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Abstract
In this paper we develop new tensor methods for unconstrained convex optimization,
which solve at each iteration an auxiliary problem of minimizing convex multivariate
polynomial. We analyze the simplest scheme, based on minimization of a regularized
local model of the objective function, and its accelerated version obtained in the
framework of estimating sequences. Their rates of convergence are compared with the
worst-case lower complexity bounds for corresponding problem classes. Finally, for
the third-order methods, we suggest an efficient technique for solving the auxiliary
problem, which is based on the recently developed relative smoothness condition
(Bauschke et al. in Math Oper Res 42:330–348, 2017; Lu et al. in SIOPT 28(1):333–
354, 2018). With this elaboration, the third-order methods become implementable and
very fast. The rate of convergence in terms of the function value for the accelerated

third-order scheme reaches the level O
(

1
k4

)
, where k is the number of iterations.

This is very close to the lower bound of the order O
(

1
k5

)
, which is also justified in

this paper. At the same time, in many important cases the computational cost of one
iteration of this method remains on the level typical for the second-order methods.
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1 Introduction

Motivation In the last decade, we observe an increasing interest to the complexity
analysis of the high-order methods. Starting from the paper [31] containing the first
global rate of convergence of Cubic Regularization of Newton Method, it became
more and more common to provide the second-order methods with the worst-case
complexity bounds on different problem classes (see, for example, [5,11,12]). New
efficiency measurements in this field naturally generated a new spectrum of questions,
starting from the possibilities to accelerate the second-order methods (see [27]) up
to the lower complexity bounds (see [1,2,13,18]) and attempts of constructing the
optimal methods [24].

Another possibility of accelerating the minimization processes consists in the
increase of the power of oracle. The idea of using the high-order approximations in
Optimization is not new. Initially, such approximations were employed in the optimal-
ity conditions (see, for example [22]). However, it seems that the majority of attempts
of using the high-order tensors in optimizationmethods failed by the standard obstacle
related to the enormous complexity of minimization of nonconvex multivariate poly-
nomials. To the best of our knowledge, the only theoretical analysis of such schemes
for convex problems can be found in an unpublished preprint [3], which is concluded
by a pessimistic comment on practical applicability of these methods. For noncon-
vex problems, several recent papers [8–10,14] contain the complexity analysis for
high-order methods designed for generating points with small norm of the gradient.
For the auxiliary nonconvex optimization problem, these methods need to guaran-
tee a sufficient level for the first-order optimality condition and the local decrease of
the objective function. However, for nonconvex functions even this moderate goal is
difficult to achieve.

The key observation, which underlies all results of this paper, is that an appro-
priately regularized Taylor approximation of convex function is a convex multivariate
polynomial. This is indeed a very natural property since this regularized approximation
usually belongs to the epigraph of convex function. Thus, the auxiliary optimization
problem in the high-order (or tensor) methods becomes generally solvable by many
powerful methods of Convex Optimization. This fact explains our interest to complex-
ity analysis of the simplest tensor scheme (Sect. 2), based on the convex regularized
Taylor approximation, and to its accelerated version (Sect. 3). The latter method is
obtained by the technique of estimating functions (see [25–27]). Therefore it is sim-
ilar to Algorithm 4.2 in [3]. The main difference consists in the correct choice of
parameters ensuring convexity of the auxiliary problem. We show that this algorithm

converges with the rate O(
( 1
k

)p+1
), where k is the number of iterations and p is the

degree of the tensor.
In the next Sect. 4, we derive lower complexity bounds for the tensor methods. We

show that the lower bound for the rate of convergence is of the order O

(( 1
k

) 3p+1
2

)
.

This result is better than the bound in [1] and coincide with the bound in [2]. However,
it seems that our justification is simpler.
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For practical implementations, the most important results are included in Sect. 5,
where we discuss an efficient scheme for minimizing the regularized Taylor approxi-
mation of degree three. This auxiliary convex problem can be treated in the framework
of relative smoothness condition. The first element of this approach was introduced
in [4], for generalizing the Lipschitz condition for the norm of the gradient. In [21] it
was shown that the same extension can be applied to the condition of strong convexity.
This second step is important since it leads to linearly convergent methods for func-
tions with nonstandard growth properties. The auxiliary problem with the third-order
tensor is a good application of this technique. We show that the corresponding method
converges linearly, with the rate depending on an absolute constant. In the end of
the section, we argue that the complexity of one iteration of the resulting third-order
scheme is often of the same order as that of the second-order methods.

In the last Sect. 6 we discuss the presented results and mention the open problems.

Notations and generalities In what follows, we denote by E a finite-dimensional
real vector space, and by E

∗ its dual spaced composed by linear functions on E. For
such a function s ∈ E

∗, we denote by 〈s, x〉 its value at x ∈ E. Using a self-adjoint
positive-definite operator B : E → E

∗ (notation B = B∗ � 0), we can endow these
spaces with conjugate Euclidean norms:

‖x‖ = 〈Bx, x〉1/2, x ∈ E, ‖g‖∗ = 〈g, B−1g〉1/2, g ∈ E∗.

Sometimes, in the formulas involving products of linear operators, it will be convenient
to treat x ∈ E as a linear operator from R to E, and x∗ as a linear operator from E

∗ to
R. In this case, xx∗ is a linear operator from E

∗ to E, acting as follows:

(xx∗)g = 〈g, x〉x ∈ E, g ∈ E
∗.

For a smooth function f : dom f → Rwith convex and open domain dom f ⊆ E,
denote by ∇ f (x) its gradient, and by ∇2 f (x) its Hessian evaluated at point x ∈
dom f ⊆ E. Note that

∇ f (x) ∈ E
∗, ∇2 f (x)h ∈ E

∗, x ∈ dom f , h ∈ E.

In what follows, we often work with directional derivatives. For p ≥ 1, denote by

Dp f (x)[h1, . . . , h p]

the directional derivative of function f at x along directions hi ∈ E, i = 1, . . . , p.
Note that Dp f (x)[·] is a symmetric p-linear form. Its norm is defined in the standard
way:

‖Dp f (x)‖ = max
h1,...,h p

{
Dp f (x)[h1, . . . , h p] : ‖hi‖ ≤ 1, i = 1, . . . , p

}
. (1.1)
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160 Y. Nesterov

For example, for any x ∈ dom f and h1, h2 ∈ E, we have

Df (x)[h1] = 〈∇ f (x), h1〉, D2 f (x)[h1, h2] = 〈∇2 f (x)h1, h2〉.

Thus, for the Hessian, our definition corresponds to the spectral norm of self-adjoint
linear operator (maximal module of all eigenvalues computed with respect to operator
B).

If all directions h1, . . . , h p are the same, we apply notation

Dp f (x)[h]p, h ∈ E.

Then, Taylor approximation of function f (·) at x ∈ dom f can be written as follows:

f (x + h) = �x,p(h) + o(‖h‖p), x + h ∈ dom f ,

�x,p(y)
def= f (x) +

p∑
i=1

1
i ! D

i f (x)[y − x]i , y ∈ E.

Note that in general, we have (see, for example, Appendix 1 in [30])

‖Dp f (x)‖ = max
h

{∣∣∣Dp f (x)[h]p
∣∣∣ : ‖h‖ ≤ 1

}
. (1.2)

Similarly, since for x, y ∈ dom f being fixed, the form Dp f (x)[·, . . . , ·] −
Dp f (y)[·, . . . , ·] is p-linear and symmetric, we also have

‖Dp f (x) − Dp f (y)‖ = max
h

{∣∣∣Dp f (x)[h]p − Dp f (y)[h]p
∣∣∣ : ‖h‖ ≤ 1

}
.

(1.3)

In this paper, we consider functions from the problem classesF p, which are convex
and p times differentiable on E. Denote by L p its uniform bound for the Lipschitz
constant of their pth derivative:

‖Dp f (x) − Dp f (y)‖ ≤ L p‖x − y‖, x, y ∈ dom f , p ≥ 1. (1.4)

Sometimes, if an ambiguity can arise, we us notation L p( f ).
Assuming that f ∈ Fp and L p < +∞, by the standard integration arguments we

can bound the residual between function value and its Taylor approximation:

| f (y) − �x,p(y)| ≤ L p
(p+1)! ‖y − x‖p+1, x, y ∈ dom f . (1.5)

If p ≥ 2, then applying the same reasoning for functions 〈∇ f (·), h〉 and 〈∇2 f (·)h, h〉
with direction h ∈ E being fixed, we get the following guarantees:
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Implementable tensor methods in unconstrained convex… 161

‖∇ f (y) − ∇�x,p(y)‖∗ ≤ L p
p! ‖y − x‖p, (1.6)

‖∇2 f (y) − ∇2�x,p(y)‖ ≤ L p
(p−1)! ‖y − x‖p−1, (1.7)

which are valid for all x, y ∈ dom f .

2 Convex tensor approximations

In our methods, we use the following power prox function

dp(x) = 1
p‖x‖p, p ≥ 2. (2.1)

Note that

∇dp(x) = ‖x‖p−2Bx,

∇2dp(x) = (p − 2)‖x‖p−4Bxx∗B + ‖x‖p−2B

� ‖x‖p−2B.

(2.2)

All results of this paper are based on the following observation. From now on, for
the sake of simplicity, we assume that dom f = E.

Theorem 1 Let f ∈ Fp with p ≥ 2 and L p < +∞. Then for any x, y ∈ E we have

∇2 f (y) � ∇2�x,p(y) + L p
(p−1)! ‖y − x‖p−1B. (2.3)

Moreover, for any M ≥ L p and any x ∈ E, function1

�x,p,M (y) = �x,p(y) + M
(p−1)!dp+1(y − x) (2.4)

is convex and

f (y) ≤ �x,p,M (y), y ∈ E. (2.5)

Proof Let us fix arbitrary x and y from dom f . Then for any direction h ∈ Ewe have

〈(∇2 f (y) − ∇2�x,p(y))h, h〉 ≤ ‖∇2 f (y) − ∇2�x,p(y)‖ · ‖h‖2

(1.7)≤ L p
(p−1)! ‖y − x‖p−1‖h‖2,

1 In our notation, the approximation function in [3] was chosen as �x,p(y) + M
p! dp+1(y − x). Thus, we

cannot guarantee that this polynomial is convex.
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162 Y. Nesterov

and this is (2.3). Further,

0 � ∇2 f (y)
(2.3)� ∇2�x,p(y) + L p

(p−1)! ‖y − x‖p−1B

� ∇2�x,p(y) + M
(p−1)! ‖y − x‖p−1B

(2.2)� ∇2�x,p(y) + M
(p−1)!∇2dp+1(y − x)

(2.4)= ∇2�x,p,M (y).

Thus, function �x,p,M (·) is convex. Finally,

f (y)
(1.5)≤ �x,p(y) + L p

(p+1)! (p + 1)dp+1(y − x)

≤ �x,p(y) + M
p!dp+1(y − x)

≤ �x,p,M (y).

��
The statements of Theorem 1 explain our interest to the following point:

Tp,M (x) ∈ Argmin
y∈E �x,p,M (y) (2.6)

with M ≥ L p. We are going to use such points for solving the problem

f∗ = min
x∈E f (x), (2.7)

starting from some point x0 ∈ E, where f ∈ Fp and L p < +∞. We assume that there
exists at least one solution x∗ of this problem and that the level sets of f are bounded:

max
x∈L(x0)

‖x − x∗‖ ≤ D < +∞,

L(x0)
def= {x ∈ E : f (x) ≤ f (x0)}. (2.8)

In this case, in view of (2.5), the level sets of function �x,p,M (·) are also bounded.
Therefore, point T = Tp,M (x) is well defined. It satisfies the following first-order
optimality condition:

∇�x,p(T ) + M
(p−1)! ‖T − x‖p−1B(T − x) = 0. (2.9)
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Multiplying this equality by T − x , we get

M
(p−1)! ‖T − x‖p+1 = 〈∇�x,p(T ), x − T 〉. (2.10)

Denote rp,M (x) = ‖x − Tp,M (x)‖.
Lemma 1 For any x ∈ E and M ≥ L p we have

f (Tp,M (x)) ≤ min
y∈E

{
f (y) + pM+L p

(p+1)! ‖y − x‖p+1
}

, (2.11)

‖∇ f (Tp,M (x))‖∗ ≤ pM+L p
p! ‖x − Tp,M (x)‖p, (2.12)

〈∇ f (Tp,M (x)), x − Tp,M (x)〉 ≥ (p−1)!
2Mr p−1

p,M (x)
‖∇ f (Tp,M (x))‖2∗ + M2−L2

p
2M(p−1)!r

p+1
p,M (x).

(2.13)

First two inequalities of this lemma are already known (see, for example, [8]). We
provide them with a simple proof for the reader convenience.

Proof Denote T = Tp,M (x) and r = ‖x − T ‖. Then,

f (T )
(2.5)≤ min

y∈E �x,p,M (y) = min
y∈E

{
�p,x (y) + pM

(p+1)! ‖y − x‖p+1
}

(1.5)≤ min
y∈E

{
f (y) + pM+L p

(p+1)! ‖y − x‖p+1
}

.

and this is inequality (2.11). Further,

‖∇ f (T ) − ∇�x,p(T )‖∗
(1.6)≤ L p

p! r
p. (2.14)

Therefore, we get the following bound:

‖∇ f (T )‖∗ ≤ ‖∇ f (T ) − ∇�x,p(T )‖∗ + ‖∇�x,p(T )‖∗

(2.14)≤ L p
p! r

p + ‖∇�x,p(T )‖∗

(2.9)=
(
L p
p! + M

(p−1)!
)
r p,

which leads to (2.12). Finally,

‖∇ f (T ) + Mr p−1

(p−1)! B(T − x)‖∗
(2.9)= ‖∇ f (T ) − ∇�x,p(T )‖∗

(2.14)≤ L p
(p−1)!r

p.
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164 Y. Nesterov

Squaring both sides of this bound, we get:

‖∇ f (T )‖2∗ + 2Mr p−1

(p−1)! 〈∇ f (T ), T − x〉 + M2r2p

[(p−1)!]2 ≤ L2
p+1r

2p

[(p−1)!]2 ,

and this is (2.13). ��
Corollary 1 For any x ∈ E and M ≥ L p, we have

〈∇ f (Tp,M (x), x − Tp,M (x)〉 ≥ c(p)
M [M2 − L2

p]
p−1
2p ‖∇ f (Tp,M (x))‖

p+1
p∗ , (2.15)

where c(p) = p
p−1

[
p−1
p+1

] 1−p
2p [(p − 1)!] 1

p .

Proof Indeed, in view of inequality (2.13), we have the following bound:

〈∇ f (T ), x − T 〉 ≥ a
τ

+ bτα,

where a = (p−1)!
2M ‖∇ f (Tp,M (x))‖2∗, b = M2−L2

p
2M(p−1)! , τ = r p−1

p,M (x), and α = p+1
p−1 . Note

that

min
τ>0

{ a
τ

+ bτα
} = (1 + α)

( a
α

) α
1+α b

1
1+α .

It remains to substitute in this bound the values of our parameters a, b, and α. ��
Let us estimate now the rate of convergence of the following process:

xt+1 = Tp,M (xt ), t ≥ 0 (2.16)

where M ≥ L p. Thus, in view of Theorem 1, point xt+1 is a solution to the auxiliary
convex problem (2.6).

Theorem 2 Let sequence {xt }t≥0 be generated by method (2.16) as applied to problem
(2.7). Then for all t ≥ 0 we have f (xt+1) ≤ f (xt ). At the same time,

f (xt ) − f∗ ≤ (pM+L p)Dp+1

(p+1)!
(
1+(t−1)

(
1

p+1

) p+1
p

)p ≤ (pM+L p)Dp+1

p!
(
p+1
t

)p
, t ≥ 1.

(2.17)

Proof In view of inequality (2.5), method (2.16) is monotone. Hence, for all t ≥ 0 we
have

‖xt − x∗‖ ≤ D. (2.18)
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Let us prove the first inequality in (2.17). First of all, let us estimate the difference
f (x1) − f∗. We have

f (x1)
(2.11)≤ min

y∈E

{
f (y) + pM+L p

(p+1)! ‖y − x0‖p+1
} (2.18)≤ f∗ + (pM+L p)Dp+1

(p+1)! ,

and this is (2.17) for t = 1.
Further, for any t ≥ 1, we have

f (xt+1)
(2.11)≤ min

y∈E

{
f (y) + pM+L p

(p+1)! ‖y − xt‖p+1
}

(2.18)≤ min
α∈[0,1]

{
f (xt + α(x∗ − xt )) + (pM+L p)Dp+1

(p+1)! α p+1
}

≤ min
α∈[0,1]

{
f (xt ) − α( f (xt ) − f∗) + (pM+L p)Dp+1

(p+1)! α p+1
}

.

The minimum of the above objective in α ≥ 0 is achieved for

α∗ =
(

( f (xt )− f∗)p!
(pM+L p)Dp+1

) 1
p ≤

(
( f (x1)− f∗)p!

(pM+L p)Dp+1

) 1
p (2.17)≤

(
1

p+1

) 1
p

< 1.

Thus, we conclude that

f (xt+1) ≤ f (xt ) − α∗
(
f (xt ) − f∗ − (pM+L p)Dp+1

(p+1)! α
p∗
)

= f (xt ) − p α∗
p+1 ( f (xt ) − f∗).

Denoting δt = f (xt ) − f∗, we get the following estimate:

δt − δt+1 ≥ Cδ

p+1
p

t , t ≥ 1,

where C = p
p+1

(
p!

(pM+L p)Dp+1

) 1
p
. Thus, for μt = C pδt , the recursive inequality is

as follows:

μt − μt+1 ≥ μ

p+1
p

t , t ≥ 1.
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166 Y. Nesterov

Then,

1
μ
1/p
t+1

− 1
μ
1/p
t

= μ
1/p
t −μ

1/p
t+1

μ
1/p
t+1μ

1/p
t

= 1
μ
1/p
t+1μ

1/p
t

(
μ
1/p
t − μ

1/p
t

(
1 + μt+1−μt

μt

)1/p)

≥ 1
μ
1/p
t+1μ

1/p
t

(
μ
1/p
t − μ

1/p
t

(
1 + μt+1−μt

pμt

))
= μt−μt+1

pμtμ
1/p
t+1

≥ μ
1/p
t

pμ1/p
t+1

≥ 1
p .

This means that 1
μt

≥
(

1
μ
1/p
1

+ t−1
p

)p

. Note that

1
μ
1/p
1

= 1
Cδ

1/p
1

= p+1
p

(
(pM+L p)Dp+1

p!( f (x1)− f∗)

) 1
p (2.17)≥ 1

p (p + 1)
p+1
p .

Therefore,

δt = C−pμt =
(
p+1
p

)p (pM+L p)Dp+1

p! μt

≤
(
p+1
p

)p (pM+L p)Dp+1

p!
(

1
p (p + 1)

p+1
p + t−1

p

)−p

= (pM+L p)Dp+1

p!
(
(p + 1)1/p + t−1

p+1

)−p
,

and this is (2.17). ��

3 Accelerated tensor methods

In order to accelerate method (2.16), we apply a variant of the estimating sequences
technique, which becomes a standard tool for accelerating the usual Gradient and
Second-Order Methods (see, for example, [25–27]). In our situation, this idea can be
applied to tensor methods in the following way.

For solving the problem (2.7), we choose a constant M ≥ L p and recursively
update the following sequences.

• Sequence of estimating functions

ψk(x) = �k(x) + C
p!dp+1(x − x0), k = 1, 2, . . . , (3.1)

where �k(x) are linear functions in x ∈ E, and C is a positive parameter.
• Minimizing sequence {xk}∞k=1.
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• Sequence of scaling parameters {Ak}∞k=1:

Ak+1
def= Ak + ak, k = 1, 2, . . . .

For these objects, we are going to maintain the following relations:

R1
k : Ak f (xk) ≤ ψ∗

k ≡ min
x∈E ψk(x),

R2
k : ψk(x) ≤ Ak f (x) + pM+L p+C

p! dp+1(x − x0), ∀x ∈ E.

⎫⎪⎬
⎪⎭

, k ≥ 1. (3.2)

Let us ensure that relations (3.2) hold for k = 1. We choose

x1 = Tp,M (x0), �1(x) ≡ f (x1), x ∈ E, A1 = 1. (3.3)

Then ψ∗
1 = f (x1), soR1

1 holds. On the other hand, in view of definition (3.1), we get

ψ1(x) = f (x1) + C
p!dp+1(x − x0)

(2.11)≤ min
y∈E

[
f (y) + pM+L p

(p+1)! ‖y − x0‖p+1
]

+ C
p!dp+1(x − x0),

and R2
1 follows.

Assume now that relations (3.2) hold for some k ≥ 1. Denote

vk = argmin
x∈E ψk(x).

Let us choose some ak > 0 and M ≥ L p. Define

αk = ak
Ak+ak

, yk = (1 − αk)xk + αkvk, xk+1 = Tp,M (yk),

ψk+1(x) = ψk(x) + ak[ f (xk+1) + 〈∇ f (xk+1), x − xk+1〉].
(3.4)

In view ofR2
k and convexity of f , for any x ∈ E we have

ψk+1(x) ≤ Ak f (x) + pM + L p + C

p! dp+1(x − x0)

+ak[ f (xk+1) + 〈∇ f (xk+1), x − xk+1〉]

≤ (Ak + ak) f (x) + pM + L p + C

p! dp+1(x − x0),

and this is R2
k+1. Let us show now that, for the appropriate choices of ak , C and M ,

relationR1
k+1 is also valid.
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168 Y. Nesterov

Indeed, in view of R1
k and Lemma 4 in [27], for any x ∈ E, we have

ψk(x) ≡ �k(x) + C
p!dp+1(x − x0) ≥ ψ∗

k + C
(p+1)! · ( 12 )

p−1‖x − vk‖p+1

≥ Ak f (xk) + C
(p+1)! · ( 12 )

p−1‖x − vk‖p+1.

(3.5)

Denote γp = C
p! · ( 12 )

p−1. Then,

ψ∗
k+1 = min

x∈E
{ψk(x) + ak[ f (xk+1) + 〈∇ f (xk+1), x − xk+1〉]}

(3.5)≥ min
x∈E

{
Ak f (xk) + γp

p + 1
‖x − vk‖p+1 + ak[ f (xk+1)

+〈∇ f (xk+1), x − xk+1〉]
}

≥ min
x∈E

{
(Ak + ak) f (xk+1) + Ak〈∇ f (xk+1), xk − xk+1〉

+ak〈∇ f (xk+1), x − xk+1〉 + γp

p + 1
‖x − vk‖p+1

}

(3.4)= min
x∈E

{
Ak+1 f (xk+1) + 〈∇ f (xk+1), Ak+1yk − akvk − Akxk+1〉

+ak〈∇ f (xk+1), x − xk+1〉 + γp

p + 1
‖x − vk‖p+1

}

= min
x∈E

{
Ak+1 f (xk+1) + Ak+1〈∇ f (xk+1), yk − xk+1〉

+ak〈∇ f (xk+1), x − vk〉 + γp

p + 1
‖x − vk‖p+1

}
.

Further, if we choose M ≥ L p, then by inequality (2.15) we have

〈∇ f (xk+1), yk − xk+1〉 ≥ c(p)
M [M2 − L2

p]
p−1
2p ‖∇ f (xk+1)‖

p+1
p∗ .

Hence, our choice of parameters must ensure the following inequality:

Ak+1
c(p)

M
[M2 − L2

p]
p−1
2p ‖∇ f (xk+1)‖

p+1
p∗ + ak〈∇ f (xk+1), x − vk〉

+ γp

p + 1
‖x − vk‖p+1 ≥ 0,

for all x ∈ E. Minimizing this expression in x ∈ E, we come to the following
condition:

Ak+1
c(p)
M [M2 − L2

p]
p−1
2p ≥ p

p+1

(
1
γp

) 1
p
a

p+1
p

k .
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Substituting in this inequality expressions for corresponding constants, we obtain

Ak+1
p

p+1

[
p−1
p+1

] 1−p
2p

[(p − 1)!] 1p 1
M [M2 − L2

p]
p−1
2p ≥ p

p+1

[
p!
C 2p−1

] 1
p
a

p+1
p

k .

After cancellations, we get

Ak+1

√
1 − L2

p

M2

(
C2

M2−L2
p

) 1
2p ≥ 2a

p+1
p

k

(
p
2

√
p+1
p−1

) 1
p
√

p+1
p−1 .

(3.6)

For the sake of notation, let us choose

C = p
2

√
(p+1)
(p−1) (M

2 − L2
p). (3.7)

Then, inequality (3.6) becomes simpler:

Ak+1 ≥ 2
√

(p+1)M2

(p−1)(M2−L2
p)

a
p+1
p

k . (3.8)

Let us choose some α > 0 and define

Ak = 1
α
k p+1,

ak = Ak+1 − Ak = 1
α
((k + 1)p+1 − k p+1).

(3.9)

Note that for any k ≥ 0, using trivial inequality (1 − τ)p ≥ 1 − pτ , 0 ≤ τ ≤ 1, we
get

ak · A− p
p+1

k+1 = α
− 1

p+1 · (k+1)p+1−k p+1

(k+1)p = α
− 1

p+1

(
k + 1 − k

(
1 − 1

k+1

)p)

≤ α
− 1

p+1

(
1 + kp

k+1

)
≤ α

− 1
p+1 (1 + p).

Thus, Ak+1 ≥ α
1
p

(
1

p+1

) p+1
p

a
p+1
p

k . Now, if we choose

α = (p + 1)p+1
[

4(p+1)M2

(p−1)(M2−L2
p)

] p
2

, (3.10)

then α
− 1

p+1 (1 + p) =
[

(p−1)(M2−L2
p)

4(p+1)M2

] p
2(p+1)

, and inequality (3.8) is satisfied for all

k ≥ 0.

123



170 Y. Nesterov

Now we are ready to write down the accelerated tensor method. Define

Ak =
[

(p−1)(M2−L2
p)

4(p+1)M2

] p
2 (

k
p+1

)p+1
, ak = Ak+1 − Ak, k ≥ 0. (3.11)

Accelerated Tensor Method

Initialization: Choose x0 ∈ E and M > L p. Compute x1 = Tp,M (x0).

Define C = p
2

√
(p+1)
(p−1) (M

2 − L2
p) and ψ1(x) = f (x1) + C

p!dp+1(x − x0).

Iteration k, (k ≥ 1):

1. Compute vk = argmin
x∈E ψk(x) and choose yk = Ak

Ak+1
xk + ak

Ak+1
vk .

2. Compute xk+1 = Tp,M (yk) and update

ψk+1(x) = ψk(x) + ak[ f (xk+1) + 〈∇ f (xk+1), x − xk+1〉].

(3.12)

The above discussion proves the following theorem.

Theorem 3 Let the sequence {xk}∞k=1 be generated by method (3.12) as applied to the
problem (2.7). Then for any k ≥ 1 we have:

f (xk) − f (x∗) ≤ pM+L p+C
(p+1)!

[
4(p+1)M2

(p−1)(M2−L2
p)

] p
2 ( p+1

k

)p+1 ‖x0 − x∗‖p+1. (3.13)

Proof Indeed, we have shown that

Ak f (xk)
R1

k≤ ψ∗
k

R2
k≤ Ak f (x∗) + pM+L p+C

(p+1)! ‖x0 − x∗‖p+1.

Thus, (3.13) follows from (3.11). ��

Note that the point vk can be found in (3.12) by a closed-form expression. Consider

sk = ∇�k(x).
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Since function �k(·) is linear, this vector is the same for all x ∈ E. Therefore, the point
vk is a solution of the following minimization

min
x∈E

{
〈sk, x〉 + C

(p+1)! ‖x − x0‖p+1
}

.

The first-order optimality condition for this problem is as follows:

sk + C
p! ‖x − x0‖p−1B(x − x0) = 0.

Thus, we get the following closed-form expression for its solution:

vk = x0 −
(

p!
C‖sk‖p−1∗

) 1
p · B−1sk .

4 Lower complexity bounds for tensor methods

For constructing functions, which are difficult for all tensor methods, it is convenient
to assume that E = E

∗ = R
n , and B = In , the identity n × n-matrix. Thus, in this

section we work with the standard Euclidean norm

‖x‖ =
[

n∑
i=1

(x (i))2
]1/2

, x ∈ R
n .

For an integer parameter p ≥ 1, define the following function:

ηp+1(x) = 1
p+1

n∑
i=1

|x (i)|p+1, x ∈ R
n .

Clearly, ηp+1 ∈ Fp. On the other hand, for any x and h ∈ R
n , we have

Dkηp+1(x)[h]k = p!
(p+1−k)!

n∑
i=1

|x (i)|p+1−k(h(i))k, if k is even,

Dkηp+1(x)[h]k = p!
(p+1−k)!

n∑
i=1

|x (i)|p−k x (i)(h(i))k, if k is odd.

Therefore, for all x, y, and h from R
n , by Cauchy-Schwartz inequality we have

|Dpηp+1(x)[h]p − Dpηp+1(y)[h]p| ≤ p!‖x − y‖
[

n∑
i=1

(h(i))2p
]1/2

≤ p! ‖x − y‖ ‖h‖p.

(4.1)

Thus, L p(ηp+1) = p!.
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For integer parameter k, 2 ≤ k ≤ n, let us define the following k×k upper triangular
matrix with two nonzero diagonals:

Uk =

⎛
⎜⎜⎜⎜⎝

1 −1 0 . . . 0
0 1 −1 . . . 0

. . . . . .

0 0 . . . 1 −1
0 0 . . . 0 1

⎞
⎟⎟⎟⎟⎠

, U−1
k =

⎛
⎜⎜⎜⎜⎝

1 1 1 . . . 1
0 1 1 . . . 1

. . . . . .

0 0 . . . 1 1
0 0 . . . 0 1

⎞
⎟⎟⎟⎟⎠

Now we can introduce n× n upper triangular matrix Ak with the following structure:

Ak =
(
Uk 0
0 In−k

)
.

Note that

‖Ak‖2 = max
x∈Rn

{‖Ax‖2 : ‖x‖ ≤ 1}

= max
x∈Rn

{
k−1∑
i=1

(x (i) − x (i+1))2 +
n∑

i=k

(x (i))2 : ‖x‖ ≤ 1

}

≤ max
x∈Rn

{
k−1∑
i=1

[
2(x (i))2 + 2(x (i+1))2

]
+

n∑
i=k

(x (i))2 : ‖x‖ ≤ 1

}

≤ 4. (4.2)

Our parametric family of difficult functions is defined in the following way:

fk(x) = ηp+1(Akx) − 〈e1, x〉, 2 ≤ k ≤ p, (4.3)

where e1 = (1, 0, . . . , 0)T . Let us compute its optimal solution from the first-order
optimality condition

AT
k ∇ηp+1(Akx∗

k ) = e1.

Thus, Akx∗
k = y∗

k , where y∗
k satisfies equation ∇ηp+1(y∗

k ) = A−T
k e1 = êk

def=(
ēk
0n−k

)
, with ēk ∈ R

k being the vector of all ones, and 0n−k beng the origin in

R
n−k .
Thus, in coordinate form, vector y∗

k can be found from the following equations:

|(y∗
k )

(i)|p−2(y∗
k )

(i) = 1, i = 1, . . . , k,

|(y∗
k )

(i)|p−2(y∗
k )

(i) = 0, i = k + 1, . . . , n.
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In other words, y∗
k = êk and vector x∗

k = A−1
k êk has the following coordinates:

(x∗
k )

(i) = (k − i + 1)+, i = 1, . . . , n, (4.4)

where (τ )+ = max{0, τ }. Consequently,

f ∗
k = ηp+1(êk) − 〈e1, x∗

k 〉 = k
p+1 − k = − kp

p+1 ,

‖x∗
k ‖2 =

k∑
i=1

i2 = k(k+1)(2k+1)
6 ≤ (k+1)3

3 .

(4.5)

Let us describe now the abilities of tensor methods of degree p ≥ 2 in generating
new test points. We assume that the response of oracle at point x̄ ∈ R

n consists in the
following collection of multi-linear forms:

f (x̄), Dk f (x̄)[h]k, k = 1, . . . , p.

Therefore, we assume that the method is able to compute stationary points of the
following polynomial functions

φa,γ,m(h) =
p∑

i=1
a(i)Di f (x̄)[h]i + γ ‖h‖m (4.6)

with coefficients a ∈ R
p, γ > 0 and m > 1. Denote by �x̄, f (a, γ,m) the set of all

stationary points of this function. Then we can define the linear subspace

S f (x̄) = Lin
(
�x̄, f (a, γ,m) : a ∈ R

p, γ > 0, m > 1
)
.

Our assumption about the rules of tensor methods is as follows.

Assumption 1 Themethodgenerates a sequenceof test points {xk}k≥0 satisfying recur-
sive condition

xk+1 ∈ x0 +
k∑

i=0

S f (xi ), k ≥ 0. (4.7)

Note that for the absolute majority of the first-order, second-order, and tensor meth-
ods this assumption is satisfied.

Let us look at the consequences Assumption 1 in the case of minimization of
function fk(·). Denote

R
n
k = {x ∈ R

n : x (i) = 0, i = k + 1, . . . , n}, 1 ≤ k ≤ n − 1.
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Lemma 2 Any tensor method satisfying Assumption 1 and minimizing function ft (·)
starting from the point x0 = 0, generates test points {xk}k≥0 satisfying condition

xk+1 ∈
k∑

i=0
S ft (xi ) ⊆ R

n
k+1, 0 ≤ k ≤ t − 1. (4.8)

Proof Let us prove first that inclusion x ∈ R
n
k with k ≥ 1 implies S ft (x) ⊆ R

n
k+1.

Indeed, since matrix At is upper triangular, this inclusion ensures that y
def= At x ∈ R

n
k .

Therefore, all derivatives of function ft (·) along direction h ∈ R
n have the following

form:

Dft (x)[h] = Dηp+1(y)[Ath] − h(1) =
k∑

i=1
di,1〈ei , Ath〉 − h(1),

Di ft (x)[h]k = Dkηp+1(y)[Ath]k =
k∑

i=1
di,k〈ei , Ath〉k, 2 ≤ k ≤ p,

with certain coefficientsdi,k , i = 1, . . . , n, k = 1, . . . , p. Thismeans that the gradients
of these derivatives in h are as follows

∇Dft (x)[h] =
k∑

i=1
di,1AT

t ei − e1,

∇Dk ft (x)[h]k =
k∑

i=1
kdi,k〈ei , Ath〉k−1AT

t ei , 2 ≤ k ≤ p,

Thus ∇Dk ft (x)[h]k ∈ R
n
k+1 for all k, 1 ≤ k ≤ p. Hence, since the regularization

term in definition (4.6) is formed by the standard Euclidean norm, all stationary points
of this function belong to Rn

k+1.
Nowwe can prove statement of the lemma by induction. For k = 0, we have x0 = 0,

and therefore

∇ ft (x0) = −e1, Di f (x0)[h]i = 0, i = 1, . . . , p,

for all h ∈ R
n . Consequently, stationary points of all possible functions φa,γ,m(·)

belong to Rn
1 implying S ft (x0) = R

n
1. Thus, x1 belongs to R

n
1 by Assumption 1.

Assume now that all xi ∈ R
n
k , i = 1, . . . , k, for some k ≥ 1. Then, as we have

already seen, S ft (xi ) ⊆ R
n
k+1. Hence, the inclusion (4.8) follows from Assumption 1.

��
Now we can prove the main statement of this section.
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Theorem 4 Let some tensor method M of degree p satisfies Assumption 1. Assume
that this method ensures for any function f ∈ Fp with L p(( f ) < +∞ the following
rate of convergence:

min
0≤k≤t

f (xk) − f∗ ≤ L p‖x0−x∗‖p+1

(p+1)! κ(t) , t ≥ 1, (4.9)

where {xk}k≥0 is the sequence of test points, generated by method M and x∗ is the
solution of the problem (2.7). Then for all t ≥ 1 such that 2t + 1 ≤ n we have

κ(t) ≤ 1
3p2

p+1 (2t + 2)
3p+1
2 . (4.10)

Proof Let us use method M for minimizing function f (x) = f2t+1(x). In view of
Lemma 2, we have xi ∈ R

n
t for all i , 0 ≤ i ≤ t . However,

f2t+1(x) ≡ ft (x), ∀x ∈ R
n
t .

At the same time, for all x, y, h ∈ R
n we have

|Dp f2t+1(x)[h]p − Dp f2t+1(y)[h]p|
= |Dpηp+1(x)[A2t+1h]p − Dpηp+1(y)[A2t+1h]p|
(4.1)≤ p!‖x − y‖‖A2t+1h‖p

(4.2)≤ 2p p!‖x − y‖.

Therefore, L p( f2t+1) ≤ 2p p!, and we have

(p + 1)! κ(t)
(4.9)≤ L p( f2t+1)‖x0−x∗

2t+1‖p+1

min
0≤k≤t

f (xk)− f ∗
2t+1

≤ 2p p!(2t+2)
3
2 (p+1)

3( f ∗
t − f ∗

2t+1)

= 2p p!(2t+2)
3
2 (p+1)

3(t+1) · p+1
p . ��

5 Third-order methods: implementation details

Tensor optimization methods, presented in Sects. 2 and 3, are based on the solu-
tion of the auxiliary optimization problem (2.6). In the existing literature on the tensor
methods [6,7,20,32], it was solved by the standard local technique of Nonconvex Opti-
mization. However, now we know that by Theorem 1, this problem is convex. Hence,
it is solvable by the standard and very efficient methods of Convex Optimization.

Since we need to solve this problem at each iteration of the methods, its complexity
significantly affects the total computational time. Since the objective function in the
problem (2.6) is a convex multivariate polynomial, we there could exist some special
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efficient algorithms for finding its solution. Unfortunately, at this moment the authors
failed to find such methods in the literature. Therefore, we present in this section a
special approach for solving the problem (2.6) with the third degree Taylor approxi-
mation, which is based on the recently developed optimization framework of relatively
smooth functions (see [4,21]).

Let us fix an arbitrary x ∈ E. Consider the following multivariate polynomial of
degree three:2

�x (h) = 〈∇ f (x), h〉 + 1
2 〈∇2 f (x)h, h〉 + 1

6D
3 f (x)[h]3.

Since in this section we work only with third-order approximations, we drop the
corresponding index.

Recall that D3 f (x)[h1, h2, h3] is a symmetric trilinear form. Hence, D3 f (x)
[h1, h2] ∈ E

∗ is a symmetric bilinear vector function, and D3 f (x)[h] is a linear
function of h ∈ E, whose values are self-adjoint linear operators from E to E

∗ (as
Hessians).

Denote p(h) = 1
6D

3 f (x)[h]3. Then we can define its gradient and Hessian as
follows:

∇ p(h) = 1
2D

3 f (x)[h, h], ∇2 p(h) = D3 f (x)[h]. (5.1)

In this section, our main class of functions is F3, composed by convex functions,
which are three times continuously differentiable, and for which the constant L3 is
finite. As we have shown in Theorem 1, our assumptions imply interesting relations
between derivatives. Let us derive a consequence of the matrix inequality (2.3).

Lemma 3 For any h ∈ E and τ > 0, we have

− 1
τ
∇2 f (x) − τ

2 L3‖h‖2B � D3 f (x)[h] � 1
τ
∇2 f (x) + τ

2 L3‖h‖2B. (5.2)

Consequently, for any h, u ∈ E, we get

D3 f (x)[h, u, u] ≤ √
2L3〈∇2 f (x)u, u〉1/2‖u‖‖h‖. (5.3)

Proof Let us fix arbitrary directions u, h ∈ E. Then, in view of relation (2.3) we have

0 ≤ 〈∇2 f (x + h)u, u〉 ≤ 〈∇2�x (h)u, u〉 + 1
2 L3‖h‖2‖u‖2

= 〈(∇2 f (x) + D3 f (x)[h])u, u〉 + 1
2 L3‖h‖2‖u‖2

Thus, replacing h by τh with τ > 0 and dividing the resulting inequality by τ , we get

−〈D3 f (x)[h]u, u〉 ≤ 1
τ
〈∇2 f (x)u, u〉 + τ

2 L3‖h‖2‖u‖2.

2 We drop the index in this notation since from now on we always have p = 3.
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And this is equivalent to the left-hand side of matrix inequality (5.2). Its right-hand
side can be obtained by replacing h by −h, which gives

〈D3 f (x)[h]u, u〉 ≤ 1
τ
〈∇2 f (x)u, u〉 + τ

2 L3‖h‖2‖u‖2.

Minimizing the right-hand side of this inequality in τ , we get (5.3). ��
Let us look now at our auxiliary minimization problem:

�x,M (h)
def= �x (h) + M

2 d4(h) → min
h∈E, (5.4)

where d4(h) = 1
4‖h‖4. In view of Theorem 1, function �x,M (·) is convex for

M = τ 2L3 (5.5)

with τ ≥ 1. For any h ∈ E, we have

∇2�x,M (h) = ∇2 f (x) + D3 f (x)[h] + M
2 ∇2d4(h)

(5.2)� (1 − 1
τ
)∇2 f (x) + M

2 ∇2d4(h) − τ
2 L3‖h‖2B

(2.2)� (1 − 1
τ
)∇2 f (x) + M−τ L3

2 ∇2d4(h).

Let ρx (h) = 1
2 (1 − 1

τ
)〈∇2 f (x)h, h〉 + M−τ L3

2 d4(h). Then, we have proved that

∇2�x,M (h) � ∇2ρx (h), h ∈ E. (5.6)

On the other hand,

∇2�x,M (h) = ∇2 f (x) + D3 f (x)[h] + M
2 ∇2d4(h)

(5.2)� (1 + 1
τ
)∇2 f (x) + M

2 ∇2d4(h) + τ
2 L3‖h‖2B

(2.2)� (1 + 1
τ
)∇2 f (x) + M+τ L3

2 ∇2d4(h)

(5.5)=
(
1+τ
τ−1

) (
(1 − 1

τ
)∇2 f (x) + τ(τ−1)L3

2 ∇2d4(h)
)

= τ+1
τ−1∇2ρx (h).

Thus, we have proved the following lemma.
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Lemma 4 Let M = τ 2L3 with τ > 1. Then function �x,M (·) satisfies the strong
relative smoothness condition

∇2ρx (h) � ∇2�x,M (h) � κ(τ)∇2ρx (h), h ∈ E, (5.7)

with respect to function ρx (·), where κ(τ) = τ+1
τ−1 .

As it is shown in [21], condition (5.7) allows to solve problem (5.4) very efficiently
by a kind of primal gradient method. In accordance to this approach, we need to define
the Bregman distance of function ρx (·):

βρx (u, v) = ρx (v) − ρx (u) − 〈∇ρx (u), v − u〉

= 1
2 (1 − 1

τ
)〈∇2 f (x)(v − u), v − u〉 + τ(τ−1)

2 L3βd4(u, v),

and iterate the process

hk+1 = argmin
h∈E

{〈∇�x,M (hk), h − hk〉 + κ(τ)βρx (hk, h)
)
.

In our case, this method has the following form:

h0 = 0,

hk+1 = argmin
h∈E

{
〈∇�x,M (hk), h − hk〉

+τ + 1

2

[
1

τ
〈∇2 f (x)(h−hk), h−hk〉+τ L3βd4(hk, h)

] }
, k≥0. (5.8)

In accordance to Theorem 3.1 in [21], the rate of convergence of this method is as
follows:

�x,M (hk) − �x,M (h∗) ≤ βρx (h0,h∗)(
κ(τ )

κ(τ )−1

)k−1
= τ−1

2 [ 1
τ
〈∇2 f (x)h∗,h∗〉+ τ

4 L3‖h∗‖4](
τ+1
2

)k−1
, (5.9)

where h∗ is the unique optimal solution to problem (5.4).
Aswe can see, the algorithm (5.8) is very fast. Its linear rate of convergence depends

only on absolute constant τ > 1, which can be chosen reasonably close to one for
allowing faster convergence of the main tensor methods (2.16) and (3.12). Let us
discuss two potentially expensive operations in the implementation of method (5.8).

1. Computation of the gradient ∇�x,M (h). Note that

∇�x,M (h) = ∇ f (x) + ∇2 f (x)h + 1
2D

3 f (x)[h]2.

In this formula, only the computation of the third derivative may be danger-
ous. However, this difficulty can be resolved using the technique of automatic
differentiation (see, for example, [19]). Indeed, assume we have a sequence of
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operations for computing the function value f (x)with computational complexity
T . Let us fix a direction h ∈ E. Then by forward differentiation, we can generate
automatically a sequence of operations for computing the value

gh(x) = 〈∇2 f (x)h, h〉

with computational complexity O(T ). Now, by backward differentiation in x , we
can compute the gradient of this function:

∇g(x) = D3 f (x)[h, h]

with computational complexityO(T ). Thus, the oracle complexity ofmethod (5.8)
is proportional to the complexity of computing the function value f (x).
Another example of simple computation of the third derivative is provided by a
separable objective function. Assume that E = R

n and

f (x) =
N∑
i=1

fi (bi − 〈ai , x〉),

where ai ∈ R
n and univariate functions fi (·) are three times continuously differ-

entiable, i = 1, . . . , N . Then vector D3 f [h]2 has the following representation:

D3 f (x)[h]2 = −
N∑
i=1

ai f ′′′
i (bi − 〈ai , x〉)〈ai , h〉2.

Thus, for solving the problem (5.4), we need to compute in advance all values

f ′′′
i (bi − 〈ai , x〉), i = 1, . . . , N

(this needs O(nN ) operations). After that, each computation of vector D3

f (x)[h]2 ∈ R
n also needs O(nN ) operations. This computation will be cheaper

for the sparse data.

2. Solution of the auxiliary problem At all iterations of method (5.8), we need to
solve an auxiliary problem in the following form:

min
h∈E

{〈c, h〉 + 1
2 〈Ah, h〉 + γ

4 ‖h‖4} , (5.10)

where A � 0 and γ > 0. Note that at all these iterations only the vector c
and coefficients γ are changing, and matrix A = ∇2 f (x) remains the same.
Therefore, before the algorithm (5.8) starts working, it is reasonable to transform
this matrix in a tri-diagonal form:

A = UTUT ,
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where U ∈ R
n×n is an orthogonal matrix: UUT = I , and T ∈ R

n×n is tri-
diagonal.

Denoting now c̃ = UT c, we have:

min
h∈E

{
〈c, h〉 + 1

2
〈UTUT h, h〉 + γ

4
‖h‖4

}

= min
h∈E max

τ>0

{
〈c̃,UT h〉 + 1

2
〈TUT h,UT h〉 + γ

2
τ‖UT h‖2 − 1

2
τ 2
}

= max
τ>0

min
h∈E

{
〈c̃,UT h〉 + 1

2
〈TUT h,UT h〉 + γ

2
τ‖UT h‖2 − 1

2
τ 2
}

= −min
τ>0

{
1

2
τ 2 + 1

2
〈(γ τ I + T )−1c̃, c̃〉

}
. (5.11)

Thus, the solution of the primal problem can be retrieved from a solution to the
univariate dual problem.The complexity of computing its function value and derivative
is linear in n. Moreover, since its objective function is strongly convex and infinitely
times differentiable, all reasonable one-dimensional methods have global linear rate
of convergence and the quadratic convergence in the end.

Let us estimate the total computational complexity of the method (5.8), assuming
that the computational time of the value of the objective function is T f . Assume
also that its gradient, the product of its Hessian by a vector, and the value of its
third derivative on two identical vectors can be computed using the fast backward
differentiation (then the complexity of all these operations is O(T f )). Then, the most
expensive operations in this method are as follows.

• Computationof theHessian∇2 f (x) and its tri-diagonal factorization:O(nT f +n3)
operations.

• We need O(ln 1
ε
) iterations of method (5.8), in order to get ε-solution of the

auxiliary problem. At each iteration of this method we need:

– Compute the gradient ∇�x,M (hk): O(T f ) operations.
– Compute the vector c̃ for the univariate problem in (5.11): O(n2) operations.
– Solve the dual problem in (5.11) up to accuracy δ: O(n ln 1

δ
) operations.

– Compute an approximate solution h = −U (γ τ I + T )−1c̃ of the problem
(5.10), using an approximate solution τ of the dual problem: O(n2) operations.

Thus, we come to the following estimate:

O
(
nT f + n3 + [T f + n2 + n ln 1

δ

]
ln 1

ε

)
.

This is the same order of complexity as that of one iteration in Trust Region Methods
[15] and usual Cubic Regularization [27,31]. However, we can expect that the third-
order methods converge much faster.

For the readers, which are not interested in all these computational details, we
just mention that the Galahad Optimization Library [16] has special subroutines for
solving the auxiliary problems in the form (5.10).
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6 Discussion

In this paper, we did an important step towards practical implementation of tensor
methods in unconstrained convex optimization. We have shown that the auxiliary
optimization problems in these scheme can be reduced to minimization of a convex
multivariate polynomial. In the important case of third-order tensor, we have proved
that this problem can be efficiently solved by a special optimization scheme derived
from the relative smoothness condition.

Our results highlight several interesting questions. One of the direct consequences
of our approach is a systematic way of generating convex multivariate polynomials.
Is it possible to minimize them by some tools of Algebraic Geometry (see [23] for
the related technique like sums of squares, etc.), or we need to treat them using an
appropriate technique from Convex Optimization? The results of Sect. 5 demonstrate
a probably unbeatable superiority of optimization technique for the third-order poly-
nomials. But what happens with polynomials of higher degree?

One of the difficult unsolved problems in our approach is related to dynamic adjust-
ment of the Lipschitz constant for the highest derivative. This dynamic estimate should
not bemuch bigger than the actual Lipschitz constant. On the other hand, itmust ensure
convexity of the auxiliary problem solved at each iteration of the tensor methods. This
question is clearly crucial for the practical efficiency of the high-order schemes.

Simple comparison of the complexity bounds in Sects. 3 and 4 shows that we failed
to develop an optimal tensor scheme. The missing factor in the complexity estimates

is of the order of O

(( 1
ε

) 1
p+1− 2

3p+1

)
= O

(( 1
ε

) p−1
(p+1)(3p+1)

)
. For p = 3, this factor is

of the order of O

(( 1
ε

) 1
20

)
. This means that from the viewpoint of practical efficiency,

the cost of one iteration of the hypothetical optimal scheme must be of the same order
as that of the accelerated tensor method (3.12). Any additional logarithmic factors in
the complexity bound of this “optimal” method will definitely kill its tiny superiority
in the convergence rate.

In the last years, we have seen an increasing interest to universal methods, which
can adjust to the best possible Hölder condition instead of the Lipschitz one during
the running optimization process (see [14,17,29]). Of course, it is very interesting
to extend this philosophy onto the tensor minimization schemes. Another important
extension could be the treatments of the constraints, either in functional form, or using
the framework of composite minimization [28]. The main difficulty here is related to
the complexity of the auxiliary optimization problems.

One of the main restrictions for practical implementation of our results is the neces-
sity to know the Lipschitz constant of the corresponding derivative. If our estimate is
too small, then the auxiliary problem (2.6) may loose convexity. Consequently, wewill
loose the fast convergence in the auxiliary process (5.8). However, this observation
gives us a clue how to tune this constant: if we see that this process is too slow, this
means that our estimate is too small. But of course it is very interesting to find a recipe
with better theoretical justification.
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