
Mathematical Programming (2020) 183:3–39
https://doi.org/10.1007/s10107-020-01474-5

FULL LENGTH PAPER

Series B

Strongmixed-integer programming formulations for
trained neural networks

Ross Anderson1 · Joey Huchette2 ·Will Ma3 · Christian Tjandraatmadja1 ·
Juan Pablo Vielma1,4

Received: 1 June 2019 / Accepted: 23 January 2020 / Published online: 13 February 2020
© Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2020

Abstract
Wepresent strongmixed-integer programming (MIP) formulations for high-dimensional
piecewise linear functions that correspond to trained neural networks. These formu-
lations can be used for a number of important tasks, such as verifying that an image
classification network is robust to adversarial inputs, or solving decision problems
where the objective function is a machine learning model. We present a generic frame-
work, which may be of independent interest, that provides a way to construct sharp
or ideal formulations for the maximum of d affine functions over arbitrary polyhe-
dral input domains. We apply this result to derive MIP formulations for a number of
the most popular nonlinear operations (e.g. ReLU and max pooling) that are strictly
stronger than other approaches from the literature. We corroborate this computation-
ally, showing that our formulations are able to offer substantial improvements in solve
time on verification tasks for image classification networks.

An extended abstract version of this paper appeared in [4].

B Joey Huchette
joehuchette@rice.edu

Ross Anderson
rander@google.com

Will Ma
wm2428@gsb.columbia.edu

Christian Tjandraatmadja
ctjandra@google.com

Juan Pablo Vielma
jvielma@mit.edu; jvielma@google.com

1 Google Inc, Cambridge, MA, USA

2 Rice University, Houston, TX, USA

3 Columbia University, New York, NY, USA

4 Massachusetts Institute of Technology, Cambridge, MA, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10107-020-01474-5&domain=pdf
http://orcid.org/0000-0003-3552-0316
http://orcid.org/0000-0002-2420-4468

4 R. Anderson et al.

Keywords Mixed-integer programming · Formulations · Deep learning

Mathematics Subject Classification 90C11

1 Introduction

Deep learning has proven immensely powerful at solving a number of important pre-
dictive tasks arising in areas such as image classification, speech recognition, machine
translation, and robotics and control [32,48]. The workhorse model in deep learning
is the feedforward network NN : R

m0 → R
ms that maps a (possibly very high-

dimensional) input x0 ∈ R
m0 to an output xs = NN(x0) ∈ R

ms . A feedforward
network with s layers can be recursively described as

xij = NLi, j (wi, j · xi−1 + bi, j) ∀i ∈ [[s]], j ∈ [[mi]] (1)

where [[n]] def= {1, . . . , n}, mi is both the number of neurons in layer i and the output
dimension of the neurons in layer i − 1 (with the input x0 ∈ R

m0 considered to be
the 0-th layer). Furthermore, for each i ∈ [[s]] and j ∈ [[mi]], NLi, j : R → R is
some simple nonlinear activation function that is fixed before training, and wi, j and
bi, j are the weights and bias of an affine function which is learned during the training
procedure. In its simplest and most common form, the activation function would be
the rectified linear unit (ReLU), defined as ReLU(v) = max{0, v}.

Many standard nonlinearities NL, such as the ReLU, are piecewise linear: that is,
there exists a partition {Si ⊆ D}di=1 of the domain and affine functions { f i }di=1 such
that NL(x) = f i (x) for all x ∈ Si . If all nonlinearities describing NN are piecewise
linear, then the entire network NN is piecewise linear as well, and conversely, any
continuous piecewise linear function can be represented by aReLUneural network [5].
Beyond the ReLU, we also investigate activation functions that can be expressed as the
maximum of finitely many affine functions, a class which includes certain common
operations such as max pooling and reduce max.

There are numerous contexts in which one may want to solve an optimization prob-
lem containing a trained neural network such as NN. For example, this paradigm arises
in deep reinforcement learning problems with high dimensional action spaces and
where any of the cost-to-go function, immediate cost, or the state transition functions
are learned by a neural network [6,23,56,62,64,80]. More generally, this approach
may be used to approximately optimize learned functions that are difficult to model
explicitly [34,52,53]. Alternatively, there has been significant recent interest in veri-
fying the robustness of trained neural networks deployed in systems like self-driving
cars that are incredibly sensitive to unexpected behavior from the machine learning
model [20,60,68]. Relatedly, a string of recent work has used optimization over neural
networks trained for visual perception tasks to generate new images which are “most
representative” for a given class [59], are “dreamlike” [57], or adhere to a particular
artistic style via neural style transfer [30].

123

MIP formulations for trained neural networks 5

1.1 MIP formulation preliminaries

In this work, we studymixed-integer programming (MIP) approaches for optimization
problems containing trained neural networks. In contrast to heuristic or local search
methods often deployed for the applicationsmentioned above,MIP offers a framework
for producing provably optimal solutions. This is particularly important, for example,
in verification problems, where rigorous dual bounds can guarantee robustness in a
way that purely primal methods cannot.

Let f : D ⊆ R
η → Rbe aη-variate affine functionwith domain D,NL : R → Rbe

an univariate nonlinear activation function, and ◦ be the standard function composition
operator so that (NL◦ f)(x) = NL(f (x)). Functions of the form (NL◦ f)(x) precisely
describe an individual neuron, with η inputs and one output. A standard way to model
a function g : D ⊆ R

η → R using MIP is to construct a formulation of its graph
defined by gr(g; D)

def= {(x, y) ∈ R
η × R | x ∈ D, y = g(x)}. We therefore focus on

constructing MIP formulations for the graph of individual neurons:

gr(NL ◦ f ; D)
def= {(x, y) ∈ R

η × R | x ∈ D, y = (NL ◦ f)(x)
}
, (2)

because, as we detail at the end of this section, we can readily produce a MIP formu-
lation for the entire network as the composition of formulations for each individual
neuron.

Definition 1 Throughout, we will notationally use the convention that x ∈ R
η and

y ∈ R are respectively the input and output variables of the function g : D ⊆ R
η → R

we are modeling. In addition, v ∈ R
h and z ∈ R

q are respectively any auxiliary
continuous and binary variables used to construct a formulation of gr(g; D). The
orthogonal projection operator Proj will be subscripted by the variables to project onto,
e.g. Projx,y(R) = {(x, y) | ∃v, z s.t. (x, y, v, z) ∈ R} is the orthogonal projection of R
onto the “original space” of x and y variables. We denote by ext(Q) the set of extreme
points of a polyhedron Q.

Take S
def= gr(g; D) ⊆ R

η+1 to be the set we want to model, and a polyhedron
Q ⊂ R

η+1+h+q . Then:

– A (valid) mixed-integer programming (MIP) formulation of S consists of the linear
constraints on (x, y, v, z) ∈ R

η+1+h+q which define a polyhedron Q, combined
with the integrality constraints z ∈ {0, 1}q , such that

S = Projx,y
(
Q ∩ (Rη+1+h × {0, 1}q)

)
.

We refer to Q as the linear programming (LP) relaxation of the formulation.
– A MIP formulation is sharp if Projx,y(Q) = Conv(S).
– A MIP formulation is hereditarily sharp if fixing any subset of binary variables z
to 0 or 1 preserves sharpness.

– A MIP formulation is ideal (or perfect) if ext(Q) ⊆ R
η+1+h × {0, 1}q .

– The separation problem for a family of inequalities is to find a valid inequality
violated by a given point or certify that no such inequality exists.

123

6 R. Anderson et al.

– An inequality is valid for the formulation if each integer feasible point in Q =
{(x, y, v, z) ∈ Q | z ∈ {0, 1}q} satisfies the inequality.Moreover, a valid inequality
is facet-defining if the dimension of the points in Q satisfying the inequality at
equality is exactly one less than the dimension of Q itself.

Note that ideal formulations are sharp, but the converse is not necessarily the
case [72, Proposition 2.4]. In this sense, ideal formulations offer the tightest pos-
sible relaxation, and the integrality property in Definition 1 tends to lead to superior
computational performance. Furthermore, note that a hereditarily sharp formulation
is a formulation which retains its sharpness at every node in a branch-and-bound tree,
and as such is potentially superior to a formulation which only guarantees sharpness
at the root node [41,42]. Additionally, it is important to keep in mind that modern MIP
solvers will typically require an explicit, finite list of inequalities defining Q.

Finally, for each i ∈ [[s]] and j ∈ [[mi]] let Qi, j ⊆ R
mi−1+1+hi, j+qi, j be a polyhe-

dron such that gr(NLi, j ◦ f i, j ; Di, j) = Projx,y
(
Qi, j ∩ (Rmi−1+1+hi, j × {0, 1}qi, j)),

where each Di, j is the domain of neuron NLi, j and f i, j (x) = wi, j · x + bi, j is the
learned affine function in network (1). Then, a formulation for the complete network
(1) is given by

(
xi−1, xij , v

i, j , zi, j
)

∈
(
Qi, j ∩ (Rmi−1+1+hi, j × {0, 1}qi, j)

)
∀i ∈ [[s]], j ∈ [[mi]].

Any properties of the individual-neuron formulations Qi, j (e.g. being ideal), are not
necessarily preserved for the combined formulation for the complete network. How-
ever, for similarly sized-formulations, combining stronger formulations (e.g. ideal
instead of sharp) usually leads to complete formulations that are more computation-
ally effective [72]. Hence, our focus for all theoretical properties of the formulations
will be restricted to individual-neuron formulations.

1.2 Our contributions

We highlight the contributions of this work as follows.

1. Generic recipes for building strong MIP formulations of the maximum of d affine
functions for any bounded polyhedral input domain.

– [Propositions 3 and 4] We derive both primal and dual characterizations for
ideal formulations via the Cayley embedding.

– [Propositions 5 and 6]We relax the Cayley embedding in a particular way, and
use this to derive simpler primal and dual characterizations for (hereditarily)
sharp formulations.

– Wediscuss how to separate both dual characterizations via subgradient descent.

2. Simplifications for common special cases.

– [Corollary 1]We show the equivalence of the ideal and sharp characterizations
when d = 2 (i.e. the maximum of two affine functions).

123

MIP formulations for trained neural networks 7

– [Proposition 7] We show that, if the input domain is a product of simplices,
the separation problem of the sharp formulation can be reframed as a series of
transportation problems.

– [Corollaries 2 and 3, and Proposition 9] When the input domain is a product
of simplices, and either (1) d = 2, or (2) each simplex is two-dimensional, we
provide an explicit, finite description for the sharp formulation. Furthermore,
none of these inequalities are redundant.

3. Application of these results to construct MIP formulations for neural network
nonlinearities.

– [Propositions 12 and 13] We derive an explicit ideal formulation for the ReLU
nonlinearity over a box input domain, the most common case. Separation over
this ideal formulation can be performed in time linear in the input dimension.

– [Corollary 5]We derive an explicit ideal formulation for the ReLUnonlinearity
where some (or all) of the input domain is one-hot encoded categorical or
discrete data. Again, the separation can be performed efficiently, and none of
the inequalities are redundant.

– [Propositions 10 and 11] We present an explicit hereditarily sharp formulation
for the maximum of d affine functions over a box input domain, and provide
an efficient separation routine. Moreover, a subset of the defining constraints
serve as a tightened big-M formulation.

– [Proposition 14]We produce similar results for more exotic neurons: the leaky
ReLU and the clipped ReLU (see the online supplement).

4. Computational experiments on verification problems arising from image classifi-
cation networks trained on the MNIST digit data set.

– We observe that our new formulations, along with just a few rounds of separa-
tion over our families of cutting planes, can improve the solve time of Gurobi
on verification problems by orders of magnitude.

Our contributions are depicted in Fig. 1. It serves as a roadmap of the paper.

1.3 Relevant prior work

In recent years a number of authors have used MIP formulations to model trained
neural networks [19,22,24,29,40,47,54,64,66,67,70,80,81], mostly applying big-M
formulation techniques to ReLU-based networks. When applied to a single neuron
of the form (2), these big-M formulations will not be ideal or offer an exact convex
relaxation; see Example 1 for an illustration. Additionally, a stream of literature in the
deep learning community has studied convex relaxations [12,26,27,61,63], primarily
for verification tasks. Moreover, some authors have investigated how to use convex
relaxations within the training procedure in the hopes of producing neural networks
with a priori robustness guarantees [25,78,79].

The usage of mathematical programming in deep learning, specifically for training
predictive models, has also been investigated in [15]. Beyond mathematical program-
ming and convex relaxations, a number of authors have investigated other algorithmic

123

8 R. Anderson et al.

Fig. 1 A roadmap of our results. The single arrows depict dependencies between our technical results, while
the double arrows depict the way in which we use these results to establish our applied formulations in the
paper. Notationally, d is the number of pieces of the piecewise linear function, [L,U]η is an η-dimensional
box, and (Δp)τ refers to a product of τ simplices, each with p components

techniques for modeling trained neural networks in optimization problems, draw-
ing primarily from the satisfiability, constraint programming, and global optimization
communities [10,11,43,51,65]. Throughout this stream of the literature, there is dis-
cussion of the performance for specific subclasses of neural networkmodels, including
binarized [44] or input convex [3] neural networks. Improving our formulations for
specific subclasses of neural networks would constitute interesting future work.

Outside of applications in machine learning, the formulations presented in this
paper also have connections with existing structures studied in the MIP and constraint
programming communities, like indicator variables, on/off constraints, and convex
envelopes [7,13,17,37,38,69]. Finally, this paper has connections with distributionally
robust optimization, in that the primal–dual pair of sharp formulations presented can
be viewed as equivalent to the discrete sup–sup duality result [21] for the marginal
distribution model [35,58,77].

1.4 Starting assumptions and notation

We use the following notational conventions throughout the paper.

– The nonnegative orthant: R�0
def= {x ∈ R | x � 0}.

123

MIP formulations for trained neural networks 9

– The n-dimensional simplex: Δn def=
{
x ∈ R

n
�0 | ∑n

i=1 xi = 1
}
.

– The set of integers from 1 to n: [[n]] = {1, . . . , n}.
– “Big-M” coefficients:M+(f ; D)

def= maxx∈D f (x) andM−(f ; D)
def=minx∈D f (x).

– The dilation of a set: if z ∈ R�0 and D ⊆ R
η, then z · D def= {zx | x ∈ D}.1

Furthermore, we will make the following simplifying assumptions.

Assumption 1 The input domain D is a bounded polyhedron.

While a bounded input domain assumption will make the formulations and anal-
ysis considerably more difficult than the unbounded setting (see [7] for a similar
phenomenon), it ensures that standard MIP representability conditions are satisfied
(e.g. [72, Sect. 11]). Furthermore, variable bounds are natural for many applications
(for example in verification problems), and are absolutely essential for ensuring rea-
sonable dual bounds.

Assumption 2 Each neuron is irreducible: for any k ∈ [[d]], there exists some x ∈ D
where f k(x) > f �(x) for each �
= k.

Observe that if a neuron is not irreducible, this means that it is unnecessarily
complex, and one or more of the affine functions can be completely removed. More-
over, the assumption can be verified in polynomial time via d LPs by checking if
maxx,Δ

{
Δ
∣∣ x ∈ D, Δ � f k(x) − f �(x) ∀�
= k

}
> 0 for each k ∈ [[d]]. In the spe-

cial case where d = 2 (e.g. ReLU) and D is a box, this can be done in linear time.
Finally, if the assumption does not hold, it will not affect the validity of the formula-
tions or cuts derived in this work, though certain results pertaining to non-redundancy
or facet-defining properties may no longer hold.

2 Motivating example: the ReLU nonlinearity over a box domain

Since the work of Glorot et al. [31], the ReLU neuron has become the workhorse of
deep learning models. Despite the simplistic ReLU structure, neural networks formed
by ReLU neurons are easy to train, reason about, and can model any continuous
piecewise linear function [5]. Moreover, they can approximate any continuous, non-
linear function to an arbitrary precision under a bounded width [36].

Accordingly, the general problem of maximizing (or minimizing) the output of a
trained ReLU network is NP-hard [43]. Nonetheless, in this section we present the
strongest possible MIP formulations for a single ReLU neuron without continuous
auxiliary variables. As discussed at the end of Sect. 1.1 and corroborated in the com-
putational study in Sect. 6, this leads to faster solve times for the entire ReLU network
in practice.

2.1 A big-M formulation

To start, we will consider the ReLU in the simplest possible setting: where the input is
univariate. Take the two-dimensional set gr(ReLU; [l, u]), where [l, u] is some interval

1 Note that if D = {x ∈ R
η
∣∣ Ax � b

}
is polyhedral, then z · D = {x ∈ R

η
∣∣ Ax � bz

}
.

123

10 R. Anderson et al.

in R containing zero. It is straightforward to construct an ideal formulation for this
univariate ReLU.

Proposition 1 An ideal formulation for gr(ReLU; [l, u]) is:

y � x (3a)

y � x − l(1 − z) (3b)

y � uz (3c)

(x, y, z) ∈ R × R�0 × [0, 1] (3d)

z ∈ {0, 1}. (3e)

Proof Follows from inspection, or as a special case of Proposition 12 to be presented
in Sect. 5.2. ��

A more realistic setting would have an η-variate ReLU nonlinearity whose input
is some η-variate affine function f : [L,U] → R where L,U ∈ R

η and
[L,U] def= {

x ∈ R
η
∣∣ Li � xi � Ui ∀i ∈ [[η]]} (i.e. the η-variate ReLU nonlinearity

given by ReLU ◦ f). The box-input [L,U] corresponds to known (finite) bounds on
each component, which can typically be efficiently computed via interval arithmetic
or other standard methods.

Observe that we can model the graph of the η-variate ReLU neuron as a simple
composition of the graph of a univariate ReLU activation function and an η-variate
affine function:

gr (ReLU ◦ f ; [L,U]) =
{
(x, y)∈ R

η+1
∣∣∣∣
(f (x), y) ∈ gr

(
ReLU; [m−,m+])

L � x � U

}
,

(4)

where m− def= M−(f ; [L,U]) and m+ def= M+(f ; [L,U]). Using formulation (3) as a
submodel, we can write a formulation for the ReLU over a box domain as:

y � f (x) (5a)

y � f (x) − M−(f ; [L,U]) · (1 − z) (5b)

y � M+(f ; [L,U]) · z (5c)

(x, y, z) ∈ [L,U] × R�0 × [0, 1] (5d)

z ∈ {0, 1}. (5e)

This is the approach taken recently in the bevy of papers referenced in Sect. 1.3. Unfor-
tunately, after the composition with the affine function f over a box input domain,
this formulation is no longer sharp.

Example 1 If f (x) = x1 + x2 − 1.5, formulation (5) for gr(ReLU ◦ f ; [0, 1]2) is

y � x1 + x2 − 1.5 (6a)

123

MIP formulations for trained neural networks 11

x2

x1

y

x2

x1

y

Fig. 2 For f (x) = x1 + x2 − 1.5: (Left) Conv(gr(ReLU ◦ f ; [0, 1]2)), and (Right) the projection of the
big-M formulation (5) to (x, y)-space, where we mark the point (x, y) = ((1, 0), 0.25) that is not in the
convex hull, but is valid for the projection of the big-M LP relaxation (6a)–(6d)

y � x1 + x2 − 1.5 + 1.5(1 − z) (6b)

y � 0.5z (6c)

(x, y, z) ∈ [0, 1]2 × R�0 × [0, 1] (6d)

z ∈ {0, 1}. (6e)

The point (x̂, ŷ, ẑ) = ((1, 0), 0.25, 0.5) is feasible for the LP relaxation (6a)–(6d).
However, observe that the inequality y � 0.5x2 is valid for gr(ReLU ◦ f ; [0, 1]2),
but is violated by (x̂, ŷ). Therefore, the formulation does not offer an exact convex
relaxation (and, hence, is not ideal). See Fig. 2 for an illustration: on the left, of the
big-M formulation projected to (x, y)-space, and on the right, the tightest possible
convex relaxation.

Moreover, the integrality gap of (5) can be arbitrarily bad, even in fixed dimension η.

Example 2 Fix γ ∈ R�0 and even η ∈ N. Take the affine function f (x) = ∑η
i=1 xi ,

the input domain [L,U] = [−γ, γ]η, and x̂ = γ ·(1,−1, . . . , 1,−1) as a scaled vector
of alternating positive and negative ones. We can check that (x̂, ŷ, ẑ) = (x̂, 1

2γ η, 1
2)

is feasible for the LP relaxation of the big-M formulation (5). Additionally, f (x̂) = 0,
and for any ỹ such that (x̂, ỹ) ∈ Conv(gr(ReLU◦ f ; [L,U])), then ỹ = 0 necessarily.
Therefore, there exists a fixed point x̂ in the input domain where the tightest possible
convex relaxation (for example, from a sharp formulation) is exact, but the big-M
formulation deviates from this value by at least 1

2γ η.

Intuitively, this example suggests that the big-M formulation can be particularly
weak around the boundary of the input domain, as it cares only about the value f (x)
of the affine function, and not the particular input value x .

2.2 An ideal extended formulation

It is possible to produce an ideal extended formulation for the ReLU neuron by intro-
ducing a modest number of auxiliary continuous variables:

(x, y) = (x0, y0) + (x1, y1) (7a)

y0 = 0 � w · x0 + b(1 − z) (7b)

123

12 R. Anderson et al.

y1 = w · x1 + bz � 0 (7c)

L(1 − z) � x0 � U (1 − z) (7d)

Lz � x1 � Uz (7e)

z ∈ {0, 1}, (7f)

This is the standard “multiple choice” formulation for piecewise linear functions [75],
which can also be derived from techniques due to Balas [8,9].

Although the multiple choice formulation offers the tightest possible convex relax-
ation for a single neuron, it requires a copy x0 of the input variables [the copy x1 can
be eliminated using the Eq. (7a)]. This means that when this formulation is applied to
every neuron in the network to formulate NN, the total number of continuous variables
required is m0 +∑r

i=1(mi−1 + 1)mi , where mi is the number of neurons in layer i .
In contrast, the big-M formulation requires only m0 +∑r

i=1 mi continuous variables
to formulate the entire network. As we will see in Sect. 6, the quadratic growth in size
of the extended formulation can quickly become burdensome. Additionally, a folklore
observation in the MIP community is that multiple choice formulations tend to not
perform as well as expected in simplex-based branch-and-bound algorithms, likely
due to degeneracy introduced by the block structure of the formulation [74].

2.3 An ideal MIP formulation without auxiliary continuous variables

In this work, our most broadly useful contribution is the derivation of an ideal MIP
formulation for the ReLU nonlinearity over a box domain that is non-extended; that is,
it does not require additional auxiliary variables as in formulation (7). We informally
summarize this main result as follows.

Main result for ReLU networks (informal)

There exists an explicit ideal nonextended formulation for the η-variate ReLU
nonlinearity over a box domain, i.e. it requires only a single auxiliary binary
variable. It has an exponential (in η) number of inequality constraints, each of
which are facet-defining. However, it is possible to separate over this family of
inequalities in time scaling linearly in η.

We defer the formal statement and proof to Sect. 5.2, for after we have derived the
requisite machinery. This is also the main result for the extended abstract version of
this work [4], where it is derived through alternative means.

3 Our general machinery: formulations for themaximum of d affine
functions

We will state our main structural results in the following generic setting. Take the
maximum operator Max(v1, . . . , vd) = maxdi=1 vi over d scalar inputs. We study the

123

MIP formulations for trained neural networks 13

composition of this nonlinearity with d affine functions f i : D → R with f i (x) =
wi · x + bi , all sharing some bounded polyhedral domain D:

Smax
def= gr(Max ◦ (f 1, . . . , f d); D) ≡

{
(x, y) ∈ D × R

∣∣∣∣y = d
max
i=1

f i (x)

}
,

This setting subsumes the ReLU over box input domain presented in Sect. 2 as a
special case with d = 2, f 2(x) = 0, and D = [L,U]. It also covers a number of
other settings arising in modern deep learning, either by making D more complex
(e.g. one-hot encodings for categorical features), or by increasing d (e.g. max pooling
neurons often used in convolutional networks for image classification tasks [18], or in
maxout networks [33]).

In this section, we present structural results that characterize the Cayley embed-
ding [39,73,74,76] of Smax. Take the set

Scayley
def=

d⋃

k=1

{
(x, f k(x), ek)

∣∣x ∈ D|k
}
,

where ek is the unit vector where the k-th element is 1, and for each k ∈ [[d]],

D|k
def=
{
x ∈ D

∣∣∣∣k ∈ arg
d

max
�=1

f �(x)

}
≡
{
x ∈ D

∣∣∣wk · x + bk � w� · x + b� ∀�
= k
}

is the portion of the input domain D where f k attains the maximum. The Cayley
embedding of Smax is the convex hull of this set: Rcayley

def= Conv(Scayley).
The following straightforward observation holds directly from definition.

Observation 1 The set Rcayley is a bounded polyhedron, and an ideal formulation for
Smax is given by the system

{
(x, y, z) ∈ Rcayley

∣∣ z ∈ {0, 1}d}.
Therefore, if we can produce an explicit inequality description for Rcayley, we

immediately have an ideal MIP formulation for Smax. Indeed, we have already seen an
extended representation in (7) when d = 2, which we now state in the more general
setting (projecting out the superfluous copies of y).

Proposition 2 An ideal MIP formulation for Smax is:

(x, y) =
d∑

k=1

(̃xk, wk · x̃ k + bkzk) (8a)

x̃ k ∈ zk · D|k ∀k ∈ [[d]] (8b)

z ∈ Δd (8c)

z ∈ {0, 1}d . (8d)

Denote its LP relaxation by Rextended = {
(x, y, z, x̃1, . . . , x̃ k)

∣∣ (8a − 8c)
}
. Then

Projx,y,z(Rextended) = Rcayley.

123

14 R. Anderson et al.

Proof Follows directly from results in [8,9]. ��
Although this formulation is ideal and polynomially-sized, this extended formulation
can exhibit poor practical performance, as noted in Sect. 2.2 and corroborated in
the computational experiments in Sect. 6. Observe that, from definition, constraint
(8b) for a given k ∈ [[d]] is equivalent to the set of constraints x̃ k ∈ zk · D and
wk · x̃ k + bkzk � w� · x̃ k + b�zk for each �
= k.

3.1 A recipe for constructing ideal formulations

Ourgoal in this section is to derive generic tools that allowus to build ideal formulations
for Smax via the Cayley embedding.

3.1.1 A primal characterization

Our first structural result provides a characterization for the Cayley embedding.
Although it is not an explicit polyhedral characterization, we will subsequently see
how it can be massaged into a more practically amenable form.

Take the system

y � g(x, z) (9a)

y � g(x, z) (9b)

(x, y, z) ∈ D × R × Δd , (9c)

where

g(x, z)
def= max

x̃1,...,̃xd

{
d∑

k=1

wk · x̃ k + bkzk

∣∣∣∣
x =∑k x̃

k

x̃k ∈ zk · D|k ∀k ∈ [[d]]

}

g(x, z)
def= min

x̃1,...,̃xd

{
d∑

k=1

wk · x̃ k + bkzk

∣∣∣∣
x =∑k x̃

k

x̃k ∈ zk · D|k ∀k ∈ [[d]]

}

,

and define the set Rideal
def= {

(x, y, z)
∣∣(9)
}
. Note that Rideal can be thought of as (8)

with the x̃ k variables implicitly projected out.

Proposition 3 The set Rideal is polyhedral, and Rideal = Rcayley.

Proof By Proposition 2, it suffices to show that Rideal = Projx,y,z(Rextended). We start
by observing that, as g (respectively g) is concave (resp. convex) in its imputs as it is
the value function of a linear program (cf. [14, Theorem 5.1]). Therefore, the set of
points satisfying (9) is convex.

Let (x̂, ŷ, ẑ) be an extreme point of Rideal, which exists as Rideal is convex. Then
it must satisfy either (9a) or (9b) at equality, as otherwise it is a convex combination
of (x̂, ŷ − ε, ẑ) and (x̂, ŷ + ε, ẑ) for some ε > 0. Take x̃1, . . . , x̃d that opti-
mizes g(x, z) or g(x, z), depending on which constraint is satisfied at equality. Then

123

MIP formulations for trained neural networks 15

(x̂, ŷ, ẑ, x̃1, . . . , x̃d) ∈ Rextended. In other words, ext(Rideal) ⊆ Projx,y,z(Rextended),
and thus Rideal ⊆ Projx,y,z(Rextended) by convexity.

Conversely, let (x̂, ŷ, ẑ, x̃1, . . . , x̃d) ∈ Rextended. Then ŷ =∑d
k=1(w

k ·̃xk+bk ẑk) �
g(x̂, ẑ), as ({̃xk}dk=1) is feasible for the optimization problem in g(x, z). Likewise,
ŷ � g(x̂, ẑ), and (9c) is trivially satisfied. Therefore, (x̂, ŷ, ẑ) ∈ Rideal.

Polyhedrality of Rideal then follows as Rcayley is itself a polyhedron. ��
Note that the input domain constraint x ∈ D is implied by the constraints (9a)–(9b),

and therefore do not need to be explicitly included in this description. However, we
include it here in our description for clarity. Moreover, observe that g is a function
from D × Δd to R ∪ {−∞}, since the optimization problem may be infeasible, but
is always bounded from above since D is bounded. Likewise, g is a function from

D × Δd to R ∪ {+∞}.

3.1.2 A dual characterization

From Proposition 3, we can derive a more useful characterization by applying
Lagrangian duality to the LPs describing the envelopes g(x, z) and g(x, z).

Proposition 4 The Cayley embedding Rcayley is equal to all (x, y, z) satisfying

y � α · x +
d∑

k=1

(

max
xk∈D|k

{(wk − α) · xk} + bk
)

zk ∀α ∈ R
η (10a)

y � α · x +
d∑

k=1

(

min
xk∈D|k

{(wk − α) · xk} + bk
)

zk ∀α ∈ R
η (10b)

(x, y, z) ∈ D × R × Δd . (10c)

Proof Consider the upper bound inequalities for y in Proposition 3, that is, (9a). Now

apply the change of variables xk ← x̃ k
zk

for each k ∈ [[d]] and, for all (x, z), take the
Lagrangian dual of the optimization problem in g(x, z) with respect to the constraint
x = ∑

k x
k zk . Note that the duality gap is zero since the problem is an LP. We then

obtain that

g(x, z) = min
α

max
xk∈D|k

d∑

k=1

(
wk · xk + bk

)
zk + α ·

(

x −
d∑

k=1

xkzk

)

= min
α

α · x +
d∑

k=1

(

max
xk∈D|k

{(wk − α) · xk} + bk
)

zk .

In other words, we can equivalently express (9a) via the family of inequalities (10a).
The same can be done with (9b), yielding the set of inequalities (10b). Therefore,{
(x, y, z)

∣∣ (10)
} = Projx,y,z(Rextended) = Rcayley. ��

123

16 R. Anderson et al.

This gives an exact outer description for the Cayley embedding in terms of an
infinite number of linear inequalities. Despite this, the formulation enjoys a simple,
interpretable form: we can view the inequalities as choosing coefficients on x and
individually tightening the coefficients on z according to explicitly described LPs.
Similar to the relationship between (8) and (9), (10) can be seen as a simplification
of the standard cut generation LP for unions of polyhedra [8,9]. In later sections, we
will see that this decoupling is helpful to simplify (a variant of) this formulation for
special cases.

Separating a point (x̂, ŷ, ẑ) over (10a) can be done by evaluating g(x̂, ẑ) in the
form (10a) (and in the analogous form of g(x̂, ẑ) for (10b)). As typically done when
using Lagrangian relaxation, this optimization problem can be solved via a subgradient
or bundle method, where each subgradient can be computed by solving the inner LP
in (10a) for all xk ∈ D|k . Observe that any feasible solution α for the optimization
problem in (10a) yields a valid inequality. However, this optimization problem is
unbounded when (x̂, ẑ) /∈ Projx,z(Rcayley) (i.e. when the primal form of g(x̂, ẑ) is
infeasible). In other words, as illustrated in Fig. 3, g is an extended real valued function
such that g(x, z) ∈ R ∪ {−∞}, so care must be taken to avoid numerical instabilities
when separating a point (x̂, ẑ) where g(x̂, ẑ) = −∞.2

3.2 A recipe for constructing hereditarily sharp formulations

Although Proposition 4 gives a separation-based way to optimize over Smax, there are
two potential downsides to this approach. First, it does not give us a explicit, finite
description for a MIP formulation that we can directly pass to a MIP solver. Second,
the separation problem requires optimizing over D|k , whichmay be substantially more
complicated than optimizing over D (for example, if D is a box).

Therefore, in this section we set our sights slightly lower and present a similar
technique to derive sharp MIP formulations for Smax. Furthermore, we will see that
our formulations trivially satisfy the hereditary sharpness property. In the coming
sections, we will see how we can deploy these results in a practical manner, and study
settings in which the simpler sharp formulation will also, in fact, be ideal.

3.2.1 A primal characterization

Consider the system

y � h(x, z) (11a)

y � wk · x + bk ∀k ∈ [[d]] (11b)

(x, y, z) ∈ D × R × Δd , (11c)

2 As is standard in a Benders’ decomposition approach, we can address this by adding a feasibility cut
describing the domain of g (the region where it is finite valued) instead of an optimality cut of the form
(10a).

123

MIP formulations for trained neural networks 17

where

h(x, z)
def= max

x̃1,...,̃xd

{
d∑

k=1

(wk · x̃ k + bkzk)

∣∣∣∣
x =∑k x̃

k

x̃k ∈ zk · D ∀k ∈ [[d]]

}

.

Take the set Rsharp
def= {(x, y, z) ∣∣ (11)}.

It is worth dwelling on the differences between the systems (9) and (11). First, we
have completely replaced the constraint (9b) with d explicit linear inequalities (11b).
Second, when replacing g with h we have replaced the inner maximization over D|k
with an inner maximization over D (modulo constant scaling factors). As we will see
in Sect. 5.1, this is particularly advantageous when D is trivial to optimize over (for
example, a simplex or a box), allowing us to write these constraints in closed form,
whereas optimizing over D|k may be substantially more difficult (i.e. requiring an LP
solve).

Furthermore, we will show that while (11) is not ideal, it is hereditarily sharp, and
so in general may offer a strictly stronger relaxation than a standard sharp formulation.
In particular, the formulation may be stronger than a sharp formulation constructed by
composing a big-M formulation, along with an exact convex relaxation in the (x, y)-
space produced, for example, by studying the upper concave envelope of the function
Max ◦ (f 1, . . . , f d).

Proposition 5 The systemdescribing
{
(x, y, z) ∈ Rsharp

∣∣ z ∈ {0, 1}d} is a hereditarily
sharp MIP formulation of Smax.

Proof For the result, we must show four properties: polyhedrality of Rsharp, valid-
ity of the formulation whose LP relaxation is Rsharp, sharpness, and then hereditary
sharpness. We proceed in that order.

To showpolyhedrality, consider a fixed value (x̂, ŷ, ẑ) feasible for (11), and presume
that we express the domain via the linear inequality constraints D = {

x
∣∣ Ax � c

}
.

First, observe that due to (11a) and (11b), h(x̂, ẑ) is bounded from below. Now, using
LP duality, we may rewrite

h(x̂, ẑ) = max
x̃1,...,̃xd

{
d∑

k=1

wk · x̃ k
∣∣∣∣
x̂ =∑k x̃

k

Ax̃k � ẑkc ∀k ∈ [[d]]

}

+
d∑

k=1

bk ẑk

= min
(α,β1,...,βk)∈R

{

α · x̂ +
d∑

k=1

c · βk ẑk

}

+
d∑

k=1

bk ẑk,

where R is a polyhedron that is independent of x̂ and ẑ. Therefore, as (a) the above
optimization problem is linear with x̂ and ẑ fixed, and (b) h(x̂, ẑ) is bounded from
below, we may replace R with ext(R) in the above optimization problem. In other
words, h(x̂, ẑ) is equal to the minimum of a finite number of alternatives which are
affine in x̂ and ẑ. Therefore, h is a concave continuous piecewise linear function, and
so Rsharp is polyhedral.

123

18 R. Anderson et al.

To show validity, wemust have that Projx,y
(
Rsharp ∩ (Rη × R × {0, 1}d)) = Smax.

Observe that if (x̂, ŷ, ẑ) ∈ Rsharp ∩ (Rη ×R×{0, 1}d), then ẑ = e� for some � ∈ [[d]],
and

h(x̂, ẑ) = max
x̃1,...,̃xd

⎧
⎨

⎩

d∑

k=1

wk · x̃ k + b�

∣∣∣∣∣∣

x̂ =∑k x̃
k

x̃� ∈ D
x̃k = 0η ∀k
= �

⎫
⎬

⎭
= w� x̂ + b�,

where the first equality follows as x̃ k = 0η for each k
= � (recall that if D is
bounded, then 0 · D = {

x ∈ R
η
∣∣ Ax � 0

} = {0η}). Along with (11b), this implies
that ŷ = w� · x̂ + b�, and that ŷ � wk · x̂ + bk for each k
= �, giving the result.

To show sharpness, we must prove that Projx,y(Rsharp) = Conv(Smax). First, recall
from Proposition 2 that Conv(Smax) = Projx,y(Rextended); thus, we state our proof
in terms of Rextended. We first show that Projx,y(Rextended) ⊆ Projx,y(Rsharp). Take

(x̂, ŷ, ẑ, {x̂ k}dk=1) ∈ Rextended. Then ŷ =∑d
k=1(w

k ·x̂ k+bk ẑk) � h(x̂, ẑ), as ({x̂ k}dk=1)

is feasible for the optimization problem in h(x, z). It also holds that ŷ � wk · x̂ + bk

for all k ∈ [[d]] and x̂ ∈ D directly from the definition of Smax, giving the result.
Next, we show that Projx,y(Rsharp) ⊆ Projx,y(Rextended). This proof is similar

to the proof of Proposition 3, except that we choose z that simplifies the con-
straints. It suffices to show that ext(Projx,y(Rsharp)) ⊆ Projx,y(Rextended). Let (x̂, ŷ) ∈
ext(Projx,y(Rsharp)). Define h(x)

def= maxz
{
h(x, z)

∣∣ z ∈ Δd
}
. Then either (x̂, ŷ) satis-

fies ŷ = h(x̂), or it satisfies (11b) at equality for some k ∈ [[d]], since otherwise (x̂, ŷ) is
a convex combination of the points (x̂, ŷ−ε) and (x̂, ŷ+ε) feasible for Projx,y(Rsharp)

for some ε > 0. We show that in either case, (x̂, ŷ) ∈ Projx,y(Rextended).

Case 1 Suppose that for some j ∈ [[d]], (x̂, ŷ) satisfies the corresponding inequality in
(11b) at equality; that is, ŷ = w j ·x̂+b j . Then the point (x̂, ŷ, e j , {x̂ k}dk=1) ∈ Rextended,
where x̂ j = x and x̂� = 0 if �
= j . Hence, (x̂, ŷ) ∈ projx,y(Rextended).

Case 2 Suppose (x̂, ŷ) satisfies ŷ = h(x̂). Let ẑ be an optimal solution for the opti-
mization problem defining h(x̂), and {x̂ k}dk=1 be an optimal solution for h(x̂, ẑ). By
design, (x̂, ŷ, ẑ, {x̂ k}dk=1) satisfies all constraints in Rextended, except potentially con-
straint (8b).

We show that constraint (8b) is satisfied as well. Suppose not for contradiction;
that is, wk · x̂ k + bk ẑk < w� · x̂ k + b� ẑk for some pair k, � ∈ [[d]], �
= k. Consider
the solution ({xk}dk=1, z) identical to ({x̂ k}dk=1, ẑ) except that zk = 0, xk = 0η, z� =
ẑ� + ẑk , and x� = x̂� + x̂ k . By inspection, this solution is feasible for h(x̂). The
objective value changes by −(wk · x̂ k + bk ẑk) + (w� · x̂ k + b� ẑk) > 0, contradicting
the optimality of ({x̂ k}dk=1, ẑ). Therefore, (x̂, ŷ, ẑ, {x̂ k}dk=1) ∈ Rextended, and thus
(x̂, ŷ) ∈ Projx,y(Rextended).

Finally, we observe that hereditary sharpness follows from the definition of h. In
particular, fixing any zk = 0 implies that x̃ k = 0η in the maximization problem defin-
ing h. In other words, the variables x̃ k and zk drop completely from the maximization
problem defining h, meaning that it is equal to the corresponding version of h with
the function k completely dropped as input. Additionally, if any zk = 1, then z� = 0

123

MIP formulations for trained neural networks 19

for each �
= k since z ∈ Δd , and hence x̃� = 0η. In this case, h(x, z) = wk · x + bk ,
which gives the result. ��

3.2.2 A dual characterization

We can apply a duality-based approach to produce an (albeit infinite) linear inequality
description for the set Rsharp, analogous to Sect. 3.1.2.

Proposition 6 The set Rsharp is equal to all (x, y, z) such that

y � α · x +
d∑

k=1

(
max
xk∈D

{(wk − α) · xk} + bk
)
zk ∀α ∈ R

η (12a)

y � wk · x + bk ∀k ∈ [[d]] (12b)

(x, y, z) ∈ D × R × Δd . (12c)

Proof Follows in an analogous manner as in Proposition 4. ��
Figure 3 depicts slices of the functions g(x, z), g(x, z), and h(x, z), created byfixing

some value of z and varying x . Observe that g(x, z) can be viewed as the largest value
for y such that (x, y) can be written as a convex combination of points in the graph
using convex multipliers z. Likewise, g(x, z) can be interpreted as the minimum value

for y. In h(x, z), we relax D|k to D, and thus we can interpret it similarly to g(x, z),
except that we may take convex combinations of points constructed by evaluating the
affine functions at any point in the domain, not only those where the given function
attains the maximum. Figure 3b shows that, in general, h(x, z) can be strictly looser
than g(x, z) for (x, z) ∈ Projx,z(Rcayley). A similar situation occurs for the lower
envelopes as illustrated by Fig. 3d. However, we prove in the next section that this
does not occur for d = 2, along with other desirable properties in special cases.

4 Simplifications to our machinery under common special cases

In this sectionwe study howour dual characterizations in Propositions 4 and 6 simplify
under common special cases with the number of input affine functions d and the input
domain D.

4.1 Simplifications when d = 2

When we consider taking the maximum of only two affine functions (i.e. d = 2), we
can prove that Rsharp is, in fact, ideal.

We start by returning to Proposition 3 and show that it can be greatly simplified
when d = 2. We first show g(x, z) can be replaced by the maximum of the affine
functions as illustrated in Fig. 3c, although it is not possible for d > 2 as seen in
Fig. 3d.

123

20 R. Anderson et al.

(a) (b)

(c) (d)

Fig. 3 Examples of the functions g(x, z), h(x, z), and g(x, z) defined in (9) and (11) with some fixed value
for z. Here, g(x) is the “maximum” function of interest, defined below each subfigure. a, c Depict the case
d = 2 (maximum of two affine functions), while b, d illustrate when d = 3, each pair emphasizing upper
and lower bounds respectively. Note that g(x, z) and h(x, z) coincide in (a) for x ∈ [1, 2.5], and in (b) for
x ∈ [2, 2.5]. The thick solid lines represent g(x, z) in (a, b) and g(x, z) in (c, d), whereas the dashed lines

correspond to h(x, z). The thin solid lines represent Smax and the shaded region is the slice of Rcayley with
z = ẑ

Lemma 1 If d = 2, then at any values of (x, z) where g(x, z) ≥ g(x, z) (i.e. there
exists a y such that (x, y, z) ∈ Rcayley), we have

g(x, z) = max{w1 · x + b1, w2 · x + b2}.

Proof For convenience, we work with the change of variables xk ← x̃ k
zk

for each
k ∈ [[2]]. Suppose without loss of generality that x ∈ D|2, and consider any feasible
solution (x1, x2) to the optimization problem for g(x, z), which is feasible by the

assumption that (x, z) ∈ Projx,z(Rcayley). We will show that (w1 · x1 + b1)z1 + (w2 ·
x2+b2)z2 ≥ w2 · x+b2. We assume that z2 > 0, since otherwise x = x1 ∈ D|1∩D|2
and the result is immediate.

Since x = x1z1 + x2z2 and z ∈ Δ2, the line segment joining x1 to x2 contains x .
Furthermore, since x1 ∈ D|1 and x2 ∈ D|2, this line segment also intersects the hyper-
plane

{
x̂ ∈ R

η
∣∣w1 · x̂ + b1 = w2 · x̂ + b2

}
. Let x̂1 denote this point of intersection,

and let ẑ1 ∈ Δ2 be such that x̂1 = x1 ẑ11 + x2 ẑ12. Since x ∈ D|2, we know that x̂1 is

123

MIP formulations for trained neural networks 21

closer to x1 than x , i.e. ẑ11 ≥ z1. Moreover, take the point x̂2 on this line segment such
that x = x̂1z1 + x̂2z2, where x̂2 = x1 ẑ21 + x2 ẑ22 for some ẑ2 ∈ Δ2. We have ẑ21 ≤ z1
since x̂2 is further away from x1 than x . Note that x̂1 ∈ D|1 ∩ D|2 while x̂2 ∈ D|2,
and thus (x̂1, x̂2) is feasible.

It can be computed that ẑ21 = z1 · ẑ12
z2
, which implies that z1 = z1(ẑ11 + ẑ12) =

z1 ẑ11+ z2 ẑ21 and z2 = z2(ẑ21 + ẑ22) = z1 ẑ12+ z2 ẑ22. Using these two identities, we obtain

(w1 · x1 + b1)z1 + (w2 · x2 + b2)z2

= (w1 · x1 + b1)(z1 ẑ
1
1 + z2 ẑ

2
1) + (w2 · x2 + b2)(z1 ẑ

1
2 + z2 ẑ

2
2)

= ((w1 · x1 + b1)ẑ11 + (w2 · x2 + b2)ẑ12)z1

+ ((w1 · x1 + b1)ẑ21 + (w2 · x2 + b2)ẑ22)z2

= (f (x1)ẑ11 + f (x2)ẑ12)z1 + (f (x1)ẑ21 + f (x2)ẑ22)z2,

where we let f (x̂) denote the function max{w1 · x̂ + b1, w2 · x̂ + b2}, recalling that
x1 ∈ D|1 and x2 ∈ D|2. Since f (x̂) is convex, by Jensen’s inequality the preceding
expression is at least f (x1 ẑ11+x2 ẑ12)z1+ f (x1 ẑ21+x2 ẑ22)z2. The preceding expression
equals (w2 · x̂1 + b2)z1 + (w2 · x̂2 + b2)z2 by the definitions of x̂1 and x̂2, and the
fact that they both lie in D|2. Recalling the equation x = x̂1z1 + x̂2z2 used to select
x̂2 completes the proof. ��

Moreover, we show that when d = 2 we can replace g with h, as illustrated in
Fig. 3a. This property may not hold when d > 2 as shown in Fig. 3b.

Lemma 2 If d = 2, then at any values of (x, z) where g(x, z) ≥ g(x, z) (i.e. there
exists a y such that (x, y, z) ∈ Rcayley), we have

g(x, z) = max
x̃1 ,̃x2

⎧
⎨

⎩
w1 · x̃1 + b1z1 + w2 · x̃2 + b2z2

∣∣∣∣∣∣

x = x̃1 + x̃2

x̃1 ∈ z1 · D
x̃2 ∈ z2 · D

⎫
⎬

⎭
. (13)

Proof We show that despite expanding the feasible set of the optimization problem
in (13) by replacing D|k by D, its optimal value is no greater when (x, z) is such that
g(x, z) ≥ g(x, z). It suffices to show without loss of generality that w1 · x̃1 + b1z1 �
w2 · x̃1+b2z1 holds for any optimal x̃1, x̃2. By the assumption on (x, z) and Lemma 1,
we have g(x, z) � w2 · x + b2, which implies the existence of some optimal x̃1, x̃2.
That is, we have w2 · (x − x̃1) + b2z2 + w1 · x̃1 + b1z1 � w2 · x + b2, which is
equivalent to w1 · x̃1 + b1z1 � w2 · x̃1 + b2z1. ��

After observing that these simplifications are identical to those presented in Propo-
sition 6, we obtain the following corollary promised at the beginning of the section.

Corollary 1 Whend = 2,
{
(x, y, z) ∈ Rsharp

∣∣ z ∈ {0, 1}d} is an idealMIP formulation
of Smax.

Proof Lemmas 1 and 2 imply that Rsharp = Rideal, while Proposition 3 implies that
Rideal = Rcayley, completing the chain and giving the result. ��

123

22 R. Anderson et al.

In later sections, we will study conditions under which we can produce an explicit
inequality description for Rsharp.

4.2 Simplifications when D is the product of simplices

In this section, we consider another important special case: when the input domain
is the Cartesian product of simplices. Indeed, the box domain case introduced in
Sect. 2 can be viewed as a product of two-dimensional simplices, and we will also
see in Sect. 5.3 that this structure naturally arises in machine learning settings with
categorical or discrete features.

When D is the product of simplices, we can derive a finite representation for the the
set (12) [i.e. a finite representation for the infinite family of linear inequalities (12a)]
through an elegant connection with the transportation problem. To do so, we introduce
the following notation.

Definition 2 Suppose the input domain is D = ∏τ
i=1 Δpi , with p1 + · · · + pτ = η.

For notational simplicity, we re-organize the indices of x and refer to its entries via
xi, j , where i ∈ [[τ]] is the simplex index, and j ∈ [[pi]] refers to the coordinate within
simplex i . The domain for x is then

D =
{
((xi, j)

pi
j=1)

τ
i=1

∣∣ (xi, j)
pi
j=1 ∈ Δpi ∀i ∈ [[τ]]

}
, (14)

where the rows of x correspond to each simplex. Correspondingly, we re-index
the weights of the affine functions so that for each k ∈ [[d]], we have f k(x) =∑τ

i=1
∑pi

j=1 wk
i, j xi, j + bk .

Using the notation from Definition 2, constraints (12a) can be written as

y �
τ∑

i=1

pi∑

j=1

αi, j xi, j +
d∑

k=1

⎛

⎝max
xk∈D

τ∑

i=1

pi∑

j=1

(wk
i, j − αi, j)x

k
i, j + bk

⎞

⎠ zk ∀α ∈ R
η.

Since D is a product of simplices, themaximization over xk ∈ D appearing in the right-
hand side above is separable over each simplex i ∈ [[τ]]. Moreover, for each simplex
i , the maximum value of

∑pi
j=1(w

k
i j − αi j)xki j , subject to the constraint xk ∈ D, is

obtained when xki j = 1 for some j ∈ [[pi]]. Therefore, the family of constraints (12a)
is equivalent to

y � min
α

⎛

⎝
τ∑

i=1

pi∑

j=1

αi, j xi, j +
d∑

k=1

(
τ∑

i=1

pi
max
j=1

(wk
i, j − αi, j) + bk

)

zk

⎞

⎠

=
τ∑

i=1

min
αi,1,...,αi,pi

⎛

⎝
pi∑

j=1

αi, j xi, j +
d∑

k=1

zk · pi
max
j=1

(wk
i, j − αi, j)

⎞

⎠+
d∑

k=1

bkzk . (15)

123

MIP formulations for trained neural networks 23

We show that the minimization problem in (15), for any i , is equivalent to a trans-
portation problem defined as follows.

Definition 3 For any values x ∈ Δp and z ∈ Δd , and arbitrary weights wk
j ∈ R for

all j ∈ [[p]] and k ∈ [[d]], define the max-weight transportation problem to be

Transport(x, z;w1, . . . , wd)
def= max

β�0

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

d∑

k=1

p∑

j=1

wk
jβ

k
j

∣∣∣∣∣∣∣∣∣∣∣

d∑

k=1

βk
j = x j ∀ j ∈ [[p]]

p∑

j=1

βk
j = zk ∀k ∈ [[d]]

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

In the transportation problem, since
∑

j x j = 1 = ∑k zk , it follows that β
k
j ∈ [0, 1],

and so this value can be interpreted as the percent of total flow “shipped” between j
and k. The relation to (15) is now established through LP duality.

Proposition 7 For any fixed x ∈ Δp and z ∈ Δd ,

min
α

⎛

⎝
p∑

j=1

α j x j +
d∑

k=1

zk · p
max
j=1

(wk
j − α j)

⎞

⎠ = Transport(x, z;w1, . . . , wd). (16)

Therefore, when D is a product of simplices, the constraints (12a) can be replaced in
(12) with the single inequality

y ≤
τ∑

i=1

Transport
(
(xi, j)

pi
j=1, z; (w1

i, j)
pi
j=1, . . . , (w

d
i, j)

pi
j=1

)
+

d∑

k=1

bkzk . (17)

Proof By using a variable γk to model the value ofmaxpj=1(w
k
j −α j) for each k ∈ [[d]],

the minimization problem on the LHS of (16) is equivalent to

min
α,γ

⎧
⎨

⎩

p∑

j=1

α j x j +
d∑

k=1

γk zk
∣∣∣ γk ≥ wk

j − α j ∀k ∈ [[d]], j ∈ [[p]]
⎫
⎬

⎭

which is a minimization LP with free variables α j and γk . Applying LP duality, this
completes the proof of Eq. (16). The inequality (17) then arises by substituting Eq. (16)
into (15), for every simplex i = 1, . . . , τ . ��

4.3 Simplifications when both d = 2 and D is the product of simplices

Proposition 7 shows that, when the input domain is a product of simplices, the tightest
upper bound on y can be computed through a series of transportation problems. We
now leverage the fact that if either side of the transportation problem fromDefinition 3
(i.e. p or d) has only two entities, then it reduces to a simpler fractional knapsack

123

24 R. Anderson et al.

problem. Later, this will allow us to represent (15), in either of the cases d = 2 or
p1 = · · · = pτ = 2, using an explicit finite family of linear inequalities in x and z
which has a greedy linear-time separation oracle.

Proposition 8 Given data w1, w2 ∈ R
p, take w̃ j = w1

j − w2
j for all j ∈ [[p]], and

suppose the indices have been sorted so that w̃1 ≤ · · · ≤ w̃p. Then

Transport(x, z;w1, w2) =
p

min
J=1

⎛

⎝w̃J z1 +
p∑

j=J+1

(w̃ j − w̃J)x j

⎞

⎠+
p∑

j=1

w2
j x j . (18)

Moreover, a J ∈ [[p]] that attains the minimum in the right-hand side of (18) can be
found in O(p) time.

Proof When d = 2, the transportation problem becomes

max
β1,β2�0

⎧
⎨

⎩

p∑

j=1

(w1
jβ

1
j + w2

jβ
2
j)

∣∣∣∣∣∣
β1
j + β2

j = x j ∀ j ∈ [[p]],
p∑

j=1

β1
j = z1

⎫
⎬

⎭
(19)

where the constraint
∑p

j=1 β2
j = z2 is implied because

∑p
j=1 β2

j =∑p
j=1(x j −β1

j) =
1 −∑p

j=1 β1
j = 1 − z1 = z2. Substituting β2

j = x j − β1
j for all j ∈ [[p]] and then

omitting the superscript “1”, (19) becomes

max
β

⎧
⎨

⎩

p∑

j=1

(w1
j − w2

j)β j +
p∑

j=1

w2
j x j

∣∣∣∣∣∣

p∑

j=1

β j = z1, 0 ≤ β j ≤ x j ∀ j ∈ [[p]]
⎫
⎬

⎭

which is a fractional knapsack problem that can be solved greedily.
An optimal solution to the fractional knapsack LP above, assuming the sorting

w1
1 − w2

1 ≤ · · · ≤ w1
p − w2

p, can be computed greedily. Let J ∈ [[p]] be the maximum
index at which

∑p
j=J x j ≥ z1. We set β j = 0 for all j < J , βJ = z1 −∑p

j=J+1 x j ,
and β j = x j for each j > J . The optimal cost is

p∑

j=J+1

(w1
j − w2

j)x j + (w1
J − w2

J)

⎛

⎝z1 −
p∑

j=J+1

x j

⎞

⎠+
p∑

j=1

w2
j x j ,

which yields the desired expression after substituting w̃ j = w1
j − w2

j for all j ≥ J .
Moreover, the index J above can be found inO(p) time by storing a running total for∑p

j=J x j , completing the proof. ��
Observe that theO(p) runtime in Proposition 8 is non-trivial, as a naïve implemen-

tation would run in time O(p2), as the inner sum is linear in p.
Combining Propositions 7 and 8 immediately yields the following result.

123

MIP formulations for trained neural networks 25

Corollary 2 Suppose that d = 2 and that D is a product of simplices. Let z = z1 ≡
1 − z2. For each simplex i ∈ [[τ]], take w̃i, j = w1

i, j − w2
i, j for all j = 1, . . . , pi

and relabel the indices so that w̃i,1 ≤ · · · ≤ w̃i,pi . Then, in the context of (12), the
upper-bound constraints (12a) are equivalent to

y ≤
τ∑

i=1

⎛

⎝w̃i,J (i)z+
pi∑

j=J (i)+1

(w̃i, j−w̃i,J (i))xi, j+
pi∑

j=1

w2
i, j xi, j

⎞

⎠+ (b1 − b2)z + b2

∀ mappings J : [[τ]] → Z with J (i) ∈ [[pi]] ∀i ∈ [[τ]]. (20)

Moreover, given any point (x, y, z) ∈ D × R × [0, 1], feasibility can be verified or a
most violated constraint can be found in O(p1 + · · · + pτ) time.

Corollary 2 gives an explicit finite family of linear inequalities equivalent to (12).
Moreover, we have already shown inCorollary 1 that Rsharp yields an ideal formulation
when d = 2. Hence, we have an ideal nonextended formulation whose exponentially-
many inequalities can be separated inO(p1 +· · ·+ pτ) time, where the initial sorting
requires O(p1 log p1 + · · · + pτ log pτ) time. Note that this sorting can be avoided:
we may instead solve the fractional knapsack problem in the separation via weighted
median in O(p1 + · · · + pτ) time [46, Chapter 17.1].

We can also show that none of the constraints in (20) are redundant.

Proposition 9 Consider the polyhedron P defined as the intersection of all halfspaces
corresponding to the inequalities (20). Consider some arbitrary mapping J : [[τ]] →
Z with J (i) ∈ [[pi]] for each i ∈ [[τ]]. Then the inequality in (20) for J is irredundant
with respect to P. That is, removing the halfspace corresponding to mapping J (note
that this halfspace could also correspond to other mappings) from the description of
P will strictly enlarge the feasible set.

Proof Fix a mapping J . Consider the feasible points with z = 1/2, and xi, j = 1[j =
J (i)] for each i and j . At such points, the constraint corresponding to any mapping
J ′
= J in (20) is

y ≤
τ∑

i=1

⎛

⎝ w̃i,J ′(i)
2

+
pi∑

j=J ′(i)+1

(w̃i, j − w̃i,J ′(i))1[j = J (i)] +
pi∑

j=1

w2
i, j1[j = J (i)]

⎞

⎠

+ b1 + b2

2

=
τ∑

i=1

(
w̃i,J ′(i)

2
+ (w̃i,J (i) − w̃i,J ′(i))1[J ′(i) < J (i)]

)
+

τ∑

i=1

w2
i,J (i) + b1 + b2

2
.

For any simplex i , recall that the indices are sorted so that w̃i1 ≤ · · · ≤ w̃i pi . Thus, if

J ′(i) ≥ J (i), then the expression inside the outer parentheses equals
w̃i,J ′(i)

2 � w̃i,J (i)
2 .

On the other hand, if J ′(i) < J (i), then the expression inside the outer parentheses

can be re-written as w̃i,J (i)
2 + w̃i,J (i)−w̃i,J ′(i)

2 � w̃i,J (i)
2 . Therefore, setting J ′(i) = J (i)

for every simplex i achieves the tightest upper bound in (20), which simplifies to

123

26 R. Anderson et al.

y ≤
τ∑

i=1

w̃i,J (i)

2
+

τ∑

i=1

w2
i,J (i) + b1 + b2

2
. (21)

Now, suppose that the same upper bound on y is achieved by a mapping J ′ such
that J ′(i)
= J (i) on a simplex i . By the argument above, regardless of whether
J ′(i) > J (i) or J ′(i) < J (i), the expression inside the outer parentheses can equal
w̃i,J (i)

2 only if w̃i,J ′(i) = w̃i,J (i). In this case, inspecting the term inside the summation
in (20) for mappings J and J ′, we observe that regardless of the values of x or z,

w̃i,J ′(i)z +
pi∑

j=J ′(i)+1

(w̃i, j − w̃i,J ′(i))xi, j = w̃i,J (i)z +
pi∑

j=J (i)+1

(w̃i, j − w̃i,J (i))xi, j .

Therefore, for a mapping J ′ to achieve the tightest upper bound (21), it must be the
case that w̃i,J ′(i) = w̃i,J (i) on every simplex i , and so J ′ and J necessarily correspond
to the same half-space in D × R × [0, 1], completing the proof. ��

To close this section, we consider the setting where every simplex is 2-dimensional,
i.e. p1 = · · · = pτ = 2, but the number of affine functions d can be arbitrary.
Note that by contrast, the previous results (Propositions 8, 9, Corollary 2) held in
the setting where d = 2 but p1, . . . , pτ were arbitrary. We exploit the symmetry of
the transportation problem to immediately obtain the following analogous results, all
wrapped up into Corollary 3.

Corollary 3 Given data w1, . . . , wd ∈ R
2, take w̃k = wk

1 − wk
2 for all k ∈ [[d]], and

suppose the indices have been sorted so that w̃1 ≤ · · · ≤ w̃d . Then

Transport(x, z;w1, . . . , wd) = d
min
K=1

(

w̃K x1 +
K∑

k=1

wk
2zk +

d∑

k=K+1

(wk
1 − w̃K)zk

)

.

(22)

Moreover, a K ∈ [[d]] that attains the minimum in the right-hand side of (22) can be
found in O(d) time.

Therefore, suppose that D is a product of τ simplices of dimensions p1 = · · · =
pτ = 2. For each simplex i ∈ [[τ]], take w̃k

i = wk
i,1 − wk

i,2 for all k = 1, . . . , d

and relabel the indices so that w̃1
i ≤ · · · ≤ w̃d

i . Then, in the context of (12), the
upper-bound constraints (12a) are equivalent to

y ≤
τ∑

i=1

⎛

⎝w̃
K (i)
i xi,1 +

K (i)∑

k=1

wk
i,2zk +

d∑

k=K (i)+1

(wk
i,1 − w̃

K (i)
i)zk

⎞

⎠+
d∑

k=1

bkzk

∀ mappings K : [[τ]] → [[d]]. (23)

Furthermore, none of the constraints in (23) are redundant.

123

MIP formulations for trained neural networks 27

Corollary 3 will be particularly useful in Sect. 5.1, where it will allow us to derive
sharp formulations for the maximum of d affine functions over a box input domain,
in analogy to (20).

5 Applications of our machinery

We are now prepared to return to the concrete goal of this paper: building strong MIP
formulations for nonlinearities used in modern neural networks.

5.1 A hereditarily sharp formulation for Max on box domains

We can now present a hereditarily sharp formulation, with exponentially-many con-
straints that can be efficiently separated, for the maximum of d > 2 affine functions
over a shared box input domain.

Proposition 10 For each k, � ∈ [[d]], take

N �,k =
η∑

i=1

max{(wk
i − w�

i)Li , (w
k
i − w�

i)Ui)}.

A valid MIP formulation for gr(Max ◦ (f 1, . . . , f d); [L,U]) is

y � w� · x +∑d
k=1

(
N �,k + bk

)
zk ∀� ∈ [[d]] (24a)

y � wk · x + bk ∀k ∈ [[d]] (24b)

(x, y, z) ∈ [L,U] × R × Δd (24c)

z ∈ {0, 1}d . (24d)

Moreover, a hereditarily sharp formulation is given by (24), along with the constraints

y �
η∑

i=1

(

w
I (i)
i xi +

d∑

k=1

max{(wk
i − w

I (i)
i)Li , (w

k
i − w

I (i)
i)Ui }zk

)

+
d∑

k=1

bkzk

∀ mappings I : [[η]] → [[d]] (25)

Furthermore, none of the constraints (24b) and (25) are redundant.

Proof The result directly follows from Corollary 3 if we make a change of variables
to transform the box domain [L,U] to the domain (Δ2)η, where the x-coordinates
are given by xi,1, xi,2 ≥ 0 over i ∈ [[η]], with xi,1 + xi,2 = 1 for each simplex i . For
each i , let wk

i,1 = wk
i Ui , w

k
i,2 = wk

i Li , and let σi : [[d]] → [[d]] be a permutation

such that w
σi (1)
i,1 − w

σi (1)
i,2 ≤ · · · ≤ w

σi (d)
i,1 − w

σi (d)
i,2 . Fix a mapping I : [[η]] → [[d]]

123

28 R. Anderson et al.

for (23). We make the change of variables ξi ← (Ui − Li)xi,1 + Li and rewrite (23)
from Corollary 3 to take the form (25), as follows:

y �
η∑

i=1

(
w

σi (I (i))
i (Ui − Li)xi,1 +

I (i)∑

k=1

w
σi (k)
i Li zk +

d∑

k=I (i)+1

(w
σi (k)
i Ui − w

σi (I (i))
i (Ui − Li))zk

)

+
d∑

k=1

bk zk ,

=
η∑

i=1

⎛

⎝w
σi (I (i))
i ξi +

I (i)∑

k=1

(w
σi (k)
i − w

σi (I (i))
i)Li zk +

d∑

k=I (i)+1

(w
σi (k)
i − w

σi (I (i))
i)Ui zk

⎞

⎠+
d∑

k=1

bk zk

=
η∑

i=1

⎛

⎝w
σi (I (i))
i ξi +

d∑

k=1

max{(wσi (k)
i − w

σi (I (i))
i)Li , (w

σi (k)
i − w

σi (I (i))
i)Ui }zk

⎞

⎠+
d∑

k=1

bk zk

=
η∑

i=1

⎛

⎝w
σi (I (i))
i ξi +

d∑

k=1

max{(wk
i − w

σi (I (i))
i)Li , (w

k
i − w

σi (I (i))
i)Ui }zk

⎞

⎠+
d∑

k=1

bk zk , (26)

where the first equality holds because ξi−(Ui−Li)xi,1 = Li for each i and
∑d

k=1 zk =
1, the second equality holds because (w

σi (k)
i −w

σi (I (i))
i)Li ≥ (w

σi (k)
i −w

σi (I (i))
i)Ui if

k ≤ I (i) (and a reverse argument can bemade if k > I (i)), and the third equality holds
as each σi : [[d]] → [[d]] is a bijection. Now, since (26) is taken over all mappings
I : [[η]] → [[d]], it is equivalent to replace σi (I (i)) with I (i) in (26). This yields (25)
over ξ instead of x .

The lower bound in the context of Corollary 3 can be expressed as y �∑η
i=1(w

k
i,1xi,1 + wk

i,2xi,2) + bk, ∀k ∈ [[d]]. To transform it to (24b) over ξ , observe

that wk
i,1xi,1 + wk

i,2xi,2 can be re-written as wk
i (Ui xi,1 + Li (1 − xi,1)) = wk

i ξi .
Finally, note that this transformation of variables is a bijection since each xi,1 was

allowed to range over [0, 1], and thus each ξi is allowed to range over [Li ,Ui]. Hence
the new formulation over (ξ, y, z) ∈ [L,U] × R × Δd is also sharp, yielding the
desired result.

The irredundancy of (25) also follows from Corollary 3. For the irredundancy
of (24b), fix k and take a point (x̂, ŷ, ẑ) where f k(x̂) > f �(x̂) for all �
= k, which
exists by Assumption 2. Thus, since the inequalities (24b) are the only ones bounding
y from below, the point (x̂, ŷ − ε, ẑ) for some ε > 0 is satisfied by all constraints
except (24b) corresponding to k, and therefore it is not redundant. ��

Observe that the constraints (24a) are a special case of (25) for those constant map-
pings I (i) = � for each i ∈ [[η]]. We note in passing that this big-M formulation (24)
may be substantially stronger than existing formulations appearing in the literature.
For example, the tightest version of the formulation of Tjeng et al. [70] is equivalent
to (24) with the coefficients N �,k replaced with

N �,k = b� − bk + max
t
=�

(
η∑

i=1

(
max{wt

i Li , w
t
iUi } − min{w�

i Li , w
�
i Ui }

))

.

123

MIP formulations for trained neural networks 29

Note in particular that as the inner maximization and minimization are completely
decoupled, and that the outer maximization in the definition of N �,k,+ is completely
independent of k.

In “Appendix A”, we generalize (24) to provide a valid formulation for arbitrary
polytope domains. We next emphasize that the hereditarily sharp formulation from
Proposition 10 is particularly strong when d = 2.

Corollary 4 The formulation given by (24) and (25) is ideal when d = 2. Moreover,
the constraints in the families (25) and (24b) are facet-defining.

Proof Idealness follows directly fromCorollary 1. Since the constraints (25) and (24b)
are irredundant and the formulation is ideal, they must either be facet-defining or
describe an implied equality. Given that the equality

∑d
k=1 zk = 1 appears in (24c), it

suffices to observe that the polyhedron defined by (24) and (25) has dimension η + d,
which holds under Assumption 2. ��

We can compute a most-violated inequality from the family (25) efficiently.

Proposition 11 Consider the family of inequalities (25). Take some point (x̂, ŷ, ẑ) ∈
[L,U] × R × Δd . If any constraint in the family is violated at the given point, a
most-violated constraint can be constructed by selecting Î : [[η]] → [[d]] such that

Î (i) ∈ arg min
�∈[[d]]

(

w�
i x̂i +

d∑

k=1

max{(wk
i − w�

i)Li , (w
k
i − w�

i)Ui }ẑk
)

(27)

for each i ∈ [[η]]. Moreover, if the weights wk
i are sorted on k for each i ∈ [[η]], this

can be done in O(ηd) time.

Proof Follows directly from Corollary 3, which says that the minimization prob-
lem (27) can be solved in O(d) time for any i ∈ [[η]]. ��
Note that naïvely, the minimization problem (27) would takeO(d2) time, because one
has to check every � ∈ [[d]], and then sum over k ∈ [[d]] for every �. However, if we
instead pre-sort the weights w1

i , . . . , w
d
i for every i ∈ [[η]] in O(ηd log d) time, we

can use Corollary 3 to run efficiently separate via a linear search. We note, however,
that this pre-sorting step can potentially be obviated by solving the fractional knapsack
problems appearing as a weighted median problem, which can be solved inO(d) time.

5.2 The ReLU over a box domain

We can now present the results promised in Theorem 2.3. In particular, we derive a
non-extended ideal formulation for the ReLU nonlinearity, stated only in terms of the
original variables (x, y) and the single additional binary variable z. Put another way,
it is the strongest possible tightening that can be applied to the big-M formulation (5),
and so matches the strength of the multiple choice formulation without the growth in

123

30 R. Anderson et al.

the number of variables remarked upon in Sect. 2.2. Notationally, for each i ∈ [[η]]
take

L̆i =
{
Li if wi � 0

Ui if wi < 0
and Ŭi =

{
Ui if wi � 0

Li if wi < 0
.

Proposition 12 Take some affine function f (x) = w · x + b over input domain D =
[L,U]. The following is an ideal MIP formulation for gr(ReLU ◦ f ; [L,U]):

y �
∑

i∈I
wi (xi − L̆i (1 − z)) +

(

b +
∑

i /∈I
wi Ŭi

)

z ∀I ⊆ [[η]] (28a)

y � w · x + b (28b)

(x, y, z) ∈ [L,U] × R�0 × [0, 1] (28c)

z ∈ {0, 1}. (28d)

Furthermore, each inequality in (28a) and (28b) is facet-defining.

Proof 3This result is a special case of Corollary 4. Observe that (28) is equivalent
to (24) and (25) with w1

i = wi and w2
i = 0 for all i ∈ [[η]], b1 = b, b2 = 0, z1 = z,

and z2 = 1 − z. The constraints (28a) are found by setting I =
{
i ∈ [[η]] ∣∣ Î (i) = 1

}

for each mapping Î in (25). ��
Formulation (28) has a number of constraints exponential in the input dimension

η, so it will not be useful directly as a MIP formulation. However, it is straightforward
to separate the exponential family (28a) efficiently.

Proposition 13 Take (x̂, ŷ, ẑ) ∈ [L,U] × R�0 × [0, 1], along with the set

Î =
{
i ∈ [[η]] ∣∣wi x̂i < wi

(
L̆(1 − ẑ) + Ŭi ẑ

)}
.

If

ŷ > bẑ +
∑

i∈ Î
wi

(
x̂i − L̆(1 − ẑ)

)
+
∑

i /∈ Î
wi Ŭi ẑ,

then the constraint in (28a) corresponding to Î is the most violated in the family.
Otherwise, no inequality in the family is violated at (x̂, ŷ, ẑ).

Proof Follows as a special case of Proposition 11. ��
Note that (5b) and (5c) correspond to (28a) with I = [[η]] and I = ∅, respectively.

All this suggests an iterative approach to formulatingReLUneurons over box domains:
start with the big-M formulation (5), and use Proposition 13 to separate strengthening
inequalities from (28a) as they are needed.

3 Alternatively, a constructive proof of validity and idealness using Fourier–Motzkin elimination is given
in the extended abstract of this work [4, Proposition 1].

123

MIP formulations for trained neural networks 31

5.3 The ReLUwith one-hot encodings

Although box domains are a natural choice for many applications, it is often the case
that some (or all) of the first layer of a neural network will be constrained to be
the product of simplices. The one-hot encoding is a standard technique used in the
machine learning community to preprocess discrete or categorical data to a format
more amenable for learning (see, for example, [16, Chapter 2.2]). More formally, if
input x is constrained to take categorical values x ∈ C = {c1, . . . , ct }, the one-hot
transformation encodes this as x̃ ∈ {0, 1}t , where x̃i = 1 if and only if x = ci . In
other words, the input is constrained such that x̃ ∈ Δη def= Δη ∩ {0, 1}η.

It is straightforward to construct a small ideal formulation for gr(ReLU◦ f ;Δη) as{
(x,
∑η

i=1 max{0, wi xi + b}) ∣∣ x ∈ Δη
}
. However, it is typically the case thatmultiple

featureswill be present in the input,meaning that the input domainwould consist of the
product of (potentially many) simplices. For example, neural networks have proven
well-suited for predicting the propensity for a given DNA sequence to bind with a
given protein [2,83], where the network input consists of a sequence of n base pairs,
each of which can take 4 possible values. In this context, the input domain would be∏n

i=1 Δ4.
In this section, we restate the general results presented in Sect. 2, specialized for

the standard case of the ReLU nonlinearity.

Corollary 5 Presume that the input domain D = Δp1 × · · · × Δpτ is a product of τ

simplices, and that f (x) = ∑τ
i=1
∑pi

j=1 wi, j xi, j + b is an affine function. Presume
that, for each i ∈ [[τ]], the weights are sorted such that wi,1 � · · · � wi,pi . Then an
ideal formulation for gr(ReLU ◦ f ; D) is:

y � w · x + b (29a)

y �
τ∑

i=1

⎛

⎝wi,J (i)z +
pi∑

j=J (i)+1

(wi, j − wi,J (i))xi, j

⎞

⎠+ bz

∀ mappings J : [[τ]] → Z with J (i) ∈ [[pi]] ∀i ∈ [[τ]] (29b)

(x, y, z) ∈ D × R�0 × {0, 1}. (29c)

Moreover, a most-violated constraint from the family (29b), if one exists, can be identi-
fied inO(p1+· · ·+ pτ) time. Finally, none of the constraints from (29b) are redundant.

Proof Follows directly from applying Corollary 2 to the set Rsharp. By Corollary 1, this
set actually leads to an ideal formulation, because we are taking the maximum of only
two functions (with one of them being zero). The statement about non-redundancy
follows from Proposition 9. ��

5.4 The leaky ReLU over a box domain

A slightly more exotic variant of the ReLU is the leaky ReLU, defined as
Leaky(v;α) = max{αv, v} for some constant 0 < α < 1. Instead of fixing any

123

32 R. Anderson et al.

negative input to zero, the leaky ReLU scales it by a (typically small) constant α. This
has been empirically observed to help avoid the “vanishing gradient” problem during
the training of certain networks [55,82]. We present analogous results for the leaky
ReLU as for the ReLU: an ideal MIP formulation with an efficient separation routine
for the constraints.

Proposition 14 Take some affine function f (x) = w · x + b over input domain D =
[L,U]. The following is a valid formulation for gr(Leaky ◦ f ; [L,U]):

y � f (x) (30a)

y � α f (x) (30b)

y � f (x) − (1 − α) · M−(f ; [L,U]) · (1 − z) (30c)

y � α f (x) − (α − 1) · M+(f ; [L,U]) · z (30d)

(x, y, z) ∈ [L,U] × R × [0, 1] (30e)

z ∈ {0, 1}. (30f)

Moreover, an ideal formulation is given by (30), along with the constraints

y �
(
∑

i∈I
wi (xi − L̆i (1 − z)) +

(

b +
∑

i /∈I
wi Ŭi

)

z

)

+ α

(
∑

i /∈I
wi (xi − Ŭi z) +

(

b +
∑

i∈I
wi L̆ i

)

(1 − z)

)

∀I ⊆ [[η]]. (31)

Additionally, the most violated inequality from the family (31) can be separated in
O(η) time. Finally, each inequality in (30a)–(30d) and (31) is facet-defining.

Proof Follows as a special case of Corollary 4. ��

6 Computational experiments

To conclude this work, we perform a preliminary computational study of our
approaches for ReLU-based networks. We focus on verifying image classification
networks trained on the canonical MNIST digit data set [49]. We train a neural net-
work f : [0, 1]28×28 → R

10, where each of the 10 outputs corresponds to the logits4

for each of the digits from 0 to 9. Given a training image x̃ ∈ [0, 1]28×28, our goal is
to prove that there does not exist a perturbation of x̃ such that the neural network f
produces a wildly different classification result. If f (x̃)i = max10j=1 f (x̃) j , then x̃ is
placed in class i . Consider an input image with known label i . To evaluate robustness
around x̃ with respect to class j , select some small ε > 0 and solve the problem
maxa:||a||∞�ε f (x̃+a) j − f (x̃+a)i . If the optimal solution (or a dual bound thereof)

4 In this context, logits are non-normalized predictions of the neural network so that x̃ ∈ [0, 1]28×28 is
predicted to be digit i − 1 with probability exp(f (x̃)i)/

∑10
j=1 exp(f (x̃) j) [1].

123

MIP formulations for trained neural networks 33

is less than zero, this verifies that our network is robust around x̃ as we cannot produce
a small perturbation that will flip the classification from i to j . We note that in the
literature there are a number of variants of the verification problem presented above,
produced by selecting a different objective function [50,81] or constraint set [28]. We
use a model similar to that of Dvijotham et al. [25,26].

We train two models, each using the same architecture, with and without L1 reg-
ularization. The architecture starts with a convolutional layer with ReLU activation
functions (4 filters, kernel size of 4, stride of 2), which has 676 ReLUs, then a linear
convolutional layer (with the same parameters but without ReLUs), feeding into a
dense layer of 16 ReLU neurons, and then a dense linear layer with one output per
digit representing the logits. Finally, we have a softmax layer that is only enabled
during training time to normalize the logits and output probabilities. Such a network
is smaller than typically used for image classification tasks, but is nonetheless capa-
ble of achieving near-perfect out of sample accuracy on the MNIST data set, and of
presenting us with challenging optimization problems. We generate 100 instances for
each network by randomly selecting images x̃ with true label i from the test data,
along with a random target adversarial class j
= i .

As a general rule of thumb, larger networks will be capable of achieving higher
accuracy, but will lead to larger optimization problems which are more difficult to
solve. However, even with a fixed network architecture, there can still be dramatic
variability in the difficulty of optimizing over different parameter realizations. We
refer the interested reader to Ryu et al. [62] for an example of this phenomena in
reinforcement learning. Moreover, in the scope of this work we make no attempts to
utilize recent techniques that train the networks to be verifiable [25,78,79,81].

For all experiments, we use theGurobi v7.5.2 solver, runningwith a single thread on
a machine with 128 GB of RAM and 32 CPUs at 2.30 GHz. We use a time limit of 30
minutes (1800 s) for each run.Weperformour experiments using thetf.opt package
for optimization over trained neural networks;tf.opt is under active development at
Google, with the intention to open source the project in the future. The big-M + (28a)
method is the big-M formulation (5) paired with separation5 over the exponential
family (28a), and with Gurobi’s cutting plane generation turned off. Similarly, the
big-M and the extended methods are the big-M formulation (5) and the extended
formulation (7) respectively, with default Gurobi settings. Finally, the big-M + no cuts
method turns off Gurobi’s cutting plane generation without separating over (28a). As
a preprocessing step, if we can infer that a neuron is linear based on its bounds (e.g. a
nonnegative lower bound or nonpositive upper bound on the input affine function of a
ReLU), we transform it into a linear neuron, thus ensuring Assumption 2.

6.1 Network with standard training

We start with a model trained with a standard procedure, using the Adam algo-
rithm [45], running for 15 epochs with a learning rate of 10−3. The model attains

5 We use cut callbacks in Gurobi to inject separated inequalities into the cut loop. While this offers little
control over when the separation procedure is run, it allows us to take advantage of Gurobi’s sophisticated
cut management implementation.

123

34 R. Anderson et al.

Table 1 Shifted geometric mean
for time and optimality gap
taken over 100 instances (shift
of 10 and 1, respectively)

Method Time (s) Optimality gap (%) Win

(a) Network with standard training

Big-M + (28a) 174.49 0.53 81

Big-M 1233.49 6.03 0

Big-M + no cuts 1800.00 125.6 0

Extended 890.21 1.26 6

(b) Network trained with L1 regularization

Big-M + (28a) 9.17 0 100

Big-M 434.72 1.80 0

Big-M + no cuts 1646.45 21.52 0

Extended 1120.14 3.00 0

The “win” column is the number of (solved) instances on which the
method is the fastest

97.2% test accuracy. We select a perturbation ball radius of ε = 0.1. We report the
results in Table 1a and in Fig. 4a. The big-M + (28a) method solves 7 times faster on
average than the big-M formulation. Indeed, for 79 out of 100 instances the big-M
method does not prove optimality after 30 minutes, and it is never the fastest choice
(the “win” column).Moreover, the big-M + no cuts times out on every instance, imply-
ing that using some cuts is important. The extended method is roughly 5 times slower
than the big-M + (28a) method, but only exceeds the time limit on 19 instances, and
so is substantially more reliable than the big-M method for a network of this size.

6.2 ReLU network with L1 regularization

The optimization problems studied in Sect. 6.1 are surprisingly difficult given the
relatively small size of the networks involved. This can largely be attributed to the
fact that the weights describing the neural network are almost completely dense. To
remedy this, we train a second model, using the same network architecture, but with
L1 regularization as suggested byXiao et al. [81].We again set a radius of ε = 0.1, and
train for 100 epochs with a learning rate of 5×10−4 and a regularization parameter of
10−4. The network achieves a test accuracy of 98.0%. With regularization, 4% of the
weights in the network are zero, compared to 0.3% in the previous network. Moreover,
with regularization we can infer from variable bounds that on average 73.1% of the
ReLUs are linear within the perturbation box of radius ε, enabling us to eliminate the
corresponding binary variables. In the first network, we can do so only for 27.8% of
the ReLUs.

We report the corresponding results in Table 1b and Fig. 4b. While the extended
approach does not seem to be substantially affected by the network sparsity, the big-
M-based approaches are able to exploit it to solve more instances, more quickly. The
big-M approach is able to solve 70 of 100 instances to optimality within the time limit,
though the mean solve time is still quite large. In contrast, the big-M + (28a) approach
fully exploits the sparsity in the model, solving each instance strictly faster than each

123

MIP formulations for trained neural networks 35

(a) Network with standard training.

100 101 102 103
0

20

40

60

80

100

Time (s)

N
um

b
er

of
in
st
an

ce
s
so
lv
ed big-M

big-M + (28a)
extended

big-M + no cuts

(b) Network trained with L1 regularization.

100 101 102 103
0

20

40

60

80

100

Time (s)

N
um

b
er

of
in
st
an

ce
s
so
lv
ed big-M

big-M + (28a)
extended

big-M + no cuts

Fig. 4 Number of instances solved within a given amount of time. Curves to the upper left are better, with
more instances solved in less time

of the other approaches. Indeed, the approach is able to solve 69 instances in less than
10 s, and solves all instances in under 120 s.

Acknowledgements The authors gratefully acknowledge Yeesian Ng and Ondřej Sýkora for many discus-
sions on the topic of this paper, and for their work on the development of the tf.opt package used in the
computational experiments.

A A tight big-M formulation for Max on polyhedral domains

We present a tightened big-M formulation for the maximum of d affine functions over
an arbitrary polytope input domain. We can view the formulation as a relaxation of the
system in Proposition 4, where we select d inequalities from each of (10a) and (10b):
those corresponding to α, α ∈ {w1, . . . , wd}. This subset yields a valid formulation,
andwe obviate the need for direct separation. This formulation can also be viewed as an

123

36 R. Anderson et al.

application of Proposition 6.2 of Vielma [72], and is similar to the big-M formulations
for generalized disjunctive programs of Trespalacios and Grossmann [71].

Proposition 15 Take coefficients N such that, for each �, k ∈ [[d]] with �
= k,

N �,k,+ � max
xk∈D|k

{(wk − w�) · xk} (32a)

N �,k,− � min
xk∈D|k

{(wk − w�) · xk}, (32b)

and Nk,k,+ = Nk,k,− = 0 for all k ∈ [[d]]. Then a valid formulation for gr(Max ◦
(f 1, . . . , f d); D) is:

y � w� · x +
d∑

k=1

(N �,k,+ + bk)zk ∀� ∈ [[d]] (33a)

y � w� · x +
d∑

k=1

(N �,k,− + bk)zk ∀� ∈ [[d]] (33b)

(x, y, z) ∈ D × R × Δd (33c)

z ∈ {0, 1}d (33d)

The tightest possible coefficients in (32) can be computed exactly by solving an
LP for each pair of input affine functions �
= k. While this might be exceedingly
computationally expensive if d is large, it is potentially viable if d is a small fixed con-
stant. For example, themax pooling neuron computes themaximum over a rectangular
window in a larger array [32, Sect. 9.3], and is frequently used in image classification
architectures. Typically, max pooling units work with a 2 × 2 or a 3 × 3 window, in
which case d = 4 or d = 9, respectively.

In addition, if in practice we observe that if the set D|k is empty, then we can infer
that the neuron is not irreducible as the k-th input function is never the maximum, and
we can safely prune it. In particular, if we attempt to compute the coefficients for zk
and it is proven infeasible, we can prune the k-th function.

References

1. https://developers.google.com/machine-learning/glossary/#logits. Accessed 6 Feb 2020
2. Alipanahi, B., Delong, A., Weirauch, M.T., Frey, B.J.: Predicting the sequence specificities of DNA-

and RNA-binding proteins by deep learning. Nat. Biotechnol. 33, 831–838 (2015)
3. Amos, B., Xu, L., Kolter, J.Z.: Input convex neural networks. In: Precup, D., Teh, Y.W. (eds.) Pro-

ceedings of the 34th International Conference on Machine Learning, vol. 70, pp. 146–155. PMLR,
International Convention Centre, Sydney (2017)

4. Anderson, R., Huchette, J., Tjandraatmadja, C., Vielma, J.P.: Strong mixed-integer programming
formulations for trained neural networks. In: A. Lodi, V. Nagarajan (eds.) Proceedings of the 20th
Conference on Integer Programming and Combinatorial Optimization, pp. 27–42. Springer Interna-
tional Publishing, Cham (2019). arxiv:1811.08359

5. Arora, R., Basu, A., Mianjy, P., Mukherjee, A.: Understanding deep neural networks with rectified
linear units (2016). arXiv preprint arXiv:1611.01491

123

https://developers.google.com/machine-learning/glossary/#logits
http://arxiv.org/abs/1811.08359
http://arxiv.org/abs/1611.01491

MIP formulations for trained neural networks 37

6. Arulkumaran, K., Deisenroth,M.P., Brundage,M., Bharath, A.A.: Deep reinforcement learning: a brief
survey. IEEE Signal Process. Mag. 34(6), 26–38 (2017)

7. Atamtürk, A., Gómez, A.: Strong formulations for quadratic optimization with M-matrices and indi-
cator variables. Math. Program. 170, 141–176 (2018)

8. Balas, E.: Disjunctive programming and a hierarchy of relaxations for discrete optimization problems.
SIAM J. Algorithmic Discrete Methods 6(3), 466–486 (1985)

9. Balas, E.: Disjunctive programming: properties of the convex hull of feasible points. Discrete Appl.
Math. 89, 3–44 (1998)

10. Bartolini, A., Lombardi, M., Milano, M., Benini, L.: Neuron constraints to model complex real-world
problems. In: International Conference on the Principles and Practice of Constraint Programming, pp.
115–129. Springer, Berlin (2011)

11. Bartolini, A., Lombardi, M., Milano, M., Benini, L.: Optimization and controlled systems: a case study
on thermal aware workload dispatching. In: Proceedings of the Twenty-Sixth AAAI Conference on
Artificial Intelligence, pp. 427–433 (2012)

12. Bastani, O., Ioannou, Y., Lampropoulos, L., Vytiniotis, D., Nori, A.V., Criminisi, A.: Measuring neural
net robustness with constraints. In: Advances in Neural Information Processing Systems, pp. 2613–
2621 (2016)

13. Belotti, P., Bonami, P., Fischetti, M., Lodi, A., Monaci, M., Nogales-Gomez, A., Salvagnin, D.: On
handling indicator constraints in mixed integer programming. Comput. Optim. Appl. 65(3), 545–566
(2016)

14. Bertsimas, D., Tsitsiklis, J.: Introduction to Linear Optimization. Athena Scientific, Belmont, MA
(1997)

15. Bienstock, D., Muñoz, G., Pokutta, S.: Principled deep neural network training through linear pro-
gramming (2018). arXiv preprint arXiv:1810.03218

16. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Berlin (2006)
17. Bonami, P., Lodi, A., Tramontani, A., Wiese, S.: On mathematical programming with indicator con-

straints. Math. Program. 151(1), 191–223 (2015)
18. Boureau, Y.L., Bach, F., LeCun, Y., Ponce, J.: Learning mid-level features for recognition. In: IEEE

Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2559–2566 (2010)
19. Bunel, R., Turkaslan, I., Torr, P.H., Kohli, P., Kumar, M.P.: A unified view of piecewise linear neural

network verification. In: Advances in Neural Information Processing Systems (2018)
20. Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In: 2017 IEEE Sym-

posium on Security and Privacy (SP), pp. 39–57 (2017)
21. Chen, L., Ma, W., Natarajan, K., Simchi-Levi, D., Yan, Z.: Distributionally robust linear and discrete

optimization with marginals. Available at SSRN 3159473 (2018)
22. Cheng, C.H., Nührenberg, G., Ruess, N.: Maximum resilience of artifical neural networks. In: Inter-

national Symposium on Automated Technology for Verification and Analysis. Springer, Cham (2017)
23. Dulac-Arnold, G., Evans, R., van Hasselt, H., Sunehag, P., Lillicrap, T., Hunt, J., Mann, T., Weber,

T., Degris, T., Coppin, B.: Deep reinforcement learning in large discrete action spaces (2015).
arxiv:1512.07679

24. Dutta, S., Jha, S., Sanakaranarayanan, S., Tiwari, A.: Output range analysis for deep feedforward neural
networks. In: NASA Formal Methods Symposium (2018)

25. Dvijotham, K., Gowal, S., Stanforth, R., Arandjelovic, R., O’Donoghue, B., Uesato, J., Kohli, P.:
Training verified learners with learned verifiers (2018). arxiv:1805.10265

26. Dvijotham, K., Stanforth, R., Gowal, S., Mann, T., Kohli, P.: A dual approach to scalable verifica-
tion of deep networks. In: Thirty-Fourth Conference Annual Conference on Uncertainty in Artificial
Intelligence (2018)

27. Ehlers, R.: Formal verification of piece-wise linear feed-forward neural networks. In: International
Symposium on Automated Technology for Verification and Analysis. Springer, Cham (2017)

28. Engstrom, L., Tran, B., Tsipras, D., Schmidt, L., Madry, A.: Exploring the landscape of spatial robust-
ness. In: Chaudhuri, K., Salakhutdinov, R. (eds.) Proceedings of the 36th International Conference on
Machine Learning, Proceedings of Machine Learning Research, vol. 97, pp. 1802–1811. PMLR, Long
Beach, CA (2019). http://proceedings.mlr.press/v97/engstrom19a.html. Accessed 6 Feb 2020

29. Fischetti, M., Jo, J.: Deep neural networks and mixed integer linear optimization. Constraints 23,
296–309 (2018)

30. Gatys, L.A., Ecker, A.S., Bethge, M.: A neural algorithm of artistic style (2015). arxiv:1508.06576

123

http://arxiv.org/abs/1810.03218
http://arxiv.org/abs/1512.07679
http://arxiv.org/abs/1805.10265
http://proceedings.mlr.press/v97/engstrom19a.html
http://arxiv.org/abs/1508.06576

38 R. Anderson et al.

31. Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: Proceedings of the
Fourteenth International Conference on Artificial Intelligence and Statistics, pp. 315–323 (2011)

32. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning, vol. 1. MIT Press, Cambridge (2016)
33. Goodfellow, I.J., Warde-Farley, D., Mirza, M., Courville, A., Bengio, Y.: Maxout networks. In: Pro-

ceedings of the 30th International Conference on Machine Learning, vol. 28, pp. 1319–1327 (2013)
34. Grimstad, B., Andersson, H.: ReLU networks as surrogate models in mixed-integer linear programs.

Comput. Chem. Eng. 131, 106580 (2019)
35. Haneveld, W.K.K.: Robustness against dependence in pert: an application of duality and distributions

with known marginals. In: Stochastic Programming 84 Part I, pp. 153–182. Springer (1986)
36. Hanin, B.: Universal function approximation by deep neural nets with bounded width and ReLU

activations (2017). arXiv preprint arXiv:1708.02691
37. Hijazi, H., Bonami, P., Cornuéjols, G., Ouorou, A.: Mixed-integer nonlinear programs featuring

“on/off” constraints. Comput. Optim. Appl. 52(2), 537–558 (2012)
38. Hijazi,H., Bonami, P.,Ouorou,A.:Anote on linear on/off constraints (2014). http://www.optimization-

online.org/DB_FILE/2014/04/4309.pdf. Accessed 6 Feb 2020
39. Huber, B., Rambau, J., Santos, F.: The Cayley Trick, lifting subdivisions and the Bohne-Dress theorem

of zonotopal tiltings. J. Eur. Math. Soc. 2(2), 179–198 (2000)
40. Huchette, J.: Advanced mixed-integer programming formulations: methodology, computation, and

application. Ph.D. thesis, Massachusetts Institute of Technology (2018)
41. Jeroslow, R., Lowe, J.: Modelling with integer variables. Math. Program. Study 22, 167–184 (1984)
42. Jeroslow, R.G.: Alternative formulations of mixed integer programs. Ann. Oper. Res. 12, 241–276

(1988)
43. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an efficient SMT solver

for verifying deep neural networks. In: International Conference on Computer Aided Verification, pp.
97–117 (2017)

44. Khalil, E.B., Gupta, A., Dilkina, B.: Combinatorial attacks on binarized neural networks. In: Interna-
tional Conference on Learning Representations (2019)

45. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization (2014). arxiv:1412.6980
46. Korte, B., Vygen, J.: Combinatorial Optimization: Theory and Algorithms. Springer, Berlin (2000)
47. Kumar, A., Serra, T., Ramalingam, S.: Equivalent and approximate transformations of deep neural

networks (2019). arxiv:1905.11428
48. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)
49. LeCun,Y.,Bottou, L.,Bengio,Y.,Haffner, P.:Gradient-based learning applied to document recognition.

Proc. IEEE 86, 2278–2324 (1998)
50. Liu, C., Arnon, T., Lazarus, C., Barrett, C., Kochenderfer, M.J.: Algorithms for verifying deep neural

networks (2019). arxiv:1903.06758
51. Lombardi, M., Gualandi, S.: A lagrangian propagator for artificial neural networks in constraint pro-

gramming. Constraints 21(4), 435–462 (2016)
52. Lombardi, M., Milano, M.: Boosting combinatorial problem modeling with machine learning. In:

Proceedings IJCAI, pp. 5472–5478 (2018)
53. Lombardi,M.,Milano,M., Bartolini, A.: Empirical decisionmodel learning. Artif. Intell. 244, 343–367

(2017)
54. Lomuscio, A., Maganti, L.: An approach to reachability analysis for feed-forward ReLU neural net-

works (2017). arxiv:1706.07351
55. Maas, A.L., Hannun, A.Y., Ng, A.Y.: Rectifier nonlinearities improve neural network acoustic models.

In: ICML Workshop on Deep Learning for Audio, Speech and Language (2013)
56. Mladenov, M., Boutilier, C., Schuurmans, D., Elidan, G., Meshi, O., Lu, T.: Approximate linear pro-

gramming for logistic Markov decision processes. In: Proceedings of the Twenty-sixth International
Joint Conference on Artificial Intelligence (IJCAI-17), pp. 2486–2493. Melbourne, Australia (2017)

57. Mordvintsev, A., Olah, C., Tyka, M.: Inceptionism: Going deeper into neural networks (2015). https://
ai.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html. Accessed 6 Feb 2020

58. Natarajan, K., Song,M., Teo, C.P.: Persistencymodel and its applications in choice modeling.Manage.
Sci. 55(3), 453–469 (2009)

59. Olah, C., Mordvintsev, A., Schubert, L.: Feature visualization. Distill (2017). https://distill.pub/2017/
feature-visualization. Accessed 6 Feb 2020

123

http://arxiv.org/abs/1708.02691
http://www.optimization-online.org/DB_FILE/2014/04/4309.pdf
http://www.optimization-online.org/DB_FILE/2014/04/4309.pdf
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1905.11428
http://arxiv.org/abs/1903.06758
http://arxiv.org/abs/1706.07351
https://ai.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
https://ai.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
https://distill.pub/2017/feature-visualization
https://distill.pub/2017/feature-visualization

MIP formulations for trained neural networks 39

60. Papernot, N., McDaniel, P., Jha, S., Fredrikson, M., Celik, Z.B., Swami, A.: The limitations of deep
learning in adversarial settings. In: IEEE European Symposium on Security and Privacy, pp. 372–387
(2016)

61. Raghunathan,A., Steinhardt, J., Liang, P.: Semidefinite relaxations for certifying robustness to adversar-
ial examples. In: Proceedings of the 32nd International Conference on Neural Information Processing
Systems, NIPS’18, pp. 10,900–10,910. Curran Associates Inc. (2018)

62. Ryu, M., Chow, Y., Anderson, R., Tjandraatmadja, C., Boutilier, C.: CAQL: Continuous action Q-
learning (2019). arxiv:1909.12397

63. Salman, H., Yang, G., Zhang, H., Hsieh, C.J., Zhang, P.: A convex relaxation barrier to tight robustness
verification of neural networks (2019). arxiv:1902.08722

64. Say, B., Wu, G., Zhou, Y.Q., Sanner, S.: Nonlinear hybrid planning with deep net learned transition
models andmixed-integer linear programming. In: Proceedings of the Twenty-Sixth International Joint
Conference on Artificial Intelligence, IJCAI-17, pp. 750–756 (2017)

65. Schweidtmann, A.M., Mitsos, A.: Global deterministic optimization with artificial neural networks
embedded. J. Optim. Theory Appl. 180, 925–948 (2019)

66. Serra, T., Ramalingam, S.: Empirical bounds on linear regions of deep rectifier networks (2018).
arxiv:1810.03370

67. Serra, T., Tjandraatmadja, C., Ramalingam, S.: Bounding and counting linear regions of deep neural
networks. In: Thirty-Fifth International Conference on Machine Learning (2018)

68. Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., Fergus, R.: Intriguing
properties of neural networks. In: International Conference on Learning Representations (2014)

69. Tawarmalani, M., Sahinidis, N.: Convexification and Global Optimization in Continuous and Mixed-
Integer Nonlinear Programming: Theory, Algorithms, Software and Applications, vol. 65. Springer,
Berlin (2002)

70. Tjeng, V., Xiao, K., Tedrake, R.: Verifying neural networks with mixed integer programming. In:
International Conference on Learning Representations (2019)

71. Trespalacios, F., Grossmann, I.E.: Improved big-M reformulation for generalized disjunctive programs.
Comput. Chem. Eng. 76, 98–103 (2015)

72. Vielma, J.P.:Mixed integer linear programming formulation techniques. SIAMRev. 57(1), 3–57 (2015)
73. Vielma, J.P.: Embedding formulations and complexity for unions of polyhedra. Manage. Sci. 64(10),

4471–4965 (2018)
74. Vielma, J.P.: Small and strong formulations for unions of convex sets from the Cayley embedding.

Math. Program. 177, 21–53 (2018)
75. Vielma, J.P., Nemhauser, G.: Modeling disjunctive constraints with a logarithmic number of binary

variables and constraints. Math. Program. 128(1–2), 49–72 (2011)
76. Weibel, C.: Minkowski sums of polytopes: combinatorics and computation. Ph.D. thesis, École Poly-

technique Fédérale de Lausanne (2007)
77. Weiss, G.: Stochastic bounds on distributions of optimal value functions with applications to pert,

network flows and reliability. Oper. Res. 34(4), 595–605 (1986)
78. Wong, E., Kolter, J.Z.: Provable defenses against adversarial examples via the convex outer adversarial

polytope. In: International Conference on Machine Learning (2018)
79. Wong, E., Schmidt, F., Metzen, J.H., Kolter, J.Z.: Scaling provable adversarial defenses. In: 32nd

Conference on Neural Information Processing Systems (2018)
80. Wu, G., Say, B., Sanner, S.: Scalable planning with Tensorflow for hybrid nonlinear domains. In:

Advances in Neural Information Processing Systems, pp. 6276–6286 (2017)
81. Xiao, K.Y., Tjeng, V., Shafiullah, N.M., Madry, A.: Training for faster adversarial robustness verifica-

tion via inducing ReLU stability. In: International Conference on Learning Representations (2019)
82. Xu, B.,Wang, N., Chen, T., Li, M.: Empirical evaluation of rectified activations in convolution network

(2015). arxiv:1505.00853
83. Zeng, H., Edwards, M.D., Liu, G., Gifford, D.K.: Convolutional neural network architectures for

predicting DNA-protein binding. Bioinformatics 32(12), 121–127 (2016)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://arxiv.org/abs/1909.12397
http://arxiv.org/abs/1902.08722
http://arxiv.org/abs/1810.03370
http://arxiv.org/abs/1505.00853

	Strong mixed-integer programming formulations for trained neural networks
	Abstract
	1 Introduction
	1.1 MIP formulation preliminaries
	1.2 Our contributions
	1.3 Relevant prior work
	1.4 Starting assumptions and notation

	2 Motivating example: the ReLU nonlinearity over a box domain
	2.1 A big-M formulation
	2.2 An ideal extended formulation
	2.3 An ideal MIP formulation without auxiliary continuous variables

	3 Our general machinery: formulations for the maximum of d affine functions
	3.1 A recipe for constructing ideal formulations
	3.1.1 A primal characterization
	3.1.2 A dual characterization

	3.2 A recipe for constructing hereditarily sharp formulations
	3.2.1 A primal characterization
	3.2.2 A dual characterization

	4 Simplifications to our machinery under common special cases
	4.1 Simplifications when d=2
	4.2 Simplifications when D is the product of simplices
	4.3 Simplifications when both d=2 and D is the product of simplices

	5 Applications of our machinery
	5.1 A hereditarily sharp formulation for Max on box domains
	5.2 The ReLU over a box domain
	5.3 The ReLU with one-hot encodings
	5.4 The leaky ReLU over a box domain

	6 Computational experiments
	6.1 Network with standard training
	6.2 ReLU network with L1 regularization

	Acknowledgements
	A A tight big-M formulation for Max on polyhedral domains
	References

