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Abstract

In this paper, we study the problem of distributed multi-agent optimization over a
network, where each agent possesses a local cost function that is smooth and strongly
convex. The global objective is to find a common solution that minimizes the aver-
age of all cost functions. Assuming agents only have access to unbiased estimates of
the gradients of their local cost functions, we consider a distributed stochastic gra-
dient tracking method (DSGT) and a gossip-like stochastic gradient tracking method
(GSGT). We show that, in expectation, the iterates generated by each agent are attracted
to a neighborhood of the optimal solution, where they accumulate exponentially fast
(under a constant stepsize choice). Under DSGT, the limiting (expected) error bounds
on the distance of the iterates from the optimal solution decrease with the network
size n, which is a comparable performance to a centralized stochastic gradient algo-
rithm. Moreover, we show that when the network is well-connected, GSGT incurs
lower communication cost than DSGT while maintaining a similar computational cost.
Numerical example further demonstrates the effectiveness of the proposed methods.
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1 Introduction

Consider a set of agents A" = {1, 2, ..., n} connected over a network. Each agent has
a local smooth and strongly convex cost function f; : R? — R. The global objective
is to locate x € R” that minimizes the average of all cost functions:

. I 5
min £(x) <= ;;ﬁ(x)) M

Scenarios in which problem (1) is considered include distributed machine learning
[12,15,35], multi-agent target seeking [8,42], and wireless networks [2,11,30], among
many others.

To solve problem (1), we assume each agent i queries a stochastic oracle (SO)
to obtain noisy gradient samples of the form g;(x, &;) that satisfies the following
condition:

Assumption 1 Foralli € N and all x € R”, each random vector & € R™ is indepen-
dent, and

Eg [gi(x, &) | x] =V fi(x),

Eglllgi(x, &) = VN7 x] <o forsomeo > 0.
The above assumption of stochastic gradients holds true for many on-line distributed
learning problems, where f;(x) = Eg[F;(x, ;)] denotes the expected loss function
agent i wishes to minimize, while independent samples &; are gathered continuously
over time. For another example, in simulation-based optimization, the gradient esti-
mation often incurs noise that can be due to various sources, such as modeling and
discretization errors, incomplete convergence, and finite sample size for Monte-Carlo
methods [22].

Distributed algorithms dealing with problem (1) have been studied extensively
in the literature [13,19,20,28,34,36,37,45,46,52,56]. Recently, there has been con-
siderable interest in distributed implementation of stochastic gradient algorithms
[3,5-7,9,10,14,18,24,26,32,40,41,48,51,54,55]. The literature has shown that dis-
tributed methods may compete with, or even outperform, their centralized counterparts
under certain conditions [9,10,26,40,41]. For instance, in our recent work [40], we pro-
posed a flocking-based approach for distributed stochastic optimization which beats a
centralized gradient method in real-time assuming that all f; are identical. However, to
the best of our knowledge, there is no distributed stochastic gradient method addressing
problem (1) that shows comparable performance with a centralized approach for opti-
mizing the sum of smooth and strongly convex objective functions under Assumption 1
only. In particular, under constant stepsize policies none of the existing algorithms
achieve an error bound that is decreasing in the network size n.

A distributed gradient tracking method was proposed in [13,34,46], where the
agent-based auxiliary variables y; were introduced to track the average gradients of
fi assuming accurate gradient information is available. It was shown that the method,
with constant stepsize, generates iterates that converge linearly to the optimal solution.
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Inspired by the approach, in this paper we consider a distributed stochastic gradient
tracking method (DSGT). By comparison, in our proposed algorithm y; are tracking
the stochastic gradient averages of f;. We are able to show that the iterates generated
by each agent reach, in expectation, a neighborhood of the optimal point exponen-
tially fast under a constant stepsize. Interestingly, with a sufficiently small stepsize,
the limiting error bounds on the distance between the agent iterates and the optimal
solution decrease in the network size, which is comparable to the performance of a
centralized stochastic gradient algorithm.

Gossip-based communication protocols are popular choices for distributed compu-
tation due to their low communication costs [4,25,29,31]. In the second part of this
paper, we consider a gossip-like stochastic gradient tracking algorithm (GSGT) where
at each iteration, an agent wakes up uniformly randomly and communicates with one
of her neighbors or updates by herself. Similar to DSGT, the method produces iter-
ates that converge to a neighborhood of the optimal point exponentially fast under a
sufficiently small constant stepsize. When the network of agents is well-connected
(e.g., complete network, almost all regular graphs), GSGT is shown to employ a lower
communication burden and similar computational cost when compared to DSGT.

1.1 Related work

We now briefly review the literature on (distributed) stochastic optimization. First of
all, our work is related to the extensive literature in stochastic approximation (SA)
methods dating back to the seminal works [21,49]. These works include the analysis
of convergence (conditions for convergence, rates of convergence, suitable choice of
stepsize) in the context of diverse noise models [23]. Assuming the objective function f
is strongly convex with Lipschitz continuous gradients, the optimal rate of convergence
for solving problem (1) has been shown to be O (1/k) under a diminishing SA stepsize
where k denotes the iteration number [38]. With a constant stepsize o« > 0 that is
sufficiently small, the iterates generated by a stochastic gradient method is attracted
to an O(a)-neighborhood of the optimal solution exponentially fast (in expectation).

Distributed implementations of stochastic gradient methods have become increas-
ingly popular in recent years. In [48], the authors considered minimizing a sum of
(possibly nonsmooth) convex objective functions subject to a common convex con-
straint set. It was shown that when the means of the stochastic subgradient errors
diminish, there is mean consensus among the agents and mean convergence to the opti-
mum function value under SA stepsizes. The work [54] used two diminishing stepsizes
to deal with communication noises and subgradient errors, respectively. Asymptotic
convergence to the optimal set was established; for constant stepsizes asymptotic
error bounds were derived. In [14], a distributed dual averaging method was proposed
for minimizing (possibly nonsmooth) convex functions. Under a carefully chosen
SA stepsize sequence, the method exhibits the convergence rate O(%), in
which A, (W) denotes the second largest singular value of the doubly stochastic mixing
matrix W. Paper [3] considered a projected stochastic gradient algorithm for solving
non-convex optimization problems by combining a local stochastic gradient update
and a gossip step. It was proved that consensus is asymptotically achieved in the
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network and the solutions converge to the set of KKT points with SA stepsizes. A
distributed online algorithm was devised and analyzed in [5] for solving dynamic
optimization problems in noisy communication environments. Sufficient conditions
were provided for almost sure convergence of the algorithm. In [55], the authors pro-
posed an adaptive diffusion algorithm based on penalty methods. Under a constant
stepsize «, it was shown that the expected distance between the optimal solution and
that obtained at each node is bounded by O(«). The work [9,10] further showed that
under a sufficiently small stepsize and certain conditions on the stochastic gradients,
distributed methods are able to achieve the same performance level as that of a cen-
tralized approach. Paper [7] considered the problem of distributed constrained convex
optimization subject to multiple noise terms in both computation and communication
stages. The authors utilized an augmented Lagrangian framework and established the
almost sure convergence of the algorithm under a diminishing stepsize policy. In [32],
a subgradient-push method was investigated for distributed optimization over time-
varying directed graphs. When the objective function is strongly convex, the scheme
exhibits the (9(%) rate of convergence.

In a recent work [24], a class of decentralized first-order methods for nonsmooth
and stochastic optimization was presented. The class was shown to exhibit the O(%)
(respectively, (’)(\/L];)) rate of convergence for minimizing the sum of strongly convex
functions (respectively, general convex functions). The work in [1] considered a com-
posite convex optimization problem with noisy gradient information and showed the
O(JL];) convergence rate using an ADMM-based approach. Paper [26] considered a

decentralized stochastic gradient algorithm that achieves the O (% + \/;er) rate of con-
vergence for minimizing the sum of non-convex functions. The rate is comparable to
that of a centralized algorithm when k is large enough. At the same time, the commu-
nication cost for the decentralized approach is lower. Papers [40,41] also demonstrates
the advantage of distributively implementing a stochastic gradient method assuming
that all f; are identical and sampling times are random and non-negligible. The work
[51] utilized a time-dependent weighted mixing of stochastic subgradient updates to
achieve the convergence rate of O(%) for minimizing the sum of (possibly
nonsmooth) strongly convex functions. In [53], the authors considered a decentralized
consensus-based algorithm with delayed gradient information. The method was shown
to achieve the optimal O(\/Ll;) rate of convergence for general convex functions. In

[18], the (9(%) convergence rate was established for strongly convex costs and random
networks.

1.2 Main contribution

Our main contribution is summarized as follows. Firstly, we propose a novel distributed
stochastic gradient tracking method (DSGT) for optimizing the sum of smooth and
strongly convex objective functions. We employ an auxiliary variable y; for each
agent that tracks the average stochastic gradients of the cost functions. We show
that, under a constant stepsize choice, the algorithm is comparable to a centralized
stochastic gradient scheme in terms of their convergence speeds and the ultimate
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error bounds. In particular, the obtained error bound under DSGT decreases with the
network size n, which has not been shown in the literature to the best of our knowledge.
Moreover, assuming the gradient estimates are accurate, DSGT recovers the linear rate
of convergence to the optimal solution [34,46], which is also a unique feature among
other distributed stochastic gradient algorithms.

Secondly, with an SA stepsize oy — 0, DSGT enjoys the optimal (’)(%) rate of
convergence to the optimal point. In addition, we characterize the dependency of
the constant factors in the stepsize and the convergence rate on the properties of the
mixing matrix as well as the characteristics of the objective functions, such as the
strong convexity factor and the Lipschitz constant.

Thirdly, we introduce a gossip-like stochastic gradient tracking method that is effi-
cient in communication. We show that, under a sufficiently small constant stepsize,
GSGT also produces iterates that converge to a neighborhood of the optimal point
exponentially fast. Again, when the gradient estimates are accurate, GSGT recovers
the linear rate of convergence to the optimal solution. Compared to DSGT, we show
that when the network is well-connected (e.g., complete network, almost all regular
graphs), GSGT incurs lower communication cost than DSGT by a factor of O (%)
(|€| denoting the number of edges in the network) while maintaining a similar com-
putational cost.

Finally, we provide a numerical example that demonstrates the effectiveness of the
proposed methods when contrasted with the centralized stochastic gradient algorithm
and some existing variants of distributed stochastic gradient methods.

1.3 Notation and assumptions

Throughout the paper, vectors default to columns if not otherwise specified. Let each
agent i hold a local copy x; € R? of the decision variable and an auxiliary variable
vi € RP. Their values at iteration/time k are denoted by x; x and y; i, respectively. We
let

X =[x, x2, ..., x,]T € RVP) yi=1[y1, 2, ..., yn]T € R,

and

1 1
¥ :=-1Tx e R?, 7:= 1Ty e RI*7,
n n

where 1 denotes the vector with all entries equal to 1. We define an aggregate objective
function of the local variables:

F(x) =) filx), 3)

i=1
and let

VF(x) :=[Vfi(x1), V(x2), ...,V fu(x)]T € R"*P.
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In addition, denote

1
h(x) := —~1TVF(x) € R!*?,
n

§ = [%‘17525 e 75)‘1]1’ € Rnxmv
G(X7 E) = [g] (.X], S])’ 82(352’ 52)5 sy gn(xna En)]T € RHX[)'

The inner product of two vectors a, b of the same dimension is denoted by (a, b).
For two matrices A, B € R"*?, we let (A, B) be the Frobenius inner product. We use
|l - || to denote the 2-norm of vectors; for matrices, || - || represents the Frobenius norm.
The spectral radius of a square matrix M is denoted by p(M).

We make the following standing assumption on the individual objective functions

Ji-

Assumption 2 Each f; : R? — R is u-strongly convex with L-Lipschitz continuous
gradients, i.e., for any x, x’ € RP,

(VFi(x) = V), x —x') = pllx — 2|12,
IV fi(x) = VDI < Lix —x').

We note that, under Assumption 2, problem (1) has a unique solution denoted by
x* e R¥P,

A graphisapairG = (V, ) where V = {1, 2, ..., n} is the set of vertices (nodes)
and £ C V x V represents the set of edges connecting vertices. We assume agents
communicate in an undirected graph, i.e., (i, j) € & iff (if and only if) (j, i) € £. For
each agenti, let N; = {j | j #1i, (i, j) € £} be its set of neighbors. The cardinality
of ;, denoted by deg (i), is referred to as agent i’s degree. We consider the following
condition regarding the interaction graph of agents.

Assumption 3 The graph G corresponding to the network of agents is undirected and
connected, i.e., there exists a path between any two agents.

1.4 Organization of the paper

The paper is organized as follows. In Sect. 2, we introduce the distributed stochas-
tic gradient tracking method and present its main convergence results. We perform
analysis in Sect. 3. In Sect. 4 we propose the gossip-like stochastic gradient track-
ing method. A numerical example is provided in Sect. 5 to illustrate our theoretical
findings. Section 6 concludes the paper.

2 A distributed stochastic gradient tracking method (DSGT)

We consider the following distributed stochastic gradient tracking method: At each
step k € N, every agent i independently implements the following two steps:
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n
Xik+1 = Z wij (Xj 6 — @Y i),
j=1
n 4
Vik+l = Z Wijyjk + & Xik+1, Eik+1) — & (Xi ks &i k)
j=1

where w;; are nonnegative weights and & > 0 is a constant stepsize. Agent i and j
are connected iff w;;, w;; > 0. The iterates are initiated with an arbitrary x; o and
vi.o = gi(xi.0,&.0) forall i € N. We can also write (4) in the following compact
form:

Xit1 = WX — ayi), 5)
Vi1 = Wyr + G (X1, §p 1) — G(xx, §p),
where W = [w;;] € R"*" denotes the coupling matrix of agents. We assume that W
satisfies the following condition.

Assumption 4 Nonnegative coupling matrix W is doubly stochastic, i.e., W1 = 1 and
1TW = 1T7. In addition, w;; > O for some i € N.

In the subsequent analysis, we will frequently use the following result, which is a
direct implication of Assumptions 3 and 4 (see [46] Section II-B).

Lemma 1 Let Assumptions 3 and 4 hold, and let p,, denote the spectral norm of the
matrix W — %llT. Then, py, < 1 and

Wo — 1o < pyllo — 1o

for all w € R"™P, where v = %lTa).

Algorithm (4) is closely related to the schemes considered in [13,34,46], in which
auxiliary variables y; x were introduced to track the average % Z?:l V fi(x; k). This
design ensures that the algorithms achieve linear convergence under a constant step-
size choice. Correspondingly, under our approach y; x are (approximately) tracking
%Z?:l 8i(Xi k, & x). To see why this is the case, note that y;, = %lTyk. Since
vi.o = g(xi.0,&i.0), Vi, by induction we have

— 1 1 n
Vi = ;lTG(Xk, &) = - Zgi(xi,k, £ 1), Vk. ©)
i=1

It will be shown that yy is close to 1y, in expectation when k is sufficiently large. As
aresult, y; x are (approximately) tracking % Z?:l 8i(Xik, &ik)-

It is worth noting that compared to the standard distributed subgradient methods
[36], DSGT incurs two times the communication and storage costs per iteration.
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2.1 Main results

Main convergence properties of DSGT are covered in the following theorem.

Theorem 1 Let I > 1 be arbitrarily chosen. Suppose Assumptions 1 and 2 hold and
the stepsize o satisfies

ozfmin{

(1—p2) (1-p2)? (1-p2) [uj -1 ]”3
12py L " 23/T L max{6p, W — 1|, 1 — p2}" 3p%3L LL2T(I'+1) ’
(7

Then sup;> E[||x; — x*||*1 and sup;>; Elllx; — 1x;||%], respectively, converge to
lim sup;_, o E[[Ixx — x*||?1 and lim SUPk— o0 EllIXk — 1% 11?1 at the linear rate
O(p(A)X), where p(A) < 1 is the spectral radius of the matrix A given by

2
1—ap ‘%(1 +ap) 0
1 2 2 (1403)02
A= 0 51+ py) @t |

2anL? (/lg+2) IW — 1222 4+ 3aL®  L1(1+ p2)

1— 2
where B = 2p§w — 4oL — 202 L2, Furthermore,
w

lim sup E[ || — x*[|2]<

(' +1) ac? (r + 1) 4o’ L2(1 + ap) (1 + p2)p2 v
- 5 - O

oo r r-1 w2n(l — p)?
(®)
and
I+ 1\ 4221 + p2)p2 Qa2 L36% + uM
k— 00 I"—1 w1l — pw)
where
M, = [3a2L2 2L+ )+ 1)] o2, (10)

Remark 1 The first term on the right-hand side of (8) can be interpreted as the error

caused by stochastic gradients only, since it does not depend on the network topology.

The second term on the right hand side of (8) and the bound in (9) are network

dependent, and they increase with p,, (larger p,, indicates worse network connectivity).
In light of (8) and (9), we have

2 2 1252
lim sup E[||xx — x*[|*] = ¢ © <0—> + oz ;0 ( Z ) ,
k— 00 un (r— pw) 128
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and

1 a? at L302
lim sup —E[[Ix¢ — 15¢]1*] = ————O (0?) + O< ) )
PR (1= pu)? (+*) (= pw) "\ pn

Let %E[ka — 1x*|?] measure the average quality of solutions obtained by all the
agents. We have

1 1
lim sup —E[||x; — 1x*||?] = lim sup E[||Xx — x*||*] + lim sup —E[||xx — 1% ]*]
k—oo N k— o0 k—oo N

0.2 a2 LZO_Z
— . 11
aO(H”)+ (1_:011))30( /1*2 )7 (

which is decreasing in the network size n when « is sufficiently small, i.e., when

o2 a? L%62

O~ —
pn (1 —py)3 n

The spectral gap 1 — p,, depends on the graph topology as well as the choices of

weights [w;;]. For example, suppose the Lazy Metropolis rule is adopted (see [33]). In

this case, if the communication graph s a 1) path or ring graph, then 1 —p,, = O(1/n?);

2) lattice, then 1 — p,, = O(1/n); 3) geometric random graph, then 1 — p,, =

O(1/nlogn); 4) Erdés-Rényi random graph, then 1 — p,, = O(1); 5) complete graph,

then 1 — p,, = 1; 6) any connected undirected graph, then 31 — pw = O(1 /n2).

(I—pw)

From the above argument, the condition o ~ %T is in general more strict

than (7) in Theorem 1, which requires o ~ % (when 1 — py, < (%)2/ ). Such a
difference suggests that when implementing DSGT in practice, it can be advantageous
to use a larger stepsize in the early stage to achieve a faster convergence speed (see
Corollary 1 below) and then switch to smaller stepsizes for more accuracy on the final
solutions. O

Remark 2 Under a centralized stochastic gradient (CSG) algorithm in the form of

1 n
Xt 1 =xk—a;;gi<xk,si,k>, k €N, (12)
1=

we would obtain
62
lim sup E[|lxx — x*[*] = « O (—) )
k— 00 un

It can be observed that DSGT is comparable with CSG in their ultimate error bounds
(up to constant factors) with sufficiently small stepsizes. O

As shown in Theorem 1, the convergence rate of DSGT is determined by the spectral
radius p(A) < 1. In the corollary below we provide an upper bound of p(A).
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Corollary 1 Under the conditions in Theorem 1, assuming in addition that the stepsize
o also satisfies'

2
@< (1"+1)(1—pw)’

- " (13)

we have

p(A) <1-— (u> oL
- I+1

Corollary 1 implies that, for sufficiently small stepsizes, the distributed gradient track-
ing method has a comparable convergence speed to that of a centralized scheme (in
which case the linear rate is O((1 — 2au))).

In the next theorem, we show DSGT achieves the O(%) rate of convergence under
a diminishing stepsize policy.
Theorem 2 Let Assumptions 1 and 2 hold. Consider the method in (4) where a is
replaced with the time-varying stepsize oy given by oy := 60/(m + k), where 6 > 1/
and m satisfies

40Lp2 420 Lpy /143 p2
m > max {%(M + L), Pyt : 1/07; +3034 ,
S (14)
A=py)® [A=pi) _ 2m41 ] 1 (1, 60)46°L5 , 2C
2(0+p2)02 | 2 (m+1)? Op—D \u T m) w3 m?’

_ 2 —1
with C = [(ﬂ —8L_2L) 4 2} IW = I2L% + 2L Then for all k > 0,

2,0%) m
we have
_ 20%02 Or(1) Or(1)
E[fl% — x*|*] < - 5 (15a)
n@uw—D(m+k) m+k% (m+k)
_ Or(1)
E 1P < —2 2, 15b
e = 151) = =25 (15b)
where Ok (1) denotes some constant that does not depend on k.
Remark 3 From (15), noting that O« > 1, we have
—Ellxx — Ix* 17T = EllIxx — x" 171+ —EllIxk — Xk 171 = Ok | ) -
n n k
In particular, %E[ka — 1x*|?] asymptotically converges to 0 at the rate %,

which does not depend on the spectral norm p,, and matches the convergence rate (up
to constant factors) for centralized stochastic gradient methods (see [38,47]). O

! This condition is weaker than (7) when ,05, > FL-H %—“

2 It is worth noting that the transient time for %]E[IIX/( —1x*|2] to approach the asymptotic convergence
rate depends on the network topology, and its dependence on n can be significant.
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Remark 4 Under a well connected network (p,, >~ 0), m > %(M + L) suffices. When
pw = 1, the lower bound of m is in the order of O((1 — py,)~2). O

Theorem 2 implies the following result if we choose o = 0/(k + 1).

Corollary 2 Under Assumptions 1 and 2 and stepsize policy ay := 6/(k + 1) for some
0 > 1/u, we have for all k > m where m satisfies condition (14),

_ _ X - i
B[ — x*|1*1 < —, E[||xk—1xk||2]sk—2, Elllyx — 15171 < Y,

PV'|Q1

where U, X, and Y are some positive constants.

3 Analysis

In this section, we prove Theorem 1 by studying the evolution of E[||xx — x*|?],
E[||x¢ — 1% [|*] and E[|lyx — 17, [|*]. Our strategy is to bound the three expressions in
terms of linear combinations of their past values, in which way we establish a linear
system of inequalities. This approach is different from those employed in [34,46],
where the analyses pertain to the examination of ||Xx —x™*||, ||xx —1x% || and ||yx — 1y |l
Such distinction is due to the stochastic gradients g; (x; . & x) whose variances play
a crucial role in deriving the main inequalities.

We first introduce some lemmas that will be used later in the analysis. Denote by
Fi the o-algebra generated by {&), ..., &,_;}, and define E[- | F¢] as the conditional
expectation given Fy.

Lemma 2 Under Assumption 1, recalling that h(x) = %ITVF(X), we have for all
k>0,

2
— 2 o
E [I5e - hox0 1?1 Fi| < = (16)
O
Proof By the definitions of y; and A (xg),
) 1 n 5 02
E 15 = o2 1 7] = — Y B [lgi ik 610 = VfiGiolP17] = 2=
n* = n
O
Lemma 3 Under Assumption 2, we have for all k > 0,
IVfG&r) —hxoll = L l Lxi |l a7
Xi) — h(x — |Ixx — 1xg]|.
k N = \/ﬁ k k
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If in addition o < 2/(u + L), then
[x —aVfx) —x*| < (I —aplx —x*, Vx € R”.
Proof See [46] Lemma 10 for reference. O

In the following lemma, we establish bounds on [X;; — 1Xs41]|> and on the
conditional expectations of ||X;41 — x*||? and lyr+1 — 1Yy 112, respectively.

Lemma 4 Suppose Assumptions 1 and 2 hold and @ < 2/(u + L). We have the

following inequalities:

E[|Te1 — x* 12 | Fel < (1 — ap) %k — x*)°
2 2.2

alL _ aco
+—— (1 +ap) lIxe — x> + : (18)
un n
_ (1 +p2) _
X1 — 1Xp1)1? < = 1%
(1+ p2)p2 _
2Ty — 1313, (19)

(1= p3)

and for any B > 0,

Eler1 = it 17 | Fil < (1 +daL + 20212 + ) o2 Elllyi — 151 | il
1
+ (E||W—I||2L2+2||W—I||2L2+3aL3> lIxx— 1%k |12 +2an L3 | X — x* 1% + M.,
(20)

Proof See Appendix 7.1. O

3.1 Proof of Theorem 1

Taking full expectation on both sides of (18)—(20), we obtain the following linear
system of inequalities

E[l%+1 — x* %] Ellxx — x*|1%]
Elllxes1 — X1 121 | <A | Ellxe — 1x)?1 | +| 0 |, (21)
Elllyx+1 — 1711121 Elllyx — 1y 11°] M,

where the inequality is to be taken component-wise, and the entries of the matrix
A = [a;;] are given by
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_ L?

an I—ap ap 0217(14_0;“)
ay | = 0 S| = 51+ py) ,
as1 2anL3 | | an (% + 2) IW —X|2L2 + 3o L3

4 0

13 2 (1+p2)p2
a3 | = * =02 ’
@31 L(1+4aL +202L2 + B) p2

and M, is given in (10). Therefore, by induction we have

E[llxr — x*|1%] E[[Fo — x*|21] #-1 [«
Ellxe — 1% °] | < A* | Ellxo — 1xl21 [+ Y _A'| 0 |. (22
Elllyx — 13117 Elllyo — 13l71] =0 [ M,

If the spectral radius of A satisfies p(A) < 1, then A¥ converges to 0 at the linear rate
O(p(A)) (see [17]), in which case sup;-; E[[|X; — x*||*], sup,~, E[|lx; — 1%;[|*] and
sup;~; Ellly — 1y, %] all converge to a neighborhood of 0 at the linear rate O(p (A)M).
The next lemma provides conditions that ensure p(A) < 1.

Lemma5 Let S = [s;5] € R3*3 be a nonnegative, irreducible matrix with s;; < A*
for some \* > 0 foralli = 1,2,3. Then p(S) < A* iff det(W*I —S) > 0.

Proof See Appendix 7.2. O

We now derive the conditions such that p (A) < 1. Suppose o and 8 meet the following
relations:?

1+ p2,
2

az3 = (1 +4aL +20%L% + ﬁ) P2 = <1, 23)

14022 T/ 1 1
anaz = o2 LT PPy [(— + 2) IW —1)1>L% + 3aL3} < —(1 —an)(1 — a3),

a-p2) L\B T oo
and
a12a23a31=2a4L5(:L +ap) ﬁ J_r Z%; P2 < g (Il -an)(1-a3)—anaz].
(25)
Then,

3 Matrix A in Theorem 1 corresponds to such a choice of & and 8.
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detI—A) = (1 — a1 —axn)(1 —aszz) — (1 —arr)azzazy — ajpaxas;

>

T+D (I — a1 —ax)(1 — az3) — axzaz;]
I —1

> <F—+1> (1 —ai){ —an) —as3) > 0.

Given that ay1, ay, a3z < 1, in light of Lemma 5, we have p(A) < 1. In addition,
by denoting B := [‘)‘2”2 ,0, M;17 and [(I — A)_lB]j the j-th element of the vector

n

[(I — A)~!B], we obtain from (22) that

lim sup E[|% —x*1*] < [A—A)~'B]
k—00
1 2.2

o
= detd—A) {[(1 —axn)(1 — az3) — axzaz;] .
A 1)(&2 (F + 1) ananMy
- I'  un I'—1) (1 —aj)d—axn)(l—ass)

_ (" +Dad? <F+l) @PL2(1 + ap)(1 + p2)p2 M,

+ 012a23Ma}

I un I'—1) un(l = p2)(1 —a)(l —an)(l —azz)
_ (IF'+ 1) aoc? I +1\ 402L%2(1 4+ ap)(1 +p5)p5,M 26)
T I un r—1 w2n(l — p2)3 o
and
1 [ T2 < [A—A) "B = — oo’ | (1 —ai)M
1mks_1)11; X — 1x|I7] < [ — 2= Gad —A) axas —- ax(l —aj) M,
2.2
< (I"+ 1) 423 (2anL3a g +CULMG)
-1/ (I —=an)(1—axn)d —as)

_ 40+ Da2(1+ p2)p2 202 L36% + uM,)
(I' = Du(l — p2)? '

It remains to show that (23)—(25) are satisfied under condition (7). By (23), we need

1— 2
B=—"2u 4ol — 2071
204
2
Since o < 112 pz - by (7), we know that

2 2 22 2 2
P e Uy G LU N
202 3pw 7202, 7202, 802
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Condition (24) leads to the inequality below:

1 2\ A2 1 1— 252
o2 Lt Puwliy +pw;pw [(— +2> ||W—I||2L2+3aL3] S iy
(1= py) B ar

By (27), we only need

W —T1)2L% +

2 [(2 +6p32)
a N ———

(1—p2) Lz} (1-p2)?
(1—p2)

< .
4p2 T4 (1 + p2)p2

The preceding inequality is equivalent to

Y < (1—py)°
T LT+ p2)y/403 2+ 6p2)[[W — T2 + (1 — p2)?

implying that it is sufficient to have

252
o < (I —py) .
2/ T L max(6p, [W —1I||, 1 — p2)

To see that relation (25) holds, consider a stronger condition

204 L°(1 +ap) (1+p2) 5 _r-n

" 1— pgu)Pw =TaT 1)(1 —ai)( —an) —az3),

or equivalently,

203 L3(1 +ap) (14 p2) 5 _ - (1= o2y
W2 a-ppTarac s M

It suffices that

o =< (28)

(1—p3) [uz (r -1 }‘/3

3020 2T+ 1)

3.2 Proof of Corollary 1

We derive an upper bound of p(A) under conditions (7) and (13). Note that the char-
acteristic function of A is given by

det(AI — A) = (A —aj) (A —axn) (X —a3z3) — (A — ai1)axzaz — apaasg.

Since det(I — A) > 0 and det(max{a;, ax, a33}I — A) = det(aj1I — A) < 0, we
have p(A) € (a1, 1). By (24) and (25),

det(AI —A) > (A —aj)(A —a)(A —azz) — (A —aip)azzas;
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1
- F—+1(1 —a)[(1 —axn)(l —azz) — axzas]

1
> (A —ai) —axn)h —as3) — F()» —ay)(1 —ax)(1l —as3)
-1

- m(l —ay)(1 —ax)(1 —as3).

Suppose L = 1 — € for some € € (0, o), satisfying

1 2
det(xI —A) > Z(Ol,u —€) (1 — ,05) — 26>

(I' = Dap

1— 22>0
4F(F—|—1)( Py)” =0,

1
— gy en— ol = pp)” -

or equivalently,

(1—p22 T

(ap—e) [ (1= p2 —2¢)° 1. a-n
apu “ I+

It suffices that

_(r-1
€ o,
=\r+1)%"

To see why this is the case, note that (aZ—;e) > FL-H and under (13),

e <

Fr—1\NIT+hd=-py) (" =D(-pp)
r+i1) r g T 8T '

As a result,

»  ("=DHd- pe) GBI+ 1D —p;)
w ar - ar

1—,05)—2621—,0

We then have

(au—e)[(l—pi—ze)z 1}> 2 {(3r+1)2 1] 1 [(3r+1)2_2]

an (—p22 " T|-@+0| 16I'2 T | (T +1) 8T
1 r 1 1 r-1n
= (r-1+>4+——-)>——""2.
T +1 8§ "8I 4)=TaT+1
Denote

oo (£
N r+1)%"
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Then det(AI — A) > 0 so that p(A) < A.

3.3 Proof of Theorem 2

Similar to (21), under stepsize policy oy = 6/(m + k) where m > %(u + L), we have

—_ — 2.2

E[l|Tk+1 — x*(%] E[I%k — x*[1%]
Ellxie1 — 11?1 | < Ak [Elllxxe = 1521+ | o |- (29)

Elllyx+1 — 17411121 Elllye — 17, 11%1 M,

where
1 —arp “Z,le(l + o ph) 0
1 2 2
Ac=| 0 51 +0) o s |

2apnlL? (i n 2) IW —TJ2L% 4+ 3, L3 3(1+ p2)

2
= P 4oL — 20212 > 0, and
202 k

M, = [3a,%L2 2L + 1)(n + 1)] o2, (30)
The condition B; > 0 is satisfied when

_1—pl  40L  20°L7

P=2 m w0
or equivalently,
2 2
= 49L,0w+29pr\/1+3,0w. 31)

1—p2
We first show that E[[|xx —x*||*] < U/(m+k) and E[||x; — 15k |12 < X/(m +k)?
forsome U, X > 0by induction. Denote Uy, := E[||xx —x*||*], Xx := E[||xx—1x% ],
and Y := E[|lyx — 1§k||2]. Suppose for some k > 0,
Up <U/m+Kk), Xp<X/(m+k?> Y <7. 32)

We want to prove that

1— U L2 (1 X ool U
Upsr < (I — o) opl” (1 + aku)z K . (%)
(m+ k) un  (m—+k) n m+k+1)
1+ p2)X 1+ p2)p2Y X

2m+ k2 T A p2) S mtk+ D2
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204nL3U CcX (14 p2)Y
(m+k)  (m+k)? 2

Vi1 < + My <Y, (33¢)

where C = (% +2)|W —I||2L? + 3 L3. Plugging in oy = 0/(m + k), it suffices
to show

0> 1 9L2+92L2 % 4 0%2 (34a)
= o, a
“n@u-1) um m?
. 1—p2 1 — p2 2 174
y < 2( ;Og)) ; [( ,Ow) _ m + 2i|X’ (34b)
021+ p2)p L 2 (m +1)
. 2 20030 CX  [36%L2 oL 5
Y > +—+ +2—+1)m+1D|oc"]. (340)
(1—p2) m? m? m? m
Let

. 1 0L>  02L*\ . 5, — a2
U=max{—— || —+— | X +0°c7|,m|xo—x*||"¢,
n@w—1) |\ um m?

condition (34) admits a solution iff

—p2)?% [ —-p2) _ 2m+1 - 1 1.6 460217 2C
02(1 4 p2)p2 2 (m +1)2 Ou—-—D\pn m) md m2’
(35)

ip which case X and ¥ are lower bounded under constraints {(34b), (34c), X > m?X 05
Y > Yy }. Specifically, X can be chosen as follows:

. C C )¢
X := max 3 s 3 ,m2X0, 20 s
Ci—Cy' Ci—Cq4 Ci
where
(1—p2) (1—p2) 2m+1
Ci =2 232 - AR (362)
0-(1 + pg)pg 2 (m+1)
2C
Cr=———5—>, (36b)
(1 —pg)m
2 20nL3||xo — x*||2  [362%L% 6L 5
Cz = 5 + —+2—+1)n+1D|o"¢,
(1 —p5) m m m
(36¢)
Cy = 2 e ! + i + < (36d)
A= [mdop-n\um)  m |
2 [ 203L3 30212 oL
Cs = 2= +1 D|o2. 36
5 =) _m2(eu—1)+ " + <m+)(n+ )]0 (36¢)
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Noticing that relation (32) holds trivially when k£ = 0, the induction is complete.
We further improve the bound on Uy (inspired by [39,44]). From (29),

20 L
Uk+1) <1 —om)U; +

Since X; < )A(/(m + k)2,

vk+1) < (1--2“ Vo, + L S
= m+k k un(m +k)3  nm+k)?’

Hence

k<1_[(1——>Uo+kZi ]ﬁ <1_ 9’{) ( 5 S )

et m j un(m +1)3  n(m +1)?

In light of Lemma 4.1 in [44],

B
- = o’ - . = o -
0 m—+t (m + k) 2 m+ j (m + k)
Then,
mon lomsr+ o [ 20028 0202
Up < —U,
E= T oo °+§ P \nGm w07 nm+ 07
o oy ! 2002% "= m 41 + 1)9# 6202 "i (m+1+ 1)r
TRt P\ un = )3 = (m+0)?
moH 1 4012% 2! !

=< U Hir-3 4 N2\

~ (m+ k) 0+(m+k)9”< un tzo( "o §m+ )
Note that
k—1 k 1 1
Z(m + )03 < f (m + )" 3dt < max m+" 2 — - 12,
par 1=—1 Op —2 2—-0pn
k—1 k 1
D m+ "2 < / (m+ 0" 2d1 < (m+ 0"
=0 t==1 Ou—1
We conclude that

20202 moH

CS =Dt T mrrm e

@ Springer



428 S.Pu, A. Nedi¢

4012 X N { 1 (m — 1)fn—2 }
un O —2)(m~+ k)2 (2 —0p)(m+ k)
20%02 Ok (1) Ok (1)

= n@u — D(m + k) + (m + k)?» + (m+ k)%

4 A gossip-like stochastic gradient tracking method (GSGT)

In this section, we consider a gossip-like stochastic gradient tracking method (GSGT):
Initialize with an arbitrary x; 9 and y; o = g; (x;.0, &.0) for all i € N. At each round
k € N, agent iy € N wakes up with probability 1/n. Then iy either communicates
with one of its neighbors j; (with probability 7;, ;) or not (with probability 7;,;, =
- JjeN;, 7, j)- In the former situation, the update rule for i € {ix, ji} is as follows,

1
Xi k1 = E(xik,k + X k) — AVik, (37a)

1
Vik+1 = E(yik,k + Vi) + & (Xi k15 Ei k1) — & (Xi ks &i k) (37b)

and for i ¢ {ix, jk}» Xik+1 = Xik> Yik+l = Vik> and & jp1 = & x.* In the latter
situation, agent iy performs update based on its own information:

Xig k+1 = Xig k — 200 Yig ks (38a)
Viek+1 = Yig.k + 8ix Kig k15 Sig k1) — &ie Kig ks §i k) (38b)

while no action is taken by agent i # i;. For ease of analysis, we denote ji = ix in
this case, and let 1 be the indicator function for the event {ji # ix}, i.e., Iy = 1 iff
Jk # ik

The use of stepsize 2« instead of « in (38a) can be understood as follows. At
each iteration, GSGT performs two gradient updates within the network. This can be
achieved either by two different agents respectively updating their solutions, or by
one agent using a doubled stepsize. The method is different from a standard gossip
algorithm where exactly two agents update at each round. This difference allows us
to design the probabilities 77;; with more flexibility. In particular, it is possible to
construct a doubly stochastic probability matrix II = [;;] for any graph G under
Assumption 3.

We can present GSGT in the following compact matrix form, in which we adopt
the notation previously used.

Xi+1 = Wixg — aDyyk, (39a)
Yit1 = Wik + Di(G(Xiet 1, 1) — Gk, £k)), (39b)

4 In practice, this means agent i holds vectors x;, y; and g; (x;, &) if it does not wake up.
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Distributed stochastic gradient tracking methods 429

where the random coupling matrix Wy is defined as

_ (ei, —ej)(ey, —e;)T
> ,

W, =1

inwhiche; =[0 --- 010 ---]T € R"*! is a unit vector with the ith component equal
to 1. By definition, each Wy is symmetric and doubly stochastic. The matrices Dy
and Dy, are diagonal with their ixth and jxth diagonal entries equal to 1 and all other
entries equal to O if ji # iy, otherwise the iith entry of Dy (respectively, ﬁk) equals
2 (respectively, 1) while all other entries equal 0.

We assume the following condition on the probability matrix IT:

Assumption 5 Nonnegative matrix IT is doubly stochastic.

Let
W i= E[W]W,]. (40)
It can be shown that (see [4])
_ 1 m+uav
W=(1--)I+—, D
n 2n

which is doubly stochastic.

Lemma 6 Let Assumptions 3 and 5 hold, and let py denote the spectral norm of the
matrix W — %IIT. Then, py € [1 —2/n, 1).

Proof Since W is doubly stochastic, py < 1 follows from Lemma 1. To see pyp >

1—2/n,note that p( H;{IT ) = %, and 1 is an algebraically simple eigenvalue of H+2HT
and %IIT. We have

11 n+or
pi=1——+ by (= ). 42)
where A7 ( H+2HT) is the second largest eigenvalue of r”THT
Since A, (1) € [—1, 1], we conclude that pz > 1 —2/n. O

Before proceeding, it is worth noting that for GSGT, we still have the following
relation:

_ 1
4.1 Main results

We present the main convergence results of GSGT in the following theorem.
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Theorem3 Let I' > 1 be arbitrarily chosen. Suppose Assumptions 1-5 hold, and
assume that the stepsize o satisfies

- 2n(1 — pw)
- JTL
+48(6n + 1)(8n +3) +960(1 — pg)} /%, (44)

{I27(2n +3)Qn + 16(8n + 9] (1 — pw)

where n = m and Q = L/u. Then sup;; E[||x; — x*||*1 and sup;>¢ E[lIx; —
1x;||2), respectively, converge tolim sup, _, o E[||xx —x* 1?1 and lim SUPL s oo El Xk —
1x¢|1?] at the linear rate (’)(p(Ag)k), where p(Ag) < 1 1is the spectral radius of the
matrix Ag given by

204 20 L? prn 402
1- 2w al (] 4 20 ) o
Ay, = 82 L? %(1 + ow) 2,;" (ﬁl +a> ,

8a’Lt +4al’ L (44 +8PL2 +4al) 101+ pa)

in which 1 = "(I—p“) 4o L? and By = "(li—p'ﬁ) —2aL — 20*L2. In addition,

r 2 20, 42(6n + Da?L?
lim sup E[[I T — x*|2] < 0—2[ ¢ On + e } 45)
k=00 "' =1 n= | u(l - pz) w=(1 — pg)
and
42 9(6n + Da?  72a3L2
lim sup E[[Ix; — 15¢]|?] < o Ont+ Dom | 72’7y
ko0 (I' = (1 — py)? n jun?

Remark 5 Notice that n = n(l ) and 1 — py < % from Lemma 6. We can see from
(45) and (46) that

2 2 1252
lim sup E[||xx — x*[|*] = _2 o(Z + a @) ? , @7
k00 (I—pp) \un?)  (—=pp)  \pu2n?

and
2 2 3 2.2
o o o Lo
lim su —E[||xk 15 )* = —0O (—) + (9( > (48)
PR (T—pay \3) T U=pa? pud
Since

~
(3]

Q
[§e)
[\e)

A%
:wl Q

=
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and by (44),

L?%0? L?¢?

the second term on the right-hand side of (47) dominates the two terms on the right-
hand side of (48). Thus, we have

1 1
lim sup —E[||xx — 1x*)|?] = lim sup E[||%% — x*||*] + lim sup —E[[|x; — 1% ]

k—oo N k—00 k—>00

o o? o’ L2562
BRI (W) TS E <u2n3 ) )

m}

The corollary below provides an upper bound for p(Ag).

Corollary 3 Under the conditions in Theorem 2 where I' > 3/2, we have

Qr — 3)%

A, <1-—
pPAg) < T "

Remark 6 Compared to DSGT, the convergence speed of GSGT is slower than DSGT
under the same stepsize « (see Corollary 1). This is due to the fact that in GSGT, only
two agents update their iterates at each iteration. O

4.2 Performance comparison between DSGT and GSGT

In this section, we compare the performances of the two proposed algorithms in
terms of their required computation and communication efforts for achieving an
e-solution (with constant stepsizes), that is, we compute the number of stochastic
gradient computations and communications needed to obtain %E[ka —1x*|?] < e.
Without loss of generality, for each method we first choose stepsize « such that
%lim SUP;_, o0 ElllIXk — 1x*|?] < €/2 and then compute the number of iterations
K such that 1E[|xx — 1x*|%] < e.
%

For DSGT, when € is small enough, we have & = O( - ) from (11). Then, noting

that sup;-, E[[lx; — 1x*||?] converges linearly at the rate O(p(A)X) where p(A) =
1 — O(ap), we obtain the number of required iterations:

In(: 2 pcl
Kd=0(n(e)>=(’)<a—2n(€)>.
o nu- €

In K, iterations, the number of stochastic gradient computations is Ny = nK; =

2 In(L TS, 2 In(L
O ( 222 ) 4nd the number of communications is N¢ = 2|1E1Kg = O 1£] g2 In()
qu € d n /1,2 €

where |£| stands for the number of edges in the graph.
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For GSGT we need o = (’)(”ZLI[W) from (49). Giventhat p(Ag) = 1— O(%2),
o n
the number of required iterations K, can be calculated as follows:

1 2 1
Ky= 0 nln(e) _0 o 2ln(e) .
apn n(l — pg)u= €

In K, iterations, the number of gradient computations and communications are both

o2 In(d)
bounded by N, = NC =2K, = (9("(1 e )M =).
Suppose the Metropohs rule is applied to define the weights m;; [50]. We first
compare the number of stochastic gradient computations for DSGT and GSGT,

respectively. Noticing that 1 — py < 2 by Lemma 6, N, is at most in the same

order of N; = (9(" ln( )

1—pp = A — AZ(H))/n from (42), we have 1 — pg = O(;) for complete net-
works, almost all regular graphs [16], among others.

), which happens when 1 — py = (’)( ). Given that

£l o2 In(d)
(55 =)

We then compare the number of required communications Nj = <

and N‘ ln( )

. 2 In(L
OGa=—rm Pu) W e ) When 1 — o = O(3), we have N¢ = O(% “(Ge))'

By contrast, Nj is O( |n|) times larger than N;. In particular when 1€l = On?) (e.g.,
complete network), the number of communications for GSGT is O(n) times smaller
than that of DSGT.

4.3 Proof of Theorem 3

We first derive a linear system of inequalities regarding E[ || X —x*|| 21, ElIxx — 13121,
Elllyx — Iyl 2] and their values in the last iteration.

Lemma 7 Suppose Assumptions 1-5 hold and the stepsize satisfies o« < n/(j + L).
Then, we have the following inequalities:

_ 204 aL? 201 _
E[|[Xk+1—x"1*] < (1 - T) E[| X —x*|? ]+ <1 + —) E[|lxx — 1x]|*]
42 2 40202
+ ?E[HYk —1yil* 1 + PR (50)

For any B1, B2 > 0,

822

EllIxe1 — 1Xk4111%1 < (pw + 28+ )E[nxk — 1312
2a 1
+ = (— + a) Elllye — 15, ]1°]

n \ B

40262

+ 82 L2E[||xx — x*|12] + — (51)
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— 2 da L 4-062L2
Elllyr+1 — 1y 11 < | ow + ,32 +—+

)E[HYk — 13171

L2 2 5 5
+— 4+ﬁ +8a’L? + 4oL | E[||xx — 1x%|1°]

N (40?L? + 20 L)o?
n
+4(aL + 1o’ (52)

+ (8’L* + 4a LY)E[[[ % — x*||°]

Proof See Appendix 7.3. O

In light of Lemma 7, we have the following linear system of inequalities:

— — 4, 2.2
E[l|Zx+1 — x*[1%] E[|%x — x*[1%] ot
— - 2,2
Elllxir1 — 1801 1] | < Ay | ELIxe — 1 [°] | + | 4o |,
kvl 2 > 112
Elllye+1 = 1y 117] Elllye — 15 l7] M,
where
| _ 2an 2ozL2 (1 n 20!#) 402
n lm n3
272
Ag=Ihijl=| 8212 pip + 2 4 L2 2 (4 +a)
272
821 +dal’ LX (44 2 48217 +aaL) py+ 2pp 4+t 4 d0L

and M, M + 4(aL + 1)o2. Suppose a, B, B2 > 0 satisfy
2a 8a’L? 1+ pg
b22=;0u_)+7,31+ = zw,

4ol 4a’L% 1+ pg
+ ==

(53)

2
b33 = pa + P (54)

and

detX — Ap) = (1 — b11)(1 — b)) (1 — b33) — b12b23b31 — b13b21b32
— (I = b11)bazbsy — (1 — ba2)b13b31
— (I = b33)b12b21 > (1 = 1/I")(1 — b11)(1 — b22)(1 — b33) > 0.

(55)
Then, by Lemma 5, the spectral radius of A, is smaller than 1, and we have
E[[%x — x*|%] Ell%o —x*IP1] kot [
Ellxe — 1%[%] | < A% | Ellxo — ITo[”] | + ) A | 4o | (56)
Elllyx — 15, °] Elllyo — 130/ 1=0 M,
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Hence, sup;-4 E[IIX; — x*[*1, sup;~ ELllx; — 1%7/1*] and sup, Ellly; — 13;/] all
converge to a neighborhood of 0 at the linear rate O(p (Ag)k ). Moreover,

lim supy._, o E[[Tx —x*[*] - X
limsup;_ o, Elllx; — 15 [%] | < A= Ap) 7' | 22202 | =
n

lim supy._,oc Elllyx — 1511 N
(1 = b22)(1 — b33) — ba3bzn b13b3 + b1o(1 — b33) b12by3 + bi3(1 — by)
ba3b31 + b2 (1 — b33) (1 =b11)(1 — b33) — bi3b3) b13by1 + ba3(1 — byy)
ba1b32 + b31(1 — b22) b12b31 + b3 (1 — byy) (I =b11)(1 = b22) — b12b2y

w’ii . (57
Mg

We now show (53), (54), and (57) are satisfied under condition (44). First, relation
(44) implies that

4021? < M’ (58)
12
1 _ -
Yol +20%L2 < ”(1—2'0“)). (59)
Therefore, from (53) and (54) we have
1 — pg 1 — pg
B = u —4aL22M >0, (60)
da 6a
1 — pg 1 — pg
B = w —2alL —2d%L% > % > 0. 61)
By (58)—(61) and the fact that pz > 1 — 2/n obtained from (41), we have
2aL? 1 9 L
bio< S (14 <) = ==, (62a)
un? 8 4pn?
202
by3 < e (6n+1), (62b)
b3 = aL*>8aL +4) < 6aL’, (62¢)
L? 9
by <—|(12n+ < ). (62d)
n 2

Then, for relation (55) to hold, it is sufficient that

1« 27(6n+1)a*L>  48(8n +3)a*L*  6(6n+ 1)(8n + 3)a3 >
——M(l—p@)zz (6n 3) + 8n 4) i (6n + 1)( 773 o [
I 2n un n n

126313 9¢3 14

3 (I = pip) + (1 = pi).

un?
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In light of (58), oL < n(1 — py)/24. We only need

1 un? 9(6n + Da?L*n
S ey s S R o) 4280 + 3)e2L3(1 — pi)
r 2 8u
+6(6n + 1)(8n + 3o’ uL? + 12¢*L3(1 — pip)
9a2L*n

which gives

o< 22020 g 0n 1 3)0n + 1660 +9)1 0(1 — pa)
- JTL

+48(6n + 1)(8n +3) +960(1 — pa)} /2.

We now derive the bounds for lim sup,_, o E[[|[Xx+1 — x*||*] and lim sup,_, o,
EllI%¢-+1 — 1Xe+1%]. By (57) and (62),

r
lim sup E[ [ X441 — x*[|*] <
k—>oop * (' = D1 = by = b)(1 = b33)
40[20'2 2(12 2
I = b22) (1 = b33) — basbsa] — 35— + [bisbsy + bia(1 — baz) | —
+ [b12b23 + b13(1 — bzz)]Mg}

2I'n a2l — pg)? 6a2L? 9uaL? 20202
< 8 3 1 — pg
_(F—l)au(l—pw)z{ " +[ P T p’”)]

96y + DePL? 2072 9 ,
T T =) 2
+|: 2un’ + 3 ( Piv) 2(7
- 2I'no? 1002(1 — pg) N 21(6n + Da’L?
T (M= Dap(l — pp)? n3 un’
I o’ [ 20« 42(6n + 1)a2L2]
T =D n? [ u(l—pa) w1 — pg)?
r
lim sup E[[|x; — 1x¢[|°] <
k—00 (' = DA = by)(1 = b)) (1 — b33)
4o20? 20%0?
: {[b23b31 +b21(1 = b33)l— 35—+ [(1 = br)(d = b33) = bizba ]l —
+ [b13ba1 + bas(1 —bll)]Mg}

2I'n 12(6n + Do’ L3 - 4002
< da“L=(1 — py
_(F—l)au(l—pw)z{[ AR

an(l = pg) 2403137 20202 3204L% 460+ Dol 17
R I el P

n n3 n n3 n? 4
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- 2o’ [18(6)7 + Dol N 136a4L2]

(= Dap(l — pp)? n? n3
4Ic? 9(6n + a2 722312

:(F—l)(l—pw)z[ PR ]

4.4 Proof of Corollary 3
The characteristic function of Ay is

det(Al — Ag) = (A—b11)(A—b22)(A—b33) — b12b23b31 — b13ba1bzy — (A — b11)b23b32
— (A = b)b13b31 — (A — b33)b12b21. (63)

By (55).

det(M — Ag) > (A — b11)(A — b)) (A — b33) + (1 — M)b3b3
+ (1 = 2)b13b31 + (1 — A)b12b2y

1
- F(l —b11)(1 = bxp)(1 — b33)
> (A—=b11)(A —b)(A — b33)

1
—F(l—bll)(l_b22)(1—b33)~ (64)

Let A = 1 — € for some € € (0, 2ai4/n) that satisfies

2 l—ps 17 120 (1—pg)?
det(,\I_Ag)Z(ﬂ_e)[ 2Pw_€} 1 2ap (1= pa) >0,
n

T n 4
Under condition (44), it suffices that

‘ < (21"—3)%'
- r n

Denote A = 1 — @% ‘We have det():I —Ay) > 0, and therefore p(A,) < .

5 Numerical example

In this section, we provide a numerical example to illustrate our theoretic findings.
Consider the on-line Ridge regression problem, i.e.,

min f(0) = 5 110 (= Bu [lx = wf £ obe]). (69
i=l1

xeRr

where p > 0 is a penalty parameter. For each agent i, samples in the form of (u;, v;)
are gathered continuously with u; € R” representing the features and v; € R being
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the observed outputs. We assume that each u; € [0.3, 0.4]7 is uniformly distributed,
and v; is drawn according to v; = u,.T)EI- + &;, where X; are predefined parameters
evenly located in [0, 10]7, and ¢; are independent Gaussian noises with mean 0 and
variance 1. Given a pair (u;, v;), agent i can compute an estimated gradient of f; (x):
gilx,uj,v) = 2(uiTx — v;)u; + 2px, which is unbiased. Problem (65) has a unique
solution x* given by x* = (37| E,, [uiuiT] +npD)7 'Y Ey, [uiuiT])Zi.

In addition to DSGT, GSGT and CSG, we consider the following distributed
stochastic gradient (DSG) algorithm, which is similar to the ones studied in [18,26]:

Xi+1 = Wxg —aG (X, &). (66)

Noticing that some existing algorithms for deterministic distributed optimization can
also be adapted to the stochastic gradient setting, e.g., EXTRA [52] and decentralized
ADMM (DLM) [27], we also include them in our experiments for comparison.

In the experiments, we consider 3 instances with p = 20 and n € {10, 25, 100},
respectively. Under each instance, we let xo = 0 and the penalty parameter p = 0.1.
For the distributed methods, we assume that n agents constitute a random network, in
which each two agents are linked with probability 0.4. The Metropolis rule is applied
to define the weights w;; (and 7;;) where applicable [50]:

1/ max{deg(i), deg(j)} if i € N,
wij = 1_Zj€Mwi-/ if i =J,
0 otherwise.

For EXTRA, we choose W= # as recommended by [52]. For DLM, we tune the
free parameters to make its convergence speed comparable to the other algorithms.
In each instance, we use two different stepsizes ¢ = 5 x 103 and o = 5 x 1072,
respectively. We run the simulations 50 times for DSGT, CSG, DSG, EXTRA and
DLM and 100 times for GSGT and average the results to approximate the expected
eITOrS.

In Fig. 1a—f, we compare the average performances of DSGT, GSGT, CSG, DSG,
EXTRA and DLM with the same parameters. It can be seen that DSGT and CSG are
comparable in their convergence speeds as well as the ultimate error bounds (almost
indistinguishable). EXTRA and DLM are worse than DSGT and CSG in their final
error bounds. The performance gap increases with the network size and the stepsize.
GSGT is slower as expected but still reaches a comparable error level under small
stepsize @« = 5 X 1073, In addition, the error bounds for DSGT, GSGT and CSG
decrease in n as expected from our theoretical analysis. The performance of DSG is
not favorable given its largest final errors.’

In Fig. 1g-i (respectively, j—1), we further compare the solutions obtained under
DSGT and GSGT with the same number of stochastic gradient evaluations (respec-
tively, inter-node communications) under small stepsize o« = 5 x 10~3. We see the two

5 DSG still holds the advantage over DSGT in the early stage for achieving a similar convergence speed
with lower communication and storage costs.
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Fig. 1 Performance comparison between DSGT, GSGT, CSG, DSG, EXTRA [52] and DLM [27] for
on-line Ridge regression. For CSG, the plots show ||x; — x*||2. For the other methods, the plots show
& X0y i g — X1

methods are comparable in their speeds of convergence w.r.t. the number of gradient
evaluations. However, GSGT is much faster than DSGT assuming the same number
of communications. These numerical results verified our arguments in Sect. 4.2.
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6 Conclusions and future work

This paper considers distributed multi-agent optimization over a network, where each
agent only has access to inexact gradients of its local cost function. We propose a
distributed stochastic gradient tracking method (DSGT) and show that the iterates
obtained by each agent, using a constant stepsize value, reach a neighborhood of the
optimum (in expectation) exponentially fast. More importantly, in a limit, the error
bounds for the distances between the iterates and the optimal solution decrease in
the network size, which is comparable with the performance of a centralized stochas-
tic gradient algorithm. With a diminishing stepsize, the method exhibits the optimal
O(1/k) rate of convergence. In the second part of this paper, we discuss a gossip-like
stochastic gradient tracking method (GSGT) that is communication-efficient. Under
a well-connected interaction graph, we show GSGT requires fewer communications
than DSGT to reach an € error level. Finally, we provide a numerical example that
demonstrates the effectiveness of both algorithms. In our future work, we will deal
with directed and/or time-varying interaction graphs among agents. We also plan to
explore other more flexible randomized algorithms such as broadcast-based protocols
with possible transmission failures.

7 Appendix

7.1 Proof of Lemma 4
By (4),

Xk+1 = Xk — QY- (67)
It follows that

- 2= - 2= 2 - - 2= 112
[Xk+1 — X*° = 1%k — ¥y — 217 = Xk — x* |7 = 20 (X — x*, ¥i) + @[ Ve ll”

(68)
Notice that E[y; | Fix] = h(X¢), and
ELYe I | Fel = B0V, — Aol | Fil + Ihxo 112
We have
EllIXk1 — x* 1 | Fil = %% — x* 11> — 20 (% — x*, h(xx))
+ @B — hxo) 1 | Fil + o |17 (x0) |1
2 2 2 a’o?
< 1% — X117 = 20 (Fe — 2%, h) + IO + ——, (69)
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where the inequality follows from Lemma 2. Denote A = 1 — . Inlight of Lemma 3,

E[|[Xk41 — x* 1% | Fil
< Xk — x¥|1* = 20 (Fk — x*, VL)) + 22Xk — x*, V(&) — h(xx))

2 - 2 2 — 12 A2 — —\ a’o?
+ 2|V F ) — RO + |V fF @I — 202(V £ @), V.f &) — h(x)) +
- - 2 2 — , @0’
= Xk —aV @) — x> + 2V @) — hxol* +
+ 20X —aV &) —x*, V(X)) — h(xk))
2 2 2 2 a’o?
< 320%k = 21+ 20T — XTIV S G = R0l + @IV G = hxol? + —
_ 200 L _ a?L? _ 2452
< A2w — x|+ %k — x*[lIxe — 1% ]| + lIxx — 1x]I* +
Jn
_ _ L2 _ a?L? _ a?o?
< WF — 2P +a (ﬁcnxk — x> + i lxknz) + % = 131> +
al? a?o?
=22 (1 + o) Xk — x* 12+ —— (1 +ap) lIxe — Ix)* +
un n
05202

— 12 al? — 2
= A —ap) lIxe — X717+ n (I +op) lIxe — Ixe )1 +
Relation (19) follows from the following argument:

X1 — Wkt 2 = IWxe — aWye — 15 + a5 ||

< IWxg — 15 )1? = 2a(Wxy — 15, Wyg — 13) + @ | Wyi — 13|12

_ 1—p3) - 2ap _
< 2 xi — 1% 2 Y 2 ( w xi — 1% 2 + w -1 2
< P lI%k Kl Pu | ap2 lIxk Kl - ¥k — 1yl
_ (1+p2) _ (1+p2)p3 _
+ o op llye — 13117 < == lIxe — Dk ||® + o 22 |lyx — 1y |,
2 (1= p2)

where we used Lemma 1.

To prove (20), we need some preparations first. For ease of exposition we will write
Gy := G(xXk, &) and Vi := VF (xy) for short. From (5) and Lemma 1,

1¥k+1 = 151 12 = IWyk + Gigt — Gi — 13 + 1G5 — Vi DI
= [Wyk — 13 [P+ Grr1— Gl P+l —Vir1 1> + 2(Wyx — 13y, Gry1 — Gi)
+ 2(Wyk — 15, 1G53 =s D) +2(Gig1 — Gi, 1T —i41))
= [IWyx — 131> + 1Gir1 — Gell* = nll¥x — Fep1 17 + 2Wyr =14, Giy1—Gi)
< 03 lyk = 1517 + 1Gegt — Gill® +2(Wyk — 15, Gig1 — Gie).
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Notice that

ElllGis1 — Gill* | Fil = B[ Virr — Viel* | Fil
+ 2E[(Vit1 — Vi, Gkg1 — Vg1 — Gie + Vi) | Fil
+ E[|Gs1 — Vis1 — Gi + Vil* | Fil
< E[|Vitt — Vill* | Fil + 2E[(Vir1, =G + Vi) | Fil + 2n0?

by Assumption 1, and

EWyr — 1y;, Gis1 — Gi) | Fil = EL(Wyr — 13, Vigr — Gi) | Fil
= E[(Wyr — 1y, Vip1r — Vi) | Fel + E[(Wyr — 1y, =G + Vi) | Fil.

We have

Ellyet1 — et 117 1 Fil < 02 Ellyx — 1l | Fiel + Bl Vis1 — Vel | Fi]
+ 2E[(Vit1, =G + Vi) | Fil + 2E[(Wyg — 13, Vi1 —Vi) | Fil
+ 2E[(Wyx—13;, =Gk + Vi) | Fil 4 2no?. (70)

Two additional lemmas are in hand.

Lemma 8
E[(Vit1, =G + Vi) | Fil < aLno?.

Proof From (4),

Vfi(xikr1) =V fi (Z wij (X k = ‘WJZk))

Jj=1

j=1 j=1 =1

n n n
=V/fi (Z WijXjk — A Zwij |:Z Wiyl k=1 + & (%j ks §j k) — gj(xj,k—lsSj,k—l)i|)
n n n n
=V/i (Z WijXjk— o Z wij Z Wiy k-1 — o Z w;i;8i (X k»Ej k)
=1 =1 =1 =1
n
+Olzwijgj(xj,k1,§j,k1)) .

=1
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In light of Assumption 2,

n n n n
Vi Gikr D)=V i | D wijxja—a Y wip Y wiryik-i—e Y wijg(xjk. k)

j=1 j=1 I1=1 i

n
—ow;i V fi (i)t Y wijgi (-1 Eju-1) ||| SeLligi (i &=V fi (i)l

j=1
(71)
Then,
E(V fi (xi k1), —&i (Kiks &ik) + V fi(xi o)) | Fil

< aLE[llgi (xi k. &) — Vfi(xiol* | Fil < aLo?. (72)
The desired result then follows. O

Lemma9
E[(Wyx — 15, =Gy + Vi) | Fil < o™ (73)

Proof By (4), we have

E[(Wyr — 1y, =Gk + Vi) | Fil

=> E <Z Wijyjk = Vi Vi (xin) — &i(xik, 5i,k)> ‘fk

i=1 j=1

On one hand,

El(yjx Vfi(xix) — & ik, & 1)) | Fil

E [< Z WinYnk—1+ & (Xj ks Ej.k) — &5 (Xj k—1,85k-1), V[i(xi k) — g (Xi &, éi,k))‘]'—ki|

n=1
=E[(gj(xjk. &0 Vi xin) — & (xiks &) | Fe] -
which gives

E <Zn: wijyj ks V fi(xi k) — 8 (Xik, Ei,k))‘fk

j=1
= E[{w;; & (xi k& 1), VIi(xin) — & (xik, & k) | Fil < 0.
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On the other hand,
E[(yr, Vfi (i) — g (xik, &) | Fil

—E <% Zgj(xj’k’ §j.k)s V fi(xi k) — &i (Xi ks Ei,k)ﬂfk
j=1

1
=F [(;gi(xi,k» &ik)s V i (xi k) — gi (Xi k. s"’]‘)>‘J/Ek:| '
We have

E[(Wyr — 1y, =Gk + Vi) | Fil

1 < )
<— E El(gi (xi k& 1), Vixin) — & (xixs & i) | Fil <o (74)
n

i=1

O
By (70), Lemma 8 and Lemma 9, we obtain
Elllyer1 — 11 I | Fel < ppEllyx — 1el1* | Fl + E[ Vit — Vel | Fl
+ 2E[(Wyx — 15, Vie1 — Vi) | Fel +2(n +aLn + 1)o?. (75)

Now we bound || V41 — Vi ||2 and (Wyx — 1y, Vi1 — Vi). First, by Assumption 2
and Lemma 1,

Vi1 = Vil < L2Ixgg1 — Xll? = LAIWxx — X — o Wyl
= L*(W — D(x¢ — 1x) — a Wy
= IW = XL?||x — 1x¢l|* — 22 L (W — D(x¢ — 1%%), Wyx) + o> L2 (| Wy ||?
= IW = X L?|jx; — 1x]|* — 2L (W — D (x¢ — 1x%), Wyi — 15;)
+ &L [Wyi — 1y, |1 + o nL? |31
< W = XJPL? |x¢ — 151> + 20 |[W — X[ L2 o |1 — 1xklllyx — 13l
+ L2y llye — 151> + o n L2 ||y |17
< 2IW — X)2L2|Ix¢ — 1k ]? + 202 L% 02 lyx — 15,112 + o2n L2||5, |1

Second,

(Wyk — 13k, Vi1 — Vi) < Lpwllye — 15, II(W — D(xx — 1xg) — aWyi||
< W =X Lpwllyx — 15¢llIXe — 13k |l + ¢ Low llyx — 13, 1 Wyk — 15, + 13|l
< W =T Lpwllyx — 15 lllIxe — 1xk |l + «Lp? vk — 151> + a/nLpwllyx — 1517 ]l-
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Notice that

Vel < vk = h&O N + 112K = VGO + VGO

— L — —
= vk = hxO)ll + —nllxk — Ik || + LlIxx — x*|I.

Jn

We have

VLpwllyk = 15 5]l < vnLpwllyx — 15|
(nik — h(x0)|| + %uxk — 11Xl + L%k — x*n)
< Logllye — 15,17 + nLI[3; — h(xo)I* + L7 x — 13> + %nﬁnfk —x*|?,
and
I7e11* < 315 — hx0) 11> + 3%2 Ixe — 1% ]|? + 3L2||x — x*||%.
By (75) and the above relations,
Elllyk+1 — 151 17 | Fil < ppElllyx — 1517 | Fil
+2|W — I|PL? |x¢ — 1xx 1> + 20 L% pp Elllyx — 151 | Fi]
+a’nL? <3E[|m —hxo)|* | Fil + 3%2 Ixk — 1x]|* + 3L % — x*||2>
+2 (IW = T Lpw e — 15l = Gl + Lo lye — 151%)
+2 (aLp2Elllye — 1517 | il + enLE[I5, — hxol? | Fil
+ aL3|x¢ — 13k ))? + %anﬁ”fk — x*||2>
+2(n+oln+ l)ozn
= (0} +4aLp + 2071203 ) Ellye — 15, | Fil
+ (ﬂplzuE[HYk — 1517 | Fil + %nw —IPL%||x — ng)
+ (2||W—I||2L2+2aL3+3a2L4> x5+ (3a2nL4+anL3) %% — x|
+ [3a2L2 +2aL +2(n+aln + 1)] o2

_ (1 + 4oL +202L% + /3) P2 Elllye — 1317 | Fi]
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1
+ (E”W — 1L +2|W =1)*L% + 3aL3> lIxe — 1k )|
+ 2anL?||xx — x*|? + M, (76)

for any 8 > 0.

7.2 Proof of Lemma 5
The characteristic function of S is given by

g(A) :=det(Al — S) = (A — 511)(A—522) (A—533) — az3az2 (A — sy1)—aizazi (A—s22)
—apa (A — $33) — appasaz — a13azay;. (77

Necessity is trivial since det(A*I — S) < 0 implies g(A) = 0 for some L > A*.
We now show det(A*I — S) > 0 is also a sufficient condition. Given that g(A*) =
det(A*T—S) > 0,
(A" = s11) (A" —s522) (A" —s33) >a23a32 (A" —s11)+a13a31 (A" —s22) + arpa21 (A* — 533).
It follows that

YI(A® —522) (A" — 533) > azx3azn

Y2(A* —s11) (A" — s33) > aj3as; (78)

y3(A* —s11) (A" — 522) > ajpan

for some y1, y2, y3 > 0 with 1 + 32 + y3 < 1. Consider
g (W=(A—52)(A—s533)+(h—s11) (A—533)+ (A — 511) (A — 522)—ax3a3—a13031 —aA12421 .
We have g’(1) > 0 for A € (—oo, —A*] U [A*, +00). Notice that

g(—A") < —(A* + 51D (A" + 522) (A + 533) + axzazn (1 + s11)
+azazi (A" + s22) + apaz (A" +s33) < 0.

All the real roots of g(A) = 0 lie in the interval (—A*, 1*). By the Perron-Frobenius
theorem, p(S) € R is an eigenvalue of S. We conclude that p(S) < A*.

7.3 Proof of Lemma 7

First we prove relation (50). In light of (39a), we have

_ 1 1 _ o«
Thpr=- [k + Xjei) — ik + Vi) ] +Z Z Xik = xk_;()’ik,k + Vjik)-
i# ik, jk}
(79)
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Then,

- 12 _ ||= o . . * 2

X1 — x7|1° = ||xx — ;(sz,k + Vjk) — X

= *12 20 _ * 0[2 2
= X —x"|7 = Y(Xk =X, Yiek + Vjek) + ﬁ”yik’k + Vel

Taking conditional expectations of (y;, .k + ¥ j;.x) and || i, k + ¥ & ||2 w.r.t. the random
selections of iy and ji, we get

n

1 - _
Elyigk + Yjek | Fir1]l = - X]: Yik + ;”ij)’j,k =2y, (80)
i= j=

and

1 n n
Ellyik + YieklI® | Firrl = — 3% mijllyie + yjkl?
i=1 j=1
2 n 2 n n
=D ikl = 30y ik v
i=1

i=1 j=1

2 2 2 ¢ 2 , 2 o _ — 2
;||Yk|| +;kaYk=;||Yk|| +’—l(Yk_1yk) (yx — 1) + 2[| v |l

A

2 — 2 — 2
< ;(1 + ) ye — 1yill” + 411kl

IA

4 _ _
~llye - 1317 + 415,012, (81)

where p, < 1 denotes the spectral norm of II — %llT. It follows that
_ _ " da _ . — 402 402 _
B0t = 271 | Fipr] < %k = 2717 = —= (= 2" Fih + — 15l + —5llye = 13
(82)
Noticing that E[y, ] = E[A(Xx)], from Lemma 2 we have
=12 = 2 = 2 o’ 2
E[Iye 17T = E[lIyx — h&OI” +2{5x — A, h(x0) + [h&OI” | Fid = - + Elllx0)117]-

(83)

Then from (82) we obtain

B[ X541 — x*]1°]
_ da 402 40262 4a? _
= BIRx = 2171 = —BI(F = x*, hx0)] + - EllAxo "] + + 5 Elllye = 13%0°]

n3
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_ w2 da N _ da N _
= E[lIxx —x" 71— TE[(” =X VIEON — IE[(XI( =X h(x) = V)]

4o 2 4o 2 8a? _ _
+ nTIE[”h(Xk) - ViEIITT+ ?]E[”Vf(xk)” I+ nTEHh(Xk) — V&, VFED)]

402 _ 40202
+ —Elllye — 171+ —5
n

:E[
2 2 2.2

da _ da _ _ da o
+ —Ellh(x0) = VGO + —Ellye — 1507 1 71+

_ 20 _
X — 7Vf(xk) —x*

2 do 2a _ « _
- TE[(xk - 7Vf(xk) —x" h(xg) = V)]

Since @ < n/(u + L), we know from Lemma 3 that

2
2001
(1——> 1%k — x*112,
n

L
Ih(xx) = VGOl = ﬁ”xk — 1xi |

_ 200 _ "
Xp — YVf(Xk) —Xx

and

It follows that

E[|Xkr1 — x*11]

2o 2 _ 4o 2o L _ _
< (1 - —"“) E[|Fx — x*[I*] + — (1 - —"“) —E[|% — x* | Ixe — 1% 1]
n n n ) Jn
40212 _ 402 _ 4a20?
+ Elllxe = 15”1+ —Elllye = 15071+ —
204 2004 _ L? _
< (1 - —) E[|Xx — x*[I*]+ — ((1 - —) RE[IFx — x* 2]+ —E[lIx¢ — 1% 1]
n n un
40{2L2 4a202
+ Elllxe — 1)1+ —E[nyk — 15,171 +
21 2aL? 20t _
< (1 - )Enm X2 I+ (1+—) E[lxx — 13k [1%]

402 _ 402 2
+ —Elllys — 1 °1+ —
n

To bound the consensus error E[||Xg4+1 — 1Xk41 ||2], note that from (39a) and (79)
we have

— _ o 2
It = Tt 17 = Wik — aDiye = T+ 10k + 7300 |

_ _ 1
= [Wixg — 15> — 20 (Wyxy — 13, Deyx — —10igk + i)
2

1
o | Dyyy — ;l(yik,k + Vi k)
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= tr [(x; — 1%0) TW] Wi (x — 1%1) | — 20 (Wiexg — 13k, Dyeye)
2

+ao? (84)

1
Dyyr — ;l(yik,k + Vjk)

By Lemma 6, the conditional expectation of tr [(xx — 1x,) TW] W (xx — 1x;)] can
be bounded below,

Eltr[(xx — 1) TW] Wi — 1X0)] | Fir] = tr[(xx — 1) TW(x — 1353) ]
< pollxk — 151> (85)

In view of the structure of Dy, we rewrite 2(Wyx; — 1xj, Dryx) as follows:

2(Wix; — 1xk, Diyi)

1 _ _
= 2<§(Xik,k + X k) = Xy Vigk + YVjek) = Xig .k + Xji ke — 2%k, Yig k + y.,'k,k>~

Note that

n

_ 1 _
El(xig k = Xks Yig.k) | Freg1] = - Z(xi,k — Xk, Yik)

i=1

| — _ _ 1 _ _
= D ik = Xk Yik — Vi) = - %k — Ixk, ye — 1y,
i—1
.l n n
E[(x ek — Xk, Yjk) | Frerl = - ;;ﬂi/‘ (Xjk =Xk, Yjk)
=1 j=

1 & _ 1 _ _
= Z(xj,k — Xk, YVjk) = ;(Xk — 1Xp, ye — 194),
=1

n

_ 1 B n
El{xig .k — Xks Vi) | Fe1]l = - z(xi,k — Xk, Z;”inj,H
i= j=

n n

1 _ _
= Z Z(xi,k — Xk i (Vjk — Vi)
i=1 j=1
1 _ _
= ;tr [ — 1X0) T (yx — 15)]
and similarly,

1
E[{xj .k — Xk» Yig.k) | Frr1] = r—ltl' [ — 1X) T (yx — 17,)] -
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The following inequality holds:

_ _ _ 2 _ _
2E[Wixp — 1xg, Dryr) | Fr1l = — (X — I, yi — 1) + ;tl‘ [ — 1X) T (yx — 1)) ]

SIS0

IA

[xe — Ixkl[llyx — 1yl (86)

The last term in Eq. (84) can be bounded in the following way:

2
2 1
= [Dyyel® — Dy, Wik + i) + ~ ik + Viekll?

1
Diyi — ;l(yik,k + Yik)

2 2 2 2 1 2
< 20y kI + 13l = =ik + 2kl + ik + ikl
< 23y kI + 1yje k. (87)

In view of inequalities (85)—(87), from (84) we obtain

— 2 — 2 4o _ _ 40(2 2
EllIxg+1 — IXp1 17 | Frr1] < o lixe — L ||I= + *IIXk — Ixillllye — 1yl + TIIYkII
402 5
< pallxk — 1% + = Bulxe — 1xl* + FIIYk — 1y, 0% ) + T\kall

_ 2a 1 _ 4o _ —
(pw + —m) I3 = 7+ 5y = 190 o = (e = T3l + el )

. 2a 1 _ _
= (pm + 7/31) lIx — 1% 01> + — (E + 2a> lye — 15,17 + 402|711,

where 81 > 0 is arbitrary. Notice that by relation (83) and Lemma 3,

2
E[[[ 7171 < "7 +Ellla(xx) — V&) + V@I

2 2
T LB | (L — 1l + LiF - 2
n \/ﬁ k k k

0‘2 2

2L _ _
— + —Ellx - 134|121 + 2L2E[ %% — x*[|]. (88)

IA

We obtain

8212

Elllx¢41 — 1Xkq1 %] < (pw + 2+ )E[IIXk — 1% %]

20 (1 _
+ — (— + 05) Elllyx — 1yk||2]
n \ B

4o2c2

+ 8a? L*E[[|xx — x*||1*] + —
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which is exactly inequality (51).
Finally we prove inequality (52). From the update rule (39b),

Y1 — 15pp 11> = Wiy + DG — DiGi — 13, + 15 — 1354y |17
= Wiyk — 131 + Dk Gyt — Dk Gill> + nll vy — Yepr I
+ 2(Wiyx — 13 DGy — DiGy)
+ 2(Weyk — 133, 15 — 134 1) + 2(D Giqt — DG, 13 — 1341
= tr [(yx — 1) TW] Wik — 15 ] + Dk Gi1 — Dk Gl + nll5y — Fps I
+ 2(Wiyk — 134, DkGry1 — DiGy) + 2(Di Gyt — DGy, 15, — 1§k+1>-(89)

Denote g; x := gi(xi k, & k) for short. Notice that

2(DkGig1 — Dk G, 15 — 15py1) = 2080 kb1 — Zigok + L@kt — &) Te — i1

and
_ _ 1
Yk = Yk+1 = n ()’ik,k — Vi1 + L (Yje ke — ij,k+1))
1
= (i k41 — &k + Li(Gjekt1 — &jik)) -
We have

2Dk Grr1 — DGy, 1y — 1yppy) = =205k — Fiqt 1%
Hence relation (89) leads to

I¥k1 — 13t I1* < tr [(vx — 130 TWI We(yk — 15)] + Dk Giy1 — DiGell?
+ 2(Wiyk — 15, DeGiqr — DiGyo). (90)

Now we analyze the three terms on the right-hand side of (90), respectively. First,
Eltr{(yx — 15) TW] Wi (v — 1301 | Fis1] < pallyx — 15 1% oD
Second,
IDkGrr1 — DiGill® = ligic k1 — 8ok + Lillg ot — gkl (92)

In light of Assumptions 1 and 2, we can bound E[||g; x+1 — gik,kllz] and
E[Lkllgjok+1 — & klI*T:

Elllgick+1 — &in.k 1?1 = EUIV fi, Rig k41) — V fi (i i) 171
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+2E[(V fiy (i k1) — Vi, i 1) 8in k41— fiy (Kig ke 1) —8ig k+V Sy (i 1)) ]
+ ELgi k41 — V fir Gigk1) — ik + V iy (i) 1]

= BIIV fi, i 1) — V fip G i) 121+ 2BV fi, (it 1) =ik + Vi (i i)
+ E[llgick+1 — V fir Gk DIPT + ELl 8ok — Vi i) 17

< L®BIxig k1 — Xig ke 121+ 2EUV iy i) =ik + V iy (i i) + 202;.93)

Similarly,

Ellgllgjok+1 — & kll*] < LBk llxj k41 — Xk ll*]
+ 2R[14 (Y fj (e kr1)s =ik + Vi i) + 202 (94)

To further bound E[[lg;, x+1 — gl~k,k||2 + Lillgjek+1 — gjk,k||2], we introduce the
following lemma.

Lemma 10

ELV fiy Ki ket 1)s =8k 4V fiy (i i))] 4 BV f (0 k1) =8k
+V fi (xj ] < 2aLo’.

The proof is similar to that of Lemma 8 and is omitted here. Equation (92) together
with (93), (94) and Lemma 10 leads to the following inequality:

E[|DxGi41 — Dk Gl*]
< LE[||xig k1 — Xig 171 + L2E[Lg [1x k41 — Xj k171 + 4(@L + Do?
= LB (lxig k1 — Xig kI 4 130 k1 — Xk 1P)]
+ L*E[(1 — 1) lIxi k41 — Xig k171 + 4(@L + Do?. (95)

Note that from (37a) and (38a), we have

2 2
e (i k+1 = Xig k17 4 e k1 — X & 117)

2
:nk[

1
2 2
= Zﬂk (”xjk,k — Xig k — 20y 1 I+ I Xi e — Xjok — 200y kel )

|

1
= 3k [k = 0 k12 420 (il + 193 12) + 20tk = ke Yk = Vi)

1
+ H 5 (Y + X k) = @¥jk = Xjk

1
E(xik,k + Xjk) = AVipk — Xi k 7

(1= L) i k1 — Xip I = 4o (1 — 1) |yi, k11>
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Then by (95),
E[IDy Gt — DeGil’]
1
< L’E [nk <§||xik,k — il e (i + 1 ]?)

o (Xip & — Xji ks Yig.k — )’jk,k>)]
+ 402 L2EL(1 — 1) [lyi 121 + 4(@L + )0

< LB [14 (Wit = x50 + 207 (it + 117 )

+ 40’ LE[(1 = 101y %] + 4(@L + Do
L? —
T 201 - Ml = 5P + eyl + 4L + Do

IA

417 - — -
—E [ Ixe — 1012 + o lye — 15112 + @nl[55 ] + 4@l + Do, (96)

For the last term on the right-hand side of (90), note that

2AWiyk — 154, DiGrgt — DiGi) = igk + Yjek — 2k Giok+1 — Sivk + L (g k1 — &jek))-
By Assumption 1, we have

2E[(Weyk — 154, DkGis1 — DiGi)]
= E[{yir.k + Y.k — 2Vi Vi Kig k1) — ik + Le(V i (i k1) — & i) ]-

o7
The following lemma is useful.
Lemma 11
El(yik + Yk = 2V 8igk — Vi i k) + L (8 ik — V [y (xji10))] = 0.
Proof See Appendix 7.4. O

In light of (97) and Lemma 11,

2E[(Wiyk — 154, DiGrat — DGyl

S Elik + Yiek = 255 V fir Gig k1) — Vi i k) + L[V i (G ker1) — V i (0 1]

= B[k (Yip.k + Yjek — 2k Vi G k1) — Vi, G k) + Vi Cket1) — V(i)
+2E[( — L) (ie.k — Vo Vi Kig k1) — V iy (e 1)) - (98)

Notice that from (37a), (38a) and Assumption 2,

Lie{Yig.k + Vi k = 2V V i Ki k1) = V fire i k) + V e k1) — V(X 1)
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< L1x(yig.k — Vel + 1k — YelD Ui e+1 — Xk + 165 k41 — X k1D
L _ _
= Eﬂk(”)’ik,k = Vel + 1Yjek = Ve DUk — Xig ke — 20y &l + W X0k — Xk — 200y kD

= L1x(1yie.k = Vel + 1Y jek = Ve DXk — Xkl
+ LTk yiek = Yell + 1Yjek = Ve DU yig il + 1Yk 1D

and

(I =10 gk — Yieo Vi Ki k1) = Vi, K i)) < LA =T i — Vi llxig k41 — Xig il
=2aL(1 — L) llyir.k — Vi lllyip k-

We have from (98) that

2E[(Wiyk — 15, Dk Giq1 — DiGy)]
< LE[g(lyig.k = Yl + 1950k = YD llxi ke — % k1]
+ «LE[Lx (lyik — Vil + ik = T D Uyigkll + 1k 1D
+4aLE[(1 — 1) [l yie.k — e 1Yk D

— 2 — 12 L2]1k 2
< E | LeBoUlyiek — Yill™ + 1Yjek — Vel ©) + E”xik,k =Xkl

+ LB [ LeClyigk = Tel® + ek = Tel® + Dyl + 17 413 ]

+ 20 LE[(1 — 1) (1yig k — Fell> + 1y 111
2 _ LAI-1 1 _
< ZBElllye — 17171 + ——— —E[lIx¢ — 1%]I*]
n n }32
2oL _ 2L
+ ——Ellye - 151171+ T1E[||yk||2]

2 _ 20% 1 _ 4oL _ _
= ~BoElllyx — 13171 + Tﬂ—Enm — 1%l + —=Elllyx - 15111 + 2« LE[ 5, %1,

2
99)

for any B, > 0. In light of (91), (96) and (99), we obtain by (90) that

Ellyer1 — 1 17]
2 4oL . 2071 0 0
=\ pw+ -2+ —— ) Elllye — I I1 + — ——Ellxk — 1xilI7] + 2o LE[[[y; [I7]
n n n B
412 _ - -
+ = [ Bl — 150071 + o ELlye — 15502 + o nEL55 %1 ] + 4(aL + 1o

2 4ol 4a’L?
=\ oo+ ;ﬂz + o +

L? 2
) Elllyx — 1y l1* | Fil + — (4 + E) Efllxx — 1% 1]

+ (40’ L? + 2o L)E[|| ;1?1 + 4(aL 4 1)o .
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Since by (88),
2 2
_ o 2L _ _
E[lv 121 < — + ——Ellx - 1% + 2L2E L%, — x* 121
We conclude that

— 2 2 4ol 4aPL?
Ellye+1 — g 171 = | oo + ;ﬂz + 7 +

)]E[HYk — 13 11%)

L? 2
+ = <4+ﬁ—+8a2L2+4aL> E[|Ixx — 1xk||%] + (8’ L*+4a LHE[|| Xk — x*||*]
n 2

40%L? + 20 L)o?
L GorLm 20b)o” |y r 4 1o,
n

7.4 Proof of Lemma 11
The following relation holds:

El(Yig .k + Yiek = 2V ik — V fir K k) + L (€ ek — V e (X)) ]
= E[1x (Yie.k + Yjek — 2Vk» 8ink — V fir Kig k) + ik — V i (Xji))]
+2E[(1 — 1) Yig.k — Vier ik — V i i i) -

From the updating rules (37b) and (38b), we have

B[k (Yie.k + Yiek = 2Yks Gixk — V fir Kig k) + &jik — V i (X i)]

2
= (1 - ;) E[1{(giy .k + &jx.k)s ik — V fir Kig k) + ik — V [ (Xjix))]

2
= (1 - ;) ElLellgi ke — Vi i O + Lellg ik — V£ 021 = 0,

and
n

1
ELA =T ig.k = Yio ik = Vi i 1)) = (1 )]E[(l — o)llgick — Vfi (i 171 = 0.

Hence

E[(yie.x + Yiek = 2V ik — Vi Kig k) + Lx (g k — V i (e, ] = 0.
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