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Abstract
The standard quadratic optimization problem (StQP), i.e. the problem of minimizing
a quadratic form xT Qx on the standard simplex {x ≥ 0 : xT e = 1}, is studied.
The StQP arises in numerous applications, and it is known to be NP-hard. Chen,
Peng and Zhang showed that almost certainly the StQP with a large random matrix
Q = QT , Qi, j , (i ≤ j)being independent and identically concave-distributed, attains
its minimum at a point xwith support size |{ j : x j > 0}| bounded in probability. Later
Chen and Peng proved that for Q = (M + MT )/2, with Mi, j i.i.d. normal, the likely
support size is at most 2. In this paper we show that the likely support size is poly-
logarithmic in n, the problem size, for a considerably broader class of the distributions.
Unlike the cited papers, the mild constraints are put on the asymptotic behavior of the
distribution at a single left endpoint of its support, rather than on the distribution’s
shape elsewhere. It also covers the distributions with the left endpoint −∞, provided
that the distribution of Qi, j , (i ≤ j) (of Mi, j , if Q = (M + MT )/2 resp.) has a
(super/sub) exponentially narrow left tail.
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1 Introduction andmain results

Bomze [2] coined the term “standard quadratic optimization problem” (StQP) for the
problem

min xT Qx, (1.1)

s.t. eT x = 1, x ≥ 0, (1.2)

where Q = [Qi j ] ∈ �n×n is a symmetric matrix, not necessarily positive-
semidefinite, and e ∈ �n is the all 1-vector. We will refer to the set in (1.2) as the
simplex �n .

The StQP appears in numerous applications such as resource allocation [25], port-
folio selection [32], machine learning [33], the maximal clique problem in discrete
optimization [20], and the determination of co-positivity of a matrix in linear algebra
[4], etc. Since it is prototype for numerous, more general, quadratic programming
problems, it has been used to test various algorithms proposed in the literature (see
[4,35,36] and the references therein for details).

Our subject in this paper is a random instance of the StQP, where the symmetric
matrix Q is generated from a certain distribution. To put our work into perspective,
we note that the study of optimization problems with random data can be traced back
to early 1980s, e.g. Goldberg and Marchetti-Spaccamela [21] (knapsack problem).
See Beier [1] for a more recent progress on random knapsack problems. There has
been made a significant progress in analysis of the so-called L1 minimization problem
with random constraints. Notably it was proved that when the coefficient matrix is
generated from a normal distribution, then with high probability (whp), the optimal
solution of the L1 minimization problem is the sparsest point in the constrained set
(see [9,10,16]).

It is also important to note that in the optimization literature, when testing algo-
rithms, it is not uncommon to generate optimization problem data randomly due to the
lack of testing instances. For example, Bomze and De Klerk [3] and Bundfuss and Dür
[7] generate StQPs with symmetric Q whose entries are uniformly distributed. Thus,
a good understanding of the behavior of the optimal solutions under randomly gener-
ated instances may shed light on the behaviors of various algorithms tested on these
instances. Indeed, our results, together with those in [11,12], establishing the sparsity
of the optimal solutions of randomly generated StQPs under quite general distribution
assumptions, indicate that the performance of algorithms tested on these instances
must be carefully analyzed before any general statement can be made. Interestingly,
motivated by the sparsity of the optimal solutions, Bomze et al. [5] construct StQP
instances with a rich solution structure. Another important implication of our results
is that though the StQP is computationally intractable in the worst case, it might be
tractable in the average case. This implication is consistent with the observation in a
recent paper by Burer and Ye [8], who prove that a class of random quadratic con-
strained programs has exact semidefinite relaxations and thus is tractable with high
probability.
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On sparsity of the solution to a random quadratic… 311

The first author, together with Peng and Zhang [11], prodded by a close relation
between the StQP and the L1 minimization problem and a keen interest in understand-
ing randomly generated optimization problems, proved that, as n → ∞, the random
StQP with high probability (whp) has an optimal solutionX∗ with the number of non-
zero components bounded in probability, provided that the distribution F of Qi, j ,
(i ≤ j), is supported by [A, B), with finite A, and F is concave on [A, B). This family
of distributions contains, for instance, the uniform distribution and the exponential
distribution. However, the concavity assumption excludes A = −∞, whence the nor-
mal distribution was out. In a follow-up work, Chen and Peng [12] were still able to
prove that for the GOE (the abbreviation for the Gaussian orthogonal ensemble, [31])
matrix Q = (M+MT )/2, Mi, j being i.i.d. normal, whp the minimum pointX∗ has at
most two non-zero components, thus being almost an extreme vertex of the simplex.
The key ingredient of the proof was an upper bound e−n2/4 for the probability that
n-dimensional GOE matrix is positive-semidefinite (see [15]).

The goal of our study is to prove that the likely support of the minimum point is
small under a much broader condition on the asymptotic behavior of the matrix entries
distribution at just a leftmost point, finite or minus infinity, i.e. without any constraint
on the distribution shape.

Ourmain results are as follows. Let F stand for the cumulative distribution function
(c.d.f.) of the entries Qi, j , i ≤ j , independently distributed.

Let X∗ denote a global minimum solution of the StQP with the random matrix Q.
Let Kn denote the support size for X∗, i.e. Kn = |{ j ∈ [n] : X∗

j > 0}|.
Theorem 1.1 Suppose F(x) is continuous. Let α > e

√
2, and kn = 
αn1/2�. Then

P{Kn ≥ kn} = O
(
eγ (α)n1/2), γ (α) := 2α log(e

√
2/α) < 0.

So Kn = O(n1/2) with probability sub-exponentially close to 1.

A surprisingly short proof of this general claim is based on Theorem 3 in [12]. It
turns out that this bound is vastly improved, if one imposes some constraints going
beyond simple continuity of the c.d.f. F(x).

Interestingly, our results and analysis depend on whether the support of the distri-
bution F is left bounded or not. Note that problem (1.1–1.2) is shift-equivalent, i.e.,
adding a constant c to each entry of the matrix Q would not change the solutions, and
the new Qi j would remain i.i.d. If the support of the distribution F is left bounded,
we can choose c = −min Qi j , that is we can assume without loss of generality that
the support of F is left bounded at 0. In this case, all entries of Q are nonnegative. Of
course, even if the support of the random entries of Q is not left bounded, one could
still add −min Qi j to the entries to make them nonnegative. However, the entries
wouldn’t be independent anymore as −min Qi j is random now. Thus, we need to
treat the two cases separately.

Theorem 1.2 (Left-bounded support) Suppose that the c.d.f. F(x) has a continuous
density f (x), and satisfies the following properties.

(1) f (x) > 0 for x ∈ [0, B), 0 < B ≤ ∞; and f (x) = 0 otherwise;

123



312 X. Chen, B. Pittel

(2) There exists ν > 0 and ρ > 0 such that

F(x) = ρxν + O(xν+1), x ↓ 0;

(3)

sup

{
f (x ′)
f (x)

: x, x ′ ∈ (0, B), x ′ ∈ (x, 2x)

}
< ∞.

Then, for k ≤ kn,

P{Kn = k+1} ≤ exp
(−c(max(ν, 1))k + o(k)

)
,

c(μ) :=
∫ 1

0
log(1 + xμ) dx .

Notes. (i) So P{Kn > k} decays exponentially fast long before k gets as large as kn .
In fact, the exponential decay holds much longer, up until k is, say, of order n log−2 n.
That is, in probability, Kn is very much bounded. (ii) The uniform distribution and the
exponential distribution are covered by this theorem: ν = 1 for the former, and ν = 2
for the latter. Notice also that the leading term ρxν in the condition (2) is concave for
ν ≤ 1.The local nature of this conditionmakesTheorem1.2 substantiallymore general
than Theorem 3.4 in [11], proved for F(x) concave everywhere on the support of the
density f , whence for the two distributions mentioned above. (iii) The condition (3) is
an extension of the notion of a “dominatedly varying” monotone function introduced
and studied by Feller [17,18] (Ch. 8, Exer. 33). It holds, in particular, for every
continuous positive density supported by (0, B], B < ∞, or by (0,∞) if there exists
C > 0 such that f (x) is decreasing for x > C . So, contrary to its formulation, the
condition is rather mild, with only pathological positive densities being excluded.

While the class of distributions covered by Theorem 1.2 is quite broad, it does
not contain, for instance, the normal distribution (supported by (−∞,∞)), which
is typically assumed in the extensive literature on the L1 minimization problem and
its various generalizations. With the normal distribution in our peripheral vision, we
introduce a class of distributions supported by (−∞, B), B ≤ ∞, such that, for
x → −∞,

F(x) = (c + O(|x |−κ))|x |a exp(−r |x − x0|b), b, c, r , κ > 0; (1.3)

shifting/scaling x wemake r = 1, x0 = 0. It is well-known that the normal distribution
meets (1.3) with a = −1, b = 2. Among other examples are the two-sided exponential
density (a = 0, b = 1), and the cosh-density (a = 0, b = 1). A broad class of sub-
Gaussian random variables, cf. Boucheron et al. [6] falls into this category as well.
As in Theorem 1.2, the condition (1.3) restricts the behavior of the c.d.f. F(x) in the
vicinity of a single point, which is −∞ this time.

123



On sparsity of the solution to a random quadratic… 313

Theorem 1.3 Let b > 1. Then, for all k ≤ kn, we have

P
{
Kn = k + 1

} ≤ O

(

n

(
8

9

)k/4

+ n exp

(
−k
(
log n

k

)min{0,a/b}

2e

))

.

So, invoking Theorem 1.1, Kn = Op(log n) for a ≥ 0, meaning that P(Kn >

ω(n) log n) → 0 for every ω(n) → ∞ however slowly, and Kn =
Op
(
(log n)1+|a|/b) for a < 0.

Theorem 1.4 Let b ≤ 1. Define

σ(a, b) =

⎧
⎪⎨

⎪⎩

1 + 1 + 2a

b
, if a > 0,

1 + 1 + |a|
b

, if a ≤ 0;

so σ(a, b) > 2. For every σ > σ(a, b), and d <
b(σ−σ(a,b))

2 ,

P{Kn > log1+d n} < exp
(− log1+d n

)
.

Note Therefore, with probability > 1 − O(n−L), (∀ L > 0), Kn is below log1+d n.
Using the term coined in Knuth et al. [29], “quite surely” (q.s.) the support size is of
a moderate (poly-logarithmic) order. A pivotal technical element of the proof is the
fact that the order statistics of the independent [0, 1]-uniforms are distributed, jointly,
as the normalized consecutive sums of the independent exponentials [27].

Turn to the alternative model: first randomly generate an n × n matrix M whose
elements are i.i.d. random variables with the c.d.f. G; then define Q = (M + MT )/2.

Suppose G satisfies the (one-point) condition (1.3), and x0 = 0, r = 1, without
loss of generality. The diagonal entries of Q have distribution G and the non-diagonal
entries of Q have the distribution F(x) = (G
G)(2x), 
 standing for convolution. We
prove that, for a > −1 when b ≤ 1, F satisfies the equation (1.3) as well, with the
parameters b′ = b, c′ > 0, r ′ = 2min(1,b) and

a′ =

⎧
⎪⎪⎨

⎪⎪⎩

2a + b

2
, if b > 1,

a + b − 1, if 0 < b < 1,

2a + 1, if b = 1.

Since r ′ > 1 = r , we have limx→−∞ G(x)/F(x) = ∞. Combining this fact and
the general identity proved in [11] (the proof of Theorem 2.2, second top line in first
display), we easily transfer the proof of our Theorems 1.3 and 1.4 to this model. To
state the resulting claims one has only to replace a with a′ in Theorems 1.3 and 1.4.

We note that the theorems above have the natural counterparts for the problem
max{xT Qx : x ∈ �n}: the distribution F of Qi, j is supported by (A,∞), A ≥ −∞,
and the restrictions are imposed on the behavior of F(x) in the vicinity of∞. Since−Q
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314 X. Chen, B. Pittel

meets the conditions of the respective claim for the support (−∞,−A), no additional
proof is needed. So, for the quasi-normal distribution, i.e. a = −1, b = 2, both the
minimum point and the maximum point are sparse, with the likely support size of
order (log n)3/2 � n in each case. As we mentioned, Chen and Peng [12] proved
that for the GOE matrix Q = (M + MT )/2, Mi, j being i.i.d. exactly normal, whp
the support size of X∗ is 2, at most. In absence of a counterpart of Dean-Majumdar’s
probability bound on the positive semidefiniteness of GOEmatrix for the quasi-normal
distributions, chances to prove that the support size for these distributions is bounded in
probability appear to be exceedingly small. On the other hand, it may well be possible
to show that the likely support is poly-logarithmic in n for a broader family of quasi-
normal distributions. This is in sharp contrast with the stronger bounds obtained in [5],
(Proposition 1), building upon [11,12] under considerably more restrictive conditions
on the distribution F .

Theorems 1.2, 1.3 and 1.4 clearly illustrate the importance of the local asymptotic
behavior at the left endpoint of the support of the underlying distribution in charac-
terizing the sparsity of global optimal solutions. Roughly speaking, the upper bounds
on P{Kn = k + 1} we derive are higher for distributions which have a faster increase
near the left endpoints of their supports, i.e., for distributions with a larger ν (ν ≥ 1)
in Theorem 1.2 and larger b or smaller a in Theorem 1.3. It is in sharp contrast to [11]
and [12] as [11] requires the concavity of the c.d.f., which is a global property, while
[12] primarily deals with normal distributions.

Our results focus on the global optimal solutions of StQP. Interestingly, the behavior
of the local optimal solutions has attracted the attention of the population genetics
literature thirty years ago. Specifically, Kingman [28] initiated the study of local
maxima of the random quadratic forms pT Fp on the simplex �n , with p interpreted
as the distribution of the alleles A1, . . . , An at a single locus, and Fi, j ∈ [0, 1] as
the (random) fitness, i.e. the probability that the gene pair (Ai , A j ) survives to a
reproductive age. Kingman’s main interest was potential coexistence of several alleles
at the locus, i.e. of locally stable distributions (local maxima) pwith a sizable support.
Concurrently, in the context of evolutionary stable strategies,Haigh [23,24] established
the counterparts of some of Kingman’s results for a non-symmetric payoff matrix;
see a more recent paper Kontogiannis and Spirakis [30]. The second author of the
current paper showed that for a broad class of the fitness distributions, the likely
support of a local maximum point p not containing a support of a local equilibrium is

(2/3) log2 n�, at most. And, for the uniform fitnesses, there are likely many potential
local maxima supports free of local equilibriums, each of size close to 
(1/2) log2 n�,
[34]. Conjecturally the likely size of the largest support of a local maximum is poly-
logarithmic in n.

The paper is organized as follows. In Sect. 2, we provide some preliminaries useful
for our analysis. In Sect. 3, we present the proofs of our key results, and finish the
paper with some concluding remarks in Sect. 4.
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2 Preliminaries

The analysis of the randomStQP in [11] beganwith the formulation and the proof of the
following optimality conditions. Given x ∈ �n , denote k(x) = |{ j ∈ [n] : x j > 0}|.
Proposition 2.1 Suppose that x∗ is the sparsest optimal solution of the problem (1.1–
1.2) satisfying k(x∗) = k > 1. So λ∗ := (x∗)T Qx∗ is the absolute minimum of the
quadratic form on the simplex �n. Denoting K = { j ∈ [n] : x∗

j > 0}, let QK
be the principal k × k submatrix of Q induced by the elements of the set K. Then

C.1 there exists a row (whence a column) of QK such that the arithmetic mean of all
its elements is (strictly) less than min j∈[n] Q j, j ;

C.2 with EK(i, j) := 1{i, j∈K}, QK − λ∗EK is positive semidefinite; in short, QK −
λ∗EK � 0.

Properties C.1 andC.2 follow, respectively, from the first-order optimality condition
and the second-order optimality condition.

Consider the random symmetric matrix {Qi, j }: (1) the diagonal entries Qi,i are
independent, each having the same, continuous, distributionG; (2) the above-diagonal
elements Qi, j , (i < j), are independent of each other, and of the diagonal elements,
each having the same, continuous, distribution F ; (3) the below-diagonal elements
Qi, j are set equal to Q j,i .

If we relabel the elements of [n] to make Q1,1 < Q2,2 < · · · < Qn,n , then the
above-diagonal elements in the new n × n array will remain independent of each
other and of the diagonal entries, that now form the sequence V1, . . . , Vn of the order
statistics for n independent variables, each with distribution G.

Let us use the capital X∗ to denote the solution of the random StQP problem. Let
Kn denote the support size ofX∗. Property C.1 was used in [11] to prove the following,
crucial, estimate.

Lemma 2.1 Let V1 < V2 < · · · < Vn (W1 < W2 < · · · < Wn−1 resp.) denote
the order statistics of the sequence of n (n − 1 resp.) independent, G-distributed
(F-distributed resp.) random variables. Assume that V := (V1, . . . , Vn) and W :=
(W1, . . . ,Wn−1) are independent of each other. Then, for k ≥ 1,

P{Kn = k + 1} ≤ ρ(n, k),

ρ(n, k) :=
n∑

i=1

P
{
W̄k ≤ (k + 1)V1 − Vi

}
, W̄k :=

k∑

j=1

Wj .

Proof (For completeness) Consider Q obtained from the initial {Qi, j } via the above
relabeling, so that now Qi,i is the i-th smallest among the diagonal entries. For each
i ∈ [n], let W(i) = (W1(i) < · · · < Wn−1(i)) stand for the (n − 1) order statistics
of the non-diagonal entries in the i-th row of the transformed Q. W(1), . . . ,W(n)

are equi-distributed, independent of V, though not of each other since the matrix is
symmetric. By the property C.1, there exists a row i∗ in Q such the sum of some
k + 1 entries in this row, that includes its diagonal entry, is below (k + 1)mini Qi,i =
(k + 1)V1. This sum is certainly not smaller than
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316 X. Chen, B. Pittel

k∑

j=1

Wj (i
∗) + Vi∗ = W̄k(i

∗) + Vi∗ .

For a generic row i ∈ [n],

P
{
W̄k(i) + Vi ≤ (k + 1)V1} = P

{
W̄k + Vi ≤ (k + 1)V1}.

Applying the union bound we complete the proof. ��
In the case k = n Property C.2 was utilized in [12] to prove

Lemma 2.2 For n ≥ 2,

P {Kn = n} ≤ P

⎧
⎨

⎩

⋂

i �= j∈[n]

{
Qi, j ≤ max(Qi,i , Q j, j )

}
⎫
⎬

⎭
≤ 2n

(n + 1)! .

Define

ρ(n, k) = P
{
W̄k ≤ kV1} + ρ̂(n, k),

ρ̂(n, k) :=
n∑

i=2

P{W̄k ≤ (k + 1)V1 − Vi }.

Notice that ρ̂(n, k) ≤ (n − 1) P
{
W̄k ≤ kV1}, since Vi ≥ V1 for i ≥ 2. Therefore, by

Lemma 2.1,

P{Kn = k + 1} ≤ n P
{
W̄k ≤ kV1}. (2.1)

Using the classic formula for the joint distribution of the order statistics, they found
in [11] (see (11), and the top identity in the proof of Theorem 2.2 therein) the multi-
dimensional integral representations of the functions ρ(·) and ρ̂(·).

In terms of the order statistics W1, . . . ,Wn−1 of the (n − 1) independent, F-
distributed random variables, and W̄k :=∑ j∈[k] Wj , the formulas for P

{
W̄k ≤ kV1}

and ρ̂(n, k) become

P
{
W̄k ≤ kV1} = E

[(
1 − G(W̄k/k)

)n]
,

ρ̂(n, k) = (n − 1)E
[
Hn,k(W̄k)

]
,

Hn,k(w) := −[1 − G(w/k)]n
n − 1

+ n(k + 1)

n − 1

∞∫

w/k

g
(
(k + 1)v − w) [1 − G(v)]n−1 dv.

(2.2)

Here g(·) is the density of G, the distribution function of the diagonal entries Qi,i .
The top formula was the main focus of analysis in [11], and will be instrumental in
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our paper as well. As in [11], we switch toUj = F(Wj ), so thatUj are order statistics
for the variables F(X j ), where X j are i.i.d. with the c.d.f. F . We know, of course, that
F(X j ) are [0, 1]-uniform. Thus U1, . . . ,Un−1 are the order statistics of the sequence
of (n − 1) independent, uniformly distributed, random variables. So the formula of
the keen interest becomes

P
{
W̄k ≤ kV1} = E

[(
1 − G

(
1

k

k∑

j=1

Wj

))n]
=E

[(
1 − G

(
1

k

k∑

j=1

F−1(Uj )

))n]
.

(2.3)

3 Proofs

For convenience, as we go along, we will restate the claims already made in Sect. 1.
Let G = F . We begin with Theorem 1.1, which provides an O(n1/2) upper bound

for the likely size of the minimum point support under a very weak condition on the
c.d.f. F .

Theorem 1.1 Let Kn be the support size for the solution of the random StQP with
continuously distributed entries. Picking α > e

√
2 and setting kn := 
αn1/2�, we

have

P{Kn ≥ kn} = O
(
eγ (α)n1/2), γ (α) := 2α log(e

√
2/α) < 0.

Proof From Proposition 2.1 C.2 and Lemma 2.2, we have that

P{Kn = k} ≤ P
{
∃ a k × k submatrix K s.t. QK − λ∗Ek � 0

}

≤ S(n, k) :=
(
n

k

)
· 2k

(k + 1)! .

Using the inequality b! ≥ (b/e)b (implied by (1 + 1/b)b < e) and its corollary(a
b

) ≤ (ea/b)b, we obtain

S(n, k) ≤
(
2e2n

k2

)k

≤
(
2e2

α2

)k

, ∀ k ≥ αn1/2.

Summing up this bound for k ≥ kn = 
αn1/2�, we complete the proof. ��

This result will enable us to use (2.3) for k ≤ kn only, which severely restricts a
likely range of the order statistics Uk involved. First, observe that, given δ ∈ (0, 1),
by the union bound we have: for k ≤ kn , and n large,
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P{Uk ≥ δ} ≤
(
n − 1

n − k

)
(1 − δ)n−k ≤

(
n

k

)
(1 − δ)n−k

≤ (1 − δ)n−knk ≤ (1 − δ)0.99nnk ≤ n−k,

(3.1)

provided that δ = δn := 2.1n−1kn log n = O(n−1/2 log n). So the contribution to the
RHS of (2.3) coming from Uk ≥ δn is at most n−k , uniformly for k ≤ kn . Second, let
us show that we can focus on U with

S(U) := 1

k

k∑

j=1

log
1

Uj
� log

ne

k
; (3.2)

(we write L � R if L ≤ (1 + o(1))R). Here is the intuition behind (3.2). Roughly,
Uj are close to j/n; therefore whp

S(U) ≈ 1

k

k∑

j=1

log
n

j
= 1

k
log

nk

k! ≈ log
ne

k
.

This fact will come handy in the analysis of the F’s support going all the way to −∞.

Lemma 3.1 Given α > 0, define S = S(α) = log n
αk . If α < e−1, then for every

β ∈ (0, 1 − αe) we have

P
{
S(U) > S

} ≤ O

((
αe

1 − β

)βk
)

.

Proof Recall that the components of U are the k first order statistics of (n − 1) inde-
pendent, [0, 1]-uniform random variables. In view of the sum-type formula for S(U)

in (3.2), we apply a variation of Chernoff’s method. Picking λ > 0, and λ < k in
order to make the coming integral finite, we define u = (u1 < · · · < uk) ∈ (0, 1)n−1

and write

P
{
S(U) > S

} ≤ e−λS(n − 1)k

∫

S(u)>S

(1 − uk)
n−1−k exp

⎛

⎝λ

k

k∑

j=1

log
1

u j

⎞

⎠ du

= e−λS(n − 1)k
(k − 1)!

∫ 1

0
(1 − uk)

n−1−ku−λ/k
k

(∫ uk

0
w−λ/k dw

)k−1

duk

= e−λS(n − 1)k
(1 − λ/k)k−1 (k − 1)!

∫ 1

0
(1 − uk)

n−1−kuk−1−λ
k duk

= e−λS(n − 1)k
(1 − λ/k)k−1 (k − 1)! · �(n − k) �(k − λ)

�(n − λ)

= e−λS

(1 − λ/k)k−1 · �(n) �(k − λ)

�(n − λ) �(k)
,
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where (n)k := ∏n
j=n−k+1 j . Set λ = βk; using Stirling formula for the Gamma

function (see for instance [26]) in the last expression, it is easy to see that

P
{
S(U) > S

} ≤ O

((
αe

1 − β

)βk
)

;

the bound is exponentially small since αe < 1 − β. ��

3.1 Distributions with left-bounded supports

In this section, we focus on a class of distributions satisfying the properties in Theorem
1.2.

In (3.1) we showed that, at the cost of O(n−k) error term, we can neglect U with
Uk > δn = 2.1n−1kn log n, for k ≤ kn = 
αn1/2�. We need to show that, for the
remaining U, φ(U) := F

(
k−1∑k

j=1 F
−1(Uj )

)
typically dwarfs 1/n for large k, and

so makes (1 − φ(U))n close to zero in all likelihood. Our first step is to establish an
explicit lower bound for φ(u). For this purpose, define

σ = min
x∈[0,F−1(δn)]

F(x)

xν
, η = max

x∈[0,F−1(δn)]
F(x)

xν
,

and γ = σ
η

≤ 1.

Lemma 3.2 Assume that F meets the conditions (1) and (2) in Theorem 1.2. Then

(1) γ = 1 + O
(
δ
1/ν
n
)
and uniformly for u = 0 < u1 ≤ · · · ≤ uk ≤ δn, we have:

φ(u) ≥ γ
(
k−1∑k

j=1 u
1/ν
j

)ν

;

(2) further, for ν ≥ 1, we have φ(u) ≥∑k
j=1 γ j u j , with

γ j := γ

[(
1 − j − 1

k

)ν

−
(
1 − j

k

)ν]
∈ (0, 1). (3.3)

Proof (1)We will use the notation g = �( f ), if g, f > 0 and g ≥ c f for an absolute
constant c > 0 in a given range of the arguments of f and g.

Since F(x) = �(xν), (x ↓ 0), we see that F−1(u) ∈ [0, F−1(δn)] for u ∈ [0, δn],
and F−1(δn) = O

(
δ
1/ν
n
)
. Since F(x) = ρxν +O(xν+1), we have σ, η = ρ+O

(
δ
1/ν
n
)
,

so γ = 1 + O
(
δ
1/ν
n
)
, and furthermore

F(x) ≥ σ xν, ∀ x ∈ [0, F−1(δn)
]; F−1(u) ≥

(
u

η

)1/ν

, ∀ u ∈ [0, δn]. (3.4)
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Applying (3.4), we lower-bound

φ(u) ≥ σ
(
k−1

k∑

j=1

F−1(u j )
)ν ≥ γ

(
k−1

k∑

j=1

u1/νj

)ν

.

(2) Suppose ν ≥ 1. Our task is to prove that, for v j = u1/νj , we have

⎛

⎝
k∑

j=1

v j

⎞

⎠

ν

≥
k∑

j=1

vν
j

[
(k − j + 1)ν − (k − j)ν

]
.

Clearly,

0 ≤ v1 ≤ v2 ≤ · · · ≤ vk . (3.5)

Without loss of generality, we may assume that
∑k

j=1 v j = 1. We need to show
that, subject to this constraint, the maximum value of the RHS function, call it ψ(v),
is 1. Since ν ≥ 1, ψ(v) is a convex function of v ≥ 0. So, for v meeting (3.5)
and

∑k
j=1 v j = 1, ψ(v) attains its maximum at an extreme point of the resulting

polyhedron. Every such point v is of the form v = (0, . . . 0, v, . . . , v). So if the last
zero is at position j0, then (k − j0)v = 1, i.e. v = (k − j0)−1, and therefore ψ(v) is

k∑

j=1

vν
j

[
(k − j + 1)ν − (k − j)ν

]

= (k − j0)
−ν

k∑

j= j0+1

[
(k − j + 1)ν − (k − j)ν

]

= (k − j0)
−ν · (k − j0)

ν = 1.

��
Armed with this lemma, we derive the upper bound for the truncated expectation

En,k := E
[
1{Uk≤δn}

(
1 − φ(U)

)n]
, φ(U) = F

⎛

⎝k−1
k∑

j=1

F−1(Uj )

⎞

⎠ .

Let ν ≥ 1. Using notations γ j :k = ∑k
�= j γ� ∈ (0, 1], dut = ∏t

j=1 du j , u0 = 0, we
write

En,k

(n − 1)k
=

δn∫

0

· · ·
δn∫

uk−1

(1 − uk)
n−1−k(1 − φ(u)

)n
duk

≤
δn∫

0

· · ·
δn∫

uk−1

(1 − uk)
n−1−k

⎛

⎝1 −
k∑

j=1

γ j u j

⎞

⎠

n

duk
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using concavity of log(·)

≤
δn∫

0

· · ·
δn∫

uk−1

[
1 − uk + n

2n − 1 − k

(
uk(1 − γk) −

k−1∑

j=1

γ j u j

)]2n−1−k

duk

integrating over uk and dropping the negative term at uk = δn as γ1:k ≤ 1

≤ (2n − k)−1
(
1 − n

2n − 1 − k
(1 − γk)

)−1

×
δn∫

0

· · ·
δn∫

uk−2

⎡

⎣1 − uk−1+ n

2n − 1 − k

⎛

⎝uk−1(1 − γk−1:k) −
k−2∑

j=1

γ j u j

⎞

⎠

⎤

⎦

2n−k

duk−1.

Repeating the integration step (k − 1) times, we arrive at the bound

En,k ≤
k∏

j=1

n − 1 − k + j

2n − 1 − k + j

k∏

j=1

(
1 − n

2n − 1 − k
(1 − γk− j+1:k)

)−1

=
k∏

j=1

n − 1 − k + j

2n − 1 − k + j

k∏

j=1

(
1 − n

2n − 1 − k

(
1 − γ

(
j

k

)ν))−1

.

Taking logarithms, using k ≤ kn , γ = 1+ O(δ
1/ν
n ), and viewing the resulting sum as

a Riemann sum, we easily obtain

log En,k

k
≤ o(1) − c(ν),

c(ν) = log 2 +
∫ 1

0
log

(
1

2
+ xν

2

)
dx =

∫ 1

0
log
(
1 + xν

)
dx .

(3.6)

Clearly, c(ν) is positive and decreasing as ν increases. Note that

c(1) = 2 log 2 − 1 ≈ 0.386,

c(ν) =
∑

j≥1

(−1) j−1

j(ν j + 1)
→ 0 as ν → ∞.

Let ν < 1. Since
(
1
k

∑k
j=1 u

1/ν
j

)ν

is decreasing in ν, (3.6) holds with c(ν) := c(1).

Thus, for all ν > 0, the truncated expectation En,k is decreasing exponentially with
k ≤ kn . Combining this claim with (3.1), we have proved

Lemma 3.3 Under the conditions (1-2) in Theorem 1.2, for k ≤ kn, we have

P{W̄k ≤ kV1} ≤ exp
(
o(k) − c(max(ν, 1))k).
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It remains to upper-bound ρ̂(n, k). According to (2.2),

ρ̂(n, k) ≤ n(k + 1)E

[∫ ∞

W̄k/k
f
(
(k + 1)v − W̄k

) [
1 − F(v)

]n−1
dv

]
. (3.7)

Let us bound the integral. We now assume that the density f satisfies the condition
(3):

β = sup
{
f (v′)/ f (v) : v′ ∈ [v, 2v], f (v) > 0

}
< ∞;

following Feller [17], one can say that the density f is dominatedly varying on the
support of the distribution F . We will need the following result, cf. [17,18].

Lemma 3.4 Introduce

β( j) = sup

{
f (x ′)
f (x)

: x, x ′ ∈ (0, b), x ′ ∈ [x, j x], f (x) > 0

}
, j > 1. (3.8)

Under the condition (3), we have β( j) ≤ β jα , with α := log2 β.

Proof (For completeness.) First of all,

β(k1k2) ≤ β(k1)β(k2), k1, k2 ≥ 2;

thus β(·) is a sub-multiplicative function. Consequently, β(2m) ≤ β(2)m = βm .
Second, given k > 2, let m = m(k) be such that 2m−1 < k ≤ 2m . Since β(·) is
increasing, we have

β(k) ≤ β(2m) ≤ βm ≤ β
log(2k)
log 2 = (2k)log2 β = βklog2 β.

��
The argument of the density f in (3.7) is sandwiched between v and (k + 1)v. So, by
Lemma 3.4, we obtain

ρ̂(n, k) ≤ n(k + 1)log2 β+1E

[∫ ∞

W̄k/k
f (v)

[
1 − F(v)

]n−1
dv

]

= (k + 1)log2 β+1E
[[
1 − F(W̄k/k)

]n]

= (k + 1)log2 β+1 exp
(−c(max(ν, 1))k + o(k)

)

= exp
(−c(max(ν, 1))k + o(k)

)
,

as log k = o(k) for k → ∞.
Therefore we completed the proof of
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Theorem 3.1 Under the properties (1–3) in Theorem 1.2, for k ≤ kn, we have

P{Kn = k + 1} ≤ exp
(−c(max(ν, 1))k + o(k)

)
.

Note The conditions (1), (2) relate to a single point a, i.e. they are so mild that there
are scores of the classic densities meeting them. The condition (3) is different, as it
concerns the ratio of the density values at the pairs of comparably large/small x and
x ′. For the density f of a c.d.f. F meeting the conditions (1) and (2), the condition
(3) is met, for instance, if (i) f (x) > 0 for x ∈ (0, x1) and (ii) there is x2 ∈ (0, x1)
such that f (x) is decreasing on [x2, x1). Many commonly used distributions satisfy
the properties (1–3).

3.2 Distributions whose supports are not left bounded

In this section, we turn to the case when the support of the distribution extends all
the way to −∞. Two examples come to mind. One is the normal distribution, with
density

f (x) = 1√
2π

e−x2/2.

It is known, and can be proved via a single integration by parts, that

F(x) = 1 + O(|x |−1)

|x |√2π
e−x2/2, x → −∞.

Another example is a positive exponential, with F(x) = ex , for x < 0, and F(x) ≡ 1
for x ≥ 0. They both are special cases of the distribution F(x) such that, for some
a ∈ (−∞,∞), b > 0, c > 0, and κ > 0,

F(x) = (c + O(|x |−κ))|x |a exp(−|x |b), x → −∞, (3.9)

which will be the focus of our analysis here.
We distinguish between two cases depending on the value of b.

3.2.1 Case b ≥ 1

Recall the notation

φ(u) = F

⎛

⎝1

k

k∑

j=1

F−1(u j )

⎞

⎠ , S(u) = 1

k

k∑

j=1

log
1

u j
.

We will write L � R if L ≥ (1 + o(1))R.

Lemma 3.5 As all u j ↓ 0, it holds that φ(u) � S(u)min{0,a/b}e−S(u).
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Proof Since x = F−1(u) iff u = F(x), we have: for u ↓ 0,

|x | =
(
log

c

u
+ a log |x | + O(|x |−κ)

)1/b

=
[
log

c

u
+ a

b
log
(
log

c

u
+ a log |x | + O(|x |−κ

)]1/b

=
[
log

c

u
+ a

b
log log

(
1

u

)
+ O

(
log log(1/u)

log(1/u)

)]1/b
. (3.10)

As y1/b is concave for b ≥ 1, we obtain then

X := 1

k

k∑

j=1

F−1(u j )

= −1

k

k∑

j=1

[
log

c

u j
+ a

b
log log

(
1

u j

)
+ O

(
log log(1/u j )

log(1/u j )

)]1/b

≥ −
⎡

⎣1

k

k∑

j=1

(
log

c

u j
+ a

b
log log

(
1

u j

)
+ O

(
log log(1/u j )

log(1/u j )

))
⎤

⎦

1/b

= −
⎡

⎣log c + S(u) + o(1) + a

bk

k∑

j=1

log log

(
1

u j

)⎤

⎦

1/b

.

(i) If a ≤ 0, then X ≥ −[log c + S(u) + o(1)
]1/b

. Since X → −∞, we evaluate
F(X) using (3.9):

F(X) = (c + O(|X |−κ))|X |a exp(−|X |b)
≥ (1 + o(1))S(u)a/be−S(u).

(ii) If a > 0, then, using concavity of log(·), we obtain

X ≥ −
⎡

⎣log c + S(u) + o(1) + a

b
log

⎛

⎝1

k

k∑

j=1

log
1

u j

⎞

⎠

⎤

⎦

1/b

= −
[
log c + S(u) + o(1) + a

b
log S(u)

]1/b
.

Therefore

F(X) = (c + O(|X |−κ))|X |a exp(−|X |b) ≥ (1 + o(1))e−S(u).

��
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Theorem 3.6 Let b > 1. For k ≤ kn, we have

P
{
W̄k ≤ kV1

} ≤ O

((
8

9

)k/4

+ exp

(

−k
(
log n

k

)min{0,a/b}

2e

))

. (3.11)

Consequently, by (2.1),

P
{
Kn = k + 1

} ≤ O

(

n

(
8

9

)k/4

+ n exp

(

−k
(
log n

k

)min{0,a/b}

2e

))

.

Proof According to (2.3) and the definition of φ(U), we have: given S > 0,

P
{
W̄k ≤ kV1

} = E
[
(1 − φ(U))n

]

= E
[
1{S(U)>S}(1 − φ(U))n

]+ E
[
1{S(U)≤S}(1 − φ(U))n

]
.

(3.12)

By Lemma 3.1, if k ≤ kn then S(U) > S := log n
αk with probability of order

(αe/(1 − β))βk = (8/9)k/4, if we select α = 2
3e and β = 1/4. If S(U) ≤ S, then by

Lemma 3.5 we have

φ(U) ≥ (1 + o(1))Smin{0,a/b}e−S = (1 + o(1))
αk

n

(
log

n

αk

)min{0,a/b}

= (1 + o(1))
k

(3/2)en

(
log

n

k

)min{0,a/b}
.

In that case we obtain

(
1 − φ(U)

)n ≤ exp

(

−(1 + o(1))
k
(
log n

k

)min{0,a/b}

(3/2)e

)

. (3.13)

Invoking (3.12) yields the inequality (3.11). ��

3.2.2 Case b < 1

We consider k ∈ [k1, kn], k1 = 
logσ n�, σ > 1+ 1/b. (The choice of σ will become
clear shortly.) Our starting bound for |X |b is based on the bottom line in (3.10): for
uk ≤ δn , we have

|X |b ≤
⎡

⎣1

k

k∑

j=1

(
log

1

u j

)1/b
⎤

⎦

b

×
[
1 +

(a
b

+ O(log−1(1/uk))
) log log(1/uk)

log(1/uk)

]
.

(3.14)
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Recall that u1, . . . , uk are generic values of the first k order statistics U1, . . . ,Uk

for the (n − 1) [0, 1]-uniform, independent random variables. To find a usable upper
bound for the RHS in (3.14), valid for almost all u1, . . . , uk ≤ δn , we need to identify a
sufficiently likely upper bound for that RHS when the k-tuple (u1, . . . , uk) is replaced
with the order statistics U1, . . . ,Uk .

To this end, we pick jn = 
logσ1 n�, such that 1 < σ1 < σ − 1/b (a choice made
possible by the condition σ > 1 + 1/b), and use b < 1 to bound

⎡

⎣1

k

k∑

j=1

(
log

1

Uj

)1/b
⎤

⎦

b

≤ T b
1 + T b

2 ,

T1 := 1

k

jn∑

j=1

(
log

1

Uj

)1/b

, T2 := 1

k

k∑

j= jn+1

(
log

1

Uj

)1/b

.

(3.15)

Pick σ2 ∈ (1, (σ − σ1)b
)
and let σ3 := (σ − σ1)b − σ2 > 0. Using

T1 ≤ jn
k

(
log

1

U1

)1/b

, P{U1 ≤ u} = 1 − (1 − u)n−1 ≤ nu,

we obtain:

P
{
T b
1 > log−σ3 n

}
≤ exp

(− logσ2 n + log n
) ≤ exp

(−0.5 logσ2 n
)
. (3.16)

We obviously need σ2 > 1 to overcome log n term; besides we need all our small
probabilities to be really small, i.e. of order exp

(−(log n)1+�
)
. In contrast, σ3 > 0

is good enough for the proof. Existence of the desired σi is assured by the starting
constraint σ > 1 + 1/b. Since σ2 > 1, we see that T b

1 is vanishingly small with
super-polynomially high probability, i.e. quite surely.

Turn to T2. Our estimates need to be rather sharp since we expect T b
2 to be q.s.

the dominant contribution to the RHS in (3.15). Here is a key observation. If w j are
independent negative exponentials, with the same parameter, say 1, then, denoting
U = (U1 < · · · < Un−1), we have

U
D≡
{

Wi

Wn−1

}

i∈[n−1]
, Wi :=

i∑

j=1

w j , (3.17)

([27], Section 5.4). In particular,

T1
D≡ 1

k

jn∑

j=1

(
log

Wn−1

Wj

)1/b

, T2
D≡ 1

k

k∑

j= jn+1

(
log

Wn−1

Wj

)1/b

.
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The relation (3.17) allows us simply to define U = {
Wi/Wn−1

}
. In the case of T2,

both Wn−1 and Wj are sums of the large numbers of independent w j , and this opens
the door to the Chernoff-type estimates.

Here is a general, Chernoff-type, claim. Let X1, . . . , Xν be the independent copies
of a random variable X such that f (λ) := E

[
exp(λX)

]
exists and is two-times contin-

uously differentiable for λ ∈ (−λ0, λ0), for some λ0 > 0. Let Sμ :=∑μ
j=1 X j . Then

the distribution of Sμ is exponentially concentrated around μ f ′(0). More precisely,
there exist �0 ∈ (0, 1) and ρ > 0 such that,

P
{|Sμ − μ f ′(0)| ≥ μ f ′(0)�

} ≤ 2e−μ f ′(0)ρ�2
, ∀� ∈ (0,�0). (3.18)

For our case X = w we have

E
[
eλw
] = f (λ) := 1

1 − λ
, |λ| < 1,

so that λ0 = 1, f ′(0) = 1. So, by (3.18), for some �0 ∈ (0, 1),

P
{
Wi ∈ [(1 − �)i, (1 + �)i]} ≥ 1 − 2 exp(−iρ�2), ∀� ∈ (0,�0). (3.19)

In particular, with exponentially high probability, Wn−1 ∈ [n/2, 2n].
Further, using the arithmetic-geometric mean inequality, we write

T2 = 1

k

k∑

j= jn+1

(
log

Wn−1

Wj

)1/b

= 1

k

k∑

j= jn+1

⎛

⎝log
Wn−1/ j

1
j

∑ j
i=1 wi

⎞

⎠

1/b

≤ 1

k

k∑

j= jn+1

(

log
Wn−1/ j
∏ j

i=1 w
1/ j
i

)1/b

= 1

k

k∑

j= jn+1

(
log

Wn−1

j

)1/b
(

1 − log
∏ j

i=1 w
1/ j
i

log Wn−1
j

)1/b

using 1 + x ≤ ex

≤ 1

k

k∑

j= jn+1

(
log

Wn−1

j

)1/b

· exp
⎛

⎝ 1

b log(Wn−1/ j)
·
∑ j

i=1 log
1
wi

j

⎞

⎠ . (3.20)

So this time we are dealing with the sums of logarithms of the independent expo-
nentials wi . Observe that

φ(λ) := E

[
exp

(
λ log

1

w

)]
=
∫ ∞

0
e−z z−λ dz = �(1 − λ), λ < 1.
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So

φ′(λ) =
(
E

[
exp

(
λ log

1

w

)])′

λ

= E

[(
1

w

)λ

· log 1

w

]

= (�(1 − λ))′ ,

hence φ′(λ) exists, and is continuous, for λ < 1. Letting λ → 0, we obtain

φ′(0) = E

[
log

1

w

]
= − d�(z)

dz

∣∣∣∣
z=1

= γ,

where γ is the Euler constant. Likewise φ′′(λ) exists and is continuous, for λ < 1.
Using (3.18), we have: for some �0 ∈ (0, 1) and ρ > 0,

P

⎧
⎨

⎩
1

j

j∑

i=1

log
1

wi
≥ γ (1 + �)

⎫
⎬

⎭
≤ 2 exp(− jρ�2), ∀� ∈ (0,�0). (3.21)

Observe that on the event in this equation the exponential factor in (3.20) is 1 +
O(log−1 n), uniformly for j ∈ [ jn + 1, kn]. Since j > jn = 
logσ1 n�, and σ1 > 1,
the probability of the union of the events in (3.21) over j ∈ [ jn + 1, k] is of order
exp
[−�(logσ1 n)

]
.

Therefore, in conjunction with (3.19) for i = n − 1, we have: with probability
≥ 1 − exp

(−�(logσ1 n)
)
, the bound (3.20) implies

T2 ≤ 1 + O(log−1 n)

k

k∑

j= jn+1

(
log

Wn−1

j

)1/b

≤ 1 + O(log−1 n)

k
(k − jn)

(
log

Wn−1

jn

)1/b

= (1 + O(log−1 n)
) (

log
n

jn

)1/b

,

since jn/k ≤ O
(
(log n)σ1−σ

)� (log n)−1/b. Therefore

P

{
T b
2 >

(
1 + O(log−1 n)

) · log n

jn

}
≤ exp

(−�(logσ1 n)
)
. (3.22)

Combining (3.15), (3.16) and (3.22), we obtain: with Uj = Wj
Wn−1

,

P

⎧
⎪⎨

⎪⎩

⎡

⎣1

k

k∑

j=1

(
log

1

Uj

)1/b
⎤

⎦

b

≥ (
1 + O(log−1 n)

)
log

(
n

logσ1 n

)
⎫
⎪⎬

⎪⎭

≤ exp
(−�(logσ4 n)

)
, σ4 := min{σ1, σ2} > 1.

(3.23)
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Finally, using (3.19), we have 1/Uk = Wn−1/Wk = �(n/k) ≥ �(n1/2) with proba-
bility exceeding

1 − exp(−�(k)) − exp(−�(n)) ≥ 1 − exp
(−�(logσ n)

)
.

So, combining the above estimate with (3.14), we arrive at

P

{
|X |b ≤

[
1 +

(a
b

+ O[log−1(n/k)]
) log log(n/k)

log(n/k)

]
log

(
n

logσ1 n

)}

≥ 1 − exp
(−�(logσ5 n)

)
, σ5 := min{σ, σ4}. (3.24)

Recall that k = O(n1/2). So for a ≤ 0, the event on the LHS of (3.24) is contained
in the event

C ′
n :=

{
|X |b ≤ log

n

logσ1 n
+ O

(
log log n

log n

)}
. (3.25)

For a > 0, the containing event is

C ′′
n :=

{

|X |b ≤ log
n

(log n)σ1− 2a
b +O((log log n)−1)

}

, (3.26)

because

(log n) ·
(a
b

+ O[log−1(n/k)]
) log log(n/k)

log(n/k)

≤ 2a

b
(log log n)

(
1 + O

(
log log n

log n

))
,

with factor 2 coming from kn = 
αn1/2�, the largest value of k under consideration.
Using the formula (3.9), i.e.

F(x) = (c + O(|x |−κ))|x |a exp(−|x |b), x → −∞,

we see that nF(X) = �
(
(log n)σ1+ a

b

)
on C ′

n (i.e. for a ≤ 0), and nF(X) =
�
(
(log n)σ1− 2a

b

)
on C ′′

n (i.e. for a > 0). We want nF(X) � log n on the respec-

tive event Cn . To ensure this property, we need to have σ1 > 1 + |a|
b if a ≤ 0, and

σ1 > 2a
b + 1 if a > 0. Recall though that for the desirable σi to exist, it was necessary

and sufficient to have σ > σ1 + 1/b. So let us introduce σ(a, b), the infimum of
admissible σ , i.e.
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σ(a, b) =

⎧
⎪⎨

⎪⎩

1 + |a| + 1

b
, if a ≤ 0,

1 + 2a + 1

b
, if a > 0.

(3.27)

Given σ > σ(a, b), we can choose σ ∗
1 = σ ∗

1 (a, b) as the middle point of its respective
admissible range:

σ ∗
1 =

⎧
⎪⎨

⎪⎩

1 + |a|/b + σ − 1/b

2
= 1 + |a|

b
+ σ − σ(a, b)

2
, if a ≤ 0,

1 + 2a/b + σ − 1/b

2
= 1 + 2a

b
+ σ − σ(a, b)

2
, if a > 0.

Consequently, both σ ∗
1 + a/b for a ≤ 0 and σ ∗

1 − 2a/b for a > 0 equal 1 + 0.5(σ −
σ(a, b)). By (3.16), σ2 can be chosen arbitrarily close to, but strictly less than

σ ∗
2 = b(σ − σ ∗

1 ) = 1 + b(σ − σ(a, b))

2
, (3.28)

allowing σ3 to be positive. It turns out that σ ∗
2 < σ ∗

1 , and consequently min{σ j : j ∈
[5]\{3}} can be made arbitrarily close from below to σ ∗

2 . Sure enough, σ
∗
2 > 1 since

σ > σ(a, b). We have proved

Lemma 3.7 Given a, and b ∈ (0, 1), let σ(a, b) be defined by (3.27). For σ > σ(a, b),
let k1 = 
logσ n�, kn = 
αn1/2�. Then

P

⎧
⎨

⎩
∀ k ∈ [k1, kn] : nF

⎛

⎝1

k

k∑

j=1

F−1(Uj )

⎞

⎠ ≥ log1+c n

⎫
⎬

⎭
≥ 1 − exp(− log1+d n)

if 0 < c <
σ−σ(a,b)

2 and 0 < d <
b(σ−σ(a,b))

2 .

The next claim follows directly from Lemma 3.7 and

P
{
W̄k ≤ kV1

} = E
[(
1 − φ(U)

)n]
, φ(U) = F

⎛

⎝1

k

k∑

j=1

F−1(Uj )

⎞

⎠ .

Theorem 3.8 Let b < 1. For all k ∈ [k1, kn],

P
{
W̄k ≤ kV1

} ≤ exp
(− log1+d n

)
, ∀ d <

b (σ − σ(a, b))

2
.

Consequently, by (2.1),

P
{
Kn = k + 1

} ≤ exp
(− log1+d n

)
, ∀ d <

b (σ − σ(a, b))

2
.

123



On sparsity of the solution to a random quadratic… 331

3.2.3 Case Q = (M + MT )/2

Consider the following randommatrix model: first randomly generate an n×n matrix
M whose elements are i.i.d. random variables with the c.d.f. G(·); then define Q =
(M + MT )/2. Chen and Peng [12] studied the case when G is the standard normal
distribution. Let us consider the more general case when for some a and positive b, c
and κ ,

G(x) = (c + O(|x |−κ))|x |a exp(−|x |b), x → −∞. (3.29)

We will assume that this asymptotic formula can be differentiated to yield an asymp-
totic formula for the density g(x). The diagonal entries of Q have distributionG, while
the non-diagonal entries of Q have the distribution F(x) = (G
G)(2x). Let us show
that F satisfies the condition similar to (3.29).

Lemma 3.9 Suppose G satisfies the condition (3.29). Suppose that a > −1 if b ≤ 1.
Then there exist c′ > 0, κ ′ > 0 such that

F(x) = (c′ + O(|x |−κ ′
))|x |a′

exp
(
−2min(1,b)|x |b

)
, x → −∞,

a′ =

⎧
⎪⎪⎨

⎪⎪⎩

2a + b

2
, if b > 1,

a + b − 1, if 0 < b < 1,

2a + 1, if b = 1.

Note. Importantly, thanks to the factor 2min(1,b) > 1, we have

lim
x→−∞

G(x)

F(x)
= ∞. (3.30)

Chen et al. [12] demonstrated that, for the diagonal entries and the non-diagonal entries
having respectively the distributions G and F ,

P
{
W̄k ≤ kV1

} = E

⎡

⎣

⎛

⎝1 − G

⎛

⎝1

k

k∑

j=1

F−1(Uj )

⎞

⎠

⎞

⎠

n⎤

⎦ .

So by (3.30),

⎛

⎝1 − G

⎛

⎝1

k

k∑

j=1

F−1(u j )

⎞

⎠

⎞

⎠

n

≤
⎛

⎝1 − F

⎛

⎝1

k

k∑

j=1

F−1(u j )

⎞

⎠

⎞

⎠

n

(3.31)

for 1
k

∑k
j=1 F

−1(u j ) < −S, if S > 0 is sufficiently large. Therefore the argument in
the previous section will apply to this model once we show that F meets the condition
(3.9).
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Proof We will write f (x) ∼ g(x) if, for some ω > 0, f (x)/g(x) = 1+ O(|x |−ω) as
x → −∞. Differentiating the asymptotic formula (3.29), we have

g(x) = (cb + O(|x |−κ))|x |a+b−1 exp(−|x |b), x → −∞.

Now

F(x) = P{Qi, j ≤ x} = P{Mi, j + Mj,i ≤ 2x}
= 2 P{Mi, j + Mj,i ≤ 2x, Mi, j ≤ x} − P2{Mi, j ≤ x}. (3.32)

Here, by (3.29),

P2{Mi, j ≤ x} = (c2 + O(|x |−κ))|x |2a exp(−2|x |b), x → −∞. (3.33)

Consider P{Mi, j + Mj,i ≤ 2x, Mi, j ≤ x}.
Case b > 1. Picking λ ∈ (1, 2) such that λb > 2, we have: for x < 0,

P{Mi, j + Mj,i ≤ 2x, Mi, j ≤ x} =
x∫

−∞
G(2x − u)g(u) du

=
λx∫

−∞
G(2x − u)g(u) du +

x∫

λx

G(2x − u)g(u) du =:
∫

1
+
∫

2
.

(3.34)

Here, by (3.29), for x → −∞,

∫

1
≤ G(λx) ≤ 2c|λx |ae−|λx |b , (3.35)

and

∫

2
∼ c2b

x∫

λx

|2x − u|a · |u|a+b−1 exp
(−|2x − u|b − |u|b) du

(ψx (u) := |2x − u|b + |u|b attains its minimum over [2x, x] at u = x)

∼ c2b |x |2a+b−1

x∫

λx

exp
(−|2x − u|b − |u|b) du

(
Taylor-expanding ψx (u) at u = x

)

∼ c2b |x |2a+b−1 exp
(−2|x |b)

x∫

λx

exp
(−b(b − 1)|x |b−2(x − u)2

)
du
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(
extending the integration to (−∞, x])

∼ c2b |x |2a+ b
2 exp

(−2|x |b)
√

π

b(b − 1)

= c2

2

√
bπ

b − 1
|x |2a+ b

2 exp
(−2|x |b). (3.36)

Combining the bounds (3.29), (3.33) and (3.36), and recalling that λb > 2, we com-
plete the proof.

Case b ∈ (0, 1]. This time we pick λ > 2 in (3.34). Substituting u = ξ x in the first
line of (3.36), and using a > −1, we have: for x → −∞,

1

c2b

∫

2
∼ |x |2a+b

λ∫

1

|2 − ξ |a |ξ |a+b−1 exp
(
−|x |b(|2 − ξ |b + |ξ |b)

)
dξ. (3.37)

(It is the factor |2 − ξ |a that dictates the condition a > −1.) For b < 1, the function
|2 − ξ |b + |ξ |b attains its minimum over [1, λ], which is 2b, at ξ = 2. Further

|2 − ξ |b + |ξ |b = 2b + |2 − ξ |b + O(|2 − ξ |), ξ → 2.

Therefore

1

c2b

∫

2
∼ 2a+b−1|x |2a+b

λ∫

1

|2 − ξ |a exp
(
−|x |b(2b + |2 − ξ |b)

)
dξ

= 2a+b−1|x |2a+be−|2x |b
λ∫

1

|2 − ξ |ae−|x(2−ξ)|b dξ

= 2a+b−1|x |2a+be−|2x |b
∫ λ−2

−1
ηae−|xη|b dη

∼ 2a+b|x |a+b−1e−|2x |b
∫ ∞

0
zae−zb dz

= 2a+b

b
�
(a + 1

b

)
|x |a+b−1e−|2x |b .

In combination with (3.35), the constraint λ > 2 and (3.33), this completes the proof
for b < 1.

Consider b = 1. Starting with (3.37), a similar work shows that, for a > −1,

1

c2b

∫

2
∼ |x |2a+be−2|x |

∫ 2

1
(2 − ξ)aξa+b−1 dξ.
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So, again by (3.35),
∫
1 /
∫
2 is of order, roughly, e

−(λ−2)|x |, and by (3.33), P2{Mi, j ≤
x}/ ∫2 is of order |x |−b. ��
Lemma 3.9 immediately yields the counterparts of Theorems 3.6 and 3.8.

Theorem 3.10 Let b ≤ 1 and a > −1. For

a′ =
{
a + b − 1, if 0 < b < 1,

2a + 1, if b = 1,
σ > σ(a′, b) :=

⎧
⎪⎪⎨

⎪⎪⎩

1 + |a′| + 1

b
, if a′ ≤ 0,

1 + 2a′ + 1

b
, if a′ > 0,

and all k between �logσ n� and kn = 
αn1/2�, (α > e
√
2), we have

P
{
Kn = k + 1

} ≤ exp
(− log1+d ′

n
)
, ∀ d ′ <

b(σ − σ(a′, b))
2

,

Theorem 3.11 Let b > 1. Then, for all k ≤ kn, we have

P
{
Kn = k + 1

} ≤ O

⎛

⎝n
(
8

9

)k/4

+ n exp

⎛

⎝−k
(
log n

k

)min{0,a′/b}

2e

⎞

⎠

⎞

⎠ ,

a′ := 2a + b

2
.

Consequently Kn = Op
(
(log n)max(1,1/2−2a/b)

)
. So for the quasi-normal case a =

−1, b = 2 we have Kn = Op
(
log3/2 n

)
.

Note The reader certainly noticed that the inequality (3.31) is weaker than the inequal-
ity (3.30). It may well be possible to lower the powers of log n in the likely order of
Kn by using (3.30) fully, but the additional technicalities look to be disproportionately
high.

4 Conclusion

Our results, together with [11,12], demonstrate that the optimal solutions of randomly
generated StQPs are sparse under very general distribution assumptions. It would be
interesting to extend our analysis to portfolio selection problems in which the vari-
ance of a portfolio of assets with random returns is minimized [32] so as to diversify
the investment risk. However, it has been observed empirically in the literature (see
for instance [14,19,22]) that this does not lead to the diversification one would have
expected, i.e., the solutions are usually quite sparse, when the empirical covariance
matrices are constructed from real data. Our results and/or methodologies may allow
us to provide an understanding of the sparsity of portfolio selection problems theoret-
ically.
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The sparsity of solutions holds beyond the randomly generated StQPs [13]. See also
the references to L1 minimization research in the introduction. It would be important to
identify a broader class of random quadratic optimization problems with many linear
constraints that are likely to have solutions close to an extreme point of the attendant
polyhedron.

It would also be interesting to explore how sparsity can be employed to facilitate
the design of algorithms that are efficient on average. One possibility is to sift through
all possible supports whose sizes are no more than the likely (poly-logarithmic) upper
bound in our theorems. Our results indicate that, typically, the running time of even
such a primitive algorithm is of order exp(logα n), i.e. well below an exponential order.
In this context, we refer the reader to Ye et al. [37] who develop a homotopymethod for
solving a sequence of quadratic programs with slightly varying problem parameters.
Their computational experiments demonstrate adaptability of the method to solution
sparsity.

Acknowledgements We are grateful to the referees for the numerous helpful comments and suggestions.
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