
Mathematical Programming (2020) 183:249–281
https://doi.org/10.1007/s10107-020-01482-5

FULL LENGTH PAPER

Series B

An exact approach for the bilevel knapsack problemwith
interdiction constraints and extensions

Federico Della Croce1,2 · Rosario Scatamacchia1

Received: 31 May 2019 / Accepted: 14 February 2020 / Published online: 26 February 2020
© Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2020

Abstract
Weconsider the bilevel knapsack problemwith interdiction constraints, an extension of
the classic 0–1 knapsack problem formulated as a Stackelberg gamewith two agents, a
leader and a follower, that choose items from a common set and hold their own private
knapsacks. First, the leader selects some items to be interdicted for the follower while
satisfying a capacity constraint. Then the follower packs a set of the remaining items
according to his knapsack constraint in order to maximize the profits. The goal of the
leader is to minimize the follower’s total profit. We derive effective lower bounds for
the bilevel knapsack problem and present an exact method that exploits the structure
of the induced follower’s problem. The approach strongly outperforms the current
state-of-the-art algorithms designed for the problem. We extend the same algorithmic
framework to the interval min–max regret knapsack problem after providing a novel
bilevel programming reformulation. Also for this problem, the proposed approach
outperforms the exact algorithms available in the literature.

Keywords Bilevel programming · Exact approach · Bilevel knapsack with
interdiction constraints · Min–max regret knapsack problem

Mathematics Subject Classification 90-08 · 90C10 · 90C27

B Federico Della Croce
federico.dellacroce@polito.it

Rosario Scatamacchia
rosario.scatamacchia@polito.it

1 Dipartimento di Ingegneria Gestionale e della Produzione, Politecnico di Torino,
Corso Duca degli Abruzzi 24, 10129 Turin, Italy

2 CNR, IEIIT, Turin, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10107-020-01482-5&domain=pdf
http://orcid.org/0000-0003-2897-183X

250 F. Della Croce , R. Scatamacchia

1 Introduction

Recently, growing attention has been centered tomultilevel programming. This emerg-
ing field considers optimization problems with a hierarchal structure where many
decision makers sequentially operate to reach conflicting objectives. Each agent takes
decisions that may affect objectives and decisions of the agents at lower levels. At the
same time, the latter decisions impact on the objectives of the agents at upper levels.
Hierarchal contexts arise in many real-life applications in supply chains, energy sec-
tor, logistics and telecommunication networks among others. The presence of many
decision levels makes these problems very challenging to solve.

The most relevant research in the field has been pursued for bilevel optimization
where two agents, denoted as a leader and a follower, play a Stackelberg game ([34]).
In this game, the leader takes the first decision and then the follower reacts taking into
account the leader’s strategy. Eventually, the agents receive a pay-off which depends
on both leader’s and follower’s choices. The goal is typically to find a strategy for the
leader that optimizes his own objective. Two standard assumptions are considered in a
Stackelberg game: complete information, that is each agent knows the problem solved
by the other agent; rationale behavior, namely each agent has no interest in deviating
from his own objective.

Bilevel optimization considers mixed-integer bilevel linear programs (MIBLP)
where both the leader and the follower solve a combinatorial optimization problem
with linear objective function and constraints and with either continuous or integer
variables. The first generic branch and bound approach for MIBLP was provided in
[27]. Branch and cut schemes were introduced in [14,15]. Further approaches were
proposed in [5,18,36,37]. An improved generic MIBLP solver has been proposed in
[16]. We refer to [16] and the references therein for an overview on MIBLP solvers
and related applications.

In this paper, we consider the bilevel knapsack with interdiction constraints (BKP),
as introduced in [14]. The problem is an extension of the classic 0–1 knapsack problem
(KP) (seemonographs [23,26]) to aStackelberg gamewhere the leader and the follower
choose items from a common set and hold their own private knapsacks. First, the
leader selects some items to be interdicted for the follower while satisfying a capacity
constraint. Then the follower packs a set of the remaining items according to his
knapsack constraint in order to maximize the profits. The goal of the leader is to
minimize the follower’s total profit.

In [3] it is shown that BKP isΣ
p
2 -complete in the polynomial hierarchy complexity.

Essentially, BKP cannot be formulated as an ILP model of polynomial size unless the
polynomial hierarchy collapses (also pointed out in [4]). This makes the problem
even more difficult to solve than an NP-complete problem. We refer to [22] for an
introduction on polynomial hierarchy.

One of the best performing algorithms for BKP is given in [4]. The algorithm,
denoted as CCLW, relies on the dualization of the continuous relaxation of the fol-
lower’s problem and on iteratively computing upper bounds for the problem until a
stopping criterion applies. The approach is motivated by the lack of significant lower
bounds for the problem.AlgorithmCCLWsolves to optimality instances with 50 items
within a CPU time limit of 3600 s, running out of time in instances with 55 items only.

123

An exact approach for the bilevel knapsack problem with… 251

Another previous exact solution approach was proposed in [35]. Very recently, an
improved branch-and-cut algorithm has been given in [17]. The proposed approach
manages to solve to optimality all benchmark instances in [4], requiring at most a
computation time of about 85 s in an instance with 55 items. The algorithm in [17]
was shown to be superior to the other approaches also on the medium size instances
with up to 50 items considered in [14,35]. We also mention the work of [19] where a
heuristic approach is proposed for BKP and for other interdiction games.

Other bilevel knapsack problems have been tackled in the literature. In [2] the
leader cannot interdict items but modifies the follower’s capacity. In [7], the leader
can modify the follower’s objective function only. In [33], a variant of the problem
is considered in which an item can be taken by both the leader and the follower, in
that case its profit changes (either increasing or decreasing). As discussed in [4], these
knapsack problems are easier to handle than BKP. A polynomial algorithm has been
provided in [6] for the BKP variation where the follower solves a continuous knapsack
problem. Finally, a bilevel knapsack problem where the leader controls the weights of
a subset of the follower’s items has been recently tackled in [28].

Our contribution for BKP is twofold. First, we derive effective lower bounds based
onmathematical programming. Second, we present a new exact approach that exploits
the induced follower’s problem and the derived lower bounds. The proposed approach
shows up to be very effective successfully solving all benchmark literature instances
provided in [4,15,35] within few seconds of computation. Our algorithm manages to
solve to optimality larger instances generated according to the same generation scheme
of [4] with up to 500 items requiring in the worst-case instance less than 14 seconds
of CPU time. An extended computational campaign is also applied to the instances
considered in [19] reaching very good results. A preliminary conference version of
this work appeared in [13].

Further,wemanaged to extend theproposed approach to the intervalmin–max regret
knapsack problem (MRKP), as introduced in [24]. This problem is a generalization of
theKPwhere the profit of each item ranges between aminimumand amaximumvalue.
A given assignment of the items profit levels defines a scenario which corresponds to
a standard knapsack instance. The problem calls for finding a feasible solution that
minimizes the maximum regret over all possible scenarios, where the regret represents
the difference between the optimal solution value of a scenario and the value given by
the selected solution. The authors of [9] show that the decision version of theMRKP is
Σ

p
2 -complete and thus very challenging to solve. In [20] different heuristic and exact

algorithms are proposed for the problem based on classical optimization approaches
such as Benders decomposition and branch and cut methods. We propose a bilevel
programming reformulation of the MRKP and correspondingly apply the algorithmic
framework proposed for BKP with proper integrations. The approach significantly
outperforms the best performing exact algorithms given in [20].

2 Notation and problem formulation

In BKP a set of n items and two knapsacks are given. Each item i (= 1, . . . , n) has
associated a profit pi > 0 and a weight wi > 0 for the follower’s knapsack and a

123

252 F. Della Croce , R. Scatamacchia

weight vi > 0 for the leader’s knapsack. Leader and follower have different knapsack
capacities denoted by Cu and Cl , respectively. Quantities pi , vi , wi (i = 1, . . . , n),
Cu , Cl are assumed to be integer, with vi ≤ Cu and wi ≤ Cl for all i . To avoid trivial
instances, it is also assumed that

∑n
i=1 vi > Cu and

∑n
i=1 wi > Cl . We introduce 0/1

variables xi (i = 1, . . . , n) equal to one if the leader selects item i and 0/1 variables
yi equal to one if item i is chosen by the follower. BKP can be modeled as follows:

min
n∑

i=1

pi yi (1)

subject to
n∑

i=1

vi xi ≤ Cu (2)

xi ∈ {0, 1} i = 1, . . . , n (3)

where y1, . . . , yn solve

the follower’s problem: max
n∑

i=1

pi yi (4)

subject to
n∑

i=1

wi yi ≤ Cl (5)

yi ≤ 1 − xi i = 1, . . . , n (6)

yi ∈ {0, 1} i = 1, . . . , n (7)

The leader’s objective function (1) minimizes the profits of the follower through the
interdiction constraints (6). These constraints ensure that each item i can be selected by
the follower only if the item is not interdicted by the leader, i.e., if xi = 0.Constraint (2)
represents the leader’s capacity constraint. The objective function (4) maximizes the
follower’s total profit and constraint (5) represents the follower’s capacity constraint.
Constraints (3) and (7) define the domain of the variables.

The optimal solution value of model (1)–(7) is denoted by z∗. The optimal solution
vectors of variables xi and yi are respectively denoted by x∗ and y∗. Notice that in
model (1)–(7) there always exists an optimal solution for the leader which is maximal,
namely where items are included in the leader’s knapsack as long as there is enough
capacity left.

Let us now recall the optimal solution of the continuous relaxation of a standard
KP, namely the follower’s model (4)–(7) without constraints (6) and constraints (7)
replaced by inclusion in [0, 1]. Under the assumption

∑n
i=1 wi > Cl , this solution

has the following structure. Consider the sorting of the items by non-increasing ratios
of profits over follower’s weights:

p1
w1

≥ p2
w2

≥ · · · ≥ pn
wn

. (8)

123

An exact approach for the bilevel knapsack problem with… 253

According to this order, items j = 1, 2, . . . are inserted into the knapsack as long as
∑ j

k=1 wk ≤ Cl . The first item s which cannot be fully packed is commonly denoted in
the knapsack literature as the split item (or break/critical item). The optimal solution
of the KP linear relaxation is given by setting y j = 1 for j = 1, . . . , s − 1, y j = 0 for
j = s+1, . . . , n and ys = (Cl−∑s−1

j=1 w j)/ws . The solutionwith items 1, . . . , (s−1)
is a feasible solution for KP and is commonly denoted as the split solution.

In the remainder of the paper, we assume the ordering of the items (8). We denote
by K P(x) the follower’s knapsack problem induced by a leader’s strategy encoded in
vector x , i.e. a knapsack problem with item set

S := {i : xi = 0, xi ∈ x}.

We also denote by K PLP (x) the corresponding Linear Programming (LP) relaxation.
If

∑
i∈S wi > Cl , we define the critical item c of K PLP (x) as the last item with

a strictly positive value in its optimal solution. Thus, we have yc ∈ (0, 1] and a
corresponding split solution with profit

∑

i∈S:i<c

pi =
c−1∑

i=1

pi (1 − xi) (9)

which constitutes a feasible solution for K P(x). Notice that we denote by z(M) the
optimal solution value of any given mathematical model M .

3 Computing lower bounds on BKP

Consider the optimal solution vector x∗. In the induced follower’s knapsack problem
K P(x∗) with item set S, two cases may occur: either there is no critical item in
K PLP (x∗), namely

∑
i∈S wi ≤ Cl , or one critical item exists, namely

∑
i∈S wi > Cl .

The first case can be easily handled by considering that the follower will pack all items
not interdicted by the leader. This case is discussed in Sect. 4.2.1.

In the second case,we derive effective lower bounds onBKP that constitute themain
ingredient of the exact approach presented in Sect. 4. Since we don’t know a priori the
leader’s optimal solution x∗, we proceed by guessing the critical item of K PLP (x∗),
namely we formulate an Integer Linear Programming (ILP) model where we impose
that a given item c must be critical and evaluate the profit of the corresponding split
solution in the objective function. We consider binary variables kh (h = 1, . . . , wc)

associated with the weight contribution of the critical item and introduce the following
model (denoted as CRIT1(c)).

CRIT1(c):

min
c−1∑

i=1

pi (1 − xi) (10)

123

254 F. Della Croce , R. Scatamacchia

subject to
n∑

i=1

vi xi ≤ Cu (11)

c−1∑

i=1

wi (1 − xi) +
wc∑

h=1

hkh = Cl (12)

wc∑

h=1

kh = 1 (13)

xc = 0 (14)

xi ∈ {0, 1} i = 1, . . . , n (15)

kh ∈ {0, 1} h = 1, . . . , wc (16)

The objective function (10) minimizes the value of the split solution. Constraint
(11) represents the leader’s capacity constraint. Constraints (12) and (13) ensure that
item c is critical as it is the last item packed, with a weight in the interval [1, wc].
Constraint (14) indicates that item c can be critical only if it is not interdicted by the
leader. Constraints (15) and (16) indicate that all variables are binary. Admittedly,
instead of using wc binary variables kh , an alternative model could be obtained by
using a single integer positive variable in constraint (12). For sake of exposition, this
issue is discussed at the end of this section.

We can state the following proposition.

Proposition 1 If c is the critical item in K PLP (x∗), then z(CRIT1(c)) is a valid lower
bound on z∗.

Proof If c is the critical item in K PLP (x∗), an optimal BKP solution x∗ constitutes a
feasible solution for model CRIT1(c). Let denote by z1 the solution value of the split
solution in K P(x∗). Since the follower maximizes the profits in K P(x∗), the value of
z∗ is greater than (or equal to) the one of the related split solution, that is z1 ≤ z∗. But
then, as model CRIT1(c) searches for an interdiction of items by the leader inducing
a minimum cost split solution (among all feasible split solutions for a given critical
item c), we get z(CRIT1(c)) ≤ z1 ≤ z∗. ��

The previous proposition already provides a first significant lower bound for the
problem. However, following the reasoning in the proof of Proposition 1, we remark
that improved bounds on z∗ can be derived by considering any feasible solution for
K P(x∗) that might be obtained by removing (adding) items that were not interdicted
by the leader and that were selected (not selected) by the split solution, provided that
the follower capacity is not exceeded. Indeed, this corresponds to considering only
items i not interdicted by the leader and to removing tuples of items i ∈ [1, c − 1]
and/or to adding tuples of items i ∈ [c, n] from/to the split solution without exceeding
the follower’s capacity.

Notice that, the state-of-the-art algorithms forKP,Minknap ([31]) andCombo ([25])
consider that in general only few items with ratio pi/wi close to that of the critical
item change their values in an optimal solution with respect to the values taken in the
split solution. These items constitute the so-called core of the knapsack.Minknap and

123

An exact approach for the bilevel knapsack problem with… 255

Combo start with the computation of the split solution and define a core initializedwith
the critical item only. Then, the algorithms iteratively enlarge the core by evaluating
both the removal of items from the split solution and the addition of items after the
critical item. The empirical evidence illustrates that an optimal (or close to be optimal)
KP solution is typically found after few iterations.

We cannot precisely characterize the features of these exact algorithms by a
set of constraints within an ILP model, but we can mimic the same algorithmic
reasoning by considering subsets of items c − Δ, ..., c + Δ provided that these
items are not interdicted by the leader. In each subset, the items i : i ≤ c − 1
are removed from the split solution, while the items j : j ≥ c are added to
the solution. Whenever this operation does not violate the capacity constraint, a
new feasible solution is reached. Correspondingly, the initial profit and weight
of the split solution are modified by subtracting the profits and the weights of
the removed items and by summing up the profits and the weights of the added
items.

Then, for any given subset τ of items c−Δ, ..., c+Δ, let pτ and wτ be the related
profit and weight contributions, namely:

pτ = −
∑

i∈τ :i<c

pi +
∑

j∈τ : j≥c

p j ; (17)

wτ = −
∑

i∈τ :i<c

wi +
∑

j∈τ : j≥c

w j . (18)

A subset τ with pτ ≤ 0 is not considered since it does not improve upon
the split solution (whatever is the split solution originated by the relevant ILP
model) associated with the critical item c. Instead, an improving subset with
pτ > 0 is of interest only if it is feasible. Feasibility is obtained if wτ does
not exceed the residual capacity, that is if wτ ≤ ∑wc

h=1 hkh which implies∑wc
h=wτ kh = 1. Also, only items not interdicted by the leader can be considered,

that is xi = 0 ∀i ∈ τ must hold. Correspondingly, an improving subset τ is
detected inducing an additional profit pτ , if and only if the following expression
holds:

wc∑

h=wτ

kh −
∑

i∈τ

xi = 1. (19)

A new model can then be generated by introducing a non-negative variable π that
carries themaximum additional profit to the split solution value provided by any subset
τ and related additional constraints of the type

π ≥ pτ

(
wc∑

h=wτ

kh −
∑

i∈τ

xi

)

. (20)

Notice that the right-hand side of (20) is not larger than 0 whenever
∑wc

h=wτ kh = 0
or

∑
i∈τ xi ≥ 1. Correspondingly, it equals pτ if and only if expression (19) holds.

123

256 F. Della Croce , R. Scatamacchia

We can then consider a set of constraints (each corresponding to a subset of items),
denoted (with a little abuse of notation) asF(π, x, k, τ), linking variableπ to variables
xi and kh for each considered subset τ . The model (denoted as CRIT2(c)) is as
follows.
CRIT2(c):

min
c−1∑

i=1

pi (1 − xi) + π (21)

subject to F(π, x, k, τ) (22)

(11)−(16)

π ≥ 0 (23)

Due to the addition of any set of constraints F(π, x, k, τ), for every c we have
z(CRIT1(c)) ≤ z(CRIT2(c)) as in CRIT2(c) there are more constraints and the
objective function contains an additional positive term π . Notice that, every additional
constraint contains only items not interdicted by the leader (I) and does not violate
the follower’s capacity (II). Every set F(π, x, k, τ) of constraints satisfying both
requirements (I) and (II) is denoted as proper. Once set F(π, x, k, τ) is built, variable
π represents in the objective function the largest profit induced by the tuples of items
that can be added to the profit of the split solution.

Proposition 2 If K PLP(x∗) admits a critical item c andmodelCRI T2(c) has a proper
set F(π, x, k, τ), then z(CRIT2(c)) ≤ z∗.

Proof Since modelCRIT2(c) considers feasible solutions for K P(x∗), the inequality
holds by applying the same argument of Proposition 1. ��

We remark that models CRIT1(c) and CRIT2(c) contain a pseudo polynomial
number of binary variables kh depending on the magnitude of the follower’s weights.
Hence, the hardness of these ILP models may increase with the size increase of
such input entries. At the same time, a different handling of models CRIT1(c) and
CRIT2(c) is possible in presence of large follower’s weights. We can avoid to use
a pseudo polynomial number of variables by replacing term

∑wc
h=1 hkh in constraint

(12) with one integer variable and by introducing a binary variable and two constraints
for each tuple considered in F(π, x, k, τ). For the sake of exposition, we show this
alternative treatment of the ILPmodels only for theMRKP in Sect. 8.2. For BKP, after
computational tests on benchmark instances, we noticed that the use of a pseudo poly-
nomial number of variables kh appears to be more effective. This is because the data
generation from the literature chooses rather small follower’s weights in the interval
[1, 100] (see Sect. 5) thus limiting the number of variables kh in models CRIT1(c)
and CRIT2(c).

123

An exact approach for the bilevel knapsack problem with… 257

4 A new exact approach for BKP

4.1 Overview

We propose an exact algorithm for BKP that considers the possible existence of a crit-
ical item in K PLP (x∗) and exploits the bounds provided by model CRIT2(c). The
key idea of the algorithm is to compute appropriate leader’s solutions by exploring the
most promising subproblems of the follower in terms of lower bounds. This strategy
considerably speeds up in practice both the identification and certification of an opti-
mal interdiction structure. The approach involves two main steps. In the first step, the
possible non-existence of a critical item is first evaluated. Then, the approach assumes
the existence of a critical item and identifies a set of possible candidate items. For
each candidate item c and value of a parameter Δ (that controls the core size), model
CRIT2(c) is built by considering several subsets of items and related additional con-
straints (20). Then the linear relaxation CRIT LP

2 (c) is solved, where the integrality
constraints (15) and (16) are replaced by inclusion in [0, 1].

The feasible problems CRIT LP
2 (c) are sorted by increasing optimal value so as to

identify an order of the most promising subproblems to explore. A limited number of
feasible BKP solutions is also computed in this step.

In the second step, each relevant subproblem is explored by constraint generation
until the subproblem can be pruned. An optimal BKP solution is eventually returned.
The approach takes as input six parameters α, β, Δ, μ, γ , ω and relies on an ILP
solver along its steps. We discuss the steps of the algorithm in the following. The
corresponding pseudo code is then provided.

4.2 Step 1

4.2.1 Handling the possible non-existence of a critical item

Wefirst consider the casewhere there does not exist a critical item in K PLP (x∗). Thus,
the follower will select all available items which are not interdicted by the leader and
an optimal solution of BKP is found by solving the following problem NCR.

NCR:

min
n∑

i=1

pi (1 − xi) (24)

subject to
n∑

i=1

vi xi ≤ Cu (25)

n∑

i=1

wi (1 − xi) ≤ Cl (26)

xi ∈ {0, 1} i = 1, . . . , n (27)

123

258 F. Della Croce , R. Scatamacchia

If problem NCR is feasible, let denote by x ′ the related optimal solution represent-
ing the leader’s strategy. The corresponding follower’s solution is denoted by y′, with
y′
i = 1 − x ′

i (i = 1, . . . , n). The current best solution (x∗, y∗) with value z∗ (which
will be optimal at the end of the algorithm) is initialized accordingly (Lines 3–4 of the
pseudo code).

4.2.2 Identifying the relevant critical items

We now assume that there exists a critical item c in K PLP (x∗) (Lines 5–13) and
estimate the first and last possible items q and r that can be critical according to
ordering (8). For item q we have

q := min

⎧
⎨

⎩
j :

j∑

i=1

wi ≥ Cl

⎫
⎬

⎭
. (28)

All items 1, . . . , (q−1) cannot in fact be critical evenwithout the leader’s interdiction.
For the last item r , we first compute the maximum weight of the follower that can be
interdicted by the leader (similarly to [4]) by solving the following problem (denoted
by LW).

LW :

max
n∑

i=1

wi xi (29)

subject to
n∑

i=1

vi xi ≤ Cu (30)

xi ∈ {0, 1} i = 1, . . . , n (31)

Item r is defined as

r := min

⎧
⎨

⎩
j :

j∑

i=1

wi ≥ Cl + z(LW)

⎫
⎬

⎭
. (32)

Since from (32) we have
∑r

i=1 wi (1 − xi) ≥ Cl for any leader’s strategy, all items
from (r + 1) to n cannot be critical.

123

An exact approach for the bilevel knapsack problem with… 259

4.2.3 Building models CRIT2(c)

For each candidate critical item c ∈ [q, r], we formulate model CRIT2(c) by con-
structing a proper set F(π, x, k, τ) as follows. Consider the subsets involving items
in the interval [c − Δ, c + Δ]. Even for small value of Δ, the number of subsets
can be very large. Hence, in order to limit the number of constraints in F(π, x, k, τ),
we propose a different strategy that greedily selects the subsets according to the pro-
cedure denoted as Def ineT uples and sketched below. We remark that the adopted
strategy slightly differs from the ComputeT uples procedure we used in [13] and
contributes to further improving the performance of the proposed approach (see
Sect. 5).

For a given value ofΔ, we consider the interval of items [a, b], with a = max{1; c−
Δ} and b = min{c+Δ; n}. Starting with the empty set, we enumerate all “backward”
sets with at most α items among items a, . . . , (c − 1). Each set has a profit and
weight equal to the sum of profits and weights of the included items. We also compute
all “forward” sets with items c, . . . , b and at most β items. Then we combine each
backward set with a forward set and generate a tuple τ . If pτ > 0 and wτ ≤ wc,
we store the tuple for possible insertion in set F(π, x, k, τ). Then we sort all the
stored tuples by nondecreasing cardinality with ties broken in favor of tuples with
a higher ratio pτ /wτ . The rationale is to fill set F(π, x, k, τ) by considering tuples
with a limited number of items (and so expected to be more difficult to interdict)
while ensuring the insertion of tuples with high efficiency in terms of ratio profit over
weight. Following the ordering of the tuples, we add the related constraints (20) to
F(π, x, k, τ) until their number is larger than an input parameter μ. If not previously
included, we also add to set F(π, x, k, τ) the constraint π ≥ pckwc which handles
the possible adding of the critical item to the split solution if the residual capacity is
equal to wc.

DefineTuples(c, α, β, Δ, μ)
1: Consider items in the interval [a, b]with a := max{c−Δ; 1}, b := min{c+Δ; n}.
2: Starting from the empty set, enumerate all backward sets with at most α items

among items a, . . . , (c − 1).

3: Enumerate all forward sets with at most β items c, . . . , b.

4: Generate tuples by merging each backward set with each forward set and store any

tuple τ with pτ > 0 and wτ ≤ wc.

5: Sort the stored tuples by nondecreasing cardinality with ties broken in favor of

tuples with higher ratio pτ /wτ .

6: Following the order of the tuples, add the related constraints (20) to F(π, x, k, τ)

as long as |F(π, x, k, τ)| ≤ μ.

7: If not already included, add to F(π, x, k, τ) constraint π ≥ pckwc .

123

260 F. Della Croce , R. Scatamacchia

Then we solve models CRIT LP
2 (c) for each c ∈ [q, r] and order the models by

increasing optimal value so as to have an order of most promising subproblems to
explore. If for the first subproblem we have z(CRIT LP

2 (c)) ≥ z∗, an optimal BKP
solution is already certified (Line 13 of the pseudo code).

4.2.4 Computing feasible BKP solutions

According to the previous order of subproblems, we compute BKP feasible solutions
by considering the first γ subproblems (Lines 15–22). For a given item c, we solve
model CRIT2(c) obtaining a solution x̂ .

If z(CRIT2(c)) < z∗, we solve the induced follower’s problem K P(x̂) with opti-
mal solution ŷ and update the current best solution if z(K P(x̂)) < z∗.

4.3 Step 2

This step considers all relevant (ordered) suproblemsCRIT2(c). For each subproblem,
we first test for standard variables fixing and then each subproblem is explored by
means of a constraint generation approach (Lines 24–42).

4.3.1 Fixing variables in subproblems

For a given problem CRIT LP
2 (c), denote the optimal values of variables xi and kh

by x LPi and kLPh respectively. Let rxi and rkh be the reduced costs of non basic vari-
ables in the optimal solution of CRIT LP

2 (c). We apply then standard variable-fixing
techniques from Integer Linear Programming: if the gap between the best feasible
solution available and the optimal solution value of the continuous relaxation solution
is not greater than the absolute value of a non basic variable reduced cost, then the
related variable can be fixed to its value in the continuous relaxation solution. Thus,
the following constraints are added to CRIT2(c):

xi = x LPi ∀ i : |rxi | ≥ z∗ − z(CRIT LP
2 (c)); (33)

kh = kLPh ∀ h : |rkh | ≥ z∗ − z(CRIT LP
2 (c)). (34)

123

An exact approach for the bilevel knapsack problem with… 261

4.3.2 Solving subproblems

For each open subproblem induced by a critical item c, we first solve CRIT2(c)
(Line 27) obtaining a solution x̄ . If the corresponding objective value is lower than
the current best feasible solution value, we solve K P(x̄) with solution ȳ and if an
improving solution is found, the current best solution is updated, as in Sect. 4.2.4. In
[13], the following straightforward cut was added toCRIT2(c) in order to impose that
at least one item selected by the follower in solution ȳ must be interdicted:

n∑

i :ȳi=1

xi ≥ 1. (35)

ModelCRIT2(c) is then solved with onemore constraint and then the same procedure
is applied until z(CRIT2(c)) ≥ z∗ or the problem becomes infeasible. Taking a closer
look to the structure of the subproblems, at each iterationwe can replacewhen possible
constraint (35) with a new additional constraint (20) to induce more targeted changes
of the interdiction structure in the leader’s solutions and speed up the exploration
process of the subproblems.

Given solutions x̄ and ȳ, let τ̄ be the subset of items 1, ..., c − 1 not included in
ȳ and items c, ..., n included in ȳ. If τ̄ is not empty, we compute quantities pτ̄ , wτ̄

according to (17), (18) respectively and add the corresponding constraint (20) to set
F(π, x, k, τ) in model CRIT2(c). Two cases may occur when model CRIT2(c) is
solved in the next iteration: either the same solution x̄ is obtained but then we would
have z(CRIT2(c)) = z(K P(x̄)) ≥ z∗, or a solution different from x̄ is obtained. In this
second case, either at least one item in τ̄ is interdicted and/or the weight contribution
of the critical item has a value smaller than wτ̄ (corresponding to a different choice of
a variable kh in constraint (12)).

Thus at each iteration we add a valid cut for subproblem CRIT2(c) when subset τ̄
is not empty or else we add constraint (35) as indicated in the pseudocode (Lines 31–
35). In addition, if the value of z(CRIT2(c)) stagnates for ω iterations, we add up to
μ tuples with limited weight (Lines 36–39). At the end of Step 2, the optimal BKP
solution (x∗, y∗) is returned (Line 43).

123

262 F. Della Croce , R. Scatamacchia

Exact solution approach
1: Input: BKP instance, parameters α, β, Δ, μ, γ , ω.

 Step 1
2: Handle the absence of a critical item:
3: solve NCR; z∗ ← +∞;
4: if NCR has a feasible solution then x∗ = x ′, y∗ = y′, z∗ = z(NCR); end if
5: Identify the candidate critical items and build models CRI T2(c):
6: Compute the interval of critical items [q, r]: q ← apply (28), r ← apply (32);
7: for all c in [q, r] do
8: Build model CRIT2(c) by procedure DefineTuples(c, α, β, Δ, μ);
9: Solve model CRIT LP

2 (c);
10: end for
11: Sort models CRIT2(c) by increasing z(CRIT LP

2 (c)).
12: ⇒ Create a list of ordered critical items L = {c1, c2, . . . };
13: if z(CRIT LP

2 (c1)) ≥ z∗ then return (x∗, y∗); end if
14: Compute feasible BKP solutions:
15: for i = 1, . . . , γ do
16: if z(CRIT LP

2 (ci)) < z∗ then x̂ ← solve CRIT2(ci);
17: if z(CRIT2(ci)) < z∗ then ŷ ← solve K P(x̂);
18: if z(K P(x̂)) < z∗ then x∗ = x̂ , y∗ = ŷ, z∗ = z(K P(x̂));
19: end if
20: end if
21: end if
22: end for

 Step 2
23: Solve subproblems:
24: for all c in list L do
25: if z(CRIT LP

2 (c)) ≥ z∗ then return (x∗, y∗); end if
26: Apply (33), (34) and fix variables in CRIT2(c);
27: x̄ ← solve CRIT2(c);
28: while z(CRIT2(c)) < z∗ do
29: ȳ ← solve K P(x̄);
30: if z(K P(x̄) < z∗ then x∗ = x̄ , y∗ = ȳ, z∗ = z(K P(x̄)); end if
31: Compute subset τ̄ ;
32: if τ̄ is not empty then
33: add constraint (20), as indicated in Sect. 4.3.2, to CRIT2(c); end if
34: if τ̄ is empty then
35: add constraint (35) to CRIT2(c); end if
36: if z(CRIT2(c)) does not increase for ω iterations then
37: Consider the remaining tuples computed by DefineTuples(c, α, β, Δ, μ)

38: with weight ≤ Cl −
c−1∑

i=1
wi (1 − x̄i);

39: Add μ constraints (20) to CRIT2(c); end if
40: x̄ ← solve CRIT2(c);
41: end while
42: end for
43: return (x∗, y∗).

123

An exact approach for the bilevel knapsack problem with… 263

5 Computational testing

All tests were performed on an Intel i5 CPU @ 3.0 GHz with 16 GB of RAM. The
code was implemented in the C++ programming language. The ILP solver used along
the steps of the algorithm is CPLEX 12.9. The parameters of the ILP solver were set to
their default values.We considered first the BKP instances with n = 35, 40, 45, 50, 55
that were generated in [4] as follows. Profits pi and weights wi of the follower and
weights vi of the leader are integers randomly distributed in [1, 100]: 10 instances are
generated for each value of n. The follower’s capacity Cl is set to �(I N S/11)

∑n
i wi�

where I N S (= 1, . . . , 10) denotes the instance identifier. The leader’s capacity is
randomly selected in the interval [Cl − 10;Cl + 10].

These 50 benchmark instances were the most challenging ones solved to optimality
in the literature. Indeed, the computational tests in both [4,17]were limited to instances
with 55 items. After some preliminary computational tests, we chose the following
parameter entries for our approach: α = 2, β = 2, Δ = 10, μ = 150, γ = 2,
ω = 5. The corresponding results are presented in Table 1. For each instance, we
report the CPU time to obtain an optimal solution and the number of subproblems
explored in Step 2. The last column also reports the number of times modelCRIT2(c)
is solved along the two steps. Algorithm CCLW in [4] was executed on a Quad-Core
Intel Xeon @ 2.66 GHz using solver Gurobi 5.5.0. This algorithm solves all instances
with 50 items within a CPU time limit of 3600 seconds but runs out of time limit in
instances 55-3, 55-4. Algorithm in [17] was executed on an Intel Xeon E3-1220V2@
3.1-GHz using solver CPLEX 12.6. This algorithm solves all benchmark instances,
requiring at most a computation time of about 85 seconds for solving instance 55-3.
As the results in Table 1 illustrate, the proposed exact approach successfully solves to
optimality the whole batch of instances in approximately 5 seconds, that is 0.1 seconds
on the average, requiring at most 0.34 seconds on instance 55-3. Also, the number of
subproblems explored in Step 2 and the number of models CRIT2(c) solved are very
limited. Even though the tests in [4] and in [17] were carried out on different machines
and using different solvers, the improvement with respect to the current state of the
art literature appears to be very significant.

We considered also other instances considered in the literature proposed in [14]
(available at http://coral.ise.lehigh.edu/data-sets/bilevel-instances/) and [35] (avail-
able at http://people.clemson.edu/~jcsmith/Test_Instances_files/BKPIns.zip). There
is a total of 160 instances in [14] with size not larger than n = 50 and there
is a total of 210 instances in [35] with size not larger than n = 30. We do not
provide the complete results on those instances but just mention that our exact algo-
rithm with the above mentioned settings solved the whole batch of 160 instances
in [14] in 9.87 seconds (less than 0.06 seconds on average for instance) and
the whole batch of 210 instances in [35] in 18.1 seconds (less than 0.09 sec-
onds on average for instance). We then generated and tested larger instances with
n = 100, 200, 300, 400, 500 (available at https://drive.google.com/drive/folders/
1LTDEB3b8gFDXbRJ-9b3RRjJ978BpynYm) according to the generation scheme in
[4]. For each value of n and I N S, we generated 10 instances for a total of 500 instances.
For these large instances, we set the parameters of our algorithm to the following val-
ues: α = 2, β = 2, Δ = 20, μ = 1000, γ = 5, ω = 5. It is pointed out in [4] that

123

http://coral.ise.lehigh.edu/data-sets/bilevel-instances/
http://people.clemson.edu/~jcsmith/Test_Instances_files/BKPIns.zip
https://drive.google.com/drive/folders/1LTDEB3b8gFDXbRJ-9b3RRjJ978BpynYm
https://drive.google.com/drive/folders/1LTDEB3b8gFDXbRJ-9b3RRjJ978BpynYm

264 F. Della Croce , R. Scatamacchia

Table 1 BKP instances from [4]

n INS CPU time # Subprob. in Step 2 # CRIT2(·) solved
35 1 0.08 3 5

2 0.15 0 2

3 0.15 1 3

4 0.12 2 4

5 0.07 2 4

6 0.04 0 0

7 0.03 0 0

8 0.03 0 0

9 0.02 0 0

10 0.02 0 0

40 1 0.12 1 3

2 0.16 1 3

3 0.20 3 5

4 0.11 0 2

5 0.08 0 2

6 0.04 0 0

7 0.04 0 0

8 0.03 0 0

9 0.03 0 0

10 0.01 0 0

45 1 0.14 3 5

2 0.31 3 5

3 0.19 2 4

4 0.19 1 3

5 0.12 2 4

6 0.04 0 0

7 0.04 0 0

8 0.04 0 0

9 0.03 0 0

10 0.03 0 0

50 1 0.26 5 8

2 0.25 2 4

3 0.17 2 4

123

An exact approach for the bilevel knapsack problem with… 265

Table 1 continued

n INS CPU time # Subprob. in Step 2 # CRIT2(·) solved
4 0.13 0 2

5 0.11 0 2

6 0.05 0 0

7 0.05 0 0

8 0.04 0 0

9 0.03 0 0

10 0.02 0 0

55 1 0.22 3 5

2 0.28 2 4

3 0.34 8 10

4 0.17 5 7

5 0.07 0 0

6 0.05 0 0

7 0.05 0 0

8 0.04 0 0

9 0.04 0 0

10 0.03 0 0

in instances with I N S ≥ 5 the follower’s capacity constraint is expected to be inac-
tive for any maximal leader’s interdiction strategy. This makes these instances easy
to solve. Our computational experiments confirm this trend also on larger instances:
the proposed algorithm solves each instance with n from 100 to 500 and I N S ≥ 5 in
at most 6 seconds without ever invoking Step 2. In the light of this consideration, we
report in the following Table 2 only the results for instances with I N S ≤ 4.

The results in the table are summarized in terms of average, maximum CPU time
and number of optimal solutions obtained with a time limit of 60 seconds. Similarly
to Table 1, we also report the average and maximum number of subproblems explored
in Step 2, and the average and maximum number of times model CRIT2(c) is solved.
The results illustrate the effectiveness of our approach. All instances are solved to
optimality requiring 13.6 seconds at most for an instance with 500 items. The number
of subproblems handled by Step 2 is in general limited, reaching a maximum value of
23 (in an instance with 400 items). Also, the number of modelsCRIT2(c) to be solved
is generally limited and never larger than 29. We finally point out that the number of
times constraints (20)/(35) are added to each subproblem is also limited: in the tested
instances, the while–loop of Step 2 is executed 5 iterations at most.

To get a broader picture, we also tackled the instances generated in the recent work
[19] where a heuristic approach is proposed for BKP and for other interdiction games.

123

266 F. Della Croce , R. Scatamacchia

Table 2 BKP instances with n = 100, 200, 300, 400, 500 and I N S ≤ 4

n INS #Opt CPU time # Subproblems in
Step 2

CRIT2(·) solved

Average Max Average Max Average Max

100 1 10 0.9 1.1 0.3 1 4.3 6

2 10 1.7 2.6 3.1 8 8.1 14

3 10 1.5 2.0 2.2 6 7.2 11

4 10 0.9 1.3 0.7 4 5.2 9

200 1 10 2.2 3.3 2.9 6 8.0 13

2 10 3.1 4.0 4.2 6 9.2 11

3 10 3.5 4.4 5.6 11 10.8 16

4 10 2.7 3.4 3.0 8 7.8 13

300 1 10 3.5 4.0 3.1 9 8.0 14

2 10 5.3 7.5 6.2 12 11.2 17

3 10 6.4 7.6 10.1 15 15.5 20

4 10 4.7 6.1 4.5 11 9.5 16

400 1 10 5.0 6.1 5.5 9 10.9 16

2 10 7.4 8.6 7.8 12 13.4 20

3 10 9.0 11.3 10.5 14 16.2 22

4 10 7.5 9.4 7.8 23 12.9 29

500 1 10 7.2 9.5 6.9 14 12.2 21

2 10 10.4 12.6 9.8 17 14.9 22

3 10 11.9 13.4 12.3 17 17.4 22

4 10 9.8 10.9 4.4 9 9.4 14

These instances are classified according to different correlations between profits and
weights following the schemes in [25]. Nine classes were listed in [19] having the
following distribution where u.r. stands for uniformly random.

1. Uncorrelated : w j u.r. in [1, R] , p j u.r. in [1, R].
2. Weakly correlated : w j u.r. in [1, R], p j u.r. in [w j − R/10, w j + R/10] so that

p j ≥ 1.
3. Strongly correlated : w j u.r. in [1, R] , p j = w j + R/10.
4. Inverse strongly correlated : p j u.r. in [1, R], w j = p j + R/10.
5. Almost strongly correlated :w j u.r. in [1, R], p j u.r. in [w j +R/10−R/500, w j +

R/10 + R/500].
6. Subset-sum : w j u.r. in [1, R], p j = w j .
7. Even-odd subset-sum : w j even value u.r. in [1, R], p j = w j .
8. Even-odd strongly correlated: w j even value u.r. in [1, R], p j = w j + R/10.

123

An exact approach for the bilevel knapsack problem with… 267

Table 3 BKP instances from [19] (Classes 1–2)

CORR n #Opt CPU time # Subproblems in
Step 2

CRIT2(·) solved

Average Max Average Max Average Max

1 100 10 0.6 1.9 0.5 4 2.4 9

200 10 1.4 3.3 1.2 6 3.2 11

300 10 2.6 6.9 2.3 12 4.3 17

400 10 4.0 8.7 3.6 12 5.9 17

500 10 4.9 10.5 2.5 8 4.5 13

2 100 10 4.3 18.6 4.3 20 6.6 28

200 10 12.2 39.1 6.8 29 10.7 41

300 10 12.5 52.2 8.6 37 11.5 42

400 10 16.5 75.3 10.4 45 13.7 53

500 10 33.7 180.9 11.9 48 22.5 113

9. Uncorrelated with similar weights: w j u.r. in [100R, 100R + R/10], p j u.r. in
[1, R].

All the instances were generated with R = 100, the leader’s weights v j u.r. in [0, R]
and follower’s and leader’s capacities generated as in [4]. We do not consider Class
9 here as it was mentioned in [19] that the instances of this class are trivial for BKP.
Table 3 provides the relevant results in terms of average, maximum CPU time and
number of optimal solutions obtained within a time limit of 300 seconds for the easier
classes 1–2 where our algorithm kept the same parameters values indicated above.

Table 4 provides the relevant results on the harder correlations 3–8. For these
instances, best performances were reached by slightly modifying the value of param-
eters Δ (Δ = 50) and μ (μ = 2000) while keeping unchanged the other parameters.
For these instances, it is shown that the algorithm is capable of solving to optimality
instances with size n = 100 with only four instances (two of class 6 and two of class
7, respectively) exceeding a CPU time limit of 3600 s, thus further highlighting the
effectiveness of the proposed approach. In the table, the average CPU time is computed
without considering the four instances exceeding the time limit.

As mentioned at the end of Sect. 3, variables kh could be substituted by a single
integer variable. We tested this alternative formulation but the performances were
consistently inferior on every non trivial instance. The total CPU time (summed up on
all considered instances) ratio between the formulation with a single integer variable
and the formulation with wc binary variables is approximately equal to 4.

For sake of completeness, we tested also on our machine the exact approaches
of [4,17] (the related codes were kindly provided by the authors) with a time limit
of 3600 seconds on the instances of Tables 3 and 4 with n = 100 for a total of 80
instances. Both approaches were typically able to solve in limited time the so-called

123

268 F. Della Croce , R. Scatamacchia

Table 4 BKP instances from [19] (Classes 3-8, n = 100)

CORR n #Opt CPU time # Subproblems
in Step 2

CRIT2(·) solved

Average Max Average Max Average Max

3 100 10 148.6 1377.5 3.8 20 23.7 204

4 100 10 81.0 400.8 5.4 32 43.2 195

5 100 10 69.9 672.7 3.3 20 10.3 80

6 100 8 766.3 3600.0 1.6 13 18.1 145

7 100 8 737.1 3600.0 1.6 13 15.4 123

8 100 10 228.1 2234.4 4.1 20 17.4 138

Table 5 BKP instances from
[19] (Classes 3–8,
n = 200, 300, 400, 500)

n INS #Opt Aver. time

200 1–3 2/18 3210.0

4 6/6 23.4

5–10 36/36 7.3

1–3 2/18 3225.6

300 4 6/6 49.3

5–10 36/36 16.1

1–3 0/18 3600.0

400 4 6/6 71.5

5–10 36/36 25.9

1-3 0/18 3600.0

500 4 6/6 141.6

5–10 36/36 36.1

easy instances with I N S = 5–10, but ran out-of-time in most of the other instances.
Specifically, the approach of [4] ran out of time on 28 instances while the approach of
[17] ran out of time on 36 instances.

We tested then our approach on larger instances with n = 200–500 on the harder
correlations 3–8. Table 5 provides the relevant results regrouped in three main cate-
gories (I N S = 1–3, I N S = 4 and I N S = 5-10). For each category, we depict the
number of problems solved to optimality along the six classes 3–8 and the average
CPU time. The results clearly indicate that instances with I N S = 4 and I N S = 5–10
remain consistently easy to solve for the proposed approach, while instances with
I N S =1–3 are currently out of reach. For these instances involving strong correla-
tions between the profits and the weights of the follower, we believe that dedicated

123

An exact approach for the bilevel knapsack problem with… 269

approaches should be considered as it was done in the corresponding versions of the
standard KP (see, e.g., the works [30,32] for handling strongly correlated and subset-
sum instances, respectively.)

Finally, we implemented a one-shot heuristic version of our procedure applying
only step 1 and allowing a CPU time limit of 60 seconds. In the heuristic, the settings
were the same used by our exact algorithm for the instances generated in [4] except
for γ = 5 where for each model CRIT2(c) CPLEX 12.9 was allowed to run for 10
seconds. We compared our heuristic to the best heuristic algorithm denoted DR+ in
[19] on distributions [3–8] (as our exact algorithm solves all instances to optimality
on distributions [1–2]). This heuristic procedure shows up to be just slightly inferior
to the algorithm in [19] reaching the same objective function value on 281 over 300
instances and being outperformed on 19 instances only.

6 Extending the approach to the interval min–max regret knapsack
problem

We now discuss the application of the derived algorithmic framework to the interval
min–max regret knapsack problem (MRKP) first introduced in [24]. Some of the
notation adopted for BKP recurs in this section with a different meaning. Consider the
classical 0/1 Knapsack Problem (KP) and the related ILP formulation max

∑n
i=1 pi xi

subject to
∑n

i=1 wi xi ≤ C, xi ∈ {0, 1}, i = 1, . . . , n. MRKP is a generalization of
KP where the profit of each item i can assume any value between two values p−

i and
p+
i , with p+

i > p−
i . A set s of n profits psi ∈ [p−

i , p+
i] defines a scenario. The set of all

possible scenarios is denoted by S0, namely S0 := {s : psi ∈ [p−
i , p+

i], i = 1, . . . , n}.
We also denote by zs(opt) the KP optimal solution value under scenario s where each
item has profit psi and by zs(x) the solution value given by a feasible solution vector
x , i.e. zs(x) = ∑n

i=1 p
s
i xi , xi ∈ x . Correspondingly, the regret rs(x) associated with

a solution x under scenario s is

rs(x) = zs(opt) − zs(x). (36)

MRKP consists in finding a feasible solution vector x such that the maximum regret
obtainable over all scenarios is minimized. More formally the problem can be stated
as follows:

min max
s∈S0

rs(x) (37)

subject to
n∑

i=1

wi xi ≤ C (38)

xi ∈ {0, 1} i = 1, . . . , n (39)

We denote by x∗ an optimal solution of model (37)–(39) with regret value z∗.

123

270 F. Della Croce , R. Scatamacchia

The authors of [9] prove that the MRKP is Σ
p
2 -complete and point out that the

solution of even moderately sized instances of the problem is challenging and seems
to require innovative approaches. An attempt in this direction has been provided in
[20], where heuristic and exact approaches are proposed for the solution of theMRKP.
The authors of [20] evaluate the performance of the proposed algorithms through
extensive computational experiments on instances with up to 70 items (see Sect. 6.2).
We refer the interested reader to [20] for a literature review about other min–max
regrets optimization problems.

6.1 Bilevel reformulation of theMRKP

The following crucial result was proved in [1] (and recalled in [20]) for the MRKP
within a general context of min–max regrets problems:

Lemma 1 ([1]) For any feasible solution x, the profits in its worst case scenario,
denoted as σ(x), are as follows:

pσ(x)
i =

{
p−
i if xi = 1

p+
i otherwise

(i = 1, . . . , n)

Therefore a given feasible solution x induces a unique worst case scenario (σ(x))
to be considered for the computation of the corresponding maximum regret rσ(x),
namely

rσ(x) = zσ(x)(opt) − zσ(x) = zσ(x)(opt) −
n∑

i=1

p−
i xi (40)

Notice that the last summation in (40) representing zσ(x) does not include terms p+
i

as they disappear when xi = 0. Given the result in Lemma 1, we can alternatively
see the problem as a Stackelberg game and propose a related bilevel programming
reformulation. To the authors’ knowledge, this is the first time MRKP is formulated
as a bilevel programming problem with interdiction constraints. Here the leader first
chooses a feasible knapsack solution x with the goal of minimizing the regret rσ(x)

associatedwith his decision. The follower aims tomaximize the profits of the knapsack
instance induced by the worst-case scenario σ(x), thus computing zσ(x)(opt). To
derive a bilevel linear program, we consider binary variables xi (i = 1, . . . , n) equal
to one if the leader selects item i .We also introduce 2n items in the follower’s knapsack
problem: for each i we define a “low” item li with profit p

−
i andweightwi and a “high”

item hi with profit p
+
i and weight wi . Correspondingly, we introduce binary variables

y−
i and y+

i equal to one if the follower selects item li or hi (i = 1, . . . , n) respectively.
MRKP can be modeled as follows:

min
n∑

i=1

(p−
i y−

i + p+
i y+

i) −
n∑

i=1

p−
i xi (41)

123

An exact approach for the bilevel knapsack problem with… 271

subject to
n∑

i=1

wi xi ≤ C (42)

xi ∈ {0, 1} i = 1, . . . , n (43)

where y−
1 , . . . , y−

n , y+
1 , . . . , y+

n solve

the follower’s problem: max
n∑

i=1

(p−
i y−

i + p+
i y+

i) (44)

subject to
n∑

i=1

wi (y
−
i + y+

i) ≤ C (45)

y−
i ≤ xi i = 1, . . . , n (46)

y+
i ≤ 1 − xi i = 1, . . . , n (47)

y−
i , y+

i ∈ {0, 1} i = 1, . . . , n (48)

The leader’s objective function (41) minimizes the regret (40) given by the difference
between the follower’s profits and

∑n
i=1 p

−
i xi . The objective function (44) maximizes

the follower’s profits while constraints (42) and (45) respectively represent the leader’s
and follower’s capacity constraint. Constraints (46) and (47) ensure that scenario σ(x)
is always induced in the follower’s knapsack problem for any leader’s solution x : the
follower can in fact select only item li (with profit p−

i) if xi = 1 and only item hi
(with profit p+

i) if xi = 0 for each i = 1, . . . , n. Constraints (43) and (48) define the
domain of the variables.

Hence, we can generate a model which is structurally similar to the BKP bilevel
formulation (1)–(7). Thismotivates us to employ the samealgorithmicmachinery setup
for BKP with proper integrations. Model formulation and details of the approach are
provided in Appendix.

6.2 Computational results onMRKP

The authors of [20] introduce several heuristic and exact approaches to tackle the
MRKP. The solution approaches are based on classical optimization techniques such as
Benders decomposition and branch and cut methods. The best performing exact algo-
rithmgiven in [20] (running on a Pentium4@3.2GHz), denoted as FIMY, is capable of
solving to optimality instances with up to 70 items with a time limit of 3600 s, running
out of time in 95 out of 486 instances. The instances (available at http://www.or.deis.
unibo.it/research_pages/ORinstances/MRKP_instances.zip) were generated by con-
sidering different distributions of processing times and weights according to the same
nine classes indicated in Sect. 5 with R = 1000/10000 and the following additional
settings.

– Number of items n ∈ {50, 60, 70}.
– Capacity C ∈ {�0.45W�, �0.50W�, �0.55W�} with W = ∑n

j=1 w j (and C
increased by 1, if even, for classes 7 and 8).

123

http://www.or.deis.unibo.it/research_pages/ORinstances/MRKP_instances.zip
http://www.or.deis.unibo.it/research_pages/ORinstances/MRKP_instances.zip

272 F. Della Croce , R. Scatamacchia

Ta
bl
e
6

M
R
K
P
in
st
an
ce
s
fr
om

[2
0]

(C
la
ss
es

1–
3)

n
δ

C
la
ss

1
C
la
ss

2
C
la
ss

3

FI
M
Y

O
ur

A
pp
ro
ac
h

FI
M
Y

O
ur

ap
pr
oa
ch

FI
M
Y

O
ur

ap
pr
oa
ch

Se
c

#f
Se
c

#f
Se
c

#f
Se
c

#f
Se
c

#f
Se
c

#f

50
0.
1

<
0.
1

0
0.
2

0
<

0.
1

0
3.
0

0
3.
2

0
13

.0
0

0.
2

<
0.
1

0
0.
3

0
1.
2

0
3.
4

0
23
5.
7

0
3.
9

0

0.
3

<
0.
1

0
0.
3

0
2.
9

0
1.
4

0
19
5.
2

0
5.
3

0

A
vg
/T
ot

<
0.
1

0
0.
3

0
1.
4

0
2.
6

0
14
4.
7

0
7.
4

0

60
0.
1

<
0.
1

0
0.
3

0
0.
2

0
5.
4

0
31

.8
0

17
.0

0

0.
2

<
0.
1

0
0.
4

0
4.
6

0
4.
4

0
18
35

.7
3

3.
5

0

0.
3

<
0.
1

0
0.
5

0
11
.6

0
2.
2

0
19
06

.2
2

4.
7

0

A
vg
/T
ot

<
0.
1

0
0.
4

0
5.
5

0
4.
0

0
12
57

.9
5

8.
4

0

70
0.
1

<
0.
1

0
0.
5

0
0.
2

0
6.
5

0
10
8.
5

0
19

.1
0

0.
2

<
0.
1

0
0.
5

0
10
.9

0
3.
8

0
20
29

.3
3

5.
2

0

0.
3

<
0.
1

0
0.
5

0
53
.7

0
2.
7

0
35
04

.5
4

5.
1

0

A
vg
/T
ot

<
0.
1

0
0.
5

0
21
.6

0
4.
3

0
18
80

.8
7

9.
8

0

O
ve
ra
ll

<
0.
1

0
0.
4

0
9.
5

0
3.
6

0
10
94

.5
12

8.
5

0

123

An exact approach for the bilevel knapsack problem with… 273

Ta
bl
e
7

M
R
K
P
in
st
an
ce
s
fr
om

[2
0]

(C
la
ss
es

4–
6)

n
δ

C
la
ss

4
C
la
ss

5
C
la
ss

6

FI
M
Y

O
ur

ap
pr
oa
ch

FI
M
Y

O
ur

ap
pr
oa
ch

FI
M
Y

O
ur

ap
pr
oa
ch

Se
c

#f
Se
c

#f
Se
c

#f
Se
c

#f
Se
c

#f
Se
c

#f

50
0.
1

2.
9

0
9.
2

0
7.
5

0
12

.1
0

25
2.
7

0
66
6.
0

1

0.
2

82
.0

0
4.
3

0
55

.5
0

4.
3

0
11
61
.1

0
16
1.
2

0

0.
3

30
.4

0
2.
0

0
72

.1
0

2.
1

0
31
5.
1

0
18

.1
0

A
vg
/T
ot

38
.4

0
5.
1

0
45

.1
0

6.
1

0
57
6.
3

0
28
1.
8

1

60
0.
1

21
.5

0
16

.3
0

46
.6

0
29

.2
0

34
09
.1

5
73
8.
1

1

0.
2

13
83

.0
0

6.
6

0
34
8.
6

0
5.
3

0
32
35
.3

4
35
2.
3

0

0.
3

41
1.
2

0
3.
6

0
70
3.
8

0
2.
5

0
t.l
.

6
59

.8
0

A
vg
/T
ot

60
5.
2

0
8.
8

0
36
6.
4

0
12

.3
0

34
14
.8

15
38
3.
4

1

70
0.
1

60
.4

0
22

.0
0

11
2.
3

0
20

.6
0

t.l
.

6
94
4.
3

1

0.
2

18
49

. 8
3

6.
2

0
17
23

.3
2

8.
4

0
t.l
.

6
55
3.
4

0

0.
3

16
62

.9
0

3.
6

0
26
62

.3
3

3.
9

0
t.l
.

6
13
7.
0

0

A
vg
/T
ot

11
91

.0
3

10
.6

0
14
99

.3
5

11
.0

0
t.l
.

18
54
4.
9

1

O
ve
ra
ll

61
1.
6

3
8.
2

0
63
6.
9

5
9.
8

0
25
30
.3

33
40
3.
4

3

123

274 F. Della Croce , R. Scatamacchia

Ta
bl
e
8

M
R
K
P
in
st
an
ce
s
fr
om

[2
0]

(C
la
ss
es

7–
9)

n
δ

C
la
ss

7
C
la
ss

8
C
la
ss

9

FI
M
Y

O
ur

ap
pr
oa
ch

FI
M
Y

O
ur

ap
pr
oa
ch

FI
M
Y

O
ur

ap
pr
oa
ch

Se
c

#f
Se
c

#f
Se
c

#f
Se
c

#f
Se
c

#f
Se
c

#f

50
0.
1

23
4.
4

0
98
7.
0

1
2.
1

0
47
.4

0
<

0.
1

0
0.
4

0

0.
2

79
4.
6

0
22
1.
2

0
12
0.
8

0
19
.8

0
<

0.
1

0
0.
4

0

0.
3

59
4.
6

0
75

.8
0

10
3.
8

0
14
.9

0
<

0.
1

0
0.
4

0

A
vg
/T
ot

54
1.
2

0
42
8.
0

1
75

.6
0

27
.3

0
<

0.
1

0
0.
4

0

60
0.
1

30
88
.6

3
85
9.
2

0
25

.1
0

62
.5

0
<

0.
1

0
0.
5

0

0.
2

t.l
.

6
76
2.
0

1
18
34

.7
3

24
.4

0
<

0.
1

0
0.
5

0

0.
3

t.l
.

6
31
2.
9

0
90
0.
3

0
20
.3

0
<

0.
1

0
0.
5

0

A
vg
/T
ot

34
29
.5

15
64
4.
7

1
92
0.
0

3
35
.7

0
<

0.
1

0
0.
5

0

70
0.
1

t.l
.

6
15
25

.9
1

63
.1

0
84
.4

0
<

0.
1

0
0.
6

0

0.
2

t.l
.

6
62
7.
8

0
19
97

.7
3

29
.7

0
<

0.
1

0
0.
6

0

0.
3

t.l
.

6
18
0.
6

0
26
20

.4
3

28
.1

0
<

0.
1

0
0.
6

0

A
vg
/T
ot

t.l
.

18
77
8.
1

1
15
60

.4
6

47
.4

0
<

0.
1

0
0.
6

0

O
ve
ra
ll

25
23
.5

33
61
6.
9

3
85
2.
0

9
36
.8

0
<

0.
1

0
0.
5

0

123

An exact approach for the bilevel knapsack problem with… 275

– profit interval [p−
j , p+

j] with p−
j u.r. in [(1− δ)p j , p j], p+

j u.r. in [p j , (1+ δ)p j]
and δ ∈ {0.1, 0.2, 0.3}.

After preliminary experiments, we set the the parameters of our exact approach to
the following entries: α = 2, β = 2, Δ = 50, μ = 1000, γ = 5. ω = 5 for Class
6, 7 and 8 which are the hardest classes to solve; α = 2, β = 2, Δ = 20, μ = 200,
γ = 5. ω = 5 for the remaining classes. Table 6 compares FIMY (running on a
different machine) to our approach on classes 1–3. Each row in the table considers six
instances aggregated by the number of items n and value of δ. For both approaches,
column “Sec” indicates the average CPU time, column “# f ” (failures) indicates the
total number of instances not solved to proven optimality. Similarly, Table 7 relates to
classes 4–6 and Table 8 relates to classes 7–9. Entry “t.l.” in the tables indicates that
the approach reached an out of time status in all the instances of the category.

From the tables, even though tests were executed on different machines, we evince
that the proposed approach strongly outperforms FIMY (except for Class 1 and Class
9 where FIMY is slightly faster but our approach requires 0.6 seconds at most) running
out of time in six instances only (three of Class 6 and three of Class 7).

7 Concluding remarks

We proposed for the bilevel knapsack problem with interdiction constraints a new
exact approach which outperforms the state-of-the-art algorithms available in the lit-
erature. The algorithm relies on a new lower bound derived for the problem, which is
improved by exploiting the expected features of an optimal solution of the classical
knapsack problem. It is shown that the proposed approach handles in few seconds
uncorrelated instances with up to 500 items and is capable of solving all but f our
instances with n = 100 for various correlation classes between follower’s weights
and profits. The approach has been extended to deal with the interval min–max regret
knapsack problem. Also in this case the proposed algorithm is shown up to be superior
to the current state of the art literature. A very natural future research would be to study
bilevel versions of several generalizations of KP, such as, for instance, Collapsing KP
[12], Penalized KP [10], KP with Setups [11,21,29] and Product KP [8], for which
very efficient exact algorithms have been recently proposed.

Acknowledgements The very pertinent and useful comments of two anonymous referees are gratefully
acknowledged. The authors wish to thank M. Carvalho for providing the benchmark instances of [4]. This
work has been partially supported by “Ministero dell’Istruzione, dell’Università e della Ricerca” Award
“TESUN-83486178370409 finanziamento dipartimenti di eccellenza CAP. 1694 TIT. 232 ART. 6”.

8 Appendix

8.1 Additional notation for MRKP

For further analysis, we define the set of items li by L and the set of items hi by H .
We consider the 2n items in the follower’s knapsack ordered by nonincreasing ratio

123

276 F. Della Croce , R. Scatamacchia

profit over weight. For each item j = 1, . . . , 2n in the ordering we denote by i(j)
the corresponding index i . Similarly as in Sect. 2, we denote by K P(x) the follower’s
knapsack problem induced by a leader’s solution x , here with item set

J :=
⎧
⎨

⎩

j : xi(j) = 1 and j ∈ L,

j : xi(j) = 0 and j ∈ H ,

xi ∈ x

⎫
⎬

⎭

and denote by K PLP (x) the corresponding LP relaxation. We again denote as critical
the last item with a strictly positive value in the optimal solution of K PLP (x). Notice
that for each xi one item between li and hi will be always available for insertion in the
follower’s knapsack. Hence, under the standard assumption that

∑n
i=1 wi > C in the

MRKP, we also have
∑2n

j=1 wi(j) > C . This implies that there alway exists a critical

item c in K PLP (x) and a split solution with value

∑

j∈J :
j<c, j∈L

p−
i(j)+

∑

j∈J :
j<c, j∈H

p+
i(j) =

∑

j<c, j∈L
p−
i(j)xi(j) +

∑

j<c, j∈H
p+
i(j)(1 − xi(j)) (49)

8.2 Computing a lower bound for MRKP

As for BKP,we aim to guess the critical item of K PLP (x∗). To this purposewemodify
model CRIT2(c) as follows. We replace term

∑wc
h=1 hkh with an integer variable θ

associated with the weight contribution of the critical item c in the follower’s capacity
constraint,with 1 ≤ θ ≤ wi(c). The objective function has term

∑n
i=1 p

−
i xi as negative

contribution plus the split solution value (49) and the additional profit contribution
that can be gained by a feasible solution derived by the split solution. Such a profit is
capturedbyvariableπ through a set of constraintsF(π, x, θ, v, τ) involving additional
binary variables vp (p = 1, . . . , |F(π,x,θ,v,τ)|

2). We explain the construction of set
F(π, x, θ, v, τ) next. We obtain the following model, denoted as CRIT3(c).

CRIT3(c):

min
∑

j<c, j∈L
p−
i(j)xi(j) +

∑

j<c, j∈H
p+
i(j)(1 − xi(j)) + π −

n∑

i=1

p−
i xi (50)

subject to
n∑

i=1

wi xi ≤ C (51)

∑

j<c, j∈L
wi(j)xi(j) +

∑

j<c, j∈H
wi(j)(1 − xi(j)) + θ = C (52)

1 ≤ θ ≤ wi(c) (53)

F(π, x, θ, v, τ) (54)

xi(c) = 1 if c ∈ L , xi(c) = 0 if c ∈ H (55)

xi ∈ {0, 1} i = 1, . . . , n (56)

123

An exact approach for the bilevel knapsack problem with… 277

vp ∈ {0, 1} p = 1, . . . ,
|F(π, x, θ, v, τ)|

2
(57)

θ ∈ N (58)

π ≥ 0 (59)

The objective function (50) minimizes the difference between the value of a fol-
lower’s knapsack solution and sum

∑n
i=1 p

−
i xi . Constraint (51) represents the leader’s

capacity constraint. Constraints (52) and (53) guarantee that item c is critical as it is
the last item packed, with a weight in the interval [1, wi(c)]. Constraint (55) enforces
the availability of item c in the follower’s knapsack: if c ∈ L we must have xi(c) = 1
or else xi(c) = 0. Constraints (56)–(59) define the domain of the variables.

We build a proper set F(π, x, θ, v, τ), namely a set of constraints that considers
only feasible solutions in the follower’s knapsack, as follows. For a given subset τ of
items around the critical item c, the corresponding profit pτ and weight wτ now are:

pτ = −
∑

j∈τ :
j<c, j∈L

p−
i(j) −

∑

j∈τ :
j<c, j∈H

p+
i(j) +

∑

j∈τ :
j≥c, j∈L

p−
i(j) +

∑

j∈τ :
j≥c, j∈H

p+
i(j) (60)

wτ = −
∑

j∈τ :i<c

wi(j) +
∑

j∈τ : j≥c

wi(j). (61)

We consider in set F(π, x, θ, v, τ) only subsets of items improving upon the split
solution, i.e. with pτ > 0, that could be feasible, i.e. with wτ ≤ wi(c). Also we do not
consider subsets with two items j and j ′ corresponding to the same xi , namely with
i(j) = i(j ′), as these items cannot be both available for packing. For the p− th subset
τ considered for selection inF(π, x, θ, v, τ), we will have binary variable vp equal to
one only if the follower’s capacity constraint is not violated, i.e.wτ ≤ θ . This condition
will be enforced by adding toF(π, x, θ, v, τ) the constraint (wi(c)−wτ)vp ≥ θ −wτ ,

that we translate as follows to be added as a linear constraint
(

wi(c) − wτ + 1

2

)

vp ≥ θ − wτ + 1

2
, (62)

where constant term 1
2 is introduced to have vp = 1 when wτ = θ . Then an improve-

ment π can be determined by adding to F(π, x, θ, v, τ) the following constraint

π ≥ pτ

⎛

⎝vp −
∑

j∈τ, j∈L
(1 − xi(j)) −

∑

j∈τ, j∈H
xi(j)

⎞

⎠ . (63)

Notice that constraints (62) and (63) ensure that only items available for insertion in
the follower’s knapsack are considered and the follower’s capacity constraint is not
violated, validating tuple τ . The following proposition holds.

Proposition 3 If K PLP (x∗) has critical item c and model CRI T3(c) has a proper set
F(π, x, θ, v, τ), then z(CRIT3(c)) ≤ z∗.

123

278 F. Della Croce , R. Scatamacchia

Proof We apply the same argument of Propositions 1 and 2 and observe that model
CRIT3(c) considers feasible solutions for K P(x∗). Let z1 denote the solution value
of the best of these KP solutions. We have

z(CRIT3(c)) ≤ z1 −
n∑

i=1

p−
i x

∗
i ≤ z(K P(x∗)) −

n∑

i=1

p−
i x

∗
i = z∗,

where the first inequality is implied by noticing that x∗ is feasible but not necessarily
optimal for model CRIT3(c). ��

We finally notice that the introduction of variable θ is motivated by the presence of
large follower’s weights (with values up to 10,000) in the benchmarkMRKP literature
instances we considered in our computational tests. As remarked in Sect. 3, large
weights compromise the use of variables kh and the solution of the corresponding ILP
models.

8.3 A new exact approach for MRKP

We employ the same algorithmic framework of BKP with the following few modifi-
cations. We construct setF(π, x, θ, v, τ) in model CRIT3(c) by a procedure denoted
as MRKPTuples. The procedure is very similar to DefineTuples, so we do not report
the corresponding pseudo code. The only differences are the presence of 2n items in
the follower’s knapsack and the insertion of μ pairs of constraints (62)–(63) to set
F(π, x, θ, v, τ) and constraints related to the adding of the critical item (Lines 6–7 in
the pseudo code of DefineTuples).

Similarly to (28), we then define the first possible critical item q as

q := min

⎧
⎨

⎩
j :

j∑

k=1

wi(k) ≥ C

⎫
⎬

⎭
. (64)

We also test variables xi and vp for fixing by reduced costs and consider the following
constraint instead of constraint (35) during the exploration of a subproblemCRIT3(c)

n∑

i :x̄i=0

xi +
n∑

i :x̄i=1

(1 − xi) ≥ 1. (65)

Finally notice that for MRKP we do not have to handle the absence of the critical item
in the follower’s knapsack problem (see Sect. 8.1). Below is reported the pseudo code
of the derived approach.

123

An exact approach for the bilevel knapsack problem with… 279

MRKP exact solution approach
1: Input: MRKP instance, parameters α, β, Δ, μ, γ , ω.
2: z∗ ← +∞;
3: Identify the candidate critical items and build models CRI T3(c):
4: Compute the interval of critical items [q, 2n]: q ← apply (64);
5: for all c in [q, 2n] do
6: Build model CRIT3(c) by procedure MRKPTuples(c, α, β, Δ, μ);
7: Solve model CRIT LP

3 (c);
8: end for
9: Sort models CRIT3(c) by increasing z(CRIT LP

3 (c)).
10: ⇒ Create a list of ordered critical items L = {c1, c2, . . . };
11: Compute feasible MRKP solutions:
12: for i = 1, . . . , γ do
13: if z(CRIT LP

3 (ci)) < z∗ then x̂ ← solve CRIT3(ci);
14: if z(CRIT3(ci)) < z∗ then solve K P(x̂);

15: if (z(K P(x̂))−
n∑

i=1
p−
i x̂i) < z∗ then x∗ = x̂ , z∗ = z(K P(x̂))−

n∑

i=1
p−
i x̂i ;

16: end if
17: end if
18: end if
19: end for

 Step 2
20: Solve subproblems:
21: for all c in list L do
22: if z(CRIT LP

3 (c)) ≥ z∗ then return x∗; end if
23: Fix variables xi and vp by reduced costs in CRIT3(c);
24: x̄ ← solve CRIT3(c);
25: while z(CRIT3(c)) < z∗ do
26: solve K P(x̄);

27: if (z(K P(x̄)) −
n∑

i=1
p−
i x̄i) < z∗ then x∗ = x̄ , z∗ = z(K P(x̄)) −

n∑

i=1
p−
i x̄i ;

28: end if
29: Compute subset τ̄ ;
30: if τ̄ is not empty then
31: add constraints (62)–(63), as indicated in Sect. 8.2,
32: to CRIT3(c); end if
33: if τ̄ is empty then
34: add constraint (65) to CRIT3(c); end if
35: if z(CRIT3(c)) does not increase for ω iterations then
36: Consider the remaining tuples computed by MRKPTuples(c, α, β, Δ, μ)
37: with a weight ≤ θ ;
38: Add alltogether at most μ pair of constraints (62)–(63) to CRIT3(c),
39: see Sect. 8.2; end if
40: x̄ ← solve CRIT3(c);
41: end while
42: end for
43: return x∗.

123

280 F. Della Croce , R. Scatamacchia

References

1. Aissi, H., Bazgan, C., Vanderpooten, D.: Minmax and minmax regret versions of combinatorial opti-
mization problems: a survey. Eur. J. Oper. Res. 197, 427–438 (2009)

2. Brotcorne, L., Hanafi, S., Mansi, R.: One-level reformulation of the bilevel knapsack problem using
dynamic programming. Discrete Optim. 10, 1–10 (2013)

3. Caprara, A., Carvalho, M., Lodi, A., Woeginger, G.: A Complexity and approximability study of the
bilevel knapsack problem. In: Proceedings of IPCO 2013. LNCS, vol. 7801, pp. 98–109 (2013)

4. Caprara, A., Carvalho, M., Lodi, A., Woeginger, G.: Bilevel knapsack with interdiction constraints.
INFORMS J. Comput. 28, 319–333 (2016)

5. Caramia, M., Mari, R.: Enhanced exact algorithms for discrete bilevel linear problems. Optim. Lett.
9, 1447–1468 (2015)

6. Carvalho, M., Lodi, A., Marcotte, P.: A polynomial algorithm for a continuous bilevel knapsack prob-
lem. Oper. Res. Lett. 46, 185–188 (2018)

7. Chen, L., Zhang, G.: Approximation algorithms for a bi-level knapsack problem. Theor. Comput. Sci.
497, 1–12 (2013)

8. D’Ambrosio, C., Furini, F., Monaci, M., Traversi, E.: On the product knapsack problem. Optim. Lett.
12(4), 691–712 (2018)

9. Deineko, V.G., Woeginger, G.: Pinpointing the complexity of the interval min–max regret knapsack
problem. Discrete Optim. 7, 191–196 (2010)

10. Della Croce, F., Pferschy, U., Scatamacchia, R.: New exact approaches and approximation results for
the penalized knapsack problem. Discrete Appl. Math. 253, 122–135 (2019)

11. Della Croce, F., Salassa, F., Scatamacchia, R.: An exact approach for the 0–1 knapsack problem with
setups. Comput. Oper. Res. 80, 61–67 (2019)

12. Della Croce, F., Salassa, F., Scatamacchia, R.: A new exact approach for the 0–1 collapsing knapsack
problem. Eur. J. Oper. Res. 260, 56–69 (2017)

13. Della Croce, F., Scatamacchia, R.: Lower bounds and a new exact approach for the bilevel knapsack
with interdiction constraints. In: Lodi, A., Nagarajan, V. (eds.) Integer Programming andCombinatorial
Optimization, vol. 11480, pp. 155–167. Springer, Berlin (2019)

14. DeNegre, S.: Interdiction and discrete bilevel linear programming. PhD thesis, Lehigh University
(2011)

15. DeNegre, S., Ralphs, T.K.: A branch-and-cut algorithm for integer bilevel linear programs. In: Oper-
ations Research and Cyber-Infrastructure, Volume 47 of Operations Research/Computer Science
Interfaces, pp. 65–78 (2009)

16. Fischetti, M., Ljubić, I., Monaci, M., Sinnl, M.: A new general-purpose algorithm for mixed-integer
bilevel linear programs. Oper. Res. 65, 1615–1637 (2017)

17. Fischetti, M., Ljubić, I., Monaci, M., Sinnl, M.: Interdiction games and monotonicity, with application
to knapsack problems. INFORMS J. Comput. 31(2), 390–410 (2019)

18. Fischetti, M., Ljubić, I., Monaci, M., Sinnl, M.: On the use of intersection cuts for bilevel optimization.
Math. Program. 172, 77–103 (2018)

19. Fischetti, M., Monaci, M., Sinnl, M.: A dynamic reformulation heuristic for generalized interdiction
problems. Eur. J. Oper. Res. 267, 40–51 (2018)

20. Furini, F., Iori, M., Martello, S., Yagiura, M.: Heuristic and exact algorithms for the interval min–max
regret knapsack problem. INFORMS J. Comput. 27, 392–405 (2015)

21. Furini, F., Monaci, M., Traversi, E.: Exact approaches for the knapsack problem with setups. Comput.
Oper. Res. 90, 208–220 (2018)

22. Jeroslow, R.: The polynomial hierarchy and a simple model for competitive analysis. Math. Program.
32, 146–164 (1985)

23. Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer, New York (2004)
24. Kouvelis, P., Yu, G.: Robust Discrete Optimization and its Applications. Kluwer Academic Publishers,

Boston (1997)
25. Martello, S., Pisinger, D., Toth, P.: Dynamic programming and strong bounds for the 0–1 knapsack

problem. Manag. Sci. 45, 414–424 (1999)
26. Martello, S., Toth, P.: Knapsack Problems: Algorithms and Computer Implementations. Wiley, New

York (1990)
27. Moore, J.T., Bard, J.F.: Themixed integer linear bilevel programming problem. Oper. Res. 38, 911–921

(1990)

123

An exact approach for the bilevel knapsack problem with… 281

28. Pferschy, U., Nicosia, G., Pacifici, A.: A Stackelberg knapsack game with weight control. Theor.
Comput. Sci. 799, 149–159 (2019)

29. Pferschy, U., Scatamacchia, R.: Improved dynamic programming and approximation results for the
knapsack problem with setups. Int. Trans. Oper. Res. 25, 667–682 (2018)

30. Pisinger, D.: A fast algorithm for strongly correlated knapsack problems. Discrete Appl. Math. 89,
197–212 (1998)

31. Pisinger, D.: A minimal algorithm for the 0–1 knapsack problem. Oper. Res. 45, 758–767 (1997)
32. Pisinger, D.: Linear time algorithms for knapsack problems with bounded weights. J. Algorithms 33,

1–14 (1999)
33. Qiu, X., Kern,W.: Improved approximation algorithms for a bilevel knapsack problem. Theor. Comput.

Sci. 595, 120–129 (2015)
34. Stackelberg, H.V.: The Theory of the Market Economy. Oxford University Press, Oxford (1952)
35. Tang, Y., Richard, J.P.P., Smith, J.C.: A class of algorithms for mixed-integer bilevel min–max opti-

mization. J. Global Optim. 66(2), 225–262 (2016)
36. Wang, L., Xu, P.: The watermelon algorithm for the bilevel integer linear programming problem. SIAM

J. Optim. 27(3), 1403–1430 (2017)
37. Xu, P., Wang, L.: An exact algorithm for the bilevel mixed integer linear programming problem under

three simplifying assumptions. Comput. Oper. Res. 41, 309–318 (2014)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

	An exact approach for the bilevel knapsack problem with interdiction constraints and extensions
	Abstract
	1 Introduction
	2 Notation and problem formulation
	3 Computing lower bounds on BKP
	4 A new exact approach for BKP
	4.1 Overview
	4.2 Step 1
	4.2.1 Handling the possible non-existence of a critical item
	4.2.2 Identifying the relevant critical items
	4.2.3 Building models CRIT2(c)
	4.2.4 Computing feasible BKP solutions

	4.3 Step 2
	4.3.1 Fixing variables in subproblems
	4.3.2 Solving subproblems

	5 Computational testing
	6 Extending the approach to the interval min–max regret knapsack problem
	6.1 Bilevel reformulation of the MRKP
	6.2 Computational results on MRKP

	7 Concluding remarks
	Acknowledgements
	8 Appendix
	8.1 Additional notation for MRKP
	8.2 Computing a lower bound for MRKP
	8.3 A new exact approach for MRKP

	References

