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Abstract
Since the elimination algorithm of Fourier and Motzkin, many different methods have
been developed for solving linear programs. When analyzing the time complexity of
LPalgorithms, it is typically either assumed that calculations are performed exactly and
bounds are derived on the number of elementary arithmetic operations necessary, or the
cost of all arithmetic operations is considered through a bit-complexity analysis. Yet in
practice, implementations typically use limited-precision arithmetic. In this paper we
introduce the idea of a limited-precision LP oracle and study how such an oracle could
be used within a larger framework to compute exact precision solutions to LPs. Under
mild assumptions, it is shown that a polynomial number of calls to such an oracle and
a polynomial number of bit operations, is sufficient to compute an exact solution to
an LP. This work provides a foundation for understanding and analyzing the behavior
of the methods that are currently most effective in practice for solving LPs exactly.
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1 Introduction

This paper studies algorithms for solving linear programming problems (LPs) exactly
over the rational numbers. The focus lies on methods that employ a limited-precision
LP oracle—an oracle that is capable of providing approximate primal–dual solutions.
Connections will be made to previous theoretical and practical studies. We consider
linear programs of the following standard form:

min{cT x | Ax = b, x ≥ �} (P)

where A is anm×n matrix of full row rank withm � n, x is a vector of variables, c is
the objective vector and � is a vector of lower bounds. This form of LP is convenient for
describing the algorithms, any of which can be adapted to handle alternative forms. It
is assumed that all input data is rational and our goal is to compute exact solutions over
the rational numbers.We note that although the assumption of rational data is common
in the literature and holds for most applications, there are some applications where
irrational data arises naturally (e.g. from geometric structures). In such cases where
irrational data is necessary, many of the algorithms described herein may still be of
use, for example to compute highly accurate approximate solutions. In the following,
we survey relevant background material and previous work.

1.1 Basic terminology

We assume that the reader is familiar with fundamental results related to linear opti-
mization, such as those presented in [17,27]. The following notation will be used
throughout the paper. For a matrix A, and subsets J , K of the rows and columns,
respectively, we use AJK to denote the submatrix of A formed by taking entries
whose row and column indices are in those sets. When J or K consists of a single
element i we will use i in place of {i}, and ‘·’ is used to represent all rows or columns.
The unit matrix of dimension n is denoted by In .

It is well known that if an LP has a bounded objective value then it has an optimal
basic solution x∗ of the following form. For a subset B of m linearly independent
columns A, set x∗

B := A−1
·B(b − ∑

i /∈B A·i�i ) and x∗
i := �i for all i /∈ B. Generally,

such a set B is called a basis and the matrix A·B is the basis matrix associated
withB.

We denote the maximum norm of a vector x ∈ R
n by ‖x‖∞ := maxi=1,...,n|xi |.

The corresponding row sum norm of a matrix A ∈ R
m×n given by

‖A‖∞ := max
i=1,...,m

n∑

j=1

|Ai j |, (1)
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is compatible with the maximum norm in the sense that ‖Ax‖∞ � ‖A‖∞‖x‖∞ for
all A ∈ R

m×n , x ∈ R
n . Furthermore, we define the encoding length or size of an

integer n ∈ Z as

〈n〉 := 1 + 	log(|n| + 1)
. (2)

Unless otherwise noted, logarithms throughout the paper are base two. Encoding
lengths of other objects are defined as follows. For a rational number p/q with p ∈ Z

and q ∈ Z≥0, 〈p/q〉 := 〈p〉 + 〈q〉. For a vector v ∈ Q
n , 〈v〉 := ∑

i 〈vi 〉 and for a
matrix A ∈ Q

m×n , 〈A〉 := ∑
i, j 〈Ai j 〉. Note that 〈v〉 � n and 〈A〉 � nm. To clearly

distinguish between the size and the value of numbers, we will often explicitly use the
term value when referring to the numeric value taken by numbers.

1.2 Approximate and exact solutions

In order to compute exact rational solutions to linear programs, many algorithms rely
on a methodology of first computing sufficiently accurate approximate solutions and
then applying techniques to convert these solutions to exact rational solutions. This
general technique is not unique to linear programming and has been applied in other
areas such as exact linear algebra. In this section we will describe some results that
make this possible.

First, we consider a result related to the Diophantine approximation problem, a
problem of determining low-denominator rational approximations p/q of a given
number α.

Theorem 1 ([27], Cor. 6.3b) For α ∈ Q, M > 0 there exists at most one rational
number p/q such that |p/q − α| < 1/(2Mq) and 1 � q � M. There exists a
polynomial-time algorithm to test whether this number exists and, if so, to compute
this number.

The proof makes use of continued fraction approximations. The resulting algorithm,
which is essentially the extended Euclidean algorithm, runs in polynomial time in
the encoding length of α and M and is very fast in practice. This technique is some-
times referred to as “rounding” since for M = 1 above it corresponds to rounding
to the nearest integer, or as “numerical rational number reconstruction” (see [30]).
In the remainder of the paper we will often refer to the process as simply rational
reconstruction.

Suppose there is an unknown rational number p/q withq � M . If an approximation
α that satisfies |p/q−α| < 1/(2M2) can be computed, then Theorem 1 can be applied
to determine the exact value of p/q in polynomial time. Since basic solutions of linear
programs correspond to solutions of linear systems of equations, one can always derive
an a priori bound on the size of the denominators of any basic solution using Cramer’s
rule and the Hadamard inequality as follows.

123
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Lemma 1 The entries of any basic primal-dual solution of a rational LP (P) have
denominator bounded by

H := nm/2Ln
m∏

j=1

‖A j ·‖∞ (3)

with L the least common multiple of the denominators of the entries in A, b, �, and c.

Proof Scaling with L transforms (P) into an LP with identical primal-dual solu-
tions min{(Lc)T x | (L A)x = Lb, x ≥ L�}. Then basic solutions are uniquely
determined by linear systems with integral coefficient matrix L B̃ ∈ Z

n×n , where B̃
is a square matrix constructed from all rows of A plus unit vectors, see Eqs. (31)
and (32) of Sect. 5.3. By Cramer’s rule, the denominators are then a factor of
| det(L B̃)| = Ln| det(B̃)|. Applying Hadamard’s inequality to the rows of B̃ yields
| det(B̃)| � (

∏m
j=1‖A j ·‖2) ·1 · · · 1. With ‖A j ·‖2 � √

n‖A j ·‖∞ we obtain the desired

result | det(L B̃)| � nm/2Ln ∏m
j=1‖A j ·‖∞. �


Therefore, upon computing an approximation of an optimal basic solution vector
where each component is within 1/(2H2) of the exact value, wemay apply Theorem 1
componentwise to recover the exact solution vector.

Adifferent technique for reconstructing rational vectors, one that is computationally
more expensive but works under milder assumptions, is based on polynomial-time
lattice reduction algorithms as pioneered by [22] and recently improved by [25]. It
rests on the following theorem.

Theorem 2 ([22], Prop. 1.39) There exists a polynomial-time algorithm that, given
positive integers n, M and α ∈ Q

n, finds integers p1, . . . , pn, q for which

|pi/q − αi | � 1/(Mq) for i = 1, . . . , n,

1 � q � 2n(n+1)/4Mn .

Note that in contrast to Theorem 1, the above can be used to recover the entire
solution vector at once, instead of componentwise; this process is often referred to as
simultaneous Diophantine approximation. This has prominently been applied by [17]
in the following fashion. Let the facet complexity of a polyhedron P be the smallest
number ϕ � n such that P is defined by a list of inequalities each having encoding
length at most ϕ.

Lemma 2 ([17], Lem. 6.2.9) Suppose we are given a polyhedron P in R
n with facet

complexity at most ϕ and a point α ∈ R
n within Euclidean distance at most 2−6nϕ

of P. If p ∈ Z
n and q ∈ Z satisfy

‖p − qα‖2 � 2−3ϕ and

1 � q < 24nϕ
(4)

then 1
q p is in P.
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Linear programming using limited-precision oracles 529

A solution 1
q p satisfying (4) can be computed in polynomial time by the lat-

tice reduction algorithm behind Theorem 2. Current lattice reduction algorithms are,
despite being polynomial-time, generally slower than the continued-fraction based
techniques discussed above.When applying Theorem 1 componentwise to reconstruct
a vector there exist heuristic methods to accelerate this process by taking advantage
of the fact that denominators of the component vectors often share common factors
[5,8]. We now provide an overview of algorithms for computing exact solutions to
rational linear programs.

1.3 Methods for exact linear programming

Exact polynomial-time algorithms for solving rational LPs based on the ellipsoid
method of Khachiyan [19] are described in Grötschel et al. [17]. There, a clear distinc-
tion ismade between theweak problem of finding approximate solutions and the strong
problem of finding exact solutions. The ellipsoidmethod produces smaller and smaller
ellipsoids enclosing an optimal solution such that eventually simultaneous Diophan-
tine approximation can be applied to recover an exact rational solution from the center
of the ellipsoid. The same methods could equally be applied in the context of interior
point algorithms in order to convert an approximate, sufficiently advanced solution
along the central path to an exact rational solution. However, the original algorithm of
Karmarkar [18] moves from the approximate solution to a nearby basis solution that
matches as closely as possible and checks this for optimality. The variant of Renegar
[26] instead identifies an optimal face of the feasible region from approximately tight
inequalities and performs a projection step via solving a system of linear (normal)
equations. The paper includes a detailed analysis and discussion of these ideas and
also references the method developed by Edmonds [10] for solving linear systems of
equations in polynomial time. (Note that if one is not careful, Gaussian elimination
may require an exponential number of bit operations.) While these methods exhibit
polynomial worst-case complexity, the high levels of precision required may be too
high to use in any practical setting. This is illustrated by the following example.

Example 1 Consider the following small and unremarkable LP.

max 2x1 + 3x2 + 2x3 + x4 + 2x5 − x6
s.t . x1 + x2 + 2x3 + 3x4 + x5 � 3

x1 − x2 + x4 + 3x5 − 2x6 � 2

x1 + 2x2 + x3 + 3x4 + x6 � 4

x1, x2, x3, x4, x5, x6 � 0

Theorem 6.3.2 of Grötschel et al. [17] says that an exact rational solution to an LP can
be found by first calling a weak optimization oracle to find an approximate solution to
the LP, and then apply simultaneous Diophantine approximation to recover the exact

rational solution. The tolerance indicated for this purpose is given as ε = 2−18n〈c〉−24n4ϕ

‖c‖∞ ,
where ϕ is the facet complexity of the feasible region and c is the objective vector. For
the above problem, this works out to ε ≈ 10−169,059. In comparison, double-precision
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arithmetic only stores about 16 significant decimal digits. For any problem of real
practical interest, ε will be even smaller. This underlines that—despite the fact that
the ε is suitable for establishing polynomial running time of algorithms—it may be
far beyond what is feasible for real computations in practice.

By contrast, the largest encoding length of any vertex of the above example is
merely 27 and the largest denominator across all vertices is 8. Thus, a solution whose
componentwise difference from a vertex was under 1/128 would be sufficient to apply
Theorem 1 componentwise to recover the vertex.

Also in general, many LPs of practical interest are highly sparse andmay have other
special characteristics that result in their solutions having encoding length dramatically
smaller than the value of derivable worst-case bounds on these values. Therefore it is
of interest to work with what are often known as output sensitive algorithms; where
the running time on a problem instance depends not only on the input length, but also
on the size of the output. Many of the algorithms described in the remaining literature
review, and the results derived in this paper, can be thought of in this context as they
often have the chance to find an exact solution and terminate earlier than a worst-case
bound might suggest.

The remainder of this subsection focuses onmethods used in practice for computing
exact rational solutions to linear programs. We first note that many of these practical
methods are based on the simplex method. There is a trivial method of solving LPs
with rational input data exactly, which is to apply a simplex algorithm and perform all
computations in (exact) rational arithmetic. Espinoza [14] observed computationally
that the running time of this naïve approach depends heavily on the encoding length
of the rational numbers encountered during intermediate computations and is much
slower than floating-point simplex implementations.

Edmonds noted that the inverse of a basismatrix can be represented asmatrix of inte-
ger coefficients divided by a common denominator and that this representation can be
efficiently updated when pivoting from basis to basis; this method is referred to as the
Q-method and is further developed by [4,11]. Compared to computing a basis inverse
with rational coefficients, the Q-method avoids the repeated GCD computations
required by exact rational arithmetic. Escobedo and Moreno-Centeno [12,13] have
applied similar ideas to achieve roundoff-error free matrix factorizations and updates.

The most successful methods in practice for solving LPs exactly over the rational
numbers rely on combining floating-point and exact arithmetic in various ways. The
key idea is to use the the inexact computation in ways that can provide useful infor-
mation, but that exact computation is used for critical decisions or to validate final
solutions. For example,Gärtner [15] uses floating-point arithmetic for someparts of the
simplex algorithm, such as pricing, but uses exact arithmetic and ideas fromEdmonds’
Q-method when computing the solutions. Another way to combine inexact and exact
computation relies on the observation that floating-point solvers often return optimal
bases; since the basis provides a structural description of the corresponding solution,
it can be recomputed using exact arithmetic and checked for optimality via LP duality
[9,20,21]. This approach was systematized by Applegate et al. [3], in the QSopt_ex
solver which utilizes increasing levels of arithmetic precision until an optimal basis is
found, and its rational solution computed and verified. This approach of incremental
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precision boosting is often very effective at finding exact solutions quickly, particu-
larly when the initial double-precision LP subroutines are able to find an optimal LP
basis, but becomes slower in cases where many extended-precision simplex pivots are
used. In related work, Cheung and Cucker [6] have developed and analyzed exact LP
algorithms that adopt variable precision strategies. A recent algorithm that has proven
most effective in practice for computing high-accuracy and exact solutions to linear
programs is iterative refinement for linear programming [16]. It will be described in
detail in Sect. 2 and serves as the basis for much of the work in this paper.

1.4 Contribution and organization of the paper

This paper explores the question of how LP oracles based on limited-precision arith-
metic can be used to design algorithms with polynomial running time guarantees
in order to compute exact solutions for linear programs with rational input data. In
contrast to classic methods from the literature that rely on ellipsoid or interior point
methods executed with limited, but high levels of extended-precision arithmetic, our
focus is more practical, on oracles with low levels of precision as used by standard
floating-point solver implementations. Section 2 formalizes this notion of limited-
precision LP oracles and revises the iterative LP refinement method from [16] in order
to guarantee polynomial bounds on the encoding length of the numbers encountered.
Sections 3 and 4 present two methodologically different extensions in order to con-
struct exact solutions—basis verification and rational reconstruction. For bothmethods
oracle-polynomial running time is established; for the latter,we bound the running time
by the encoding length of the final solution, which renders it an output-sensitive algo-
rithm. Some of themore technical proofs are collected in Sect. 5. Section 6 analyzes the
properties of both methods computationally on a large test set of linear programs from
public sources and compares their performance to the incremental precision boosting
algorithm implemented in QSopt_ex. The code base used for the experiments is freely
and publicly available for research. Concluding remarks are given in the final Sect. 7.

2 Convergence properties of iterative refinement

Our starting point is the iterative refinement method proposed in [16], which uses calls
to a limited-precisionLP solver in order to generate a sequence of increasingly accurate
solutions. Its only assumption is that the underlying LP oracle returns solutions with
absolute violations of the optimality conditions being bounded by a constant smaller
than one. In the following we give a precise definition of a limited-precision LP oracle.
This formal notion is necessary to evaluate the behavior of the algorithms defined in
this paper, in particular to show that the number of oracle calls, the size of the numbers
encountered in the intermediate calculations, and the time required for intermediate
calculations are all polynomial in the encoding length of the input. It is also helpful
to introduce the set F(p) := {n/2p ∈ Q : n ∈ Z, |n| � 22p} for some fixed p ∈ N;
this can be viewed as a superset of floating-point numbers, that is easier to handle in
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532 A. Gleixner, D. E. Steffy

the subsequent proofs. Standard IEEE-754 double-precision floating-point numbers,
for example, are all contained in F(1074).

Definition 1 Wecall an oracle a limited-precisionLPoracle if there exist constants p ∈
N, 0 < η < 1, and σ > 0 such that for any LP

min{cT x : Ax = b, x � �} (P)

with A ∈ Q
m×n , b ∈ Q

m , and c, � ∈ Q
n , the oracle either reports a “failure” or returns

an approximate primal–dual solution x̄ ∈ F(p)n , ȳ ∈ F(p)m that satisfies

‖Ax̄ − b‖∞ � η, (5a)

x̄ � � − η1, (5b)

c − AT ȳ � −η1, (5c)

|(x̄ − �)T (c − AT ȳ)| � σ, (5d)

when it is given the LP

min{c̄T x : Āx = b̄, x � �̄} (P̄)

where Ā ∈ Q
m×n , c̄, �̄ ∈ Q

n , and b̄ ∈ Q
m are A, c, �, and bwith all numbers rounded

toF(p). We call the oracle a limited-precision LP-basis oracle if it additionally returns
a basis B ⊆ {1, . . . , n} satisfying

|x̄i − �i | � η for all i /∈ B, (6a)

|ci − ȳT A·i | � η for all i ∈ B, (6b)

Relating this definitionwith the behavior of real-world limited-precisionLP solvers,
wenote that real-world solvers are certainly not guaranteed tofind a solutionwith resid-
ual errors bounded by a fixed constant.1 However, these errors could nonetheless be
computed and checked, correctly identifying the case of “failure”. Algorithm 1 states
the basic iterative refinement procedure introduced in [16]. For clarity of presenta-
tion, in contrast to [16], Algorithm 1 uses equal primal and dual scaling factors and
tracks the maximum violation of primal feasibility, dual feasibility, and complemen-
tary slackness in the single parameter δk . The basic convergence result, restated here
as Lemma 3, carries over from [16].

Lemma 3 Given an LP of form (P) and a limited-precision LP oracle with constants η

and σ , let xk, yk,Δk , k = 1, 2, . . ., be the sequences of primal–dual solutions and

1 Otherwise, as noted in [16], an oracle that guarantees a solution with residual errors bounded by a fixed
constant could be queried for solutions of arbitrarily high precision in a single call by first scaling the
problem data by a large constant. As we will see, this type of manipulation is not used by our algorithms.
Moreover, the requirement in the definition of the oracle that the input data entries are in the bounded set
F(p) would forbid the input of arbitrarily scaled LPs.
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Algorithm 1: Iterative Refinement for a Primal and Dual Feasible LP

input : rational LP data A, b, �, c, termination tolerance τ � 0
parameters : incremental scaling limit α ∈ N, α � 2
output : primal–dual solution x∗ ∈ Q

n , y∗ ∈ Q
m within tolerance τ

1 begin
2 Δ1 ← 1 /* initial solve */

3 get ( Ā, b̄, �̄, c̄) ≈ (A, b, �, c) in working precision of the oracle

4 call oracle for min{c̄T x : Āx = b̄, x � �̄}, abort if failure
5 (x1, y1) ← approximate primal–dual solution returned

6 for k ← 1, 2, . . . do /* refinement loop */
7 b̂ ← b − Axk , �̂ ← � − xk , ĉ ← c − AT yk /* compute residual error */

8 δk ← max
{
max j |b̂ j |,maxi �̂i ,maxi −ĉi , |

∑
i −�̂i ĉi |

}

9 if δk � τ then return x∗ ← xk , y
∗ ← yk

10 δk ← max{δk , 1/(αΔk )} /* scale problem */

11 Δk+1 ← 2	log(1/δk )
 /* round scaling factor to a power of two */

12 get (b̄, �̄, c̄) ≈ Δk+1(b̂, �̂, ĉ) in working precision of the oracle
/* solve for corrector solution */

13 call oracle for min{c̄T x : Āx = b̄, x � �̄}, abort if failure
14 (x̂, ŷ) ← approximate primal–dual solution returned

15 (xk+1, yk+1) ← (xk , yk ) + 1
Δk+1

(x̂, ŷ) /* perform correction */

scaling factors produced by Algorithm 1with incremental scaling limitα � 2. Let ε :=
max{η, 1/α}. Then for all iterations k, Δk+1 � Δk/ε, and

‖Axk − b‖∞ � εk, (7a)

xk − � � −εk1, (7b)

c − AT yk � −εk1, (7c)

|(xk − �)T (c − AT yk)| � σε2(k−1). (7d)

Hence, for any τ > 0, Algorithm 1 terminates in finite time after at most

	max{log(τ )/ log(ε), log(τε/σ )/ log(ε2)}
 (8)

calls to the limited-precision LP oracle.

Proof Corollary 1 in [16] proves the result for a more general version of Algorithm 1
that treats primal and dual scaling factors independently, but does not include the
rounding step in line 11. However, the same proof continues to hold because the
upward rounding does not decrease the scaling factor Δk+1. Hence, the termination
criterion δk � τ in line 9 is met if max{εk, σε2(k−1)} � τ , which holds when k reaches
the bound in (8). Note that this bound on the number of refinements also holds in case
the algorithm aborts prematurely after a failed oracle call. �


This lemma proves that the number of calls to the LP oracle before reaching a
positive termination tolerance τ is linear in the encoding length of τ . However, the
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correction step in line 15 could potentially cause the size of the numbers in the cor-
rected solution to grow exponentially. The size of xk+1 and yk+1 may be as large
as 2(〈xk〉+〈Δk+1〉〈x̂〉) and 2(〈yk〉+〈Δk+1〉〈ŷ〉), respectively, if the numbers involved
have arbitrary denominators. The following lemma shows that the rounding of the scal-
ing factors prevents this behavior.

Lemma 4 The size of the numbers encountered during Algorithm 1 with a limited-
precision LP oracle according to Definition 1 is polynomially bounded in the size of
the input A, b, �, c, τ , when τ > 0.

A technical proof is provided in Sect. 5.2. The bound established on the encoding
length of all numbers encounteredduring the course of the algorithm isO(〈A, b, �, c〉+
(n + m)〈τ 〉). This leads to the main result of this section.

Theorem 3 Algorithm 1 with a limited-precision LP oracle according to Definition 1
runs in oracle-polynomial time, i.e., it requires a polynomial number of oracle calls
and a polynomial number of bit operations in the size of the input A, b, �, c, τ , when
τ > 0.

Proof The initial setup and each iteration are O(n+m + nnz) operations on numbers
that, by Lemma 4, are of polynomially bounded size. Here nnz denotes the number
of nonzero entries in A. By Lemma 3 we know that the number of iterations of the
algorithm is polynomially bounded in the encoding length of the input. �


3 Oracle algorithms with basis verification

Iterative refinement as stated in Algorithm 1 only terminates in finite time for positive
termination tolerance τ > 0. The first extension, presented in this section, assumes a
limited-precision LP-basis oracle as formalized in Definition 1 and computes exact
basic solutions with zero violation in finite, oracle-polynomial running time.

3.1 Convergence of basic solutions

If the LP oracle additionally returns basic solutions for the transformed prob-
lem min{ĉT x : Âx = b̂, x � �̂}, then Algorithm 1 produces a sequence
(xk, yk,Bk)k=1,2,.... Theorem 3.1 in [16] already states that if the corrector solu-
tion x̂, ŷ returned by the LP oracle is the exact basic solution forBk , then the corrected
solution xk+1, yk+1 in line 15 is guaranteed to be the unique solution to the original LP
determined byBk . This is only of theoretical interest since the LP oracle returns only
approximately basic solutions: Still, we can ask whether and under which conditions
the sequence of bases is guaranteed to become optimal in a finite number of refine-
ments. We show that properties (6a) and (6b) suffice to guarantee optimality after a
number of refinements that is polynomial in the size of the input. The proof relies on
the fact that there are only finitely many non-optimal basic solutions and that their
infeasibilities are bounded. This is formalized by the following lemma.
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Lemma 5 Given an LP (P) with rational data A ∈ Q
m×n, b ∈ Q

m, and �, c ∈ Q
n,

the following hold for any basic primal–dual solution x, y:

1. Either x is (exactly) primal feasible or its maximum primal violation has at least
the value 1/24〈A,b〉+5〈�〉+2n2+4n.

2. Either y is (exactly) dual feasible or its maximum dual violation has at least the
value 1/24〈A,c〉+2n2+4n.

A detailed proof of Lemma 5 is found in Sect. 5.3 but the basic idea is summarized
as follows. Suppose x, y is a basic primal–dual solution with respect to some basisB.
By standard arguments, we show that the size of the entries in x and y is bounded
by a polynomial in 〈A, b, �, c〉 and that all possible violations can be expressed as
differences of rational numbers with bounded denominator (or zero).

The following theorem states the main convergence result.

Theorem 4 Suppose we are given an LP (P), a fixed ε, 0 < ε < 1, and a sequence of
primal–dual solutions xk, yk with associated bases Bk such that (7a–7c) and

|(xk)i − �i | � εk for all i /∈ Bk, (9a)

|ci − yTk A·i | � εk for all i ∈ Bk (9b)

hold for k = 1, 2, . . .. Then there exists a threshold K = K (A,m, n, b, �, c, ε) such
that the bases Bk are optimal for all k � K. The function satisfies the asymptotic
bound K (A,m, n, b, �, c, ε) ∈ O((m2〈A〉 + 〈b, �, c〉 + n2)/ log(1/ε)).

Again, the detailed proof of Theorem 4 is found in Sect. 5.3. The proof uses (9a)
and (9b) to show analogs of (7a–7c) hold with right-hand side 24m

2〈A〉+2εk for the
solutions x̃k, ỹk associated with bases Bk . Then for k � K , the primal and dual
violations of x̃k, ỹk drop below the minimum thresholds stated in Lemma 5. From
then on Bk must be optimal.

Conditions (7a–7c) require that the primal and dual violations of xk, yk converge
to zero precisely as is guaranteed by Lemma 3 for the sequence of numeric solutions
produced by iterative refinement. Additionally, (9a) and (9b) assume that the numeric
solutions become “more and more basic” in the sense that the deviation of the non-
basic variables from their bounds and the absolute value of the reduced costs of basic
variables converges to zero at the same rate as the primal and dual violations. This is
shown by the following lemma using properties (6a) and (6b) of Definition 1.

Lemma 6 Suppose we are given a primal and dual feasible LP (P) and a limited-
precision LP-basis oracle according to Definition 1 with constants p, η, and σ .
Let xk, yk,Bk,Δk , k = 1, 2, . . ., be the sequences of primal–dual solutions, bases,
and scaling factors produced by Algorithm 1 with incremental scaling limit α � 2,
and let ε := max{η, 1/α}. Then conditions (9a) and (9b) are satisfied for all k.
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Proof We prove both points together by induction over k. For k = 1, they hold directly
because the defining conditions (6a) and (6b) are satisfied for the initial floating-point
solution and η � ε. Suppose (9a) and (9b) hold for k � 1 and consider k + 1.
Let x̂, ŷ, B̂ be the last approximate solution returned by the LP solver. Then for
all i /∈ Bk+1

|(xk+1)i − �i | = ∣
∣((xk)i + x̂i

Δk+1
) − �i

∣
∣

= |x̂i + Δk+1((xk)i − �i︸ ︷︷ ︸
=−�̂i

)|/Δk+1︸ ︷︷ ︸
�ε−k by Lemma 3

� |x̂i − Δk+1�̂i |/εk
(6a)
� ηεk � εk+1,

and similarly for all i ∈ Bi+1

|ci − yTk+1A·i | = ∣
∣ci − (

yk + ŷ

Δk+1

)T
A·i

∣
∣

= |Δk+1(ci − yTk A·i
︸ ︷︷ ︸

=ĉi

) − ŷT A·i |/Δk+1︸ ︷︷ ︸
�ε−k by Lemma 3

� |Δk+1ĉi − ŷT A·i |/εk
(6a)
� ηεk � εk+1.

This completes the induction step. �


3.2 Iterative refinement with basis verification

The bound on the number of refinements may seem surprisingly large, especially
when considering that the best-known iteration complexity for interior point meth-
ods is O(

√
n + m〈A, b, �, c〉) [26] and that in each refinement round we solve an

entire LP. One reason for this difference is that iterative refinement converges only
linearly as proven in Lemma 3, while interior point algorithms are essentially a form
of Newton’s method, which allows for superlinear convergence. Additionally, the low-
precision LPs solved byAlgorithm1may be less expensive in practice than performing
interior point iterations in very high-precision arithmetic. Nevertheless, the conver-
gence results above provide an important theoretical underpinning for the following
algorithm.

As already observed experimentally in [16], in practice, an optimal basis is typically
reached after very few refinements, much earlier than guaranteed by the worst-case
bound of Theorem 4. Hence, we do not want to rely on bounds computed a priori, but
check the optimality of the basis early. A natural idea is to perform an exact rational
solve as soon as the basis has not changed for a specified number of refinements. This
is easily achieved by extending Algorithm 1 as follows.

Suppose the LP oracle returns a basis B̂ in line 14. First, we continue to perform the
quick correction step and check the termination conditions for the corrected solution

123



Linear programming using limited-precision oracles 537

until line 9. If they are violated, we solve the linear systems of equations associated
with B̂ in order to obtain a basic solution x̃, ỹ. Because it is by construction comple-
mentary slack, we only check primal and dual feasibility. If this check is successful,
the algorithm terminates with x∗ = x̃ and y∗ = ỹ as optimal solution. Otherwise it is
discarded and Algorithm 1 continues with the next refinement round.

In practice, the basis verification step can be skipped if the basis has not changed
since the last LP oracle call in order to save redundant computation. Furthermore,
because the linear systems solves can prove to be expensive, in practice, it can be
beneficial to delay them until the LP oracle has returned the same basis information
for a certain number of refinement rounds. This does not affect the following main
result.

Theorem 5 Suppose we are given a rational, primal and dual feasible LP (P) and a
limited-precision LP-basis oracle according to Definition 1. Algorithm 1 interleaved
with a basis verification step before Line 10 as described above terminates with an
optimal solution to (P) in oracle-polynomial running time.

Proof Lemmas 3 and 6 prove that the sequence of basic solutions xk, yk,Bk satisfies
the conditions of Theorem 4, hence Bk is optimal after a polynomial number of
refinements. According to Theorem 3, this runs in oracle-polynomial time. As proven
by [10], the linear systems used to compute the basic solutions exactly over the rational
numbers can be solved in polynomial time and this computation is done at most once
per refinement round. �


4 Rational reconstruction algorithms

The LP algorithm developed in the previous section relies solely on the optimality of
the basis information to construct an exact solution. Except for the computation of
the residual vectors it does not make use of the more and more accurate numerical
solutions produced. In this section, we discuss a conceptually different technique that
exploits the approximate solutions as starting points in order to reconstruct from them
an exact optimal solution. First we need to show that the sequence of approximate
solutions actually converges.

4.1 Convergence to an optimal solution

Until now the convergence of the residual errors to zero was sufficient for our results
and we did not have to address the question whether the sequence of solutions xk, yk
itself converges to a limit point. The following example shows that this does not
necessarily hold if the solutions returned by the LP oracle are not bounded.

Example 2 Consider the degenerate LP

min{x1 − x2 | x1 − x2 = 0,− x1 + x2 = 0, x1, x2 � 0}.
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One can show that Algorithm 1 may produce the sequence of primal–dual solutions

xk = (
2k + 2−k−1, 2k − 2−k−1)

yk = (
2k + 2−1 + 2−3k−1, 2k − 2−1 − 2−3k−1)

for k = 1, 2, . . .. This happens if the LP oracle returns the approximate solution x̂k =(
22k − 1/4, 22k + 1/4

)
and ŷk = (

22k − 7 · 2−2k−4, 22k + 7 · 2−2k−4
)
for the k-th

transformed problem

min{− 1/22k x1 + 1/22k x2 | x1 − x2 = − 1,− x1 + x2 = +1,

x1 � −22k−1 − 1/2, x2 � −22k−1 + 1/2},

which is obtained with scaling factors Δk = 2k . The primal violation of xk, yk is
2−k , the dual violation is 2−3k , and the violation of complementary slackness is 2−4k .
Hence, all residual errors go to zero, but the iterates themselves go to infinity.

However, for corrector solutions from limited-precision LP oracles the following
holds.

Lemma 7 Given a rational, primal and dual feasible LP (P) and a limited-precision
LP-basis oracle with precision p, let (xk, yk,Δk)k=1,2,... be the sequence of primal–
dual solutions and scaling factors produced by Algorithm 1. Define C := 2p. Then
(xk, yk) converges to a rational, basic, and optimal solution (x̃, ỹ) of (P) such that

‖(x̃, ỹ) − (xk, yk)‖∞ � C
∞∑

i=k+1

Δ−1
i . (10)

Proof This result inherently relies on the boundedness of the corrector solutions
returned by the oracle. Since their entries are in F(p), ‖(x̂k, ŷk)‖∞ � 2p. Then
(xk, yk) = ∑k

i=1
1
Δi

(x̂i , ŷi ) constitutes a Cauchy sequence: for any k, k′ � K ,

‖(xk, yk) − (xk′ , yk′)‖∞ � 2p
∞∑

i=K+1

εi = 2pεK+1/(1 − ε), (11)

where ε is the rate of convergence from Lemma 3. Thus, a unique limit point (x̃, ỹ)
exists.

The fact that (x̃, ỹ) is basic, hence also rational, follows from Claims 1 and 3 in
the proof of Theorem 4, see Sect. 5. Because of ‖(x̃, ỹ) − (x̃k, ỹk)‖∞ � ‖(x̃, ỹ) −
(xk, yk)‖∞ +‖(xk, yk)−(x̃k, ỹk)‖∞, also the sequence of basic primal–dual solutions
(x̃k, ỹk) converges to the limit point (x̃, ỹ). Since there are only finitely many basic
solutions, this implies that (x̃, ỹ) must be one of the (x̃k, ỹk). �


Note that the statement holds for any upper bound C on the absolute values in the
corrector solutions x̂, ŷ returned by the oracle in line 14 of Algorithm 1. In practice,
this may be much smaller than the largest floating-point representable value, 2p.
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4.2 Output-sensitive reconstruction of rational limit points

Suppose we know a priori a bound M on the denominators in the limit, then we
can compute x̃, ỹ from an approximate solution satisfying ‖(xk, yk) − (x̃, ỹ)‖∞ <

1/(2M2) by applying Theorem 1 componentwise. If the size of M is small, i.e.,
polynomial in the input size, then iterative refinement produces a sufficiently accurate
solution after a polynomial number of refinements. This eliminates the need to use
other methods such as rational matrix factorization to compute an exact solution.

However, known worst-case bounds for denominators in basic solutions are often
very weak. This has been demonstrated by [1] for random square matrices and by [28]
for the special case of selected basis matrices from linear programs. For the Hadamard
bound H from (3) that holds for all basis matrices of an LP, this situation must be
even more pronounced. Tighter bounds that are reasonably cheap to compute are—to
the best of our knowledge—not available. Computing an approximate solution with
error below 1/(2H2) before applying the rounding procedure can thus be unnecessar-
ily expensive. This motivates the following design of an output-sensitive algorithm,
Algorithm 2, that attempts to reconstruct exact solution vectors during early rounds
of refinement and tests the correctness of these heuristically reconstructed solutions
exactly using rational arithmetic. We now give a description of it, followed by a proof
of correctness and analysis of its running time.

The algorithm is an extension of the basic iterative refinement for linear pro-
grams, Algorithm 1, interleaved with attempts at rational reconstruction. For k = 1,
the algorithm starts with the first oracle call to obtain the initial approximate solu-
tion and the corresponding residual errors. Unless the solution is exactly optimal,
we enter the rounding routine. We compute a speculative bound on the denomina-
tor as Mk := √

Δk+1/(2βk). Then the value 1/(2M2
k ) equals βk/Δk+1 ≈ βkδk

and tries to estimate the error in the solution. If reconstruction attempts fail, the
term βk keeps growing exponentially such that we eventually obtain a true bound
on the error. Initially, however, βk is small in order to account for the many cases
where the residual δk is a good proxy for the error. We first apply rational reconstruc-
tion to each entry of the primal vector xk using denominator bound Mk , denoted by
“round_to_denom((xk)i , Mk)”. Thenwe check primal feasibility before proceeding to
the dual vector. If feasibility and optimality could be verified in rational arithmetic, the
rounded solution is returned as optimal. Otherwise, we compute the next refinement
round after which reconstruction should be tried again. Because computing continued
fraction approximations becomes increasingly expensive as the encoding length of
the approximate solutions grows, rational reconstruction is executed at a geometric
frequency governed by parameter f . This limits the cumulative effort that is spent
on failed reconstruction attempts at the expense of possibly increasing the number of
refinements by a factor of f . The following theorem shows that the algorithm com-
putes an exactly optimal solution to a primal and dual feasible LP under the conditions
guaranteed by Lemma 7.

Theorem 6 Suppose we are given an LP (P), fixed constants C � 1, 0 < ε < 1,
1 < β < 1/ε, and a rational limit point x̃, ỹ with the denominator of each component
at most q̃. Furthermore, suppose a sequence of primal–dual solutions xk, yk and
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Algorithm 2: Iterative Refinement with Rational Reconstruction

input : rational, primal and dual feasible LP data A, b, �, c
parameters : incremental scaling limit α ∈ N, α � 2, geometric reconstruction

frequency f � 1, error correction factor β > 1
output : optimal primal–dual solution x∗ ∈ Q

n , y∗ ∈ Q
m

1 begin
2 initialize Algorithm 1 with termination tolerance τ = 0
3 k∗ ← 0

4 for k ← 1, 2, . . . do /* refinement loop */
5 perform next refinement step in Algorithm 1
6 xk , yk ← refined numeric solution
7 Δk+1 ← next scaling factor

8 if δk = 0 then /* check termination */
9 return x∗ ← xk , y

∗ ← yk
10 else if k � k∗ then /* try reconstruction */

11 Mk ←
√

Δk+1/2βk

12 for i ← 1, . . . , n do
13 x∗

i ← round_to_denom((xk)i , Mk )

14 if x∗ exactly feasible in rational arithmetic then
15 for j ← 1, . . . ,m do
16 y∗

j ← round_to_denom((yk) j ,Mk )

17 if x∗, y∗ exactly optimal in rational arithmetic then
18 return x∗, y∗

19 k∗ ←	 f k
 /* counter for next reconstruction */

scaling factors Δk � 1 satisfies ‖(x̃, ỹ)− (xk, yk)‖∞ � C
∑∞

i=k+1 Δ−1
i with Δ1 = 1

and Δk/Δk+1 � ε. Let Mk := √
Δk+1/(2βk).

Then there exists K = K (q̃,C) ∈ O(max{〈q̃〉, 〈C〉}) such that

‖(x̃, ỹ) − (xk, yk)‖∞ < 1/(2M2
k ), 1 � q̃ � Mk, (12)

holds for all k � K, i.e., x̃, ỹ can be reconstructed from xk, yk componentwise in
polynomial time using Theorem 1.

Proof Note that Δk/Δk+1 � ε for all k implies Δi � Δ jε
j−i for all j � i . Then

Mk = √
Δk+1/(2βk) � q̃ holds if

√
1/(2βkεk) � q̃ . This holds for all

k � K1 := (2 log q̃ + 1)/ log(1/βε) ∈ O(〈q̃〉). (13)

Furthermore, C
∑∞

i=k+1 Δ−1
i � C

∑∞
i=k+1 εi−k−1Δ−1

k+1 = C/((1 − ε)Δk+1), which
is less than 1/(2M2

k ) = βk/Δk+1 for all

k > K2 := (logC − log(1 − ε))/ logβ ∈ O(〈C〉). (14)

Hence (12) holds for all k > K := max{K1, K2}. �
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This running time result is output-sensitive as it depends on the encoding length of
the solution. The value ofC is a constant bound on the absolute values in the corrector
solutions. Although C is independent of the input size and does not affect asymptotic
running time, we include it explicitly in order to exhibit the practical dependency on
the corrector solutions returned by the oracle.

We now consider the cost associated with reconstructing the solution vectors. The
cost of applying the standard extended Euclidean algorithm to compute continued
fraction approximations of a rational numberwith encoding length d is O(d2). Asymp-
totically faster variants of the extended Euclidean algorithm exist, and can accomplish
this goal in O(d log2 d log log d) time [30], but for simplicity in our discussion and
analysis we use the quadratic bound given above. The following lemma shows that
the total time spent on rational reconstruction within Algorithm 2 is polynomial in
the number of refinement rounds and that if rational reconstruction is applied at a
geometric frequency with f > 1 then the total time spent on this task is asymptoti-
cally dominated by the reconstruction of the final solution vector. We remark that this
lemma can be used to show oracle polynomial running time of the entire algorithm
even in the case that f = 1, but it sheds light on the fact that choosing f > 1 can lead
to asymptotically improved performance.

Lemma 8 (Reconstruction of Solution Vectors) The running time of applying rational
reconstruction componentwise to xk and yk within the k-th round of Algorithm 2 is
O((n + m)k2). Moreover, if f > 1 and Algorithm 2 terminates at round K then the
cumulative time spent on rational reconstruction throughout the algorithm is O((n +
m)K 2).

Proof From the proof of Lemma 4 we know that at the k-th refinement round, the
encoding length of components of xk, yk is each bounded by (2αk + 3p + 2). The
scaling limit α and the precision level p can be considered as constants and thus the
encoding length of each component is O(k). Together with the fact that the extended
Euclidean algorithm can be implemented to run in quadratic time in the encoding
length of its input, the first result is established.

To show the second claim we assume that f > 1 and consider the indices of the
rounds at which reconstruction is attempted, and use K to denote the final such index.
We observe that the sequence of these indices, listed in decreasing order, is term-wise
bounded above by the following sequence: S = (K , �K/ f �, �K/ f 2�, . . . , �K/ f a�)
where a = log f K . This observation follows from the fact that line 19, of Algorithm 2
involves rounding up to the nearest integer. Since the encoding length of the com-
ponents of xk, yk increase at each round, so does the cost of rational reconstruction,
so by considering the cost to perform rational reconstruction at indices in the above
sequence S we derive an upper bound on the true cost. Now, since the encoding length
of each component used for reconstruction is linear in the iteration index, and the cost
for reconstruction is quadratic in this value, we arrive at the following bound on the
total cost, using well known properties of geometric series:

O

(
a∑

i=0

(n + m)�K/ f i�2
)

= O

(

(n + m)K 2
a∑

i=0

f −2i

)
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= O

(

(n + m)K 2
∞∑

i=0

f −2i

)

= O

(

(n + m)K 2 1

1 − f −2

)

= O((n + m)K 2)

This establishes the result. �

Now, assuming the conditions laid out in Theorem 6 hold we see that the number

of refinements Algorithm 2 performs before computing an exact rational solution is
polynomially bounded in the encoding length of the input. Together with this bound
on the number of refinements, Lemma 8 gives a polynomial bound on the time spent
on rational reconstruction. Lemma 4 and the arguments from Theorem 3 still apply
and limit the growth of the numbers and cost of the other intermediate computations.
Taken together, we arrive at the following.

Theorem 7 Suppose we are given a primal and dual feasible LP (P) and a limited-
precision LP-basis oracle according to Definition 1 with constants p, η, and σ . Fix a
scaling limit α � 2 and let ε := max{η, 1/α}. Then Algorithm 2 called with β < 1/ε
terminates with an optimal solution in oracle-polynomial running time.

Note that the basis does not need to be known explicitly. Accordingly, Algorithm 2
may even return an optimal solution x∗, y∗ that is different from the limit point x̃, ỹ if
it is discovered by rational reconstruction at an early iterate xk, yk . In this case, x∗, y∗
is not guaranteed to be a basic solution unless one explicitly discards solutions that
are not basic during the optimality checks.

5 Proofs

This section collects some technical proofs for previous results and the necessary
background material including well-known inequalities regarding encoding lengths,
norms, and systems of equations.

5.1 Properties of encoding lengths

Lemma 9 For z1, . . . , zn ∈ Z and r1, . . . , rn ∈ Q,

〈z1 + . . . + zn〉 � 〈z1〉 + . . . + 〈zn〉, (15)

〈r1 · . . . · rn〉 � 〈r1〉 + . . . + 〈rn〉, (16)

〈r1 + . . . + rn〉 � 2(〈r1〉 + . . . + 〈rn〉). (17)

For matrices A ∈ Q
m×n, B ∈ Q

n×p, D ∈ Q
n×n,

〈AB〉 � 2(p〈A〉 + m〈B〉), (18)

〈det D〉 � 2〈D〉 − n2. (19)
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Proof See [17, Lemma 1.3.3, 1.3.4, and Exercise 1.3.5]. Note that the factor 2 in (17)
is best possible. �

Lemma 10 For any matrix A ∈ Q

m×n,

‖A‖∞ � 2〈A〉−mn − mn � 2〈A〉. (20)

Proof

‖A‖∞ = max
i=1,...,m

∑

j=1,...,n

|Ai j | �
∑

i, j

|Ai j | =
⎛

⎝
∑

i, j

(|Ai j | + 1)

⎞

⎠ − mn

= 2log(
∑

i, j (|Ai j |+1)) − mn � 2
∑

i, j log(|Ai j |+1) − mn

= 2(
∑

i, j 〈Ai j 〉)−mn − mn = 2〈A〉−mn − mn.

�

Lemma 11 For any nonsingular matrix A ∈ Q

n×n, right-hand side b ∈ Q
n, and

solution vector x of Ax = b,

〈xi 〉 � 4〈A, b〉 − 2n2 � 4〈A, b〉. (21)

for all i = 1, . . . , n. Furthermore,

〈A−1〉 � 4n2〈A〉 − 2n4 � 4n2〈A〉. (22)

Proof By Cramer’s rule, the entries of x are quotients of determinants of submatrices
of (A, b). With (19) this yields (21). For the second inequality note that the i-th
column of A−1 is the solution of Ax = ei . Using Cramer’s rule again and the fact that
submatrices of (A, In) have size at most 〈A〉 gives inequality (22). �


5.2 Results from Sect. 2

Proof of Lemma 4 Lines 10 and 11 of Algorithm 1 ensure that Δk � 2	logα
(k−1)

holds at iteration k. This can be shown inductively. For k = 1, Δk = 1 = 2	logα
(k−1)

holds by initialization. For k + 1,

Δk+1 = 2	log(1/δk)
 � 2	log(αΔk )
 � 2	logα+logΔk
 � 2	logα+	logα
(k−1)


� 2		logα
k
 = 2	logα
k .

As a result, 〈Δk〉 � 	logα
k.
Furthermore, by induction from line 15, the entries in the refined solution vectors

xk and yk have the form

k∑

j=1

Δ j
−1 n j

2p
(23)
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with n j ∈ Z, |n j | � 22p, for j = 1, . . . , k. With Dj := log(Δ j ) and a := 	log(α)

this can be rewritten as

k∑

j=1

2−Dj
n j

2p
=

⎛

⎝
k∑

j=1

n j2
a(k−1)−Dj

⎞

⎠ /2p+a(k−1). (24)

The latter is a fraction with integer numerator and denominator. The numerator is
bounded as follows:

∣
∣

k∑

j=1

n j2
a(k−1)−Dj

∣
∣ �

k∑

j=1

|n j |2a(k−1)−Dj � 22p
a(k−1)∑

i=0

2i

� 22p(2a(k−1)+1 − 1) � 22p+ak − 1.

(25)

Hence, the size of the entries of xk and yk grows only linearly with the number of
iterations k,

〈xk〉 + 〈yk〉 � (n + m)

⎛

⎝

〈
k∑

j=1

n j2
a(k−1)−Dj

〉

+ 〈2p+a(k−1)〉
⎞

⎠

� (n + m)
(
2 + 	log(22p+ak)
 + 	log(2p+a(k−1) + 1)


)

� (n + m)(2ak + 3p + 2). (26)

The size of the remaining numbers set at iteration k are bounded accordingly,

〈b̂〉 � 4(〈b〉 + 〈A〉 + 〈xk〉), (27)

〈�̂〉 � 2(〈�〉 + 〈xk〉), (28)

〈ĉ〉 � 4(〈c〉 + 〈A〉 + 〈yk〉), (29)

〈δk〉 � max{〈b̂〉, 〈�̂〉, 〈ĉ〉, 2(〈�̂〉 + 〈ĉ〉), 〈α〉〈Δk〉}. (30)

By Lemma 3, the maximum number of iterations is O(log(1/τ)) = O(〈τ 〉). To sum-
marize, the encoding length of any of the numbers encountered during the course of
the algorithm is O(〈A, b, �, c〉 + (n + m)〈τ 〉). �


5.3 Results from Sect. 3

Proof of Lemma 5 Let x, y be a basic primal–dual solution with respect to some
basis B. Let N = {1, . . . , n}\B, let B = A·B be the corresponding (square, non-
singular) basis matrix and N = A·N the matrix formed by the nonbasic columns.
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Then the primal solution is given as solution of

(
B N
0 In−m

)

︸ ︷︷ ︸
=:B̃∈Qn×n

(
xB
xN

)

=
(

b
�N

)

︸ ︷︷ ︸
=:b̃∈Qn

. (31)

The dual vector y is determined by

B̃T
(
y
z

)

= c (32)

togetherwith the vector z ∈ Q
n−m containing the dual slacks of the nonbasic variables.

First, primal infeasibilities can only stem fromviolations of the bound constraints on
basic variables since the equality constraints and the nonbasic bounds are satisfied by
construction. Hence, they are of the form |xi − �i | for some i ∈ B. From Lemma 11
applied to (31) we know that the entries in xB have size at most 4〈B̃, b̃〉 − 2n2.
Because

〈B̃, b̃〉 = 〈B〉 + 〈N 〉 + 〈0〉 + 〈In−m〉 + 〈b〉 + 〈�N 〉
= 〈A, b, �N 〉 + (n + 1)(n − m)

� 〈A, b, �〉 + (n + 1)(n − m),

it follows that all nonzero entries of xB are of form p/q, p ∈ Z, q ∈ Z≥0, with

q � 24〈A,b,�〉+4(n+1)(n−m)−2n2 � 24〈A,b,�〉+2n2+4n .

The entries in � can be written as p′/q ′, p′ ∈ Z, q ′ ∈ Z≥0, with q ′ � 2〈�〉. Combining
this we know for all nonzero primal violations

|xi − �i | = ∣
∣ p

q
− p′

q ′
∣
∣ = |pq ′ − p′q|

qq ′

� 1/(24〈A,b,�〉+2n2+4n · 2〈�〉) = 1/24〈A,b〉+5〈�〉+2n2+4n .

Second, note that dual infeasibilities are precisely the (absolute values of the) neg-
ative entries of z in (32). Again from Lemma 11 we have

〈z j 〉 � 4〈B̃, c〉 − 2n2

� 4〈A, c〉 + 4(n + 1)(n − m) − 2n2

� 4〈A, c〉 + 2n2 + 4n

for all j ∈ N , and so any nonzero dual violation is at least 1/24〈A,c〉+2n2+4n . �

Proof of Theorem 4 The derivations presented in the following all refer to objects at
one fixed iteration k. Hence, the iteration index is dropped for better readability, i.e.,
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we write x for xk and y for yk , andB forBk . Furthermore, define x̃, ỹ to be the exact
basic solution vectors corresponding to current basisB, letN = {1, . . . , n}\B, and
let B = A·B and N = A·N .Wewill show that for a sufficiently large k, the primal and
dual violations of the exact basic solution vectors dropbelow theminimum infeasibility
thresholds from Lemma 5.

By construction, the basic solution x̃ satisfies the equality constraints Ax = b
exactly. For the violation of the lower bounds, we first show that x and x̃ converge
towards each other.

Claim 1 At iteration k = 1, 2, . . ., ‖x − x̃‖∞ � 24m
2〈A〉+1εk .

For the nonbasic variables we have

‖xN − x̃N ‖∞ = ‖xN − �N ‖∞
(9a)
� εk .

For the basic variables we have

‖xB − x̃B‖∞ = ‖B−1(BxB − Bx̃B)‖∞
� ‖B−1‖∞‖BxB − Bx̃B‖∞
= ‖B−1‖∞‖BxB︸︷︷︸

= Ax − NxN

−(b − N�N )‖∞

= ‖B−1‖∞‖Ax − b − (NxN − N�N )‖∞
� ‖B−1‖∞

(‖Ax − b‖∞ + ‖N (xN − �N )‖∞
)

� ‖B−1‖∞
( ‖Ax − b‖∞︸ ︷︷ ︸

�εk by (7a)

+‖N‖∞ ‖xN − �N ‖∞︸ ︷︷ ︸
�εk by(9a)

)

� ‖B−1‖∞
(‖N‖∞ + 1

)
εk .

By Lemmas 10 and 11,

‖B−1‖∞ � 2〈B−1〉 � 24m
2〈B〉,

and

‖N‖∞ + 1 � 2〈N 〉 + 1 � 2〈N 〉+1,

hence

‖B−1‖∞
(‖N‖∞ + 1

)
� 24m

2〈B〉 · 2〈N 〉+1 � 24m
2〈A〉+1,

proving the claim.

Claim 2 At iteration k = 1, 2, . . ., x̃i − �i � −24m
2〈A〉+2εk for all i ∈ {1, . . . , n}.

This follows from

x̃i − �i = x̃i − xi + xi − �i
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� −‖x̃i − xi‖∞ + xi − �i

� − 24m
2〈A〉+1εk − εk � − 24m

2〈A〉+2εk .

For dual feasibility, we first show that the dual solutions y and ỹ converge towards
each other.

Claim 3 At iteration k = 1, 2, . . ., ‖y − ỹ‖∞ � 24m
2〈B〉εk .

This follows from

‖y − ỹ‖∞ = ‖(BT )−1BT (y − ỹ)‖∞ � ‖(BT )−1‖∞‖BT (y − ỹ)‖∞

= ‖(BT )−1‖∞ ‖BT y − cB‖∞︸ ︷︷ ︸
=max{|ci−yT A·i |:i∈B}

(9b)
� ‖(BT )−1‖∞ εk

and

‖(BT )−1‖∞ � 2〈(BT )−1〉 � 24m
2〈BT 〉 � 24m

2〈B〉

using Lemmas 10 and 11.

Claim 4 At iteration k = 1, 2, . . . ,, ci − ỹT A·i � −24m
2〈A〉+1εk for all i ∈ {1, . . . , n}.

For the basic variables, ci − ỹT A·i = 0. For i ∈ N ,

|(y − ỹ)T A·i | � ‖A·i‖∞‖y − ỹ‖∞
� ‖N‖∞ 24m

2〈B〉εk

� 2〈N 〉24m2〈B〉εk

� 24m
2〈B〉+〈N 〉εk

= 24m
2〈A〉εk .

This proves the claim via

ci − ỹT A·i = ci − yT A·i + (y − ỹ)T A·i
� ci − yT A·i − |(y − ỹ)T A·i |
� − εk − 24m

2〈A〉εk

� − 24m
2〈A〉+1εk .

From Claims 2 and 4, x̃ and ỹ violate primal and dual feasibility by at
most 24m

2〈A〉+2εk and 24m
2〈A〉+1εk , respectively. These values drop below the thresh-

olds from Theorem 5 as soon as

24m
2〈A〉+2εk < 1/24〈A,b〉+5〈�〉+2n2+4n
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⇐⇒ εk < 1/24m
2〈A〉+2+4〈A,b〉+5〈�〉+2n2+4n

⇐⇒ k >
4m2〈A〉 + 4〈A, b〉 + 5〈�〉 + 2n2 + 4n + 2

log(1/ε)
=: KP

and

24m
2〈A〉+1εk < 1/24〈A,c〉+2n2+4n

⇐⇒ εk < 1/24m
2〈A〉+1+4〈A,c〉+2n2+4n

⇐⇒ k >
4m2〈A〉 + 4〈A, c〉 + 2n2 + 4n + 1

log(1/ε)
=: KD.

From Theorem 5, the solution x̃, ỹ must be primal and dual feasible for k � K :=
max{KP , KD} + 1. Since the solution is basic, x̃ and ỹ also satisfy complemen-
tary slackness, and hence they are optimal. The resulting threshold K has the order
claimed. �


6 Computational experiments

Despite the theoretical analysis it remains an open question which of the proposed
methods for solving linear programs exactly will perform best empirically, iterative
refinement with basis verification or with rational reconstruction. We implemented
both algorithms in the simplex-based LP solver SoPlex [32] in order to analyze and
compare their computational performance on a large collection of LP instances from
publicly available test sets. In particular, we aim to answer the following questions:

– How many instances can be solved by each algorithm and how do they compare
in running time?

– How much of the solving time is consumed by rational factorization and rational
reconstruction, and how often are these routines called?

– Howmany refinements are needed until reconstruction succeeds, and are the recon-
structed solutions typically basic?

In addition, we compared both methods against the state-of-the-art solver QSopt_ex,
which is based on incremental precision boosting [2,3].

6.1 Implementation and experimental setup

Both methods—basis verification and rational reconstruction—were implemented
as extensions to the existing LP iterative refinement procedure of SoPlex, which
is detailed in [16]. In the following, these extensions are denoted by SoPlexfac and
SoPlexrec, respectively.

The exact solution of the primal and dual basis systems relies on a rational LU factor-
ization and two triangular solves for the standard, column-wise basismatrix containing
slack columns for basic rows. The implementation of the rational solves is an adjusted
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version of the floating-point LU code of SoPlex, removing parts specific to floating-
point operations. The stalling threshold L for calling rational factorization is set to 2,
i.e., factorization will only be called after two refinement steps have not updated the
basis information.

The rational reconstruction routine is an adaptation of the code used in [28]. The
newly introduced error correction factor β was set to 1.1. Furthermore, since nonbasic
variables are held fixed at one of their bounds, the corresponding entries of the primal
vector can be skipped during reconstruction. The rational reconstruction frequency f
is set to 1.2, i.e., after a failed attempt at reconstructing an optimal solution, reconstruc-
tion is paused until 20% more refinement steps have been performed. We also employ
the DLCM method described in [8] (see also [5]) for accelerating the reconstruction
of the primal and dual solution vectors.

As test bed we use a set of 1202 primal and dual feasible LPs collected from several
publicly available sources: Netlib [29], Hans Mittelmann’s benchmark instances [24],
Csaba Mészáros’s LP collection [23], and the LP relaxations of the COR@Land
MIPLIB mixed-integer linear programming libraries [7,31]. For details regarding the
compilation we refer to the electronic supplement of [16].

The experiments were conducted on a cluster of 64-bit Intel Xeon X5672 CPUs at
3.2 GHz with 48 GB main memory, simultaneously running at most one job per node.
SoPlex was compiled with GCC 4.8.2 and linked to the external libraries GMP 5.1.3
and EGlib 2.6.20. QSopt_exwas run in version 2.5.10. A time limit of two hours per
instance was set for each SoPlex and QSopt_ex run.

6.2 Results

For the evaluation of the computational experiments we collected the following statis-
tics: the total number of simplex iterations and running times for each solver; for
QSopt_ex the maximum floating-point precision used; for the SoPlex runs the number
of refinement steps and the number and execution times for basis verification and ratio-
nal reconstruction, respectively. For the solutions returned by SoPlexfac and SoPlexrec,
we additionally computed the least common multiple of the denominators of their
nonzero entries and report their order of magnitude, as an indicator for how “compli-
cated” the representation of the exact solution is. The electronic supplement provides
these statistics for each instance of the test set. Tables 1 and 2 below report an aggre-
gated summary of these results. In the following, we discuss the main observations.

6.2.1 Overall comparison

None of the solvers dominates the othersmeaning that for each ofQSopt_ex, SoPlexfac,
and SoPlexrec there exist instances that can be solved only by this one solver. Overall,
however, the iterative refinement-based methods are able to solve more instances
than QSopt_ex, and SoPlexfac exhibits significantly shorter running times than the
other two methods. Of the 1202 instances, 1158 are solved by all three within the
available time and memory resources. QSopt_ex solves 1163 instances, SoPlexrec
solves 1189 instances, and SoPlexfac solves the largest number of instances: 1191.
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Table 1 Aggregate comparison of solvers QSopt_ex and exact SoPlex with basis verification (SoPlexfac)
and rational reconstruction (SoPlexrec) on instances that could be solved by all and where one solver took
at least 2 s

QSopt_ex prec #inst QSopt_ex SoPlexfac SoPlexrec

#iter t #iter t Δt #iter t Δt

Any 492 8025.7 15.6 9740.6 8.5 0.54 9740.6 24.2 1.55

64-bit 324 8368.3 16.1 11,683.7 11.3 0.70 11,683.7 14.8 0.92

128-bit 163 7217.1 13.9 6757.2 4.3 0.31 6757.2 58.5 4.21

192-bit 5 16,950.9 72.5 10,763.4 20.5 0.28 10,763.4 134.6 1.86

Columns #iter and t report shifted geometric means of simplex iterations and solving times, using a shift
of 2 s and 100 simplex iterations, respectively. Column Δt reports the ratio between the mean solve times
of SoPlex and QSopt_ex

Table 2 Computational results for iterative refinement with basis verification (SoPlexfac) and rational
reconstruction (SoPlexrec)

Test set #inst SoPlexfac SoPlexrec

#ref #fac tfac t #ref #rec trec t Δt

All 1186 2.1 0.95 0.21 2.8 68.3 6.74 1.26 5.2 1.82

[1, 7200] 591 2.3 0.98 0.43 8.8 135.1 11.04 3.28 21.8 2.47

[10, 7200] 311 2.4 0.99 0.83 24.1 241.6 15.47 9.15 101.9 4.22

[100, 7200] 161 2.7 0.98 1.40 42.8 384.9 19.70 22.95 340.3 7.95

Columns #ref, #fac, #rec contain arithmetic means of the number of refinements, basis verifications, and
reconstruction attempts, respectively. Columns t , tfac, trec report shifted geometric mean times for the total
solving process, the basis verifications, and rational reconstruction routines, respectively, with a shift of 2 s.
Column Δt reports the ratio between the mean solve times of SoPlexrec and SoPlexfac

Regarding running time, QSopt_ex is fastest 324 times, SoPlexrec 569 times, and
SoPlexfac is fastest for 702 instances.2

For 32 of the 44 instances not solved by QSopt_ex, this is due to the time limit. On
the other 12 instances, it cannot allocate enough memory on the 48GBmachine. Eight
times this occurs during or after precision boosts and points to the disadvantage that
keeping and solving extended-precision LPsmay not only be time-consuming, but also
require excessive memory. By contrast, the iterative refinement-based methods work
with a more memory-efficient double-precision floating-point rounding of the LP and
never reach the memory limit. However, SoPlexrec and SoPlexfac could not solve seven
instances because of insufficient performance of the underlying floating-point oracle.3

2 In order to account fairly for small arbitrary deviations in time measurements, an algorithm is considered
“fastest” if it solves an instance in no more than 5% of the time taken by the fastest method. Hence, the
numbers do not add up to the total of 1202 instances. Furthermore, note that the same picture holds also
when excluding easy instances that took less than 2 s by all solvers: SoPlexfac wins more than twice as often
as QSopt_ex.
3 On three instances, floating-point SoPlexcould not solve the first refinement LP within the time limit.
For three further instances, the initial floating-point solve incorrectly claimed unboundedness and for one
instance it incorrectly claimed infeasibility; in all of these cases, the incorrect claims were rejected success-
fully using feasibility and unboundedness tests as described in [16], but after starting to refine the original
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Finally, for the 492 instances that could be solved by all three algorithms, but
were sufficiently nontrivial such that one of the solvers took at least 2 s, Table 1
compares average running times and number of simplex iterations. In addition to all
492 instances, the lines starting with 64-bit, 128-bit, and 192-bit filter for the subsets
of instances corresponding to the final precision level used by QSopt_ex. It can be
seen that SoPlexfac outperforms the other two algorithms. Overall, it is a factor of
1.85 faster than QSopt_ex and even 2.85 times faster than SoPlexrec. On the instances
where QSopt_ex found the optimal solution after the double-precision solve (line
64-bit), SoPlexfac is 30% faster although it uses about 40% more simplex iterations
than QSopt_ex. Not surprisingly, when QSopt_ex has to boost the working precision
of the floating-point solver (lines 128-bit and 192-bit), the results become even more
pronounced, with SoPlexfac being over three times faster than QSopt_ex.

The remaining analysis looks at the results of the iterative refinement-basedmethods
inmore detail. Table 2 provides a summary of the statistics in the electronic supplement
for all 1186 instances that are solved by both SoPlexrec and SoPlexfac. The lines starting
with [t, 7200] filter for the subsets of increasingly hard instances for which at least
one method took t = 1, 10, or 100 s.

6.2.2 Rational reconstruction

The results largely confirm the predictions of Theorem 1, which expects an approx-
imate solution with error about 10−2 dlcm or less. Here dlcm is the log10 of the least
common multiple of the denominators in the solution vector as reported in the elec-
tronic supplement. Indeed, the dlcm value mostly correlates with the number of
refinement rounds, though several instances exist where reconstruction succeeds with
even fewer refinements than predicted. As can be seen from column “trec”, the strat-
egy of calling rational reconstruction at a geometric frequency succeeds in keeping
reconstruction time low also as the number of refinements increases.

The 5 instances that could be solved by SoPlexfac, but not by SoPlexrec, show large
dlcm value. This helps to explain the time outs and points to a potential bottleneck of
SoPlexrec. The number of refinements that could be performed within the time limit
simply did not suffice to produce an approximate solution of sufficiently high accu-
racy. Finally, the reconstructed solution was almost always basic and showed identical
dlcm value as the solution of SoPlexfac. For 7 instances, rational reconstruction com-
puted a non-basic solution.

6.2.3 Basis verification

Compared to SoPlexrec, the number of refinements for SoPlexfac is very small, because
the final, optimal basis is almost always reached by the second round. This confirms
earlier results of [16]. Accordingly, for most LPs, SoPlexfac performs exactly one
rational factorization (1123 out of 1191 solved); for 7 instances two factorizations.

Notably, there are 61 instances where no factorization is necessary because the
approximate solution is exactly optimal. This is explained by the fact that the numbers

LP again, floating-point SoPlex failed to return an approximately optimal solution even when trying to run
with different floating-point settings.
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in the solution have small denominator. For 59 instances, the denominator is even one,
i.e., the solution is integral. As a result, the average number of factorizations (column
“#fac”) of Table 2 is slightly below one. This situation even occurs for LPs with longer
running times, since the simplicity of the solution is not necessarily correlated with
short running times of the floating-point simplex.

On average, the time for rational factorization and triangular solves (column “tfac”)
is small compared to the total solving time. Also in absolute values, tfac is small for
the vast majority of instances: for 901 instances it is below 0.1 s. In combination
with the small number of refinements needed to reach the optimal basis, this helps to
explainwhy SoPlexfac is on average between 1.82 and 7.95 times faster than SoPlexrec.
However, for 21 instances, tfac exceeds 7 s and consumes more than 90% of the
running time. On 3 of these instances, SoPlexfac times out, while they can be solved
by SoPlexrec.

7 Conclusion

This paper developed and analyzed two new algorithms for exact linear programming
over the rational numbers. A notion of limited-precision LP oracles was formalized,
which closely resembles modern floating-point simplex implementations. The meth-
ods extend the iterative refinement scheme of [16] in conceptually different directions:
basis verification using rational linear systems solves and rational reconstruction using
the extended Euclidean algorithm. Both are proven to converge to an optimal basic
solution in oracle-polynomial time.

Computational experiments revealed that the rational factorization approach solved
slightly more instances within a time limit and was about 46% faster on average.
However, several instances were identified that were solved much faster by rational
reconstruction; we also found that the reconstruction approach was slightly faster for
those LPs with very short running times. This raises the question how to combine both
techniques most efficiently into a hybrid algorithm. An immediate idea would be to
perform a rational factorization only after rational reconstruction has failed for a fixed
number of refinements. However, the critical instances on which reconstruction wins
typically have solutions with large denominators and require a high number of refine-
ments. Putting the factorization on hold in themeantimewould incur amajor slowdown
on the majority of instances. Hence, currently the most promising hybridization seems
to be a straightforward parallelization: whenever iterative refinement reaches a basis
candidate that is assumed to be optimal, a rational factorization can be performed in
the background while refinement and reconstruction is continued in the foreground.

Finally, we compared the iterative refinement based algorithms against the current
state-of-the-art approach, the incremental precision boosting procedure implemented
by the solver QSopt_ex. We found that SoPlex (using the rational factorization strat-
egy) is 1.85 to 3 times faster on our test set and solvesmore instances within given time
and memory restrictions. However, the advantage of incremental precision boosting
is its capability to handle extremely ill-conditioned LPs by increasing the working
precision of the floating-point solver when necessary. In order to harness the strengths
of both approaches, incremental precision boosting can be integrated into iterative
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refinement quite naturally: whenever the underlying floating-point solver encounters
numerical difficulties and fails to return a satisfactory approximate solution, boost
the precision of the floating-point solver to the next level. This would help to handle
instances on which iterative refinement failed in our experiments because SoPlex’s
double-precision simplex broke down, while for the vast majority of instances no pre-
cision boosts would be necessary, retaining the significant performance benefits of
iterative refinement.

Acknowledgements The authors would like to thank the anonymous reviewers for their detailed study of
the manuscript and their comments, which were of exceptionally high quality.
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