ȳ yields a different first row in (R-IMP-ȳ), one may be tempted
to keep all these constraints in the formulation so that the objective function z is upper
bounded by the tightest such constraint. However, the following example shows that
this would break Theorem 4, in the sense that the linear programming relaxation to
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the problem would no longer yield valid dual bounds.1 Consider the graph depicted in
Fig. 2. We assume that BN = 0, BA = 1, q = 2. The extended collections of minimal
activation sets for the three nodes that can be activated by other nodes are:

Ce3 = {S1 = {1, 2}}
Ce4 = {S2 = {1, 2}, S3 = {1, 3}, S4 = {2, 3}, S5 = {1, 2, 3}}
Ce5 = {S6 = {4}}

We consider three different values of ȳ (the other possibilities are irrelevant for the
purposes of this example): (1, 1, 0, 0, 0), (0, 1, 1, 0, 0), (1, 0, 1, 0, 0). For brevity, in
the following we will write these solutions as 5-digit binary strings. For each ȳ there
are multiple optimal solutions to the problem RIx,θ,ϕ(ȳ). In our example, we assume
that the optimal solutions have the following values of ϕ (θ j is always 0 since BN = 0)
for each value of ȳ:

ȳ = 11000 �−→ ϕ14 = 1

ȳ = 01100 �−→ ϕ24 = 1

ȳ = 10100 �−→ ϕ23 = 1.

Notice that the activation sets S2, S3 are no longer valid activation sets for node 4 when
ϕ14 = 1, as the sum of the corresponding arc weights does not exceed the threshold of
node 4. Similarly, ϕ24 = 1 disables activation set S4, and ϕ23 disables activation set
S1. Problem (R-IMP-ȳ) with all the constraints corresponding to the three ȳ indicated
above reads:

maxπ,μ,y z
(ȳ = 11000) πS1 + 2πS2 + 2πS3 + πS4 + 2πS5 + ∑

j=1,...,5 μ j ≥ z
(ȳ = 01100) πS1 + πS2 + πS3 + 2πS4 + 2πS5 + ∑

j=1,...,5 μ j ≥ z
(ȳ = 10100) 2πS1 + πS2 + πS3 + πS4 + 2πS5 + ∑

j=1,...,5 μ j ≥ z
πS1 + πS2 + πS3 + πS5 + μ1 ≤ 1
πS1 + πS2 + πS4 + πS5 + μ2 ≤ 1
πS3 + πS4 + πS5 − πS1 + μ3 ≤ 1

πS6 − πS2 − πS3 − πS4 − πS5 + μ4 ≤ 1
−πS6 + μ5 ≤ 1

∀ j = 1, . . . , 5
∑

k∈δ+( j)
∑

S∈Ce
k : j∈S πS − ∑

S∈Ce
j
πS + μ j ≤ 1

∀ j = 1, . . . , 5 y j = 0 ⇒ μ j = 0∑
j=1,...,5 y j = 2

∀ j = 1, . . . , 6 πS j ≤ 0
∀ j = 1, . . . , 5 μ j ≥ 0
∀ j = 1, . . . , 5 y j ∈ {0, 1}.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6)

1 In the IPCO version of this paper, all such constraints were added to the formulation as lazy constraints.
The discussion here shows that this may yield invalid dual bounds and a potentially suboptimal solution.
This is due to a mistake in the proof of Theorem 4 of the IPCO version: it is fixed in this paper. Experiments
show that ≈ 25% of the solutions found in the IPCO paper are suboptimal.
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To see where trouble might arise, consider the LP obtained by fixing y = 11000. We
take its dual as it makes the situation easier to understand:

min x1 + x2 + x3 + x4 + x5
x1 + x2 − x3 − γ1 − γ2 − 2γ3 ≤ 0
x1 + x2 − x4 − 2γ1 − γ2 − γ3 ≤ 0
x1 + x3 − x4 − 2γ1 − γ2 − γ3 ≤ 0
x2 + x3 − x4 − γ1 − 2γ2 − γ3 ≤ 0

x1 + x2 + x3 − x4 − 2γ1 − 2γ2 − 2γ3 ≤ 0
x4 − x5 ≤ 0

x1 − γ1 − γ2 − γ3 ≥ 0
x2 − γ2 − γ2 − γ3 ≥ 0

γ1 + γ2 + γ3 ≥ 1
x, γ ≥ 0.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(7)

In the dual (7), γ are the variables corresponding to the first three constraints in (6). The
dual has a form similar to (5), as expected, and the constraints correspond to activation
sets. However, due to presence of multiple ȳ constraints in (6), the r.h.s. vector of (7)
is 0, and the problem is allowed to “choose” a r.h.s. vector using the γ variables. In
contrast, the r.h.s. vector of (5) is fixed and corresponds to having a single nonzero
γ variable equal to 1. Because of this, the value of (7) can be lower than RIx,θ,ϕ(ȳ),
yielding an invalid bound, see Theorem 4. In this example, (7) has optimal objective
function value 3.5, and the optimal variables are (we report only nonzeroes):

x1 = 1, x2 = 1, x3 = 0.5, x4 = 0.5, x5 = 0.5, γ1 = 0.5, γ3 = 0.5.

This is not a valid upper bound, because RIx,θ,ϕ(11000) has value 4, as can be easily
checked: only node 3 is inactive at the optimum.

5.2 Column generation

As remarked in the preceding discussion, Cej may have exponentially large cardinality.
However, its elements and the related variables can be generated via column gener-
ation. We describe the pricing problem for the LP relaxation of (R-IMP-ȳ). Notice
that since we have indicator variables in (R-IMP-ȳ), it is not immediately appar-
ent how to obtain the LP relaxation. For all practical purposes, however, indicator
variables can be treated as if they were involved in a big-M formulation to acti-
vate/deactivate constraints. In the specific case of (R-IMP-ȳ), we can simply assume
that if a variable y j has value 0 at node j , then μ j = 0, and otherwise μ j ≥ 0. Thus,
at any node of the Branch-and-Bound tree, we have access to the corresponding LP
relaxation.

Since the variables π j,S are defined for each activation set S of node j , we can study
column generation by considering a single node j ∈ V : the same reasoning applies to
all nodes of the graph. To generate π j,S , we need to determine its activation set S. Call
x the dual variables for the first set of constraints of (R-IMP-ȳ) (i.e., the constraints
for j ∈ V , rather than the constraint used to bound the objective function variable z;
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we use x as these constraints correspond to the variables in (3)). The reduced cost of
π j,S in Cej is:

x j −
∑

i∈S
xi −

{
(|S| − 1) if ȳ ∈ C ȳ

j

|S| if ȳ ∈ Cej\C ȳ
j

Since we are maximizing and π j,S ≤ 0, a variable may enter the basis if its reduced
cost is nonpositive. Therefore, to find if an entering column belonging to Cej exists, we
should solve:

max
S∈Ce

j

∑

i∈S
xi − x j + (|S| − 1 + 1

S∈Ce
j\C ȳ

j
). (8)

Here, 1 f is 1 if f is true and 0 otherwise. If the objective value is strictly positive,
then the column π j,S ∈ Cej should enter the LP. Problem (8) can be formulated as a
MILP. We first rewrite the objective function as:

∑

i∈S
(xi + 1) − x j − 1 + 1

S∈Ce
j\C ȳ

j
.

Our aim is to determine S ∈ Cej , which is a subset of the nodes in δ−( j). We introduce
binary variables ψi , i ∈ δ−( j) to select the nodes that will be included in S. We
also need to determine if S ∈ Ce

j\C ȳ
j ; we use a binary variable β for this purpose.

Furthermore, we only want to generate minimal activation sets: this is not necessary
for correctness, but drastically reduces the set of columns. To model the minimality
constraint, we use a decision variable α = mini∈δ−( j):ψi=1 wi j that takes the value of
the smallest arc weight within the chosen activation set. We then obtain the following
pricing problem for node j ∈ V , where we use w̄ j = maxi∈δ−( j) wi j :

−x j − 1 + max
∑

i∈δ−( j)

(xi + 1)ψi + β

∑

i∈δ−( j)

wi jψi ≥ t j

∑

i∈δ−( j)

(wi j − ϕ
ȳ
i j )ψi + (t j + θ

ȳ
j )β ≥ t j + θ

ȳ
j

∀i ∈ δ−( j) (w̄ j − (wi j − ϕ
ȳ
i j ))ψi + α ≤ w̄ j

∑
i∈δ−( j)(wi j − ϕ

ȳ
i j )ψi − α ≤ t j + θ

ȳ
j

∀i ∈ δ−( j) ψi ∈ {0, 1}
β ∈ {0, 1}
α ≥ 0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(PRICE- j)

When solving the pricing problem, one has to be careful in dealingwith degeneracy.
If the solution to the LP is degenerate, there can be columns with positive reduced cost
that do not change the LP solution. This could lead to a situation in which we keep
generating the same set of columns because the dual costs do not change, thereby
entering an endless loop. To avoid this problem, we simply keep track of all the
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generated columns and make sure that we do not generate them again by adding
no-good cuts in the pricing problem. For example, if S̄ ∈ Ce

j is an activation set
generated by the pricing problem for node j ∈ V , then we include the no-good cut∑

i /∈S̄ ψi +∑
i∈S̄(1−ψi ) ≥ 1 in all subsequent pricing problems solved for the same

node j ∈ V . We note that, from a computational point of view, no-good cuts tend to
be weak in practice, and their main purpose in our scheme is to avoid cycling, rather
than improving the strength of the formulation for the pricing problem. Finally, we
remark that to check if all necessary columns have been generated, one has to verify
that the value of (PRICE- j) is nonpositive for all j ∈ V .

The implementation of the algorithms described in this paper is based on the com-
mercial software CPLEX, which does not allow adding columns at nodes of the
Branch-and-Bound tree. Implementing an exact Branch-Cut-and-Price would require
a different software framework. We decided instead to implement a heuristic version
of column generation, still relying on CPLEX. This is described in the next section.

6 Implementation of the algorithms

Sections 5.1 and 5.2 describe exact algorithms that would require fine control over
the Branch-and-Cut process: an implementation of those algorithms must be able to
change rows of the node LPs, and add columns after solving the pricing problems.
These capabilities are not available when using commercial MILP solvers. Nonethe-
less, we implemented an exact algorithm, following Sect. 5.1, under the assumption
that all columns (i.e., activation sets) can be generated in preprocessing, as well as a
heuristic Branch-Cut-and-Price that periodically performs a pricing step, but does not
offer optimality guarantees. The implementation is described here.

We start with the implementation of the exact algorithm under the assumption that
all sets in Cej are computed in a preprocessing step. We use this implementation on
graphs of smaller size; it is called Exact in Sect. 7. It works as follows.

S1 Arbitrarily choose an initial ȳ to set the first row of (R-IMP-ȳ). Keep a lower
bound L on the optimum; initially, L ← 0.

S2 Solve (R-IMP-ȳ) in a Branch-and-Bound framework, using a callback to intercept
any integer solution ỹ. At every integer solution ỹ, do:

– Solve RIx,θ,ϕ(ỹ).
– If RIx,θ,ϕ(ỹ) > L , save ỹ, update L ← RIx,θ,ϕ(ỹ), update ȳ ← ỹ used to
determine the first row of (R-IMP-ȳ), and restart, i.e., go back to [S2].

– If RIx,θ,ϕ(ỹ) < L , reject the incumbent and continue.
– Else, if the value of the current incumbent matches the value of RIx,θ,ϕ(ỹ),
then accept the incumbent and continue; otherwise, reject the incumbent and
continue.

Correctness of this algorithm is a direct consequence of the discussion in Sect. 5.1:
at every restart, either the Branch-and-Bound finds a better solution, or it terminates
proving optimality of the best known solution. In practice, we allow an exception to
the rule that forces a restart: if RIx,θ,ϕ(ỹ) > L , but we have processed more than 106
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nodes in the Branch-and-Bound tree, or we have processed at least 105 nodes and the
dual bound has improved compared to the root node, we do not restart. Instead, we
continue the Branch-and-Bound until termination. The rationale is that we have made
enough progress in the search, and restarting would be too detrimental.

Next, we describe the heuristic Branch-Cut-and-Price that we use on large graphs;
this is calledHeurCG in Sect. 7. The algorithm usesExact as a subroutine. It requires
parameters nic (number of initial columns), mpi (maximum number of “priced”
nodes per iteration), mci (maximum number of column generation subproblems per
iteration), mcr (maximum number of columns added per round), and it works as
follows.

– Generate an initial set of columns C , with |C | = nic. To generate the initial set
of columns we apply RecGenExt to each node j ∈ V with an upper bound k on
the cardinality of the activation sets: we start with k = 2, and iteratively increase
k until we generate at least nic columns, keeping all columns generated this way
(which may therefore be more than nic).

– Repeat the following until the time limit is reached:

– Launch Exact using columns C , until it either finds a better solution ỹ and is
about to restart, or terminates proving optimality of a solution ỹ.

– Perform a pricing step on the LP relaxation of (R-IMP-ȳ), fixing y = ỹ and
using ȳ = ỹ. A pricing step consists of several pricing iterations, where each
iteration solves (PRICE- j) for mpi×|V | randomly chosen nodes j ∈ V . The
pricing step performs a pricing iteration until: (i) the bound of the LP matches
RIx,θ,ϕ(ỹ), or (ii) we have performed mci× |V | pricing iterations, or (iii) the
number of generated columns per pricing step is greater than mcr × |V |.

– Let C ′ be the newly generated columns. Set C ← C ∪ C ′.

In our implementation we use the following values: nic = 2500, mpi = 0.025,
mci = 2 and mcr = 2. This choice is motivated by the empirical analysis discussed
in “Appendix C”.

7 Computational results

We test our approach on a large collection of graphs taken from the literature. All the
proposed algorithms are written in Python using IBM ILOG CPLEX 12.8.0 as MILP
solver. The code is available via GitHub, see [24]. We activate the numerical emphasis
setting because of some difficulties faced during our numerical evaluation (on some
graphs, model (DUAL-θ0-ϕ0) can have solutions with very large values). Related to
this, we remark that reformulating the indicator constraints with big-M constraints is
likely to fail: we tried a similar approach, but the big-M values required for validity
are too large in practice. All the experiments reported in this section are executed on
a homogeneous cluster equipped with Xeon E7-4850 processors (2.00 GHz, 64 GB
RAM).

We consider graphs belonging to the class SW (“small world”), described in Fis-
chetti et al. [12], Watts and Strogatz [25]. We use two different test sets:
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– Small graphs.
Number of nodes n ∈ {50, 75, 100}, average node degree k ∈ {4, 8} for n = 50
and k ∈ {8, 12} for n = 75, 100, and rewiring probability b ∈ {0.1, 0.3}. For each
combination of settings, we used 5 random instances.

– Large graphs.
Number of nodesn ∈ {2000, 5000}, averagenodedegree k ∈ {12, 16} and rewiring
probability b ∈ {0.1, 0.3}. For each combination of settings, we used 5 random
instances.

Therefore, we have a total of 60 small instances and 40 large instances. These graph as
well as some additional instances are freely available viaGitHub at https://github.com/
sartorg/robinmax [24]. We also tested a directed version of the Erdos-Rényi random
graph Erdos and Rényi [11]: the conclusions of the study are similar and are therefore
not reported.

We solve the robust and non-robust IMP on each graph using different sets of
parameters and algorithms. The number of seeds is chosen as a fraction (rounded
up to an integer) s ∈ {0.05, 0.10, 0.15} of n for the Small Graphs. The robustness
budgets BN and BA are chosen from {0, 1, 2}, where the case with BN = BA = 0
corresponds to the non-robust case (i.e., the deterministic linear threshold model). We
use s ∈ {0.10, 0.15}, BN , BA ∈ {0, 25, 50} for the Large Graphs. The maximum
deviations ΔN ,ΔA are always equal to 0.1.

Tables 1, 2 and 3 illustrate the results obtained on Small Graphswith Exact, where
all extended collections of activation sets are generated in a preprocessing phase with
Algorithm 2. The tables report the average computation time, the average gap, the
fraction of instances solved to optimality and the average number of activation sets
generated for each combination of parameters. In our tests CPLEX generates very
few cuts – mostly implied bounds, but almost no other cut. This may be related to
the numerical difficulties mentioned above. The robust version seems harder than
the non-robust counterpart, but at least for smaller instances the computation time is
similar: for n = 50, whenever we can solve all deterministic instances, we can solve
the corresponding robust problems as well. The complexity of the instance increases
rapidly with the number of nodes and with the number of seeds; this is not surprising
and agrees with similar findings presented in Fischetti et al. [12]. The number of
activation sets is strongly dependent on k; already for n = 100, k = 12 there are
several thousand activation sets, indicating that column generation is necessary to
scale up the size. The fact that we are able to solve to optimality around 15% of the
instances with n = 100 shows that this problem is very difficult even at modest sizes.

On Large Graphs, we compare HeurCG with a multistart 2- opt heuristic. 2- opt
works as follows: it randomly chooses a set of seed nodes S ⊂ V of the desired
cardinality; then, it explores a neighborhood centered at S, defined as (S\{u}) ∪ {v},
where u ∈ S and v ∈ V \S, trying all possible such u and v. If an improving solution is
found in the neighborhood, it accepts the new solution, and repeats the neighborhood
search from the new S. If there is no better solution, it restarts by generating a new
random S. This is repeated until the time limit is hit. The results reported here are
for a 2- opt in which the neighborhood is always fully explored before moving to a
new solution, so as to choose the largest improvement; we also tested an alternative
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Table 4 Heuristic Comparison: best incumbent for SW graphs with n = 2000, 5000, averaged across
instances of same average node degree k

BN BA 0 25 50

n k Seeds HeurCG 2opt HeurCG 2opt HeurCG 2opt

2000 12 200 0 240, 3 201, 7 209, 4 200, 4 209, 3 200, 5

25 211, 3 200, 7 204, 8 200, 1 204, 3 200, 1

50 210, 8 200, 6 204, 6 200, 2 204, 0 200, 1

300 0 230, 1 301, 6 210, 1 300, 9 210, 2 301, 1

25 211, 7 300, 9 204, 2 300, 8 202, 8 300, 5

50 211, 6 301, 1 203, 5 300, 3 202, 8 300, 5

16 200 0 374, 4 200, 5 326, 5 200, 1 327, 0 200

25 327, 8 200, 1 315, 5 200, 1 309, 7 200

50 326, 4 200, 1 309, 9 200, 1 308, 2 200

300 0 357, 9 301, 2 328, 4 300, 4 323, 3 300, 4

25 328, 8 300, 7 314, 4 300, 3 310, 0 300, 3

50 327, 4 300, 6 310, 9 300, 2 308, 8 300, 1

5000 12 500 0 588, 3 501, 7 537, 4 500, 6 528, 9 500, 6

25 539, 3 500, 5 523, 2 500, 6 515, 7 500, 4

50 531, 0 500, 6 512, 9 500, 6 512, 3 500, 5

750 0 890, 2 753, 8 826, 6 751, 2 808, 2 750, 9

25 825, 9 751, 2 808, 6 750, 7 793, 0 750, 9

50 815, 0 751, 2 795, 2 750, 8 790, 6 750, 8

16 500 0 561, 8 500, 2 531, 8 500 527, 6 500

25 534, 9 500, 1 526, 4 500 518, 5 500

50 534, 4 500, 1 517, 9 500 513, 7 500

750 0 847, 4 750, 8 818, 8 750 805, 3 750

25 814, 3 750, 3 801, 6 750 790, 4 750

50 813, 6 750, 3 795, 3 750 787, 1 750

version in which an improving move is accepted immediately after it is discovered,
but its performance was slightly worse.

Table 4 reports results obtainedwith the two heuristics. It shows the average value of
the best incumbent foundwithin one hour of time limit for each combination of param-
eters. HeurCG clearly outperforms 2- opt in this metric. Additionally, we report that
HeurCG finds a better solution on 720 out of 720 instances, and is thus significantly
more effective. In fact, 2- opt typically finds a solution that attains influence only
marginally larger than the number of seed nodes, while HeurCG achieves nontrivial
improvements over that value.

Looking at the relation between the values of the best solution and the robustness
parameters, we see that the price of robustness is quite high and protecting against
a small amount of uncertainty decreases significantly the total number of activated
nodes. We analyze this in more detail in the next subsection.
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(a) ‖θ‖∞ (b) # nonzero θ

(c) ‖ϕ‖∞ (d) # nonzero ϕ

Fig. 3 The maximum values of θ and ϕ are reported in (a) and (c). The number of nonzeros of θ and ϕ are
reported in (b) and (d). In each subfigure, the value of BN increases from top to bottom and the value of
BA increases from left to right

7.1 The price of robustness: a case study

Our results in Sect. 3.2 indicate that the price to pay to protect the solution from
changes in the node thresholds should be at least as high as the one for changes in the
arc weights. We performed a detailed study to verify the empirical behavior on our
test set. We looked at a few of these cases; here we report only one, as the conclusions
are similar — although we did not verify if the entire set of test instances exhibits the
same pattern.

We study a SW graph with the following characteristics: n = 50, k = 4, b = 0.1.
We examine how the robustness budget affects the value of the optimum.We choose a
range of values for BN and BA from 0 to 5, with an increment of 0.5, for a total of 121
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Fig. 4 Optimal value of the problem for different values of BN and BA

possible combinations. We set ΔA = 1 and ΔN = BN
min j t j

, so that no upper bounds on
the values of θ and ϕ are imposed.

In Fig. 3 we report the maximum value of the θ and ϕ variables, i.e., the ∞-norm
of the corresponding vector, as well as the number of nonzero θ and ϕ variables at the
optimum. Each subtable shows the values of ‖θ‖∞, ‖ϕ‖∞, # nonzero θ and # nonzero
ϕ for increasing values of BA from right to left and for increasing values of BN from
top to bottom.

The values of ‖θ‖∞ increase as BN increases. In the majority of the cases ‖θ‖∞
is equal to BN , and a similar observation holds for ‖ϕ‖∞ and BA. As a consequence,
there are typically few nonzero θ and ϕ, indicating that the worst-case realization
of uncertainty is represented by a situation in which very few nodes/arcs are severely
affected. In Fig. 4 we show the change in the optimal value as BN and BA increase. The
figure shows that a small amount of robustness is sufficient to significantly decrease
the amount of influence attained. The change in the optimal values is remarkably
symmetric in BN and BA.

8 Conclusions

We present an exact Branch-and-Cut and a heuristic Branch-Cut-and-Price for the
influence maximization problem, and its robust counterpart. The algorithms for the
robust version of the problem can handle uncertainty on the edge weights and on the
nodes thresholds. To solve the deterministic version of the problemwe introduce a new
formulation originating from a bilevel problem, exploiting the dual of some (integral)
subproblems. The formulation is extended to the robust case with a row generation
and replacement scheme, within a Branch-and-Cut framework. Since the number of
decision variables in our formulation is exponential, we discuss a column generation
scheme, and implement a heuristic Branch-Cut-and-Price. Numerical experiments
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show that we are able to solve to optimality the robust and the deterministic version
of the problem on small graphs; instances with 100 or more nodes are challenging
already. However, we test our heuristic on graphs with up to 5000 nodes and find that
it significantly outperforms a simple 2-opt heuristic.

Acknowledgements Part of G. Nannicini’s research was conducted with support by the Simons Foundation
and by the Mathematisches Forschungsinstitut Oberwolfach.

A Table of notation

δ−( j), δ+( j) instar and outstar of node j
y ∈ {0, 1}n incidence vector of the seeds
x ∈ {0, 1}n incidence vector of the activated nodes
ti threshold of node i
wi j weight of arc {i, j}
ΔN maximal node threshold variation (expressed as percentage of t)
BN total budget of threshold variations
ΔA maximal arc weight variation (expressed as percentage of w)
BA total budget of weight variations
P set of robustness parameters {BN ,ΔN , BA,ΔA}
θ j increase of node threshold t j in a robust solution
ϕi j decrease of weight wi j in a robust solution
RIx,θ,ϕ(ȳ) total amount of influence that spreads on the graph for the given set

of seeds ȳ, formulated as an optimization problem with decision
variables x , θ and ϕ

RIPx,θ,ϕ(ȳ) problem RIx,θ,ϕ(ȳ) for a given set of robustness parameters P
(R-IMP) mathematical model for the robust IMP with q activation seeds,

formulated as bilevel optimization problem
C j collection of minimal activation sets
ASx (y) total amount of influence that spreads on the graph for the given set

of seeds ȳ with θ = ϕ = 0, computed with a formulation based on
activation sets

π,μ variables of the dual of ASx (ȳ), for a fixed ȳ
(IMP-θ0-ϕ0) mathematical model for IMP, formulated using ASx (y)
(DUAL-θ0-ϕ0) mathematical model for IMP, formulated using the dual of ASx (y)
Cej extended collection of minimal activation sets

C ȳ
j collection of seed-dependent minimal activation sets

(R-IMP-ȳ) mathematical model used to obtain valid dual bounds for IMP,
parametric in ȳ

(PRICE- j) mathematical model used as pricing to generate varialbes associ-
ated to minimal active sets with a negative reduced cost, one for
each node j

ψ, β, α variables of (PRICE- j)
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B Big-M discussion

To find a value of big-M that ensures a valid formulation for the problem obtained by
dualizing the inner problem AS in IMP-θ0-ϕ0, we can amend the dual formulation
putting an upper bound on the dual variables: μ j :

maxπ,μ

∑
j∈V

∑
S∈C j

(|S| − 1)π j,S + ∑
j∈V μ j ȳ j

∀ j ∈ V
∑

k∈δ+( j)
∑

S∈Ck : j∈S πk,S − ∑
S∈C j

π j,S + μ j ≤ 1
∀ j ∈ V ,∀S ∈ C j π j,S ≤ 0

∀ j ∈ V μ j ≥ 0
∀ j ∈ V μ j ≤ U .

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

We need to find a value of U that does not change the solution to this problem. If we
go back to the primal, we obtain:

min
∑

j∈V x j + ∑
j∈V Uu j

∀ j ∈ V ,∀S ∈ C j
∑

i∈S xi − x j ≤ |S| − 1
∀ j ∈ V x j + u j ≥ ȳ j
∀ j ∈ V u j ≥ 0,

⎫
⎪⎪⎬

⎪⎪⎭

where u j is the variable associated with the dual constraints μ j ≤ U . We can provide
examples of graphs where U = n does not suffice. Suppose we have a directed graph
with n nodes: a triangle 1 → 2, 2 → 3, 3 → 1, three edges 1 → 4, 2 → 4, 3 → 4,
and finally a chain 4 → 5, 5 → 6, . . . , n − 1 → n. Suppose all edge weights are 1
and all activation thresholds are 1, except for node 4 that has activation threshold equal
to 3. The initial node seed is node 1, i.e., we have ȳ1 = 1, ȳk = 0 for k ≥ 2. In this
case, if U is set correctly, i.e., large enough that all u j variables are 0, the solution to
the primal should have xk = 1 for all k: all nodes are active, for an objective function
value of n. This is because node 1 activates node 2, which activates node 3, these
three nodes activate node 4, and then the entire chain activates. However after we
introduce variables u j in the primal, we can set x1 = 2

3 , u1 = 1
3 , x2 = 2

3 , x3 = 2
3 :

now the sum x1 + x2 + x3 = 2 is not enough to activate node 4 (associated with
the constraint x1 + x2 + x3 − x4 ≤ 2), so that the total objective function value is
x1 + x2 + x3 + Uu1 = 2 + 1

3U < n as long as U < 3(n − 2). Thus, this shows that
we needU > n. In fact the example can be easily extended (using a cycle of length d,
rather than a triangle) to show that we need at leastU ≥ nd, where d is the maximum
indegree of a node in the graph. Numerically, we found counterexamples where even
U = n2 did not suffice; these examples were difficult to study analytically.

Given these difficulties, a straightforward big-M formulation is likely to fail. On the
other hand, the indicator constraint versiongivesmore freedom toCPLEX in tightening
the big-Mor switching to alternative formulation. In preliminary experimentswe found
that the use of indicator constraints leads to a numericallymore stable implementation.
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(a) n = 2000 (b) n = 5000

Fig. 5 In each subfigure, the value of (mpi,nic) are reported on the vertical axis, while the values of
(mci,mcr) are reported on the horizonal axis

C Analysis of the parameters used in the heuristic comparison

To choose the parameters to be used in algorithm HeurCG we tested the follow-
ing combinations of values: nic ∈ {2500, 5000, 7500} mpi ∈ {0.025, 0.05, 0.75},
mci ∈ {1, 2, 3} and mcr ∈ {1, 2, 3}, for a total of 81 different configurations. Each
configuration has been used to solve a subset of Large graphs with 2000 and 5000
nodes, an average node degree k = 12, a rewiring probability b ∈ {0.1, 0.3}, 0.15n
starting seeds and 5 random instances for each combination of settings. The robustness
parameters chosen are BA ∈ {0, 25} and BN ∈ {0, 25}.

In Fig. 5 we show the optimal value obtained, where each entry corresponds to the
average computed over 40 instances. We can see that the variance of the optimal value
is limited: for the instances with 2000 nodes the maximum difference between the
best and the worse average is equal to 6.1, while for the instances with 5000 nodes, it
is equal to 19.1. The value used for mci has a small impact on the performance of the
algorithm, therefore we decided to use the intermediate value of 2. The parameter that
seems to have the largest impact is mcr. These experiments suggest setting mcr = 2:
even if in some cases the best performance is achieved with values of mcr different
from 2, the selected setting is the one providing the most consistent results across the
graph sizes considered. Finally, for what it concerns the other parameters, we selected
nic = 2500 and mpi = 0.025 because they show the best performance when mcr
is equal to 2.
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