
Mathematical Programming (2021) 186:289–307
https://doi.org/10.1007/s10107-019-01455-3

FULL LENGTH PAPER

Series A

The salesman’s improved tours for fundamental classes

Sylvia Boyd1 · András Sebő2
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Abstract
Finding the exact integrality gap α for the LP relaxation of the metric travelling
salesman problem (TSP) has been an open problem for over 30 years, with little
progress made. It is known that 4/3 ≤ α ≤ 3/2, and a famous conjecture states
α = 4/3. It has also been conjectured that the integrality gap is achieved for half-integer
basic solutions of the linear program. For this problem, essentially two “fundamental”
classes of instances have been proposed. This fundamental property means that in
order to show that the integrality gap is at most ρ for all instances of the metric TSP,
it is sufficient to show it only for the instances in the fundamental class. However,
despite the importance and the simplicity of such classes, no apparent effort has been
deployed for improving the integrality gap bounds for them. In this paper we take a
natural first step in this endeavour, and consider the 1/2-integer points of one such
class. We successfully improve the upper bound for the integrality gap from 3/2 to
10/7 for a superclass of these points for which a lower bound of 4/3 is proved. A key
role in the proof of this result is played by finding Hamiltonian cycles whose existence
is equivalent to Kotzig’s result on “compatible Eulerian tours”, and which lead us to
delta-matroids for developing the related algorithms. Our arguments also involve other
innovative tools from combinatorial optimization with the potential of a broader use.
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1 Introduction

Given the complete graph Kn = (Vn, En) on n nodes with non-negative edge costs
c ∈ R

En , the traveling salesman problem (henceforth TSP) is to find a Hamiltonian
cycle of minimum cost in Kn . When the costs are metric, i.e. satisfy the triangle
inequality ci j + c jk ≥ cik for all i, j, k ∈ Vn , the problem is called the metric TSP. If
the metric is defined by the shortest (cardinality) paths of a graph, then it is called a
graph metric; the TSP specialized to graph metrics is the graph TSP.

For G = (V , E), x ∈ R
E and F ⊆ E , x(F) := ∑

e∈F xe; for U ⊆ V , δ(U ) :=
δG(U ) := {uv ∈ E : u ∈ U , v ∈ V \U }; E[U ] := {uv ∈ E : u ∈ U , v ∈ U }. The
scalar product of vectors a and x of the same dimension will simply be denoted by
ax . A path is the edge set of a connected subgraph with two nodes of degree 1 and all
other nodes of degree 2, and a cycle is the edge set of a connected subgraph with all
node degrees equal to 2. A multisubgraph of G is a subgraph where taking more than
one copy of an edge of G is allowed.

A natural linear programming relaxation for the TSP is the following subtour LP:

minimize cx (1)

subject to: x(δ(v)) = 2 for all v ∈ Vn, (2)

x(δ(S)) ≥ 2 for all ∅ �= S � Vn, (3)

0 ≤ xe ≤ 1 for all e ∈ En . (4)

For a given cost function c ∈ R
En , we use L P(c) to denote the optimal solution value

for the subtour LP and OPT(c) to denote the optimal solution value for the TSP. The
polytope associated with the subtour LP, called the subtour elimination polytope and
denoted by Sn , is the set of all vectors x satisfying the constraints of the subtour LP,
i.e. Sn = {x ∈ R

En : x satisfies (2)–(4)}.
Themetric TSP is known to be NP-hard. One approach taken for finding reasonably

good solutions is to look for a ρ-approximation algorithm for the problem, i.e. a
polynomial-time algorithm that always computes a solution of value at most ρ times
the optimum. Currently the best such algorithm known for the metric TSP is the
algorithm due to Christofides [9] for which ρ = 3

2 . Although it is widely believed that
a better approximation algorithm is possible, no one has been able to improve upon
Christofides algorithm in 4 decades. For arbitrary nonnegative costs not constrained
by the triangle inequality there does not exist a ρ-approximation algorithm for any
ρ ∈ R unless P=NP, since such an algorithm would be able to decide if a given graph
is Hamiltonian.

For an approximation guarantee of aminimization problem one needs lower bounds
for the optimum, often provided by linear programming. For the metric TSP with cost
function c, a commonly used lower bound is LP(c). Then finding a solution, i.e. a
Hamiltonian cycle, of objective value at most ρ LP(c) in polynomial time for every
metric cost function c implies at the same time a ρ-approximation algorithm, and
establishes that the integrality gap for the subtour LP, i.e. maxc metric OPT(c)/LP(c),
is at most ρ. (Without the metric assumption the integrality ratio OPT(c)/LP(c) is
unbounded already for the graph TSP by putting infinite costs on non-edges of the
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The salesman’s improved tours for fundamental classes 291

defining graph.) Since up until now the bounds on the integrality gap have been proved
via polynomial algorithms constructing the Hamiltonian cycles, the best approxi-
mation ratio achievable in polynomial time is conjectured not to be larger than the
integrality gap.

It is known that the integrality gap for the subtour LP is at most 3
2 [10,25,26],

however no example for which the ratio OPT(c)/LP(c) is greater than 4
3 is known. In

fact, a famous conjecture, often referred to as the 4
3 Conjecture, states the following:

Conjecture 1 The integrality gap for the subtour LP with metric c is at most 4
3 .

Well-known families of examples have the ratio OPT(c)/LP(c) asymptotically equal
to 4

3 . In almost 30 years, there have been no improvements made to the upper bound
of 3

2 or lower bound of 4
3 for the integrality gap for the subtour LP with metric c.

Define a tour to be the edge set of a spanning Eulerian (i.e. connected with all
degrees even) multisubgraph of Kn . If none of the multiplicities can be decreased (i.e.
by removing two copies of an edge), then all multiplicities are at most two; however,
there are some technical advantages to allowing higher multiplicities.

For any multiset J ⊆ En , the incidence vector of J , denoted by χ J , is the vector
in R

En for which χ J
e is equal to the number of copies of edge e in J for all e ∈ En .

We use Tn to denote the convex hull of incidence vectors of tours of Kn , and for costs
c ∈ R

En we use OPTTn (c) to denote the cost of a minimum cost tour. Note that Tn is
an unbounded polyhedron, as Tn + R

En+ = Tn : each edge may have arbitrarily large
multiplicity.

For any ρ ∈ R, ρ Sn denotes {y ∈ R
En : y = ρx, x ∈ Sn}. The definition of

the integrality gap can be reformulated in terms of a containment relation between
the two polyhedra ρSn and Tn (Theorem 1) that does not depend on the objective
function. We not only use this reformulation here, but also develop a specific way of
exploiting it, and for our arguments this is the very tool that works. Showing for some
constant ρ ∈ R that ρ x ∈ Tn for each x ∈ Sn , i.e. that ρ x is a convex combination
of incidence vectors of tours, gives an upper bound of ρ on the integrality gap for
the subtour LP: it implies that for any cost function c ∈ R

En and x ∈ Sn such that
cx = LP(c), at least one of the tours in the convex combination has cost at most
ρ (cx) = ρLP(c). If the costs are metric, this tour can be shortcut to a TSP solution
of cost at most ρLP(c), giving a ratio of OPT(c)/LP(c) ≤ ρ. A shortcut means to fix
an Eulerian tour and replace a sequence of nodes (a, b, c) by (a, c), whenever b has
already been visited by the tour. The essential part “(i) implies (ii)” of the following
theorem, due to Goemans [14] (also see [8]), asserts that the converse is also true: if
ρ is at least the integrality gap, then ρ Sn is a subset of Tn .

Theorem 1 [8,14] Let Kn = (Vn, En) be the complete graph on n nodes and let
ρ ∈ R, ρ ≥ 1. The following statements are equivalent:

(i) For any metric cost function c : En −→ R+, OPT(c) ≤ ρLP(c).
(ii) For any x ∈ Sn, ρx ∈ Tn.
(iii) For any vertex x of Sn, ρx ∈ Tn.

By Theorem 1, Conjecture 1 can be equivalently reformulated as follows:
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292 S. Boyd, A. Sebő

Conjecture 2 The polytope 4
3 S

n is contained in the polyhedron Tn, that is, 4
3 S

n ⊆ Tn.

Given a vector x ∈ Sn , the support graph Gx = (Vn, Ex ) of x is defined with
Ex = {e ∈ En : xe > 0}. We call a point x ∈ Sn 1

2 -integer if xe ∈ {0, 1
2 , 1} for all

e ∈ En . For such a vector we call the edges e ∈ En
1
2 -edges if xe = 1

2 and 1-edges if
xe = 1. Note that the 1-edges of 1

2 -integer points form a set of disjoint paths that we
call 1-paths of x , and the 1

2 -edges form a set of edge-disjoint cycles that we call the
1
2 -cycles of x .

For Conjecture 1, it seems that 1
2 -integer vertices play an important role (see [1,7,

20]). In fact the following has been conjectured by Schalekamp, Williamson and van
Zuylen [20] (note that here we state a weaker version of their original conjecture for
simplicity):

Conjecture 3 The integrality gap for the subtour LP is reached on metric cost functions
optimized at 1

2 -integer vertices of Sn.

Very little progress has been made on the above conjectures, even though they have
been around for a long time and have been well-studied. For the special case of graph
TSP an upper bound of 7

5 is known for the integrality gap [23]. Conjecture 2 has been
verified for the so-called triangle vertices x ∈ Sn for which the values are 1

2 -integer,
and the 1

2 -edges form triangles in the support graph [4]. The lower bound of 4
3 for the

integrality gap is provided by triangle vertices with just two triangles.
A concept first introduced by Carr and Ravi [7] (for the 2-edge-connected subgraph

problem) is that of a fundamental class, which is a class of points F in the subtour
elimination polytopes Sn , n ≥ 3 with the following property: showing that ρ x is a
convex combination of incidence vectors of tours for all vertices x ∈ F implies the
same holds for all vertices of polytopes Sn , and thus implies that the integrality gap
for the subtour LP is at most ρ.

Two main classes of such vertices have been introduced, one by Carr and Vempala
[8], the other by Boyd and Carr [4]. In this paper we will focus on the latter one, that
is, we define a Boyd–Carr point [4] to be a point x ∈ Sn that satisfies the following
conditions:

(i) The support graph Gx of x is cubic.
(ii) In Gx , there is exactly one 1-edge incident to each node.
(iii) The fractional edges of Gx form disjoint 4-cycles.

A Carr–Vempala point [8] is one that satisfies (i), (ii) and instead of (iii), the frac-
tional edges form a Hamiltonian cycle. We use fundamental point as a common name
for points that are either Boyd–Carr or Carr–Vempala points. It has been proved that
the Boyd–Carr points [4] and Carr–Vempala points [8] each form fundamental classes.
The support graph of a fundamental point will be called a fundamental graph. In other
words, a fundamental graph is a cubic graph where there exists a perfect matching
whose deletion leads to a graph whose components are 4-cycles, or a Hamiltonian
cycle. Note that the support graphs of instances of Carr–Vempala points are 3-edge-
connected: the Hamiltonian cycle of edges {e ∈ En : x(e) < 1} has at least two
edges in every cut, but two such edges alone do not suffice for constraints (3) of the
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The salesman’s improved tours for fundamental classes 293

subtour LP. Moreover, the 3-edge-connected instances of Boyd–Carr points also form
a fundamental class: this can be verified from the construction of these points (see
[4]).

Despite their significance and simplicity, no effort has been deployed to exploring
new integrality gap bounds for these classes, and no improvement on the general 3

2
upper bound on the integrality gap has been made for them, not even for special cases.
A natural first step in this endeavour is to try to improve the general bounds for the
special case of 1

2 -integer Boyd–Carr or Carr–Vempala points.
In this paper we improve the upper bound for the integrality gap from 3

2 to 10
7 for

any metric cost function for which the subtour LP is optimized by a 1
2 -integer Boyd–

Carr point, and also provide a 10
7 -approximation algorithm for metric TSP for such

cost functions. In fact we generalize these results to a superclass of these points. If
instead of 1-edges connecting the squares we allow 1-paths of arbitrary length, we
get all the square points, that is, 1

2 -integer points of S
n for which the 1

2 -edges form
disjoint 4-cycles, called squares of the support graph. We also show that there exists a
subclass of square points that provide instances where the integrality gap is at least 4

3 .
Thus square points provide new tight examples for the lower bound of the conjectures.

In the endeavour to find improved upper bounds on the integrality gap we examine
the structure of the support graphs of Boyd–Carr points. We show that they are all
Hamiltonian, an important ingredient of our bounding of their integrality gap. Hamil-
tonicity can be seen as an implication of a theorem of Kotzig [19] on Eulerian trails
with forbidden transitions. An Eulerian trail in a graph is a closed walk containing
each of its edges exactly once. Contrary to tours, it is more than just an edge set, the
order of the edges also plays a role. The connection of tours to Eulerian trails leads us
to delta-matroids (Sect. 5) and to developing related algorithms (Sect. 4).

In Sect. 2.1 we show a first, basic application of our ideas, where some parts of
the difficulties do not occur. We prove for both classes of fundamental graphs that all
of their edges can be uniformly covered 6/7 times by tours whenever the graph is 3-
edge-connected. This is better than the conjectured 8/9 multiplier of the all one vector
that would follow for arbitrary 3-edge-connected cubic graphs from Conjecture 2, and
to have as small a multiplier as possible is relevant because of the close connection of
this multiplier with the integrality ratio (see after Theorem 4).

Another new way of using classical combinatorial optimization for the TSP occurs
in Sect. 2.2, where we use an application of Edmonds’ matroid intersection theorem
to write the optimum x of the subtour elimination polytope as the convex combination
of incidence vectors of “rainbow” spanning trees in edge-coloured graphs. The idea
of using spanning trees with special structures to get improved results has recently
been used successfully in [13] for graph TSP, and in [15,24] for a related problem,
namely the metric s–t path TSP. However, note that we obtain and use our trees in a
completely different way.

Our main results concerning the integrality ratio of 1
2 -integer Boyd–Carr points and

square points are proved in Sect. 3. We conclude that section by outlining a potential
strategy for using the Carr–Vempala points of [8] for proving the 4

3 Conjecture for any
metric cost function optimized at 1

2 -integer points of the subtour polytope.
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Finally, in Sect. 4, we provide polynomial-time optimization algorithms for some of
the existence theorems of previous sections, including a 10

7 -approximation algorithm
for the metric TSP for any cost function which is optimized by a square point for
the subtour LP, and in Sect. 5 we provide some insights from the viewpoint of delta-
matroids.

2 Polyhedral preliminaries and other useful tools

In this section we discuss some useful and powerful tools that we need in the proof of
our main result in Sect. 3. We begin with some preliminaries.

Given a graph G = (V , E) with a node in V labelled 1, a 1-tree is a subset F of E
such that |F ∩ δ(1)| = 2 and F\δ(1) forms a spanning tree on V \{1}. The convex hull
of the incidence vectors of 1-trees of G, which we will refer to as the 1-tree polytope
of the graph G, is given by the following [16, p. 262]:

{
x ∈ R

E : x(δ(1)) = 2, x((E[U ])) ≤ |U | − 1 for all ∅ �= U ⊆ V \{1},
0 ≤ xe ≤ 1 for all e ∈ E, x(E) = |V |

}
. (5)

It is well-known that the 1-trees of a connected graph satisfy the basis axioms of a
matroid (see [16, pp. 262–263]).

Given G = (V , E) and T ⊆ V , |T | even, a T -join of G is a set J ⊆ E such
that T is the set of odd degree nodes of the graph (V , J ). A cut C = δ(S) for some
S ⊂ V is called a T -cut if |S ∩ T | is odd. We say that a vector majorates another if
it is coordinatewise greater than or equal to it. The set of all vectors x that majorate
some vector y in the convex hull of incidence vectors of T -joins of G is given by the
following [12]:

{x ∈ R
E : x(C) ≥ 1 for each T -cut C, xe ≥ 0 for all e ∈ E}. (6)

This is the T -join polyhedron of the graph G.
The following two results are well-known (see [10,25,26]), but we include the

proofs as they introduce the kind of polyhedral arguments we will use:

Lemma 1 [10,25,26] If x ∈ Sn, then (i) it is a convex combination of incidence vectors
of 1-trees of Kn, and (ii) x/2 majorates a convex combination of incidence vectors of
T -joins of Kn for every T ⊆ Vn, |T | even.

Proof Constraints (2) and (3) of the subtour LP together imply that x(En) = n and
x(En[S]) ≤ |S|−1, for all ∅ �= S � Vn . Thus x ∈ Sn satisfies all of the constraints of
the 1-tree polytope of Kn and (i) of the lemma follows. To check (ii), note that for all
T ⊆ Vn , |T | even, x/2 satisfies the constraints of the T -join polyhedron of Kn (in fact
x(C)/2 ≥ 1 for every cut C), that is, it majorates a convex combination of incidence
vectors of T -joins. ��
Theorem 2 [10,25,26] If x ∈ Sn, 3

2 x ∈ Tn.
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Proof By (i) of Lemma 1, x is a convex combination of incidence vectors of 1-trees
of Kn . Let F be any 1-tree of such a convex combination, and TF be the set of
odd degree nodes in the graph (Vn, F). Then by (ii) of Lemma 1, x/2 majorates
a convex combination of incidence vectors of TF -joins. So χ F + x/2 majorates a
convex combination of incidence vectors of tours, and taking the average with the
coefficients of the convex combination of 1-trees, we get that x + x/2 majorates a
convex combination of incidence vectors of tours. Since adding 2 to the multiplicity
of any edge in a tour results in another tour, it follows that 3

2 x ∈ Tn . ��
The tools of the following two subsections are new for the TSP and appear to be

very useful.

2.1 Eulerian trails with forbidden bitransitions

Let G = (V , E) be a connected 4-regular multigraph. For any node v ∈ V , a bitran-
sition (at v) is a partition of δ(v) into two pairs of edges. Clearly every Eulerian trail
of G uses exactly one bitransition at every node, meaning the two disjoint pairs of
consecutive edges of the trail at the node. There are three bitransitions at every node
and the theorem below, equivalent to a result of Kotzig [19], states that we can forbid
one of these and still have an allowed Eulerian trail. As we will show, this provides
Hamiltonian cycles in the support of square points, used in Sect. 3 to prove our main
result.

Theorem 3 [19] Let G = (V , E) be a 4-regular connected multigraph with a forbid-
den bitransition for every v ∈ V . Then G has an Eulerian trail not using the forbidden
bitransition of any node.

A square graph is defined as a pair (G, M) where G = (V , E) is a graph and M is
a perfect matching of G such that the edges E\M form squares. Note that G will be
cubic and 2-edge-connected. We associate Boyd–Carr points to square graphs, where
M is defined to be the set of 1-edges (in the associated square graphs both edges of a
2-edge-cut will be in M).

Lemma 2 A square graph (G, M) has a Hamiltonian cycle containing M.

Proof Let G = (V , E). We assume G has at least two squares as the lemma is trivially
true otherwise.

Suppose first that G has a square u1u2, u2u3, u3u4, u4u1 in E\M , with a chord, say
u2u4, in M , that is, exactly the two edges au1 and u3b (a, b ∈ V ) are leaving the set
{u1, u2, u3, u4} ⊆ V . In this case we can delete u1, u2, u3, u4 from the graph and add
the edge ab to G to form a new square graph (Ĝ, M̂)with M̂ = M −u2u4+ab. From
a Hamiltonian cycle of this reduced graph containing M̂ we obtain a Hamiltonian
cycle of G containing M by deleting ab, and adding au1, u1u2, u2u4, u4u3, u3b. We
can thus suppose that G has no such square.

Contracting all squares of G, we obtain a 4-regular connected multigraph G ′ =
(V ′, E ′) whose edges are precisely M and whose nodes are precisely the squares of
G\M . To each contracted square C we associate the forbidden bitransition consisting
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Fig. 1 Shrinking a square in G
to node u; forbidden:
{(uv1, uv3), (uv2, uv4)}

of the pairs of edges of M incident with the diagonally opposite nodes of C in G, as
shown in Fig. 1. By Theorem 3, there is an Eulerian trail K of G ′ that does not use
these forbidden bitransitions. The two pairs of consecutive edges in K at each node in
G ′ can then be completed by the perfect matching connecting their endpoints in the
corresponding square in G, forming the desired Hamiltonian cycle. ��

Aswewill explain in Sect. 5, the above exhibited connection ofEulerian graphswith
forbidden bitransitions can also be seen as a consequence of delta-matroids [2,3]which
havewell-known optimization properties.We exploit this link and the background the-
ory of delta matroids implicitly in Sect. 4, where we provide a direct self-contained
algorithmic proof (with a polynomial-time, greedy algorithm) for a weighted gener-
alization of Lemma 2. We then explicitly explain the connection to delta-matroids in
Sect. 5. We content ourselves in this section by providing a simple, first application
of Lemma 2 which shows a basic idea we will use in the proof of our main result in
Sect. 3, without the additional difficulty of the more refined application.

Given a graph G = (V , E) and a value λ, the everywhere λ vector for G is the
vector y ∈ R

E(K|V |) for which ye = λ for all edges e ∈ E and ye = 0 for all the
other edges in the complete graph K|V |. In Theorem 4 below we show that for any
cubic 3-edge-connected graph with a Hamiltonian cycle, the everywhere 6/7 vector
is in T|V |. Since fundamental graphs are Hamiltonian (by Lemma 2 for Boyd–Carr,
and by definition for Carr–Vempala), the theorem applies to their 3-edge-connected
instances. Both classes of such 3-edge-connected graphs are also fundamental as was
noted earlier (see the remark after the definition).

Theorem 4 If G = (V , E) is a cubic, 3-edge-connected Hamiltonian graph, then the
everywhere 6/7 vector for G is in T|V |.

Proof Let H be a Hamiltonian cycle of G, and let M := E\H be the perfect matching
complementary to H . Note that χ H is the incidence vector of a tour, and we will use it
in the convex combination for the everywhere 6/7 vector. It is a good choice in that it
is a tour which contains the fewest edges possible, however it will need to be balanced
with tours that do not use the edges in H very often in order to achieve our goal. To
this end we consider the point x ∈ R

E(K|V |) defined by xe = 1 if e ∈ M , xe = 1/2
if e ∈ H and xe = 0 otherwise. It is easily seen that x is in the subtour elimination
polytope S|V |, thus by Theorem 2, 3

2 x ∈ T|V |.
Now take the convex combination of tours t := 3

7χ
H + 4

7
3
2 x . Then for edges e ∈ M

we have te = 0 + 4
7
3
2 = 6

7 . For edges e ∈ H we have te = 3
7 + 4

7
3
2
1
2 = 6

7 , and te = 0
for all edges e not in G, finishing the proof. ��
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Replacing Hamiltonian cycles by other, relatively small tours or convex combina-
tions of tours in the proof of Theorem 4, one may get similar results weakening the
Hamiltonicity condition. Such results are particularly interesting for general, cubic 3-
edge-connected graphs. For such graphs the everywhere 1 vector is in T|V |, as noticed
in [22], where it is then asked whether the everywhere 8/9 vector belongs to T|V |.
These are the values one gets from Theorem 2 to Conjecture 2 respectively, applied
to the everywhere 2/3 vector, feasible for S|V |. Note that the analogous problem for
the s–t path TSP has been solved [24].

The above possibility has been explored byHaddadan, Newman and Ravi [17], who
proved that the everywhere 18/19 vector is inT|V |, getting this constant below 1 for the
first time, and with a polynomial-time algorithm. They replaced the Hamiltonian cycle
in the proof of Theorem 4 by other “small tours”, defined with the help of the 2-factor
provided by a result of Kaiser and Škrekovski [18] and by Boyd, Iwata, Takazawa
[5] algorithmically. Even though their tours are not as small as a Hamiltonian cycle,
these tours use the edges apparently in a more balanced way: this replacement leads
to the mentioned improved uniform vector, below 1. They also note that the improved
uniform vector immediately provides improvement upon the 3/2 upper bound on the
integrality ratio for the more general node-weighted TSP, where every node v of a
given graph G = (V , E) is given a weight fv ∈ R+, and the cost cuv of an edge
uv ∈ K|V | is fu + fv if uv ∈ E , and the cost of a shortest path in G otherwise.

Let us explain the relation of uniform covers and node-weights with the integrality
ratio OPT(c)/LP(c) in a general setting, in order to make it easy to apply it in slightly
different situations as well. Let G = (V , E) be a k-regular k-edge-connected graph
with metric cost function c ∈ R

E(K|V |). Note that the everywhere 2/k vector for G is in
S|V |. We consider cost functions for which the everywhere 2/k vector is also optimal
for LP(c), i.e. LP(c) = 2

k c(E). For example, this is true for the graph TSP metric c for
G (to see this, note that its objective value is |V |, which is an obvious lower bound).
Similarly, following ideas mentioned in [17], it can be seen that the everywhere 2/k
vector is optimal for LP(c) for the more general node-weighted TSP. To see this, note
that the constraints (2) of the subtour LPprovide a lower bound of 2

∑
v∈V fv = 2

k c(E)

for LP(c). Now consider any cost function for which the everywhere 2/k vector is
optimal for LP(c) and suppose we also have that the everywhere λ vector is in T|V |.
Then OPT(c) ≤ λc(E) and the integrality ratio OPT(c)/LP(c) ≤ kλ/2. (For k = 3
and λ < 1 this is indeed smaller than 3/2 and for λ = 18/19 we get back the remark
in [17] mentioned above.) Thus we obtain the following corollary of Theorem 4:

Corollary 1 Let G = (V , E) be a cubic 3-edge-connected Hamiltonian graph,
or in particular a 3-edge-connected fundamental graph, with metric cost function
c ∈ R

E(K|V |) for which the everywhere 2/3 vector is optimal for LP(c). Then
OPT(c)/LP(c) ≤ 9

7 .

2.2 Rainbow 1-trees

We now use matroid intersection to prove that the convex combination of incidence
vectors of 1-trees that exists for any x in the subtour polytope can also satisfy an
additional property. We use this in the proof of our main result in Sect. 3.
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Given a graph G = (V , E), let every edge of G be given a colour. We call a 1-tree
F of G a rainbow 1-tree if every edge of F has a different colour. Rainbow trees are
discussed by Broersma and Li [6], where they note they are the common independent
sets of two matroids, a fact combined here with Lemma 1 (i) to obtain the following
theorem:

Theorem 5 Let x ∈ Sn be 1
2 -integer, and let P be any partition of the 1

2 -edges into
pairs. Then x is in the convex hull of incidence vectors of 1-trees that each contain
exactly one edge from each pair in P .

Proof LetGx = (Vn, Ex ) be the support graph of x . Consider the partitionmatroid (cf.
[21]) defined on Ex by the partitionP ∪ {{e} : e ∈ Ex , e is a 1-edge}. By Lemma 1,
x is in the convex hull of incidence vectors of 1-trees in Ex , which satisfy the basis
axioms of a matroid as previously mentioned; since x(Q) = 1 for every class Q of
the defined partition matroid, it is also in the convex hull of its bases. Thus by [21,
Corollary 41.12d], which is a corollary of Edmonds’ matroid intersection theorem
[11], x is in the convex hull of incidence vectors of the common bases of the two
matroids. ��

3 Improved bounds for 1
2-integer points

In this section we show that 10
7 x ∈ Tn for all square points x ∈ Sn , and thus for all

1
2 -integer Boyd–Carr points x as well. We also analyse the possibility of a similar
proof for Carr–Vempala points that would have the advantage of also implying that
10
7 x ∈ Tn for all 1

2 -integer points x ∈ Sn , as we discuss at the end of this section. We
begin by stating two properties we prove later to be sufficient to guarantee 10

7 x ∈ Tn

for any 1
2 -integer vector x in Sn :

(A) The support graph Gx of x has a Hamiltonian cycle H .
(B) Vector x is a convex combination of incidence vectors of 1-trees of Gx such that

each 1-tree satisfies the following condition: it contains an even number of edges
in every cut of Gx consisting of four 1

2 -edges in H .

We will use χ H of (A) as part of the convex combination for 10
7 x , which is globally

good, since H has only n edges, but the 1
2 -edges of H have too high a value (equal

to 1), contributing too much for the convex combination. To compensate for this,
property (B) ensures that x is not only a convex combination of 1-trees, but these
1-trees are even for certain edge cuts δ(S), allowing us to use a value essentially less
than the xe

2 = 1
4 for 1

2 -edges e in H for the corresponding T -join. The details of how
to ensure feasibility for the T -join polyhedron will be given in the proof of Theorem 6.

While conditions (A) and (B) may look at first sight difficult to meet, Lemma 2
shows that one can count on the bonus of the naturally arising properties: any square
point x has a Hamiltonian cycle H that satisfies property (A), moreover it will contain
all the 1-edges of Gx . Together with the “rainbow 1-tree decomposition” of Theorem 5
this will imply (B) for square points. The reason we care about the somewhat technical
property (B) instead of its more natural consequences is future research: in a new
situation we may have to use the most general condition.
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Lemma 3 Let x be any square point. Then x satisfies both (A) and (B).

Proof If we replace the 1-paths in the support graph Gx by single 1-edges, then by
Lemma 2 there is a Hamiltonian cycle for the new graph that contains all of the 1-
edges, and thus Gx also has a Hamiltonian cycle H that contains all of its 1-edges.
Thus point x satisfies property (A) . Moreover, since H contains all the 1-edges in
Gx , it follows that H contains a perfect matching from each square of Gx .

Define P to be the partition of the set of 1
2 -edges of Gx into pairs whose classes

are the perfect matchings of squares. Then by Theorem 5, x is in the convex hull
of incidence vectors of 1-trees that contain exactly one edge from each pair P ∈ P .
Property (B) follows, since every cutC that consists of four 1

2 -edges of H is partitioned
by two classes P1, P2 ∈ P . (Indeed, we saw at the end of the first paragraph of this
proof that a square met by H is met in a perfect matching.) Since P1 and P2 are met
by exactly one edge of each tree of the constructed convex combination, C is met by
exactly two edges of each tree. ��

Next we prove that properties (A) and (B) are sufficient to guarantee that 10
7 x ∈ Tn

for any 1
2 -integer point of S

n . Recall that properties (A) and (B) are more general than
what we need for square points: the condition of the theoremwe prove does not require
that the Hamiltonian cycle of property (A) contains the 1-edges of Gx , as Lemma 2
asserts for square points. We keep this generality of (A) and (B) to remain open to
eventual posterior demands of future research.

Theorem 6 Let x ∈ Sn be a 1
2 -integer point satisfying properties (A) and (B). Then

10
7 x ∈ Tn.

Proof Let Gx = (Vn, Ex ) be the support graph of x , and let H be any Hamiltonian
cycle of Gx , which exists according to (A). Let the 1-trees in the convex combination
for property (B) be Fi , i = 1, 2, . . . , k, and for any 1-tree F of Gx let TF be the set
of odd degree nodes in the graph (Vn, F). Consider the vector y ∈ R

En defined as
y := 2

3 x − 1
6χ

H .

Claim For any 1-tree F of Gx which satisfies the condition of property (B), vector y
is in the TF -join polyhedron of Kn .
To prove the claim, we show that y satisfies the constraints of the TF -join polyhedron
(6) of Kn . Clearly ye ≥ 0 for all e ∈ En . Let C be a TF -cut in Kn . We must show
y(C) ≥ 1. Note that |H ∩ C | �= 0 is even, and H ⊆ Ex .

Case 1: |H ∩C | = 2. Since x(C) ≥ 2 we have y(C) ≥ 2( 23 )−2( 16 ) = 1, as required.
Case 2: |H ∩ C | = 4. Since x ∈ Sn , we have x(C) ≥ 2 and since x is 1

2 -integer
the 1

2 -edges form edge-disjoint cycles, so x(C) is integer: x(C) ≥ 3, since
x(C) = 2 would imply that C consists of the four edges of H ∩ C , and by
(B) C is then not a TF -cut; so y(C) ≥ 3( 23 ) − 4( 16 ) ≥ 1.

Case 3: |H ∩ C | ≥ 6. Then for all e ∈ H ∩ C : ye = 2
3 xe − 1

6χ
H
e ≥ 2

3 (
1
2 ) − 1

6 = 1
6 ,

so y(C) ≥ 1, which completes the proof of the claim.

According to the claim, for all i ∈ {1, . . . , k} y majorates a convex combination of
TFi -joins, and adding any one of these to χ Fi , we get tours. The convex combination of
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these tours is majorated by χ Fi + y, so χ Fi + y ∈ Tn for all i = 1, . . . , k, and therefore
x + y ∈ Tn . Thus z := 1

7χ
H + 6

7 (x + y) = 10
7 x is also in Tn , which completes the

proof. ��
Our main result follows from the above theorem:

Theorem 7 Let x be a square point. Then 10
7 x ∈ Tn.

Proof By Theorem 6 it is enough to make sure that x satisfies properties (A) and (B),
which is exactly the assertion of Lemma 3. ��

Since 1
2 -integer Boyd–Carr points are square points we have:

Corollary 2 If x is a 1
2 -integer Boyd–Carr point, then 10

7 x ∈ Tn.

Theorem7 immediately implies the following optimization formof the above corol-
lary:

Corollary 3 Let c ∈ R
En be a metric cost function optimized by a square point x, i.e.

cx = LP(c). Then there exists a Hamiltonian cycle of cost at most 10
7 LP(c) in Kn.

Proof We have 10
7 LP(c) = 10

7 cx = c( 107 x) ≥ OPTTn (c), where the last inequality
follows from 10

7 x being a convex combination of tours by Theorem 7. As OPTTn (c) ≥
OPT(c) for metric costs, the result follows. ��

In the following section we show that the above existence theorems and their corol-
laries can also be accompanied with polynomial algorithms. We finish this section by
showing that the integrality gap of square points is at least 4

3 , providing new examples
showing that Conjecture 1 cannot be improved.

Define a subclass of square points we call k-donuts, k ∈ Z, k ≥ 2: the support
graph Gx = (Vn, Ex ) consists of k 1

2 -squares arranged in a cyclic order, where the
squares are joined by 1-paths, each of length k. In Fig. 2 the support graph of a 4-
donut is shown. In the figure, dashed edges represent 12 -edges and solid edges represent
1-edges.

We define the cost of each edge in Ex to be 1, except for the pair of 1
2 -edges in each

square that are opposite to one another, with one edge on the inside of the donut, and
one on the outside, which are defined to have cost k (see the figure, where only edges
of cost k are labelled, and all other edges in Ex have cost 1). The costs of other edges of
Kn not in Ex are defined by the metric closure (cost of shortest paths in Gx ). For these
defined costs c(k), we haveOPT(c(k)) = 4k2−2k+2 and LP(c(k)) ≤ c(k)x = 3k2+k,

thus limk→∞ OPT(c(k))

LP(c(k))
≥ 4

3 . Along with Theorem 7, this gives the following:

Corollary 4 The integrality gap for square points is at least 4
3 and at most 10

7 .

To conclude this section we briefly discuss the ideas used in creating the Boyd–Carr
and Carr–Vempala fundamental classes and their ramifications for general 1

2 -integer
points of Sn . In general, Boyd–Carr and Carr–Vempala points are obtained by starting
with any x ∈ Sn and applying a specific transformation to x to create a new point
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Fig. 2 Graph Gx for a k-donut
x , k = 4

y ∈ Sp, p > n which has the required form and properties for the fundamental class.
Note that for the Boyd–Carr points that have been our focus, the transformation used
from general vertices x ∈ Sn to these Boyd–Carr points does not completely preserve
the denominators. In particular, 1

2 -integer vertices of S
n get transformed into Boyd–

Carr points x∗ with x∗
e values in {1, 1

2 ,
3
4 ,

1
4 , 0}. However, for the Carr–Vempala points,

it is clear from their construction in [8] that general 1
2 -integer vertices of S

n lead to
1
2 -integer Carr–Vempala vertices. In fact we have the following theorem which, if
Conjecture 3 is true, would provide a nice approach for proving Conjecture 2, since it
is given for free that Carr–Vempala vertices satisfy property (A):

Theorem 8 If ρx ∈ Tn for each 1
2 -integer Carr–Vempala point x ∈ Sn, then ρx ∈ Tn

for every 1
2 -integer point x ∈ Sn.

In light of these results and conjectures it seems worthwhile to study fundamental
classes further and the role of 1

2 -integer points in them.

4 Related algorithms

In this section we show that some of the existence theorems stated in the previous
sections can be accompanied by simple combinatorial algorithms that can be executed
in polynomial time. The main result of this section is a polynomial-time algorithm
for finding the Hamiltonian cycle of Corollary 3 in a completely elementary way.
We point out that the bridge taking us to this result also leads to a polynomial-time
algorithm for finding a minimum cost Hamiltonian cycle containing the M edges in a
square graph (G, M), generalizing Lemma 2. It turns out that the greedy algorithm is
the main ingredient of this algorithm, and delta-matroids are the structure behind this
phenomenon. We give a short introduction to delta-matroids, their greedy algorithm
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and their connection to our results in Sect. 5. First we introduce the algorithms with
direct proofs on our combinatorial objects below.

Algorithm 1:Greedy Algorithm (HAM) for Hamiltonian cycles in square graphs

Input: A square graph (G, M) and cost vector c ∈ R
E(G).

Output: A Hamiltonian cycle H of G containing M .

1. For each square C of G let wC be the absolute value of the difference of the
cost of the two perfect matchings of C . Let C1, . . . , Ct be the squares of G
ordered non-increasingly by wCi . Define initially H := G.

2. for i := 1, . . . , t do
We keep exactly one of the two perfect matchings of Ci in H and delete both
edges of the other perfect matching according to the following rule:

If H remains connected after both of these choices, keep the perfect
matching of Ci which has smaller cost (if the costs are equal, break ties
arbitrarily). If H remains connected after exactly one of these two
possible choices, then make this choice.

Update H accordingly.
end
3. Output the constructed graph H .

In the following theorem we show that algorithm (HAM) is well-defined and
determines a Hamiltonian cycle containing M , moreover it is a minimum cost such
Hamiltonian cycle. This is not difficult to prove directly along the same lines as the
optimality of the greedy algorithm for optimal spanning trees.

Theorem 9 The output graph H produced by (HAM) for a square graph (G, M) is a
Hamiltonian cycle of G containing M of minimum cost.

Proof First we show that (HAM) is well-defined and does indeed output a Hamiltonian
cycle H containing M . Clearly all degrees in H are two, thus it is enough to show
that in iteration i ∈ {1, . . . , t} of step 2 at least one of the two choices keeps the
current graph H connected, and thus H is a Hamiltonian cycle. So suppose that at
iteration i , H −Ci (edge-deletion) is not connected. Then it has at least two of the four
arising nodes of degree 1 (the only nodes of odd degree after contracting the remaining
squares) in each component. It follows that it has two components. If adding one of
the two perfect matchings it is still not connected, then all edges of Ci are induced by
one of the two components, so H is also not connected, a contradiction.

Next we show that H is a minimum cost Hamiltonian cycle containing M . Suppose
for a contradiction that K is a Hamiltonian cycle of smaller cost containing M . Then
there exists a square Ci for which K uses a different perfect matching than H and the
cost of this perfectmatching is strictly less than the one used by H . Let i be the smallest
index for which this is true, and assume that over all minimum cost Hamiltonian cycles
containing M , we chose K to be the one for which this i is as large as possible. By the
algorithm, when we considered square Ci , we know that removing the smaller cost
perfect matching disconnected the graph (or it would have been chosen). Thus there
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must exist another square C j crossing the cut formed by this disconnection for which
K chooses a different perfect matching of Ci than H , and j < i . By choice of index
i , we know that the perfect matching used in C j by K has cost greater than or equal to
the one used by H . Now consider the new Hamiltonian cycle K ′ obtained by taking
K , and swapping the perfect matchings used by K in squares Ci and C j . We have
c(K ′) = c(K ) + wCi − wC j and since wC j ≥ wCi by the index ordering, we must
have that K ′ is another minimum cost Hamiltonian cycle. Again there must exist a
square Cr for which K ′ uses a different perfect matching than H and the cost of this
perfect matching is strictly less than the one used by H , but by construction of K ′ we
have r > i . But this contradicts our choice of K . ��

We now propose the following algorithm for finding a tour of relatively small
cost for cost functions optimized at square points. It is in some ways a translation of
Theorem 6 from the language of convex combinations into the context of optimizing
an objective function (it can be considered to be the ‘derandomization’ of the proof
of Theorem 6 where convex combinations are interpreted as mean values of random
variables). The algorithm is similar to Christofides algorithm [9] in that it creates a
tour by finding a minimum cost 1-tree and then adds a minimum cost T -join for the
odd-degree nodes T in the 1-tree. However for our algorithm a Hamiltonian cycle is
also required, as well as a 1-tree which satisfies additional properties.

Algorithm 2: Algorithm (TOUR) for tours in the case of a square optimum for
the subtour LP
Input: A square point x and metric cost function c ∈ R

En optimized at x for the
subtour LP, i.e. cx = L P(c).

Output: A tour in Gx .

1. Determine the support graph Gx , and call (HAM) for the square graph
(G, M) that results from replacing each 1-path of Gx by one single edge whose
cost is the sum of the costs of the replaced edges, and defining M to be the set of
these single edges. Let H be the Hamiltonian cycle of Gx obtained by taking the
output of (HAM) and replacing all edges of M by their respective 1-paths.

2. As in the proof of Lemma 3, determine the partition P of the 1
2 -edges of Gx

into pairs whose classes are the perfect matchings of the squares of Gx . Find the
1-tree F∗ of Gx of minimum cost having exactly one edge in each P ∈ P with
Edmonds matroid intersection algorithm [11].

3. Let TF∗ be the set of odd degree nodes in the graph (Vn, F∗). Find a minimum
cost TF∗-join in Gx [12].

4. Let J ∗ be the union of F∗ and the TF∗-join from Step 3, and output the one of
H or J ∗ having smaller cost.

We can now complete Corollary 3 with an algorithmic postulate, making use of
some of the ideas used in the proof of Theorem 6:

Theorem 10 Let c ∈ R
En be a metric cost function optimized by a square point x,

cx = LP(c). Then there exists a Hamiltonian cycle of cost at most 10
7 LP(c) in Kn and

(TOUR) can be used to find such a cycle in polynomial time.
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Proof Note that the algorithm (HAM) is polynomial, as are the algorithms referenced
for steps 2 and 3 in (TOUR). Thus algorithm (TOUR) is a polynomial-time algorithm.

Let H be the Hamiltonian cycle of the support graph Gx that contains all of the
1-edges, provided algorithmically by (HAM), and let J ∗ be the tour of Gx determined
in (TOUR). Note that the 1-tree F∗ from step 2 of (TOUR) satisfies the condition of
property (B), and thus by the claim in the proof ofTheorem6wehave y := 2

3 x− 1
6χ

H is
in the TF∗-join polyhedron (6) of Kn . Therefore the cost of theminimum cost TF∗-join
found in step 3 is atmost cy. ByTheorem5, c(F∗) ≤ cx , which gives c(J ∗) ≤ cx+cy.
Thus

min
{
c(H), c(J ∗)

} ≤ 1

7
c(H) + 6

7
c(J ∗) ≤ 1

7
c(H) + 6

7
cx

+6

7

(
2

3
cx − 1

6
c(H)

)

= 10

7
L P(c)

is the cost of a tour, and shortcutting this tour we get a Hamiltonian cycle of Kn not
larger in cost. ��

Note that the above proof actually used less thanwhat (HAM)produces: for (TOUR)
it is sufficient to use any Hamiltonian cycle in Gx containing its 1-edges that can be
found in polynomial time, not necessarily the optimal one! However, sharper or more
general results may need the exact optimum here. This motivates us to sketch some
details about delta-matroids that are in the background in the next section.

5 Delta-matroids

Throughout the previous sections the background role of delta-matroids has been
mentioned. Indeed, square graphs (G, M) and their Hamiltonian cycles containing
M lead naturally to 4-regular graphs and their Eulerian trails with one forbidden
bitransition, which are known to form a delta-matroid due to Bouchet [2]. Knowing
that the greedy algorithm in a general setting allowing negative weights is valid—and
actually characterizes—delta-matroids, has led to defining the greedy algorithm for
finding an optimal Hamiltonian cycle containing M .

Despite their role we have not actually used delta-matroids in the previous sections:
the facts that we learnt from this connection could be easily proved directly, in an
elementary way and therefore the preceding sections are self-contained. However, for
a deeper understanding and possible further use, we sketch in this section the simple,
but fruitful connection of our results to delta-matroids.

The family D �= ∅ of subsets of a finite set S, or the pair (S,D) is called a delta-
matroid if the following symmetric exchange axiom (also called the 2-step axiom)
is satisfied: For D1, D2 ∈ D and j ∈ D1ΔD2 there exists k ∈ D1ΔD2 such that
D1Δ{ j, k} ∈ D . Note that k = j is possible, and we then naturally define { j, j} :=
{ j}. The members of D are called the feasible sets of the delta-matroid.

Delta-matroids were introduced by Bouchet, cf. [2]. For the introduction and the
basics about them we follow [3].
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A delta-matroid (S,D) may have an exponential number of feasible sets, too many
to be given explicitly. Fortunately, in order to work with delta-matroids we need less
than giving all of its feasible sets as input. The basic and simple greedy algorithm
already necessitates a solution of the following problem [3, (2.1)]: let (S,D) be a
delta-matroid, then for given (A, B) where A, B ⊆ S, decide whether there exists
D ∈ D such that D ⊇ A, D ∩ B = ∅. Let us call an oracle that solves this problem the
extendability oracle for the given delta-matroid. (This is referred to as the “separation
oracle” in [2].) This oracle can be executed in polynomial time for all the relevant
applications, and we will have to check that this also holds for the delta matroid for
which we need it.

Think about the set A as a set of elements chosen to be in the solution, and B the
set of elements chosen not to be in the solution. Roughly, for an objective function
c ∈ R

S , the greedy algorithm considers the elements of S in decreasing order of the
absolute values and attempts to put a considered s ∈ S into A or B: If c(s) ≥ 0 and “it
is possible” to be put in A, then it is put in A; if c(s) ≤ 0 and “it is possible” to put it in
B, then it is put in B. (“It is possible” means a YES answer of the extendibility oracle
with the attempted update A ∪ {s} of A or B ∪ {s} of B. Note that the extendability of
(A, B) implies that at least one of (A ∪ {s}, B), or (A, B ∪ {s}) is also extendable.)

The following theorem is a generalization of Lemma 2 and therefore a direct proof
of it. Given a square graph (G, M), let R = R(G) ⊆ E(G)\M be a reference set
containing exactly one edge from each square of E(G)\M ; |R| = |V (G)|/4. Let
H = H (G) be the set of Hamiltonian cycles of G containing M .

Theorem 11 Let (G, M) be a square graph. Then H �= ∅, and

D := {H ∩ R : H ∈ H }

is a delta-matroid.

Proof We have already seen earlier in Sect. 4 [see (HAM) and the proof of Theorem 9]
that we can can replace, one by one, one after the other, the squares of G by one of
their two perfect matchings and remain connected, and thusH �= ∅.

In order to prove that D is a delta-matroid, it is enough to check that for any two
Hamiltonian cycles H1 �= H2 of G that contain M , and any square C of G—M
where H1 and H2 do not use the same perfect matching of C , either H1�C is also
a Hamiltonian cycle or there exists a square D of G—M so that H1�C�D is a
Hamiltonian cycle.

Toprove this, suppose H1�C is not aHamiltonian cycle. It is still a 2-factor—subset
of edges with all degrees equal to 2—with two components, with the cut Q ⊆ E(G)

between the two components. Since H2 is connected, it contains a square D so that for
one of the two perfect matchings of D: H2 ∩ D ∩ Q �= ∅. But then clearly, H1 and H2
do not use the same perfect matching of D, and we know H1�C is not connected. So
by the claim H1�C�D is again connected, and is thus a Hamiltonian cycle containing
M . ��

Note that the above theorem is actually reproving Lemma 2 directly. In the proof
of the lemma the contraction of the squares provided the correspondance between
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Hamiltonian cycles and Eulerian tours, where the two perfectmatchings of each square
are in bijection with the two bitransitions in the corresponding node of the contracted
graph. Through this bijection, the set D is the same as the family of feasible sets
of Bouchet’s delta-matroid from Eulerian trails [2]. For the delta-matroid D of the
theorem the extendability oracle can be easily computed in polynomial time, and so
Bouchet’s greedy algorithm [2,3] is well defined for them. Note that algorithm (HAM)
is indeed this greedy algorithm applied to the delta matroid D .
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