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Abstract
We show that the classical LP relaxation of the asymmetric traveling salesman path
problem (ATSPP) has constant integrality ratio. If ρATSP and ρATSPP denote the inte-
grality ratios for the asymmetric TSP and its path version, then ρATSPP ≤ 4ρATSP − 3.
We prove an even better bound for node-weighted instances: if the integrality ratio
for ATSP on node-weighted instances is ρNW

ATSP, then the integrality ratio for ATSPP
on node-weighted instances is at most 2ρNW

ATSP − 1. Moreover, we show that for ATSP
node-weighted instances and unweighted digraph instances are almost equivalent.
From this we deduce a lower bound of 2 on the integrality ratio of unweighted digraph
instances.

Keywords Asymmetric traveling salesman problem · Integrality gap · Linear
programming relaxations

Mathematics Subject Classification 90C27 (Combinatorial Optmization) · 68W25
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1 Introduction

In the asymmetric traveling salesman path problem (ATSPP), we are given a directed
graph G = (V , E), two vertices s, t ∈ V , and weights c : E → R≥0 ∪ {∞}. We
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look for a sequence s = v0, v1, . . . , vk = t that contains every vertex at least once
(an s-t-tour); the goal is to minimize

∑k
i=1 c(vi−1, vi ). Equivalently, we can assume

that G is complete and the triangle inequality c(u, v) + c(v,w) ≥ c(u, w) holds for
all u, v, w ∈ V , and require the sequence to contain every vertex exactly once.

The special case s = t is known as the asymmetric traveling salesman problem
(ATSP). In a recent breakthrough, Svensson, Tarnawski, and Végh [10] found the
first constant-factor approximation algorithm for ATSP, and they also proved that its
standard LP relaxation has constant integrality ratio.

Feige and Singh [4] showed that anyα-approximation algorithm for ATSP implies a
(2α + ε)-approximation algorithm for ATSPP (for any ε > 0). Hence ATSPP also has
a constant-factor approximation algorithm. In this paper we prove a similar relation
for the integrality ratios. This answers an open question by Friggstad et al. [5].

Given that the upper bound on the integrality ratio by Svensson et al. [10] is a large
constant that will probably be improved in the future, such a blackbox result seems
particulary desirable. Any improved upper bound on the integrality ratio for ATSP
then immediately implies a better bound for the path version.

1.1 The linear programming relaxation

The classical linear programming relaxation for ATSPP (for s �= t) is

min c(x) (ATSPP LP)

s.t . x(δ−(s)) − x(δ+(s)) = −1

x(δ−(t)) − x(δ+(t)) = 1

x(δ−(v)) − x(δ+(v)) = 0 for v ∈ V \{s, t}
x(δ(U )) ≥ 2 for ∅ �= U ⊆ V \{s, t}

xe ≥ 0 for e ∈ E

Here (and henceforth) we write c(x) := ∑
e∈E c(e)xe, x(F) := ∑

e∈F xe, δ+(U ) :=
{(u, v) ∈ E : u ∈ U , v ∈ V \U }, δ−(U ) := δ+(V \U ), δ(U ) := δ−(U ) ∪ δ+(U ),
δ+(v) := δ+({v}), and δ−(v) := δ−({v}). For an instance I we denote by lpI the
value of an optimum solution to (ATSPP LP) and by optI the value of an optimum
integral solution. If the instance is clear from the context, we will sometimes simply
write lp and opt. Note that the integral solutions of (ATSPP LP) are precisely the
incidence vectors of multi-digraphs (V , F) that are connected and become Eulerian
by adding one edge (t, s). Hence they correspond to walks from s to t that visit all
vertices, in other words: s-t-tours.

The integrality ratio of (ATSPP LP), denoted by ρATSPP, is the maximal ratio of
the cost of an optimum integral solution and an optimum fractional solution; more
precisely supI

optI
lpI

, where the supremum goes over all instances I = (G, c, s, t)
with s �= t for which the denominator is nonzero and finite. Nagarajan and Ravi [8]
proved that ρATSPP = O(

√
n), where n = |V |. This bound was improved to O(log n)

by Friggstad et al. [6] and to O(log n/ log log n) by Friggstad et al. [5]. In this paper
we prove that the integrality ratio of (ATSPP LP) is in fact constant.
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Fig. 1 Example with integrality ratio approaching 2 as the number of vertices increases. Setting xe := 1
2

for all shown edges defines a feasible solution of (ATSPP LP). If the 2k curved edges have cost 1 and the
dotted edges have cost 0, we have lp = c(x) = k, but any s-t-tour costs at least 2k − 1. (In the figure,
k = 4.) Setting yU = 1

2 for the vertex sets indicated by the ellipses and av as shown in blue defines an
optimum solution of (ATSPP DUAL) (color figure online)

Let ρATSP denote the integrality ratio of the classical linear programming relaxation
for ATSP:

min c(x) (ATSP LP)

s.t . x(δ−(v)) − x(δ+(v)) = 0 for v ∈ V

x(δ(U )) ≥ 2 for ∅ �= U � V

xe ≥ 0 for e ∈ E

Svensson et al. [10] proved that ρATSP is a constant. By an infinite sequence of
instances, Charikar et al. [2] showed thatρATSP ≥ 2. It is obvious thatρATSPP ≥ ρATSP:
split an arbitrary vertex of an ATSP instance into two copies, one (called s) inheriting
the outgoing edges, and one (called t) inheriting the entering edges; add an edge (t, s)
of cost zero and with x(t,s) := x(δ+(s)) − 1. Figure 1 displays a simpler family of
examples, due to Friggstad et al. [5], showing that ρATSPP ≥ 2.

1.2 Our results and techniques

Our main result says that ρATSPP ≤ 4ρATSP − 3. Together with [10], this implies a
constant integrality ratio for (ATSPP LP).

Similarly as Feige and Singh [4], we transform our ATSPP instance to an ATSP
instance by adding a feedback path from t to s and work with an integral solution to
this ATSP instance. This may use the feedback path several times and hence consist
of several s-t-walks in the original instance. We now merge these to a single s-t-walk
that contains all vertices. In contrast to Feige and Singh [4], the merging procedure
cannot use an optimum s-t-tour, but only an LP solution. Our merging procedure is
similar to one step of the approximation algorithm for ATSP by Svensson et al. [10],
but our analysis is more involved. The main difficulty is that the reduction of ATSP to
so-called “laminarly-weighted” instances used by Svensson et al. [10] does not work
for the path version.
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In Sect. 3, we describe our merging procedure and obtain a first bound on the cost
of our single s-t-walk that contains all vertices. However, this bound still depends
on the difference of two dual LP variables corresponding to the vertices s and t . In
Sect. 5 we give a tight upper bound on this value, which will imply our main result
ρATSPP ≤ 4ρATSP − 3.

The main lemma that we use to prove this bound essentially says that adding an
edge (t, s) of cost equal to the LP value does not change the value of an optimum
LP solution. Note that using the new edge (t, s) with value one or more is obviously
pointless, but it is not obvious that this edge will not be used at all.

For node-weighted instances we obtain a better result: if the integrality ratio for
ATSP on node-weighted instances is ρNW

ATSP, then the integrality ratio for ATSPP on
node-weighted instances is at most 2ρNW

ATSP−1. Svensson [9] showed that ρNW
ATSP ≤ 13.

Boyd and Elliott-Magwood [1] describe a family of node-weighted instances that
shows ρNW

ATSP ≥ 2. In Sect. 6 we observe that for ATSP node-weighted instances
behave in the same way as unweighted instances. Hence for ATSP there is a family of
unweighted digraphs whose integrality ratio tends to 2. Therefore such a family exists
also for ATSPP.

2 Preliminaries

Given an instance (G, c, s, t) and an optimum solution x∗ to (ATSPP LP), we may
assume that G = (V , E) is the support graph of x∗; so x∗

e > 0 for all e ∈ E . (This
is because omitting edges e with x∗

e = 0 does not change the optimum LP value and
can only increase the cost of an optimum integral solution.) We consider the dual LP
of (ATSPP LP):

max at − as +
∑

∅�=U⊆V \{s,t}
2yU (ATSPP DUAL)

s.t . aw − av +
∑

U :e∈δ(U )

yU ≤ c(e) for e = (v,w) ∈ E

yU ≥ 0 for ∅ �= U ⊆ V \{s, t}.
The support of y is the set of nonempty subsets U of V \{s, t} for which yU > 0.

We denote it by supp(y). We say that a dual solution (a, y) has laminar support if for
any two nonempty sets A, B ∈ supp(y) we have A ∩ B = ∅, A ⊆ B, or B ⊆ A. See
Fig. 1 for an example. We recall some well-known properties of primal and dual LP
solutions (cf. Svensson et al. [10]) and sketch proofs for sake of completeness:

Proposition 1 Let (a, y) be an optimum solution to (ATSPP DUAL). Then there is a
vector y′ such that (a, y′) is an optimum solution to (ATSPP DUAL) and has laminar
support.

Proof Among all y′ such that (a, y′) is an optimum dual solution, choose y′ so that∑
U y′

U |U | isminimum.Then (a, y′) has laminar support: suppose y′
A > 0 and y′

B > 0
and A∩ B, A\B, B\A �= ∅, then we could decrease y′

A and y′
B and increase y′

A\B and
y′
B\A while maintaining dual feasibility. ��
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Proposition 2 Let (G, c, s, t) be an instance of ATSPP,where G is the support graph of
an optimum solution x∗ to (ATSPP LP). Let (a, y) be an optimum solution of (ATSPP
DUAL). Let U ∈ {V } ∪ supp(y). Then the strongly connected components of G[U ]
can be numbered U1, . . . ,Ul such that δ−(U ) = δ−(U1), δ+(U ) = δ+(Ul), and
δ+(Ui ) = δ−(Ui+1) �= ∅ for i = 1, . . . , l − 1. If U = V , then s ∈ U1 and t ∈ Ul.

Proof By complementary slackness, yU > 0 implies x∗(δ(U )) = 2 and hence
x∗(δ−(U )) = 1. We first prove the statement of the Proposition for every set
∅ �= U ⊆ V \{s} with x∗(δ−(U )) = 1. Let U1, . . . ,Ul be a topological order of
the strongly connected components of G[U ].

We now use induction on l. For l = 1, the statement is trivial. Now assume l > 1.
Since s /∈ U , we have 1 ≤ x∗(δ−(U1)) ≤ x∗(δ−(U )) = 1. Thus, δ−(U1) = δ−(U ).
This implies δ−(U\U1) ⊆ δ+(U1). Using again s /∈ U , we have x∗(δ+(U1)) ≤
x∗(δ−(U1)) = 1 ≤ x∗(δ−(U\U1)). Thus, we have δ−(U\U1) = δ+(U1) and
x∗(δ−(U\U1)) = 1. Hence, applying the induction hypothesis to U\U1 completes
the proof for U .

It remains to consider the caseU = V . LetU1, . . . ,Ul be again a topological order
of the strongly connected components ofG[U ] = G. Then s ∈ U1 and t ∈ Ul because
for every vertex v in G, v is reachable from s, and t is reachable from v. If l = 1, we
are done. Now assume l > 1. We have δ−(U\U1) = δ+(U1). Because s ∈ U1 and
t /∈ U1, we have x∗(δ−(U\U1)) = x∗(δ+(U1)) = 1. Since we already proved the
assertion for U\U1, the proof is complete. ��
Proposition 3 Let (G, c, s, t) be an instance of ATSPP, where G is the support graph
of an optimum solution to (ATSPP LP). Let (a, y) be an optimum solution to (ATSPP
DUAL)with laminar support. Let Ū ∈ {V }∪supp(y) and v,w ∈ Ū . Ifw is reachable
from v in the induced subgraph G[Ū ], then there is a v-w-path in G[Ū ] that enters
and leaves every set U ∈ supp(y) at most once.

Proof Let P be a path from v tow inG[Ū ]. Repeat the following. LetU be a maximal
set with yU > 0 that P enters or leaves more than once. If P entersU more than once,
let v′ be the vertex after entering the first time and w′ the vertex after entering the last
time. By Proposition 2, v′ and w′ are in the same strongly connected component of
G[U ] (the first one in the topological order). We replace the v′-w′-subpath of P by a
path in G[U ]. Proceed analogously if P leaves U more than once. ��

3 Bounding the integrality ratio

We first transform an instance and a solution to (ATSPP LP) to an instance and a
solution to (ATSP LP) and work with an integral solution of this ATSP instance. The
following lemma is essentially due to Feige and Singh [4]. For completeness, we prove
it here again for our setting.

Lemma 1 Let d ≥ 0 be a constant. Then ρATSPP ≤ (d + 1)ρATSP − d if the following
condition holds for every instance I = (G, c, s, t) of ATSPP where G is the support
graph of an optimum solution to (ATSPP LP): If there are two s-t-walks P1 and P2 of
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total cost L in G, there is a single s-t-walk P in G with cost c(P) ≤ L + d · lp which
contains all vertices of P1 and P2.

Proof Let I = (G, c, s, t) be an instance of ATSPP and x∗ be an optimum solution
to (ATSPP LP) such that G is the support graph of x∗. Then lp = c(x∗). Consider the
instance I ′ = (G ′, c′) of ATSP that arises from I as follows. We add a new vertex v

to G and two edges (t, v) and (v, s) with weights c′(t, v) = d · lp and c′(v, s) = 0.
Then there is a feasible solution of (ATSP LP) for I ′ with cost (d + 1) · lp (extend x∗
by setting x∗

(t,v) = x∗
(v,s) = 1). Hence there is a solution to ATSP for I ′ with cost at

most (d + 1)ρATSP · lp. Let R be such a solution. Then R has to use (t, v) and (v, s)
at least once, since it has to visit v. By deleting all copies of (t, v) and (v, s) from R,
we get k > 0 s-t-walks in G with total cost at most (d + 1)ρATSP · lp − dk · lp such
that every vertex of G is visited by at least one of them. As long as k > 1, by our
assumption we can replace two of the s-t-walks by a single one, increasing the cost
by at most d · lp and decreasing k by one. We end up with a single s-t-walk P with
cost c(P) ≤ (d + 1)ρATSP · lp − d · lp in G, which contains every vertex of G. This
walk is a solution of ATSPP for I and thus we have ρATSPP ≤ (d + 1)ρATSP − d as
proposed. ��

The following procedure is similar to one step (“inducing on a tight set”) of the
approximation algorithm for ATSP by Svensson et al. [10].

Lemma 2 Let (G, c, s, t) be an instance of ATSPP, where G is the support graph of
an optimum solution to (ATSPP LP). Let (a, y) be an optimum solution to (ATSPP
DUAL) with laminar support.

Let P1 and P2 be s-t-walks in G with total cost L. Then there is a single s-t-walk P
in G which contains every vertex of P1 and P2 and has cost at most L+lp+2(as−at ).

Proof Let V1, . . . , Vl be the vertex sets of the strongly connected components of G
in their topological order, which is unique by Proposition 2. Let P j

i be the section of
Pi that visits vertices in Vj (for i = 1, 2 and j = 1, . . . , l). By Proposition 2 applied
to U = V , none of these sections of Pi is empty. (Such a section might consist of a
single vertex and no edges, but it has to contain at least one vertex.)

We consider paths R j in G for j = 1, . . . , l that we will use to connect the walks
P j
1 and P j

2 to a single walk visiting all vertices in Vj . See Fig. 2. If j is odd, let R j

be a path from the last vertex of P j
1 to the first vertex of P j

2 . If j is even, let R j be

a path from the last vertex of P j
2 to the first vertex of P j

1 . (Such paths exists because
G[Vj ] is strongly connected.) By Proposition 3 we can choose the paths R j such that
they do not enter or leave any element of supp(y) more than once.

We now construct our s-t-walk P that will visit every vertex of P1 and P2. We start
by setting P = s and then add for j = 1, . . . , l all the vertices in Vj to P as follows.

If j is odd, we append P j
1 and R j and then P j

2 . If j is even, we append P j
2 and R j

and then P j
1 . Note that when moving from one connected component Vj to the next

component Vj+1, we use an edge from either P1 (if j is even) or P2 (if j is odd). Then
P is, indeed, an s-t walk in G and contains every vertex of P1 and P2. We now bound
the cost of the walk P . For every edge e = (v,w) of P we have by complementary
slackness
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s t

Fig. 2 Construction of P . The s-t-walks P1 and P2 are shown with solid and dotted lines. (Here, P1 is the
upper red walk and P2 is shown in blue at the bottom.) The vertex sets V1, . . . , Vl of the strongly connected
components are indicated by the green ellipses. The red and blue solid edges of the walks Pi that are those
that are used in the walk P . The dashed black arrows indicate the paths R j (color figure online)

c(e) = aw − av +
∑

U :e∈δ(U )

yU .

For an s-t-walk Q in G we have

c(Q) =
∑

(v,w)∈E(Q)

⎛

⎝aw − av +
∑

U :(v,w)∈δ(U )

yU

⎞

⎠ = at − as + cy(Q), (1)

where the cost function cy is defined as cy(e) := ∑
U :e∈δ(U ) yU . Hence, to bound the

cost of the s-t-walk P , we can bound cy(P) and then subtract as and add at .
P is constructed from pieces of P1 and P2 and the paths R j . Each of the paths

R j can only contain vertices of Vj . Two paths R j and R j ′ , such that j �= j ′, can
never both enter or both leave the same element of supp(y): otherwise they would
contain vertices of the same strongly connected component of G by Proposition 2.
Thus every element of supp(y) is entered at most once and left at most once on all the
paths R j used in the construction of P , and the total cy cost of these paths is at most∑

U 2yU = lp + as − at . The cy cost of the edges of P1 and P2 is

cy(P1) + cy(P2) = (c(P1) − at + as) + (c(P2) − at + as) = L + 2 · as − 2 · at .

Consequently, we have

c(P) = at − as + cy(P)

≤ at − as + L + 2 · as − 2 · at + (
lp + as − at

)

= L + lp + 2(as − at )

as claimed. ��
Svensson et al. [10] reduced ATSP to so-called laminarly-weighted instances. In

a laminarly-weighted instance we have a = 0 (and (a, y) has laminar support). For
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such instances Lemmas 1 and 2 would immediately imply our main result (even with
better constants). However, the reduction to laminarly-weighted instances for ATSP
does not yield an analogous statement for the path version. Instead, we will prove that
as − at ≤ lp for some optimum dual LP solution (Sect. 5).

Let us first consider a simpler special case.

4 The integrality ratio for node-weighted instances

Definition 1 An instance (G, c, s, t) of ATSPP or an instance (G, c) of ATSP is called
node-weighted if there are nonnegative node weights (cv)v∈V such that c(v,w) =
cv + cw for every edge (v,w).

Note that node-weighted instances are not necessarily symmetric because it might
happen that an edge (v,w) exists, but (w, v) does not exist. Since x(δ(s)) ≥ 1,
x(δ(t)) ≥ 1 and x(δ(v)) ≥ 2 for v /∈ {s, t} for every LP solution x , we have lp ≥
cs + ct + ∑

v∈V \{s,t} 2cv .

Theorem 1 Let ρNW
ATSP be the integrality ratio for ATSP on node-weighted instances

and ρNW
ATSPP be the integrality ratio for ATSPP on node-weighted instances. Then

ρNW
ATSPP ≤ 2ρNW

ATSP − 1.

Proof First we show how tomodify the proof of Lemma 1 for node-weighted instances
and d = 1. For a node-weighted instance I = (G, c), let I ′ = (G ′, c′) result from I
by adding a vertex v with weight cv = 1

2 (lp− cs − ct ) and two edges (t, v) and (v, s).
Note that lp ≥ cs + ct and hence cv ≥ 0. Then continuing with the node-weighted
instance I ′ as in the proof of Lemma 1 yields the following: it suffices to show that
for node-weighted instances of ATSPP, we can merge any two s-t-walks to a single
s-t-walk P as in Lemma 2, but with c(P) ≤ L + lp.

We construct P as in the proof of Lemma 2. Again we first bound the cost of the
paths R j . For 1 ≤ j ≤ l each vertex in Vj can only be contained in the path R j (and
not in a path R j ′ for j ′ �= j). Hence every vertex can be used in at most one path R j .
Furthermore, the vertices s and t are only used as the last or first vertices of paths R j .
Hence the total cost of all paths R j can be bounded from above by

cs + ct +
∑

v∈V \{s,t}
2cv ≤ lp.

This shows c(P) ≤ L + lp and completes the proof. ��
Since Svensson [9] showed ρNW

ATSP ≤ 13, this implies ρNW
ATSPP ≤ 25.

5 Bounding the difference of as and at

The goal of this section is to bound the difference of the dual variables as and at by
lp. Using Lemmas 1 and 2, this will imply our main result ρATSPP ≤ 4ρATSP − 3.
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s t
0=c0=c

y{v} = 1

1-01

Fig. 3 Example of an instance with lp = 0 and an optimum dual solution with as − at = 2. The blue
numbers below the vertices show the dual variables as = 1, av = 0 and at = −1. Of course, this instance
has a different optimum dual solution in which all variables are zero (color figure online)

Figure 3 shows that we cannot bound as − at by lp for an arbitrary optimum dual
solution (a, y). Thus, we will now work with an optimum dual solution (a, y) with
as − at minimum. Note that this minimum is attained because for every feasible dual
solution (a, y) we have as − at ≥ −lp.

First, we give an equivalent characterization of the minimum value of as −at in any
optimum dual solution. This will not be needed to prove our main result, but might
help to get some intuition.

Lemma 3 Let I = (G, c, s, t) be an instance of ATSPP and let Δ ≥ 0. Now consider
the instance I ′ = (G + e′, c, s, t), where we add an edge e′ = (t, s) with c(e′) := Δ.
Then lpI ≥ lpI ′ . Moreover, lpI = lpI ′ if and only if there exists an optimum solution
(a, y) of (ATSPP DUAL) for the instance I with as − at ≤ Δ.

Proof Every feasible solution x of (ATSPP LP) for I can be extended to a feasible
solution of (ATSPP LP) for I ′ by setting xe′ := 0. This shows lpI ≥ lpI ′ .

The dual LPs for the two instances are identical, except for the constraint corre-
sponding to e′, which is

Δ = c(e′) ≥ as − at +
∑

∅�=U⊆V \{s,t},e′∈δ(U )

yU = as − at . (2)

Suppose lpI = lpI ′ . Let (a, y) be an optimum dual solution for I ′. Then, (2) is
satisfied and (a, y) is also feasible for the dual LP for the instance I. Moreover, since
lpI = lpI ′ , the dual solution (a, y) is also optimum for the instance I.

For the reverse direction, let (a, y) be an optimum solution to (ATSPP DUAL) for
the instance I with as − at ≤ Δ. Then (a, y) satisfies (2) and thus is also feasible
for (ATSPP DUAL) for I ′. Hence, lpI ′ ≥ lpI . ��

For bounding as − at we will need the following.

Lemma 4 Let (G, c, s, t) be an instance of ATSPP, where G is the support graph of
an optimum solution to (ATSPP LP). Let (a, y) be an optimum solution of (ATSPP
DUAL) such that as − at is minimum. Let Ū ⊆ V \{s, t} such that every s-t-path in
G enters (and leaves) Ū at least once. Then yŪ = 0.

Proof Suppose yŪ > 0 and let ε := yŪ . Let R be the set of vertices reachable from s
in G − Ū . We define a dual solution (ā, ȳ) as follows:

ȳ(U ) :=
{
yU − ε if U = Ū

yU else

123



388 A. Köhne et al.

Fig. 4 Modifying the dual solution in the proof of Lemma 4. The green and blue numbers in the bottom
indicate the change of the dual node variables. In red the decrease of the variable yŪ is indicated. There is
no edge from R to V \(R ∪ Ū ) (color figure online)

āv :=

⎧
⎪⎨

⎪⎩

av − ε if v ∈ R

av if v ∈ Ū

av + ε else.

See Fig. 4. We claim that (ā, ȳ) is an optimum (and feasible) solution to (ATSPP
DUAL). Note that t ∈ V \ (

R ∪ Ū
)
and thus āt = at + ε. Since s ∈ R, we have

ās − āt < as − at . Thus, if (ā, ȳ) is indeed optimum (and feasible), we obtain a
contradiction to our choice of the dual solution (a, y).

First, we observe that (ā, ȳ) and (a, y) have the same objective value since

āt − ās +
∑

∅�=U⊆V \{s,t}
2 ȳU = (at + ε) − (as − ε) +

∑

∅�=U⊆V \{s,t}
2yU − 2ε.

By our choice of ε, the vector ȳ will be non-negative. Now consider an edge e =
(v,w) ∈ E(G). We need to show that

āw − āv +
∑

U :e∈δ(U )

ȳU ≤ c(e). (3)

To prove this we will show that

āw − aw − āv + av +
∑

U :e∈δ(U )

(ȳU − yU ) ≤ 0. (4)

Since (a, y) is a feasible dual solution, this will imply (3). We have

āw − aw :=

⎧
⎪⎨

⎪⎩

−ε if w ∈ R

0 if w ∈ Ū

ε else,

−āv + āv :=

⎧
⎪⎨

⎪⎩

ε if v ∈ R

0 if v ∈ Ū

−ε else,
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∑

U :e∈δ(U )

(ȳU − yU ) :=
{

−ε if (v,w) ∈ δ(Ū )

0 else.

Since āw − aw ≤ ε and
∑

U :e∈δ(U ) (ȳU − yU ) ≤ 0, it suffices to consider the cases

v ∈ R and v ∈ Ū . If v ∈ R, we have by definition of R, either w ∈ R or w ∈ Ū . In
both cases (4) holds, because if w ∈ Ū , we have (v,w) ∈ δ(Ū ). Now let v ∈ Ū . Then
if (v,w) ∈ δ(Ū ), we have

∑
U :e∈δ(U ) (ȳU − yU ) = −ε, implying (4). Otherwise,

w ∈ Ū and āw − aw − āv + av = 0.
This shows that (ā, ȳ) is an optimum dual solution and ās − āt < as − at , a

contradiction. Hence, yŪ = 0. ��
We will need the following variant of Menger’s Theorem.

Lemma 5 Let G be a directed graph and s, t ∈ V (G) such that t is reachable from s
in G. Let U ⊆ V (G)\{s, t} such that for every vertex u ∈ U, there exists an s-t-path
in G − u. Then there exist two s-t-paths P1 and P2 in G such that no vertex u ∈ U is
contained in both P1 and P2.

Proof We construct a graph G ′ that arises from G as follows. We split every vertex
u ∈ U into two vertices u− and u+ that are connected by an edge eu := (u−, u+).
Every edge (v, u) is replaced by an edge (v, u−) and every edge (u, v) is replaced by
an edge (u+, v). In the graph G ′ we now define integral edge capacities. Every edge
eu for u ∈ U has capacity one. All other edges, i.e. all edges corresponding to edges
of G, have infinite capacity.

Since for every vertex u ∈ U there exists an s-t-path in G − u, for every u ∈ U
there exists an s-t-path in G ′ − eu . Thus, the minimum capacity of an s-t-cut in G ′
is at least two. Hence, there exists an integral s-t-flow of value two in G ′ with the
defined edge capacities. This flow can be decomposed into two s-t-paths P ′

1 and P ′
2

(and possibly cycles). By the choice of the edge capacities no edge eu for u ∈ U
occurs in both paths. Since this edge eu is the only outgoing edge of u− and the only
incoming edge of u+, an s-t-path using u− or u+ must use eu , and at most one of P ′

1
and P ′

2 can do so.
Hence, contracting the edges eu (for u ∈ U ) yields two s-t-paths P1 and P2 in G

such that no vertex u ∈ U is contained in both P1 and P2. ��
See Fig. 5. We will now continue to work with a dual solution (a, y) that minimizes

as − at . By Proposition 1, we can assume in addition that (a, y) has laminar support.

Lemma 6 Let (G, c, s, t) be an instance of ATSPP, where G is the support graph of
an optimum solution to (ATSPP LP). Let (a, y) be an optimum solution to (ATSPP
DUAL) that has laminar support and minimum as − at .

Then G contains two s-t-paths P1 and P2 such that for every set U ∈ supp(y) we
have |E(P1) ∩ δ(U )| + |E(P2) ∩ δ(U )| ≤ 2.

Proof By Lemma 4, for every set U ∈ supp(y) there is an s-t-path in G that visits no
vertex inU . We contract all maximal setsU ∈ supp(y). Using Lemma 5, we can find
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s t
P1

P2

Fig. 5 The paths P1 and P2 as in Lemma 6. In black the vertex sets U ∈ supp(y) are shown. The paths P1
and P2 are not necesarily disjoint but they never both cross the same set U with yU > 0

two s-t-paths such that each vertex arising from the contraction of a set U ∈ supp(y)
is visited by at most one of the two paths.

Now we revert the contraction of the sets U ∈ supp(y). We complete the edge sets
of the two s-t-paths we found before (which are not necessarily connected anymore
after undoing the contraction), to paths P1 and P2 with the desired properties. To
see that this is possible, let v be the end vertex of an edge entering a contracted set
U ∈ supp(y) and let w be the start vertex of an edge leaving U . Then by Proposition
2, the vertex w is reachable from v in G[U ]. Let Ū be the minimal set in supp(y)
that contains both v and w. By Proposition 3, we can choose a v-w-path in G[Ū ] that
enters and leaves every set U ′ ∈ supp(y) with U ′

� Ū at most once. ��
We finally show our main lemma.

Lemma 7 Let I = (G, c, s, t) be an instance of ATSPP, where G is the support graph
of an optimum solution to (ATSPP LP). Then there is an optimum solution (a, y) of
(ATSPP DUAL) with laminar support and as − at ≤ lp.

Proof Let (a, y) be an optimum solution to (ATSPP DUAL) that has laminar support
andminimum as−at . Note that such an optimum dual solution exists by Proposition 1.
We again define the cy cost of an edge e to be cy(e) = ∑

U :e∈δ(U ) yU . By Lemma 6,G
contains two s-t-paths P1 and P2 such that cy(P1) + cy(P2) ≤ ∑

∅�=U⊆V \{s,t} 2 · yU .
Then, using (1),

0 ≤ c(P1) + c(P2)

= cy(P1) − (as − at ) + cy(P2) − (as − at )

≤
∑

∅�=U⊆V \{s,t}
2 · yU − 2(as − at ),

implying

as − at ≤
∑

∅�=U⊆V \{s,t}
2 · yU − (as − at ) = lp.

��
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0 0

00

1s t

Fig. 6 Example with no optimum dual solutions with as − at < lp: The numbers next to the arcs denote
their cost. For this instance we have lp = 1. However adding an edge (t, s) with cost γ < 1 would result in
an instance with lp = γ . By Lemma 3 there cannot be an optimum dual solution where as − at < 1 = lp

We remark (although we will not need it) that Lemma 7 also holds for general
instances. To adapt the proof, work with the subgraph G ′ of G that contains all edges
of G for which the dual constraint is tight. Now G ′ plays the role of G in the proof,
and by choosing ε small enough in the proof of Lemma 4 we maintain dual feasibility
also for the edges that are not in G ′.

By Lemma 3, this also shows that adding an edge (t, s) of cost equal to the LP
value does not change the value of an optimum LP solution.

The instance in Fig. 6 shows that the bound as − at ≤ lp is tight. Note that the
bound is also tight for the instance in Fig. 1 in which x∗

e > 0 for all edges e, and in
which the integrality ratio is arbitrarily close to the best known lower bound of 2.

We will now prove our main result.

Theorem 2 Let ρATSP be the integrality ratio of (ATSP LP). Then the integrality ratio
ρATSPP of (ATSPP LP) is at most 4ρATSP − 3.

Proof Let (G, c, s, t) be an instance of ATSPP, where G is the support graph of an
optimum solution to (ATSPP LP). By Lemma 7, there is an optimum dual solution
(a, y) with laminar support and as − at ≤ lp. Using Lemma 2, this implies that the
condition of Lemma 1 is fulfilled for d = 3. This shows ρATSPP ≤ 4ρATSP − 3. ��

6 Node-weighted and unweighted instances

Here we observe that, for ATSP, node-weighted instances are not much more general
than unweighted instances. We call an LP solution x minimal if there is no feasible
solution x ′ �= x with x ′ ≤ x componentwise.

Lemma 8 For every minimal solution x of (ATSP LP), we have x(E(G)) ≤ n2, where
n = |V (G)|.
Proof Choose an arbitrary root r ∈ V and let P = {y ∈ R

E(G)
≥0 : y(δ−(U )) ≥

1 for ∅ �= U ⊆ V \{r}}. A vector is feasible for (ATSP LP) if and only if it is a
circulation that belongs to P . Let y ≤ x be aminimal vector in P . Theminimal vectors
in P are the convex combinations of incidence vectors of spanning arborescences
rooted at r (Edmonds [3]); hence y(E(G)) = n−1. There are cyclesC j and edge sets
S j ⊆ C j ( j = 1, . . . , l) such that x = ∑l

j=1 λ jχ
C j and y = ∑l

j=1 λ jχ
S j for some

positive coefficients λ j . Note that none of the sets S j can be empty because otherwise
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x ′ = x−λ jχ
C j would be a circulation that belongs to P , contradicting the minimality

of x . We conclude x(E(G)) = ∑l
j=1 λ j |C j | ≤ ∑l

j=1 λ j · n|S j | = n · y(E(G)) =
n(n − 1). ��
Lemma 9 Let ε > 0. Let (G, c) be a node-weighted instance of ATSP with n vertices.
Then we can find in polynomial time a constant M > 0 and an unweighted digraph

G ′ with O( n
2

ε
) vertices such that

(i) lp(G,c) ≤ M · lpG ′ ≤ (1 + ε)lp(G,c),
(ii) opt(G,c) ≤ M · optG ′ ≤ (1 + ε)opt(G,c), and
(iii) for every tour F ′ in the unweighted digraph G ′ there is a corresponding tour

F in G such that c(F) ≤ M |F ′| and F can be obtained from F ′ in polynomial
time.

Proof Let cv ≥ 0 (v ∈ V (G)) be the node weights, i.e., c(v,w) = cv + cw for
all (v,w) ∈ E . Let c(V (G)) = ∑

v∈V (G) cv denote the sum of all node weights. If
c(V (G)) = 0, the instance is trivial, we can choose G ′ to consist of a single vertex.

Otherwise let n = |V (G)|, M := 2ε·c(V (G))

n2
and c̄v := � 2cv

M � for all v ∈ V (G).
Replace every vertex v of G with c̄v > 0 by two vertices v− and v+, such that v−
inherits the entering edges and v+ inherits the outgoing edges, and add a path Pv of c̄v

edges from v− to v+. This definesG ′. Note that |V (G ′)| = n+∑
v∈V (G) c̄v ≤ n+ n2

ε
.

Every solution x to (ATSP LP) for (G, c) corresponds to a solution x ′ to (ATSP
LP) for G ′, simply by setting x ′

e := x(δ+(v)) for all edges e of Pv . Then

x ′(E(G ′)) =
∑

v∈V (G)

(1 + c̄v) x(δ+(v))

=
∑

v∈V (G)

(

1 +
⌊
2cv

M

⌋)

x(δ+(v))

= δ · x(E(G)) +
∑

v∈V (G)

2cv

M
x(δ+(v))

= δ · x(E(G)) + 1

M
c(x)

for some δ ∈ [0, 1]. Hence

c(x) ≤ Mx ′(E(G)),

and for minimal solutions we have x(E(G)) ≤ n2 by Lemma 8, which implies δ ·
x(E(G)) ≤ n2 = ε

2c(V (G))
M ≤ ε

c(x)
M and thus

Mx ′(E(G)) ≤ (1 + ε)c(x).

Because tours are integral LP solutions, and optimum LP solutions and optimum tours
can be assumed to be minimal, this completes the proof of (i) and (ii). To prove (iii),
observe that contracting the paths Pv in a tour F ′ yields a tour F as claimed. ��
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G0 v0 = v0 w0 = w0

Gi Gi−1 Gi−1 Gi−1 Gi−1

vi−1 vi−1

wi 1 wi 1

vi−1 vi−1

wi 1 wi 1

vi−1vi−1

wi 1wi

vi−1vi−1

wi 1wi 1

vi

vi

wi

wi

Fig. 7 Constructing a family of digraphs with integrality ratio arbitrarily close to 2 for ATSP with unit
weights. For a fixed even number l ≥ 4 we define graphsG0,G1, . . .. The graphG0 consists of a bidirected
path of length l. Then we construct Gi from Gi−1 as in the picture. The picture shows the construction for
l = 4; in general, there are l copies of the graph Gi−1 (shown in green). The blue wiggly paths indicate
paths of length di , where d0 = 0 and di = li −di−1−2. LetG′

i be the graph arising fromGi by identifying
the blue vi -v

′
i -path with the blue wi -w

′
i -path. Then for i → ∞, the integrality ratio of G′

i converges to

2 − 2
l (Boyd and Elliott–Magwood [1]) (color figure online)

This immediately implies:

Theorem 3 The integrality ratio of (ATSPLP) is the same for unweighted and for node-
weighted instances. For any constants α ≥ 1 and ε > 0, there is a polynomial-time
(α+ε)-approximation algorithm for node-weighted instances if there is a polynomial-
time α-approximation algorithm for unweighted instances.

Proof The equality of the integrality ratio for unweighted and for node-weighted
instances follows from Lemma 9(i) and (ii). Now suppose we have a polynomial-
time α-approximation algorithm for unweighted instances. Then for a node-weighted
instance (G, c) we apply Lemma 9 with ε′ = ε

α
and apply our α-approximation algo-

rithm to the resulting digraph G ′. Let F ′ be the resulting tour in G ′. By (iii) of Lemma
9, this tour corresponds to a tour F in G such that

c(F) ≤ M |F ′| ≤ α · MoptG ′ ≤ (1 + ε′)α · opt(G,c) = (α + ε) · opt(G,c).

��
In particular, this implies that the node-weighted instances from Boyd and Elliott–

Magwood [1] can be transformed to unweighted instanceswhose integrality ratio tends
to 2. For convenience we show these instances in Figs. 7 and 8. Figure 7 shows the
general construction of the family of instances, Fig. 8 a concrete example. To obtain
these instances we have replaced every vertex v in the node-weighted instances with
node-weight cv by a path of length 2cv − 1 similar to the proof of Lemma 9. So,
contracting the blue paths of length di in Fig. 7 and setting the node-weight of the
resulting vertex to di+1

2 and node-weights in G0 to 1
2 results in the instances from

123



394 A. Köhne et al.

Fig. 8 The graph G′
1 for l = 6. An optimum LP solution has value 1 on the blue edges and value 1

2 on all
other edges and hence we have lp = |V (G′

1)| (color figure online)

Boyd and Elliott–Magwood [1]. Then, LP solutions (and tours) in the node-weighted
instance correspond to LP solutions (and tours) of the same cost in the unweighted
instance. It seems that previously only unweighted instances with integrality ratio at
most 3

2 were known (e.g. Gottschalk [7]).
By splitting an arbitrary vertex into two copies s and t , both inheriting all incident

edges, this also yields a family of unweighted digraph instances of ATSPP whose
integrality ratio tends to two. We summarize:

Corollary 1 The integrality ratio for unweighted digraph instances is at least two, both
for (ATSP LP) and (ATSPP LP). ��
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