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Abstract
A distributionally robust joint chance constraint involves a set of uncertain linear
inequalities which can be violated up to a given probability threshold ε, over a given
family of probability distributions of the uncertain parameters. A conservative approx-
imation of a joint chance constraint, often referred to as a Bonferroni approximation,
uses the union bound to approximate the joint chance constraint by a system of single
chance constraints, one for each original uncertain constraint, for a fixed choice of
violation probabilities of the single chance constraints such that their sum does not
exceed ε. It has been shown that, under various settings, a distributionally robust single
chance constraint admits a deterministic convex reformulation. Thus the Bonferroni
approximation approach can be used to build convex approximations of distribution-
ally robust joint chance constraints. In this paper we consider an optimized version
of Bonferroni approximation where the violation probabilities of the individual sin-
gle chance constraints are design variables rather than fixed a priori. We show that
such an optimized Bonferroni approximation of a distributionally robust joint chance
constraint is exact when the uncertainties are separable across the individual inequali-
ties, i.e., each uncertain constraint involves a different set of uncertain parameters and
corresponding distribution families. Unfortunately, the optimized Bonferroni approx-
imation leads to NP-hard optimization problems even in settings where the usual
Bonferroni approximation is tractable. When the distribution family is specified by
moments or by marginal distributions, we derive various sufficient conditions under
which the optimized Bonferroni approximation is convex and tractable. We also show
that for moment based distribution families and binary decision variables, the opti-
mized Bonferroni approximation can be reformulated as a mixed integer second-order
conic set. Finally, we demonstrate how our results can be used to derive a convex
reformulation of a distributionally robust joint chance constraint with a specific non-
separable distribution family.

Mathematics Subject Classification 90C15 · 90C47 · 90C11

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10107-019-01442-8&domain=pdf
http://orcid.org/0000-0002-3941-5057


80 W. Xie et al.

1 Introduction

1.1 Setting

A linear chance constrained optimization problem is of the form:

min c�x, (1a)

s.t. x ∈ S, (1b)

P

{
ξ : ai (x)�ξ i ≤ bi (x),∀i ∈ [I ]

}
≥ 1 − ε. (1c)

Above, the vector x ∈ R
n denotes the decision variables; the vector c ∈ R

n denotes
the objective function coefficients; the set S ⊆ R

n denotes deterministic constraints on
x ; and the constraint (1c) is a chance constraint involving I inequalities with uncertain
data specified by the random vector ξ supported on a closed convex set Ξ ⊆ R

m

with a known probability distribution P. We let [R] := {1, 2, . . . , R} for any positive
integer R, and for each uncertain constraint i ∈ [I ], ai (x) ∈ R

mi and bi (x) ∈ R

denote affine mappings of x such that ai (x) = Ai x + ai and bi (x) = Bi x + bi

with Ai ∈ R
mi×n , ai ∈ R

mi , Bi ∈ R
n , and bi ∈ R, respectively. The uncertain

data associated with constraint i is specified by ξ i which is the projection of ξ to a
coordinate subspace Si ⊆ R

m , i.e., Si is a span of mi distinct standard bases with
dim(Si ) = mi . The support of ξ i is Ξi = ProjSi

(Ξ). The chance constraint (1c)
requires that all I uncertain constraints are simultaneously satisfied with a probability
or reliability level of at least (1− ε), where ε ∈ (0, 1) is a specified risk tolerance. We
call (1c) a single chance constraint if I = 1 and a joint chance constraint if I ≥ 2.

Remark 1 The notation above might appear to indicate that the uncertain data is sepa-
rable across the inequalities. However, note that ξ i is a projection of ξ . For example,
wemay have ξ i = ξ andSi = R

m for all i , when each inequality involves all uncertain
coefficients ξ .

In practice, the decision makers often have limited distributional information on ξ ,
making it challenging to commit to a single P. As a consequence, the optimal solution
to (1a)–(1c) can actually perform poorly if the (true) probability distribution of ξ is
different from the one we commit to in (1c). In this case, a natural alternative of (1c)
is a distributionally robust chance constraint of the form

inf
P∈P

P

{
ξ : ai (x)�ξ i ≤ bi (x),∀i ∈ [I ]

}
≥ 1 − ε, (1d)

where we specify a family P of probability distributions of ξ , called an ambiguity set,
and the chance constraint (1c) is required to hold for all the probability distributions
P in P . We call formulation (1a)–(1b), (1d) a distributionally robust joint chance
constrained program (DRJCCP) and denote the feasible region induced by (1d) as

Z :=
{
x ∈ R

n : inf
P∈P

P

{
ξ : ai (x)�ξ i ≤ bi (x),∀i ∈ [I ]

}
≥ 1 − ε

}
. (2)
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Optimized Bonferroni approximation 81

In general, the set Z is nonconvex and leads to NP-hard optimization problems
[16]. This is not surprising since the same conclusion holds even when the ambiguity
set P is a singleton [25,27]. The focus of this paper is on developing tractable convex
approximations and reformulations of set Z .

1.2 Related literature

Recently, distributionally robust optimization (DRO) has received increasing attention
in the literature [10,12,14,16,19,42]. Various ambiguity sets have been investigated,
including moment-based ambiguity sets (see, e.g., [10,16,42]) and distance-based
ambiguity sets (see, e.g., [12,14,19]). Historical data can be used to calibrate the ambi-
guity sets so that they contain the true probability distribution with a high confidence
(see, e.g., [10,12]). In this paper, we will focus on DRJCCP.

Existing literature has identified a number of important special cases where Z is
convex. In the non-robust setting, i.e. when P is a singleton, the set Z is convex if
Ai = 0 for all i ∈ [I ] (i.e. the uncertainties do not affect the variable coefficients)
and either (i) the distribution of the vector [(a1)�ξ1, . . . , (a

I )�ξ I ]� is quasi-concave
[29,40,41] or (ii) the components of vector [(a1)�ξ1, . . . , (a

I )�ξ I ]� are independent
and follow log-concave probability distributions [30]. Much less is known about the
case Ai �= 0 (i.e.with uncertain coefficients), except that Z is convex if I = 1, ε ≤ 1/2,
and ξ has a symmetric and non-degenerate log-concave distribution [22], of which the
normal distribution is a special case [20]. In the robust setting, when P consists of all
probability distributions with given first and second moments and I = 1, the set Z is
second-order cone representable [6,11]. Similar convexity results holdwhen I = 1 and
P also incorporates other distributional information such as the support of ξ [8], the
unimodality of P [16,23], or arbitrary convex mapping of ξ [44]. For distributionally
robust joint chance constraints, i.e. I ≥ 2 and P is not a singleton, conditions for
convexity of Z are scarce. To the best of our knowledge, [17] provides the first convex
reformulation of Z in the absence of coefficient uncertainty, i.e. Ai = 0 for all i ∈ [I ],
when P is characterized by the mean, a positively homogeneous dispersion measure,
and a conic support of ξ . For the more general coefficient uncertainty setting, i.e.
Ai �= 0, [44] identifies several sufficient conditions for Z to be convex (e.g., when
P is specified by one moment constraint), and [43] shows that Z is convex when the
chance constraint (1d) is two-sided (i.e., when I = 2 and a1(x)�ξ1 = −a2(x)�ξ2)
and P is characterized by the first two moments.

Various approximations have been proposed for settings where Z is not convex.
When P is a singleton, i.e. P = {P}, [27] propose a family of deterministic convex
inner approximations, among which the conditional-value-at-risk (CVaR) approxima-
tion [34] is proved to be the tightest. A similar approach is used to construct convex
outer approximations in [1]. Sampling based approaches that approximate the true dis-
tribution by an empirical distribution are proposed in [5,24,28]. When the probability
distribution P is discrete, [2] develop Lagrangian relaxation schemes and correspond-
ing primal linear programming formulations. In the distributionally robust setting, [7]
propose to aggregate the multiple uncertain constraints with positive scalars in to a
single constraint, and then use CVaR to develop an inner approximation of Z . This
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82 W. Xie et al.

approximation is shown to be exact for distributionally robust single chance constraints
whenP is specified by first and second moments in [46] or, more generally, by convex
moment constraints in [44].

1.3 Contributions

In this paper we study the set Z in the distributionally robust joint chance constraint
setting, i.e. I ≥ 2 and P is not a singleton. In particular, we consider a classical
approximation scheme for joint chance constraint, termed Bonferroni approximation
[7,27,46]. This scheme decomposes the joint chance constraint (1d) into I single
chance constraints where the risk tolerance of constraint i is set to a fixed parameter
si ∈ [0, ε] such that

∑
i∈[I ] si ≤ ε. Then, by the union bound, it is easy to see that

any solution satisfying all I single chance constraints will satisfy the joint chance
constraint. Such a distributionally robust single chance constraint system is often
significantly easier than the joint constraint. To optimize the quality of the Bonferroni
approximation, it is attractive to treat {si }i∈[I ] as design variables rather than as fixed
parameters. However, this could undermine the convexity of the resulting approximate
system and make it challenging to solve. Indeed, [27] cites the tractability of this
optimized Bonferroni approximation as “an open question” (see Remark 2.1 in [27]).
In this paper, wemake the following contributions to the study of optimizedBonferroni
approximation:

1. We show that the optimized Bonferroni approximation of a distributionally robust
joint chance constraint is in fact exact when the uncertainties are separable across
the individual inequalities, i.e., each uncertain constraint involves a different set
of uncertain parameters and corresponding distribution families.

2. For the setting when the ambiguity set is specified by the first two moments of
the uncertainties in each constraint, we establish that the optimized Bonferroni
approximation, in general, leads to strongly NP-hard problems; and go on to iden-
tify several sufficient conditions under which it becomes tractable.

3. For the setting when the ambiguity set is specified by marginal distributions of
the uncertainties in each constraint, again, we show that while the general case is
strongly NP-hard, there are several sufficient conditions leading to tractability.

4. Formoment based distribution families and binary decision variables,we show that
the optimized Bonferroni approximation can be reformulated as a mixed integer
second-order conic set.

5. Finally, we demonstrate how our results can be used to derive a convex refor-
mulation of a distributionally robust joint chance constraint with a specific
non-separable distribution family.

2 Optimized Bonferroni approximation

In this section we formally present the optimized Bonferroni approximation of the
distributionally robust joint chance constraint set Z , compare it with alternative single
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Optimized Bonferroni approximation 83

chance constraint approximations, and provide a sufficient condition under which it
is exact.

2.1 Bonferroni and Fréchet inequalities

In this subsection, we review Bonferroni and Fréchet inequalities.

Definition 1 (Bonferroni inequality, or union bound) Let (Ξ,F , P) be a probability
space, where Ξ ⊆ R

m is a sample space,F is a σ -algebra of Ξ , and P is a probability
measure on (Ξ,F). Given I events {Ei }i∈[n] with Ei ∈ F for each i ∈ [I ], the
Bonferroni inequality [3] is:

P

⎧
⎨
⎩

⋃
i∈[I ]

Ei

⎫
⎬
⎭ ≤ min

⎧
⎨
⎩

∑
i∈[I ]

P {Ei } , 1

⎫
⎬
⎭ .

Definition 2 (Fréchet inequality) Let {(Ξi ,Fi , Pi ) : i ∈ [I ]} be a finite collection
of probability spaces, where for i ∈ [I ], Ξi ⊆ Si is a sample space, Fi is a σ -
algebra ofΞi , and Pi is a probability measure on (Ξi ,Fi ). Consider the product space
(Ξ,F) = ∏

i∈[I ](Ξi ,Fi ), and letM(Ξ,F) denote the set of all probability measures
on (Ξ,F). LetM(P1, . . . , PI ) denote the set of joint probability measures on (Ξ,F)

generated by (P1, . . . , PI ), i.e.

M(P1, . . . , PI ) = {
P ∈ M(Ξ,F) : Proji (P) = Pi ∀ i ∈ [I ]} ,

where Proji : Ξ → Ξi denotes the i-th projection operation. For any P ∈
M(P1, . . . , PI ) and event Ei ∈ Fi for each i ∈ [I ], the Fréchet inequality [13]
is:

⎡
⎣∑
i∈[I ]

Pi {Ei } − (I − 1)

⎤
⎦

+
≤ P

⎧⎨
⎩

∏
i∈[I ]

Ei

⎫⎬
⎭ ,

where [a]+ = max{0, a}.
Remark 2 Note that in the special case of Ξi = Ξ for all i ∈ [I ], the above Fréchet
inequality is

⎡
⎣∑
i∈[I ]

Pi {Ei } − (I − 1)

⎤
⎦

+
≤ P

⎧⎨
⎩

⋂
i∈[I ]

Ei

⎫⎬
⎭ ,

which is essentially the Bonferroni inequality complemented. Indeed, let Ēi = Ξ\Ei

for all i ∈ [I ], then we have

P

⎧
⎨
⎩

⋂
i∈[I ]

Ei

⎫
⎬
⎭ = 1 − P

⎧
⎨
⎩

⋃
i∈[I ]

Ēi

⎫
⎬
⎭
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≥ 1 − min

⎧⎨
⎩

∑
i∈[I ]

Pi
{
Ēi

}
, 1

⎫⎬
⎭ = max

⎧⎨
⎩

∑
i∈[I ]

Pi {Ei } − I + 1, 0

⎫⎬
⎭ ,

where the inequality is due to the Bonferroni inequality.

2.2 Single chance constraint approximations

Recall that the uncertain data associated with constraint i ∈ [I ] is specified by ξ i
which is the projection of ξ to a coordinate subspace Si ⊆ R

m with dim(Si ) = mi ,
and the support of ξ i isΞi = ProjSi

(Ξ). For each i ∈ [I ], letDi denote the projection
of the ambiguity set P to the coordinate subspace Si , i.e., Di = ProjSi

(P). Thus
Di denotes the projected ambiguity set associated with the uncertainties appearing in
constraint i . The following two examples illustrate ambiguity setP and its projections
{Di }i∈[I ].

Example 1 Consider

Z =
{
x ∈ R

2 : inf
P∈P

P

{
ξ : ξ̂1x1 + ξ̂2x2 ≤ 0

ξ̂2x1 + ξ̂3x2 ≤ 1

}
≥ 0.75

}
,

where ξ = [̂ξ1, ξ̂2, ξ̂3]�, ξ1 = [̂ξ1, ξ̂2]�, ξ2 = [̂ξ2, ξ̂3]�, and P = {P : EP[ξ ] =
0, EP[ξξ�] = Σ} with

Σ =
⎡
⎣

1 0 1.2
0 0.5 0.5
1.2 0.5 2

⎤
⎦ .

In this example, m = 3, m1 = m2 = 2, S1 = {̂ξ ∈ R
3 : ξ̂3 = 0}, S2 = {̂ξ ∈ R

3 :
ξ̂1 = 0}, and Di = {P : EP[ξ i ] = 0, EP[ξ iξ�

i ] = Σi } for i = 1, 2, where

Σ1 =
[
1 0
0 0.5

]
and Σ2 =

[
0.5 0.5
0.5 2

]
.


�
Example 2 Consider

Z =
{
x ∈ R

I : inf
P∈P

P
{
ξ : ξ i ≤ xi ,∀i ∈ [I ]} ≥ 0.9

}
,

where ξ ∼ N (μ,Σ), i.e.P is a singleton containing only an I -dimensional multivari-
ate normal distribution with mean μ ∈ R

I and covariance matrix Σ ∈ R
I×I . In this

example,m = I , and for all i ∈ [I ],mi = 1,Si = {ξ ∈ R
I : ξ j = 0, j �= i,∀ j ∈ [I ]},

and Di is a singleton containing only a 1-dimensional normal distribution with mean
μi and variance Σi i . 
�
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Optimized Bonferroni approximation 85

Consider the following two distributionally robust single chance constraint approx-
imations of Z :

ZO :=
{
x ∈ R

n : inf
Pi∈Di

Pi

{
ξ i : ai (x)�ξ i ≤ bi (x)

}
≥ 1 − ε,∀i ∈ [I ]

}
, (3)

and

ZI :=
{
x ∈ R

n : inf
Pi∈Di

Pi

{
ξ i : ai (x)�ξ i ≤ bi (x)

}
≥ 1 − ε

I
,∀i ∈ [I ]

}
. (4)

Both ZO and ZI involve I distributionally robust single chance constraints, and they
differ by the choice of the risk levels. The approximation ZO relaxes the requirement
of simultaneously satisfying all uncertain linear constraints, and hence is an outer
approximation of Z . In ZI , each single chance constraint has a risk level of ε/I , and
it follows from the union bound (or Bonferroni inequality [3]), that ZI is an inner
approximation of Z . The set ZI is typically called the Bonferroni approximation. We
consider an extension of ZI where the risk level of each constraint is not fixed but
optimized [27]. The resulting optimized Bonferroni approximation is:

ZB :=
⎧
⎨
⎩x : ∃s ∈ R

I+ such that inf
Pi∈Di

Pi

{
ξ i : ai (x)�ξ i ≤ bi (x)

}

≥ 1 − si , ∀i ∈ [I ],
∑
i∈[I ]

si ≤ ε

⎫⎬
⎭ . (5)

Note that the set ZB depends on the projected ambiguity sets {Di }i∈[I ]. For notational
brevity, we will use ZB to denote the feasible region of the optimized Bonferroni
approximation for all ambiguity sets. It should be clear from the context which ambi-
guity set ZB is associated with.

Finally, we review the CVaR approximation of the set Z (see, e.g., [27,46]).We note
that Z can be recast in the following form of a distributionally robust single chance
constraint:

Z =
{
x ∈ R

n : sup
P∈P

P

{
ξ : max

i∈[I ]

[
ai (x)

�ξ i − bi (x)
]

> 0

}
≤ ε

}
. (6)

Then, applying the CVaR approximation to the chance constraint in (6) for any prob-
ability distribution P ∈ P yields the following approximation:

ZC :=
{
x ∈ R

n : sup
P∈P

inf
β

{
−εβ + E

[
max
i∈[I ]

[
ai (x)

�ξ i − bi (x)
]

+ β

]

+

}
≤ 0

}
.

(7)

We note that (i) set ZC is convex and ZC ⊆ Z because CVaR is a convex and con-
servative approximation of the chance constraint and (ii) to compute the worst-case
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CVaR in (7), we often switch the sup and inf operators, yielding a potentially more
conservative approximation set, ẐC . Nevertheless, ZC = ẐC in many cases, e.g.,
when P is weakly compact (cf. Theorem 2.1 in [37]).

2.3 Comparison of approximation schemes

From the previous discussion we know that ZO is an outer approximation of Z , while
both ZB and ZI are inner approximations of Z and that ZB is at least as tight as ZI .
In addition, for the single chance constraint, we note that all the above four sets are
equivalent to each other, and is less conservative than the CVaR approximation ZC .
We formalize this observation in the following result (see [32] for parallel results with
respect to classical chance-constrained programs).

Theorem 1 (i) ZO ⊇ Z ⊇ ZB ⊇ ZI ; and
(ii) if I = 1, then ZO = Z = ZB = ZI ⊇ ZC.

Proof (i) By construction, ZO ⊇ Z . To show that Z ⊇ ZB , we pick x ∈ ZB . For
all P ∈ P and i ∈ [I ], x ∈ ZB implies that P{ξ : ai (x)�ξ i ≤ bi (x)} = Pi {ξ i :
ai (x)�ξ i ≤ bi (x)} ≥ 1 − si , or equivalently, supP∈P P{ξ : ai (x)�ξ i > bi (x)} ≤
si . Hence,

inf
P∈P

P{ξ : ai (x)�ξ i ≤ bi (x),∀i ∈ [I ]} = 1 − sup
P∈P

P{ξ : ∃i ∈ [I ], s.t. ai (x)
�ξ i

> bi (x)}
≥ 1 − sup

P∈P

∑
i∈[I ]

P{ξ : ai (x)�ξ i > bi (x)}

≥ 1 −
∑
i∈[I ]

sup
P∈P

P{ξ : ai (x)�ξ i > bi (x)}

≥ 1 −
∑
i∈[I ]

si ≥ 1 − ε,

where the first inequality is due to the Bonferroni inequality or union bound, the
second inequality is because the supremum over summation is no larger than the
sum of supremum, and the final inequality follows from the definition of ZB . Thus,
x ∈ Z . Finally, note that ZI is a restriction of ZB by setting si = ε/I for all i ∈ [I ]
and so ZB ⊇ ZI .

(ii) ZO = Z = ZB = ZI holds by definition. The conservatism of the CVaR approx-
imation follows from [27].


�
The following example shows that all inclusions in Theorem 1 can be strict.

Example 3 Consider

Z =

⎧⎪⎪⎨
⎪⎪⎩
x ∈ R

2 : inf
P∈P

P

⎧⎪⎪⎨
⎪⎪⎩

ξ :
ξ1 ≤ x1
ξ2 ≤ x2
x1 ≤ 1
x2 ≤ 1

⎫⎪⎪⎬
⎪⎪⎭

≥ 0.5

⎫⎪⎪⎬
⎪⎪⎭

,
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Fig. 1 Illustration of Example 3

x1

x2

(0.5, 0.5) (1, 0.5)

(1, 1)(0.5, 1)

ZI

ZB

Z

ZO

where P is a singleton containing the probability distribution that ξ1 and ξ2 are inde-
pendent and uniformly distributed on [0, 1]. It follows that

ZO =
{
x ∈ [0, 1]2 : x1 ≥ 0.5, x2 ≥ 0.5

}
,

Z =
{
x ∈ [0, 1]2 : x1x2 ≥ 0.5

}
,

ZB =
{
x ∈ [0, 1]2 : x1 + x2 ≥ 1.5

}
, and

ZI =
{
x ∈ [0, 1]2 : x1 ≥ 0.75, x2 ≥ 0.75

}
.

We display these four sets in Fig. 1, where the dashed lines denote the boundaries of
ZO , Z , ZB , ZI .

For set ZC , we are unable to obtain a closed-form formulation in the space of
(x1, x2). Nevertheless, we can show that it is a strict subset of ZI . Indeed,

ZC =
{
x ∈ [0, 1]2 : inf

β

{
−εβ + E

[
max

{
ξ1 − x1, ξ2 − x2

} + β
]
+
}

≤ 0

}

=
{
x ∈ [0, 1]2 : ∃β, E

[
max

{
(ξ1 − x1 + β)+, (ξ2 − x2 + β)+

}] ≤ εβ
}

⊆
{
x ∈ [0, 1]2 : ∃β, max

{
E(ξ1 − x1 + β)+, E(ξ2 − x2 + β)+

} ≤ εβ
}

⊆
{
x ∈ [0, 1]2 : ∃β1, β2, E(ξ1 − x1 + β1)+ ≤ εβ1, E(ξ2 − x2 + β2)+ ≤ εβ2

}

=
{
x ∈ [0, 1]2 : x1 ≥ 0.75, x2 ≥ 0.75

}
= ZI ,

where the second equality is because the infimum can be obtained by a finite β ∈
[−1, 1], the first inclusion is due to the Jensen’s inequality, and the second inclusion
is because we further relax the constraint β1 = β2. In addition, it can be shown that
(0.75, 1) /∈ ZC . It follows that ZC � ZI .

Therefore, in this example, we have ZO � Z � ZB � ZI � ZC . 
�
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2.4 Exactness of optimized Bonferroni approximation

In this section we use a result from [36] to establish a sufficient condition under which
the optimized Bonferroni approximation is exact.

The following result establishes a tight version of the Fréchet inequality.

Theorem 2 (Theorem 6 in [36]) Let {(Ξi ,Fi ) : i ∈ [I ]} be a finite collection of Polish
spaces with associated probability measures {P1, . . . , PI }. Then for all Ei ∈ Fi with
i ∈ [I ] it holds that

⎡
⎣∑
i∈[I ]

Pi {Ei } − (I − 1)

⎤
⎦

+
= inf

⎧⎨
⎩P

⎧⎨
⎩

∏
i∈[I ]

Ei

⎫⎬
⎭ : P ∈ M(P1, . . . , PI )

⎫⎬
⎭ .

Next we use the above result to show that the optimized Bonferroni approximation
ZB , consisting in single chance constraints, is identical to Z consisting of a joint
chance constraint when the uncertainties in each constraint are separable, i.e. each
uncertain constraint involves a different set of uncertain parameters and associated
ambiguity sets. Recall that uncertain data in Z is described by the random vector ξ

supported on a closed convex set Ξ ⊆ R
m , and the uncertain data associated with

constraint i is specified by ξ i which is the projection of ξ to a coordinate subspace
Si ⊆ R

m with dim(Si ) = mi . The support of ξ i is Ξi = ProjSi
(Ξ). Furthermore,

the ambiguity set associated with the uncertainties appearing in constraint i ,Di , is the
projection of the ambiguity set P to the coordinate subspace Si , i.e.,Di = ProjSi

(P).
The separable uncertainty condition can then be formalized as follows:

(A1) Ξ = ∏
i∈[I ] Ξi and P = ∏

i∈[I ] Di , i.e., P ∈ P if and only if Proji (P) ∈ Di for
all i ∈ [I ].

Note that Assumption (A1) does not imply that {ξ i }i∈[I ] are mutually or jointly
independent. That is, {ξ i }i∈[I ] are allowed to be positively or negatively correlated as
long as the marginal distribution Proji (P) is in Di . The following example illustrates
Assumption (A1).

Example 4 Consider

Z =
{
x ∈ R

2 : inf
P∈P

P

{
ξ : ξ1 ≤ x1

2ξ2 ≤ x1 + x2

}
≥ 0.75

}
,

where Ξ1 = R, Ξ2 = R, Ξ = R
2 and

P = {P : EP[ξ1] = 0, EP[ξ21] = σ 2
1 , EP[ξ2] = 0, EP[ξ22] = σ 2

2 }
D1 = {P1 : EP1 [ξ1] = 0, EP1 [ξ21] = σ 2

1 }
D2 = {P2 : EP2 [ξ2] = 0, EP2 [ξ22] = σ 2

2 }.

Clearly, Ξ = Ξ1 × Ξ2 and P = D1 ×D2. Note that ξ1 and ξ2 are not assumed to be
independent. 
�
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Optimized Bonferroni approximation 89

We are now ready to establish the exactness of optimized Bonferroni approximation
under the above condition.

Theorem 3 Under Assumption (A1), Z = ZB.

Proof We have ZB ⊆ Z by Theorem 1. It remains to show that Z ⊆ ZB . Given an
x ∈ Z , we rewrite the left-hand side of (1d) as

inf
P∈P

P

{
ξ : ai (x)�ξ i ≤ bi (x),∀i ∈ [I ]

}
(8a)

= inf
Pi∈Di ,∀i∈[I ]

inf
P∈M(P1,...,PI )

P

{
ξ : ai (x)�ξ i ≤ bi (x),∀i ∈ [I ]

}
(8b)

= inf
Pi∈Di ,∀i∈[I ]

⎡
⎣∑
i∈[I ]

Pi

{
ξ i : ai (x)�ξ i ≤ bi (x)

}
− (I − 1)

⎤
⎦

+
, (8c)

where equality (8b) decomposes the optimization problem in (8a) into two layers: the
outer layer searches for optimal (i.e., worst-case)marginal distributionsPi ∈ Di for all
i ∈ [I ], while the inner layer searches for the worst-case joint probability distribution
that admits the given marginals Pi . Equality (8c) follows from Theorem 2. Note that
our sample space is Euclidean and is hence a Polish space. Since x ∈ Z , the right-
hand-side of (8c) is no smaller than 1 − ε. It follows that (8c) is equivalent to

inf
Pi∈Di ,∀i∈[I ]

⎡
⎣∑
i∈[I ]

Pi

{
ξ i : ai (x)�ξ i ≤ bi (x)

}
− (I − 1)

⎤
⎦

=
∑
i∈[I ]

inf
Pi∈Di

Pi

{
ξ i : ai (x)�ξ i ≤ bi (x)

}
− (I − 1), (8d)

where equality (8d) is because the ambiguity setsDi , i ∈ [I ], are separable byAssump-
tion (A1). Finally, let si := 1 − infPi∈Di Pi

{
ξ i : ai (x)�ξ i ≤ bi (x)

}
and so si ≥ 0

for all i ∈ [I ]. Since x ∈ Z , by (8d), we have

∑
i∈[I ]

(1 − si ) − (I − 1) ≥ 1 − ε

which implies
∑

i∈[I ] si ≤ ε. Therefore, x ∈ ZB . 
�

The above result establishes that if the ambiguity set of a distributionally robust joint
chance constraint is specified in a form that is separable over the uncertain constraints,
then the optimized Bonferroni approximation involving a system of distributionally
robust single chance constraints is exact. In the next two sections, we investigate two
such settings.
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3 Ambiguity set based on the first twomoments

In this section,we study the computational tractability of optimizedBonferroni approx-
imation when the ambiguity set is specified by the first two moments of the projected
random vectors {ξ i }i∈[I ]. More specifically, for each i ∈ [I ], we make the following
assumption on Di , the projection of the ambiguity set P to the coordinate subspace
Si :
(A2) The projected ambiguity sets {Di }i∈[I ] are defined by the first and second

moments of ξ i :

Di =
{
Pi : EPi [ξ i ] = μi , EPi [(ξ i − μi )(ξ i − μi )

�] = Σi

}
, (9)

where Σi � 0 for all i ∈ [I ].
Distributionally robust single chance constraints with moment based ambiguity sets
as above have been considered in [10,11].

Next we establish that, in general, it is strongly NP-hard to optimize over set ZB .
We will need the following result which shows that set ZB can be recast as a bi-convex
program. This confirms the statement in [27] that for the general joint chance con-
straints, optimizing variables si in Bonferroni approximation “destroys the convexity.”

Lemma 1 Under Assumption (A2), ZB is equivalent to

ZB =
⎧
⎨
⎩x : ai (x)�μi +

√
1 − si
si

√
ai (x)�Σi ai (x) ≤ bi (x),∀i ∈ [I ],

∑
i∈[I ]

si ≤ ε, s ≥ 0

⎫
⎬
⎭ .

(10)

Proof From [11], [39], the chance constraint infPi∈Di Pi {ξ : ai (x)�ξ i ≤ bi (x)} ≥
1 − si is equivalent to

ai (x)
�μi +

√
1 − si
si

√
ai (x)�Σi ai (x) ≤ bi (x)

for all i ∈ [I ]. Then, the conclusion follows from the definition of ZB . 
�
Theorem 4 It is strongly NP-hard to optimize over set ZB.

Proof We prove by using a transformation from the feasibility problem of a binary
program. First, we consider set S̄ := {x ∈ {0, 1}n : T x ≥ d}, with given matrix
T ∈ Z

τ×n and vector d ∈ Z
n , and the following feasibility problem:

(Binary Program): Does there exist an x ∈ {0, 1}n such that x ∈ S̄? (11)
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Second, we consider an instance of ZB with a projected ambiguity set in the form of
(9) as

ZB =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x :

inf
Pi∈Di

Pi

{
ξ i : ξ i xi ≤ xi

√
2n − 1

}
≥ 1 − si ,∀i ∈ [n]

inf
Pi∈Di

Pi

{
ξ i : ξ i (1 − xi ) ≤ (1 − xi )

√
2n − 1

}
≥ 1 − si ,∀i ∈ [2n]\[n]

inf
Pi∈Di

Pi
{
ξ i : 0 ≤ Ti−2nx − di−2n

} ≥ 1 − si ,∀i ∈ [2n + τ ]\[2n]
∑

i∈[2n+τ ]
si ≤ 0.5,

s ≥ 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

where

Di = {Pi : EPi [ξ i ] = 0, EPi [ξ2i ] = 1},∀i ∈ [2n + τ ],

and Tj denotes the j th row ofmatrix T . It follows fromLemma 1 and Fourier–Motzkin
elimination of variables {si }i∈[2n+τ ]\[2n] that

ZB =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
x :

√
1 − si
si

|xi | ≤ xi
√
2n − 1,

√
1 − sn+i

sn+i
|1 − xi | ≤ (1 − xi )

√
2n − 1, ∀i ∈ [n],

∑
i∈[2n]

si ≤ 0.5, s ≥ 0, T x ≥ d

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

It is clear that xi ∈ [0, 1] for all x ∈ ZB . Then, by discussing whether xi > 0 and
xi < 1 for each i ∈ [n], we can further recast ZB as

ZB =

⎧⎪⎨
⎪⎩
x :

si ≥ 1

2n
I(xi > 0), sn+i ≥ 1

2n
I(xi < 1), ∀i ∈ [n],∑

i∈[2n]
si ≤ 0.5, s ≥ 0, x ∈ [0, 1]n, T x ≥ d

⎫⎪⎬
⎪⎭

, (12)

Third, for x ∈ ZB , let I1 = {i ∈ [n] : 1 > xi > 0}, I2 = {i ∈ [n] : xi = 0}, and
I3 = {i ∈ [n] : xi = 1}, where |I1| + |I2| + |I3| = n. Then,

0.5 ≥
∑
i∈[2n]

si ≥
∑
i∈[n]

(
1

2n
I(xi > 0) + 1

2n
I(xi < 1)

)
= 2|I1| + |I2| + |I3|

2n
= 0.5 + |I1|

2n
,

where the first two inequalities are due to (12) and the third equality is due to the
definitions of sets I1, I2, and I3. Hence, |I1| = 0 and so x ∈ {0, 1}n for all x ∈ ZB .
It follows that S̄ ⊇ ZB . On the other hand, for any x ∈ S̄, by letting si = 1

2n I(xi >

0), sn+i = 1
2n I(xi < 1), clearly, (x, s) satisfies (12). Thus, S̄ = ZB , i.e., S̄ is feasible

if and only if ZB is feasible. Then, the conclusion follows from the strongNP-hardness
of (Binary Program). 
�
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Although ZB is in general computationally intractable, there exist important special
cases where ZB is convex and tractable. In the following theorems, we provide two
sufficient conditions for the convexity of ZB . The first condition requires a relatively
small risk parameter ε and applies to the setting of uncertain constraint coefficients
(i.e., Ai �= 0 for some i ∈ [I ]).
Theorem 5 Suppose that Assumption (A2) holds and Bi = 0 for all i ∈ [I ] and
ε ≤ 1

1+(2
√

η+√
4η+3)2

, where η = maxi∈[I ] μ�
i Σ−1

i μi . Then set ZB is convex and is

equivalent to

ZB =
{
x : ai (x)�μi ≤ bi , si ≥ ai (x)�Σi ai (x)

ai (x)�Σi ai (x) + (
bi − ai (x)�μi

)2 ,

∀i ∈ [I ],
∑
i∈[I ]

si ≤ ε, s ≥ 0

⎫⎬
⎭ . (13)

Proof First, bi (x) = bi because Bi = 0 for all i ∈ [I ]. The reformulation (13) follows
from Lemma 1.

Hence, ai (x)�Σi ai (x)/[ai (x)�Σi ai (x) + (
bi − ai (x)�μi

)2] ≤ si ≤ ε ≤ 1/[1 +
(2

√
η + √

4η + 3)2]. Since (bi − ai (x)�μi ) ≥ 0, we have

bi − ai (x)�μi√
ai (x)�Σi ai (x)

≥ 2
√

η + √
4η + 3. (14a)

Hence, to show the convexity of ZB , it suffices to show that the function

ai (x)�Σi ai (x)/[ai (x)�Σi ai (x) + (
bi − ai (x)�μi

)2] is convex when x satisfies

(14a). To this end, we let zi := Σ
1/2
i ai (x), qi := Σ

−1/2
i μi , and ki := (bi −

ai (x)�μi )/
√
ai (x)�Σi ai (x) = (bi − q�

i zi )/
√
z�i zi . Then, ki ≥ 2

√
η + √

4η + 3.
Since ai (x) is affine in the variables x , it suffices to show that the function

fi (zi ) = z�i zi
z�i zi + (

bi − z�i qi
)2

is convex in variables zi when ki := (bi − q�
i zi )/

√
z�i zi ≥ 2

√
η + √

4η + 3.
To this end, we consider the Hessian of fi (zi ), denoted by H fi (zi ), and show that
r�H fi (zi )r ≥ 0 for an arbitrary r ∈ R

mi . Standard calculations yield

r�H fi (zi )r = 2

(
z�i zi +

(
bi − z�i qi

)2)−3 {
z�i zi

[(
bi − z�i qi

)2
r�r − z�i zi (q�

i r)
2

−4
(
bi − z�i qi

)
(q�

i r)(z
�
i r) + 3

(
bi − z�i qi

)2
(q�

i r)
2
]

+
(
bi − z�i qi

)2 [
r�r

(
bi − z�i qi

)2 − 4(z�i r)2
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+4
(
bi − z�i qi

)
(q�

i r)(z
�
i r)

]}

= 2

(
z�i zi +

(
bi − z�i qi

)2)−3 [
(k4i + k2i )(z

�
i zi )

2(r�r) − 4k2i (z
�
i zi )(z

�
i r)

2

+ (3k2i − 1)(z�i zi )2(q�
i r)

2 + (4k3i − 4ki )(z
�
i zi )

3/2(q�
i r)(z

�
i r)

]
(14b)

≥ 2

(
z�i zi +

(
bi − z�i qi

)2)−3 [
(k4i + k2i )(z

�
i zi )

2(r�r) − 4k2i (z
�
i zi )

2(r�r)

− (4k3i − 4ki )
√
q�
i qi (z

�
i zi )

2(r�r)
]

(14c)

≥ 2

(
z�i zi +

(
bi − z�i qi

)2)−3

(z�i zi )2(r�r)k2i
(
k2i − 4ki

√
q�
i qi − 3

)
(14d)

≥ 0 (14e)

for all r ∈ R
mi . Above, equality (14b) is from the definition of ki ; inequality (14c)

follows from 3k2i ≥ 1, (4k3i − 4ki ) ≥ 0 and the Cauchy-Schwarz inequalities z�i r ≤√
z�i zi

√
r�r and q�

i r ≤
√
q�
i qi

√
r�r ; inequality (14d) is due to the fact ki ≥ 0; and

inequality (14e) is because ki ≥ 2
√

η + √
4η + 3 ≥ 2

√
q�
i qi +

√
4q�

i qi + 3. 
�

The second condition does not require a small risk parameter ε but is only applicable
when the constraint coefficients are not affected by the uncertain parameters (right-
hand side uncertainty), i.e. Ai = 0 for all i ∈ [I ].
Theorem 6 Suppose that Assumption (A2) holds. Further assume that Ai = 0 for all
i ∈ [I ] and ε ≤ 0.75. Then the set ZB is convex and is equivalent to

ZB =
⎧⎨
⎩x : (ai )�μi +

√
1 − si
si

√
(ai )�Σi ai ≤ bi (x),∀i ∈ [I ],

∑
i∈[I ]

si ≤ ε, s ≥ 0

⎫⎬
⎭ .

(15)

Proof For all i ∈ [I ], ai (x) = ai because Ai = 0. Thus, the reformulation (15)
follows from Lemma 1. Hence, to show the convexity of ZB , it suffices to show that
function

√
(1 − si )/si is convex in si for 0 ≤ si ≤ ε. This follows from the fact that

d2

ds2i

(√
1 − si
si

)
= 0.75 − si

(1 − si )3/2s
5/2
i

≥ 0

because 0 ≤ si ≤ ε ≤ 0.75. 
�

The following example illustrate that ZB is convex when condition of Theorem 5
holds and becomes non-convex when this condition does not hold.
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Example 5 Consider set ZB with regard to a projected ambiguity set in the form of
(9),

ZB =

⎧⎪⎪⎨
⎪⎪⎩
x :

infP1∈D1 P1
{
ξ1 : x1ξ1 ≤ 1

} ≥ 1 − s1
infP2∈D2 P2

{
ξ2 : x2ξ2 ≤ 1

} ≥ 1 − s2
s1 + s2 ≤ ε

s1, s2 ≥ 0

⎫⎪⎪⎬
⎪⎪⎭

where

D1 =
{
P1 : EP1 [ξ1] = 0, EP1 [ξ21] = 1

}
,D2 =

{
P2 : EP2 [ξ2] = 0, EP2 [ξ22] = 1

}

Projecting out variables s1, s2 yields

ZB =
{
x ∈ R

2 : x21
x21 + 1

+ x22
x22 + 1

≤ ε

}
.

We depict ZB in Fig. 2 with ε = 0.25, 0.50, and 0.75, respectively, where the dashed
line denotes the boundary of of ZB for each ε. Note that ZB is convex when ε = 0.25
and becomes non-convex when ε = 0.50, 0.75. As η = maxi∈[I ] μ�

i Σiμi = 0,
this figure confirms the sufficient condition of Theorem 5 that ZB is convex when
ε ≤ 1

1+(2
√

η+√
4η+3)2

= 0.25. 
�

Finally, we note that when either conditions of Theorems 5 or 6 hold, ZB is not
only convex but also computationally tractable. This observation follows from the
classical result in [15] on the equivalence between tractable convex programming and
the separation of a convex set from a point.

Theorem 7 Under Assumption (A2), suppose that set S is closed and compact, and
it is equipped with an oracle that can, for any x ∈ R

n, either confirm x ∈ S or

Fig. 2 Illustration of Example 5

x1

x2

1−1

1

−1

= 0.50= 0.25

= 0.75
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provide a hyperplane that separates x from S in time polynomial in n. Additionally,
suppose that either conditions of Theorems 5 or 6 holds. Then, for any α ∈ (0, 1), one
can find an α-optimal solution to the optimized Bonferroni approximation of Z, i.e.,
formulation minx {c�x : x ∈ S ∩ ZB}, in time polynomial in log(1/α) and the size of
the formulation.

Proof We prove the conclusion when condition of Theorem 5 holds. The proof for the
condition of Theorem 6 is similar and is omitted here for brevity.

Since S is convex by assumption and ZB is convex by Theorem 5, the conclusion
follows from Theorem 3.1 in [15] if we can show that there exists an oracle that can,
for any x ∈ R

n , either confirm x ∈ ZB or provide a hyperplane that separates x from
ZB in time polynomial in n. To this end, from the proof of Theorem 5, we note that
ZB can be recast as

ZB =
⎧⎨
⎩x : ai (x)�μi ≤ bi , ∀i ∈ [I ],

∑
i∈[I ]

ai (x)�Σi ai (x)

ai (x)�Σi ai (x) + (
bi − ai (x)�μi

)2 ≤ ε

⎫⎬
⎭ .

(17)

All constraints in (17) are linear except
∑

i∈[I ] gi (x) ≤ ε, where gi (x) :=
ai (x)�Σi ai (x)/[ai (x)�Σi ai (x) + (

bi − ai (x)�μi
)2]. On the one hand, whether∑

i∈[I ] gi (x) ≤ ε can be confirmed by a direct evaluation of gi (x), i ∈ [I ], in time
polynomial in n. On the other hand, for an x̂ such that

∑
i∈[I ] gi (̂x) > ε, the following

separating hyperplane can be obtained in time polynomial in n:

ε ≥
∑
i∈[I ]

{
gi (̂x) + 2(bi − q�

i ẑi )

[̂z�i ẑi + (bi − q�
i ẑi )2]2

[
(bi − q�

i ẑi )̂zi + (̂z�i ẑi )qi
]�

Σ
1/2
i Ai (x − x̂)

}
,

where ẑi = Σ
1/2
i (Ai x̂ + ai ) and qi = Σ

−1/2
i μi . 
�

4 Ambiguity set based onmarginal distributions

In this section, we study the computational tractability of the optimized Bonferroni
approximation when the ambiguity set is characterized by the (known) marginal dis-
tributions of the projected random vectors. More specifically, we make the following
assumption on Di .

(A3) The projected ambiguity sets {Di }i∈[I ] are characterized by the marginal distri-
butions of ξ i , i.e.,Di = {Pi }, where Pi represents the probability distribution of
ξ i .
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We first note that Di is a singleton for all i ∈ [I ] under Assumption (A3). By the
definition of Bonferroni approximation (5), ZB is equivalent to

ZB =
⎧
⎨
⎩x : Pi

{
ξ i : ai (x)�ξ i ≤ bi (x)

}
≥ 1 − si ,∀i ∈ [I ],

∑
i∈[I ]

si ≤ ε, s ≥ 0

⎫
⎬
⎭ .

(18)

Next, we show that optimizing over ZB in the form of (18) is computationally
intractable. In particular, the corresponding optimization problem is strongly NP-
hard even if mi = 1, Ai = 0, and ai = 1 for all i ∈ [I ], i.e., only right-hand side
uncertainty.

Theorem 8 Under Assumption (A3), suppose that mi = 1, Ai = 0, and ai = 1 for all
i ∈ [I ]. Then, it is strongly NP-hard to optimize over set ZB.

Proof Similar to the proof of Theorem 4, we consider set S̄ = {x ∈ {0, 1}n : T x ≥ d},
with given matrix T ∈ Z

τ×n and vector d ∈ R
n , and show the reduction from (Binary

Program) defined in (11). Second, we consider an instance of ZB with a projected
ambiguity set satisfying Assumption (A3) as

ZB =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x :

inf
Pi∈Di

Pi
{
ξ i : ξ i ≤ xi

} ≥ 1 − si ,∀i ∈ [n]
inf

Pi∈Di

Pi
{
ξ i : ξ i ≤ (1 − xi )

} ≥ 1 − si ,∀i ∈ [2n]\[n]
inf

Pi∈Di

Pi
{
ξ i : 0 ≤ Ti−2nx − di−2n

} ≥ 1 − si ,∀i ∈ [2n + τ ]\[2n]
∑

i∈[2n+τ ]
si ≤ 0.5,

s ≥ 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

where

Di = {Pi : ξ ∼ B(1, 1/(2n))},∀i ∈ [2n + τ ],

and B(1, p) denotes Bernoulli distribution with probability of success equal to p. It
follows from (18) and Fourier–Motzkin elimination of variables {si }i∈[2n+τ ]\[2n] that

ZB =

⎧⎪⎨
⎪⎩
x :

si ≥ 1

2n
I(xi < 1), sn+i ≥ 1

2n
I(xi > 0),∀i ∈ [n],∑

i∈[2n]
si ≤ 0.5, s ≥ 0, x ∈ [0, 1]n, T x ≥ d

⎫⎪⎬
⎪⎭

.

Following a similar proof as that of Theorem 4, we can show that S̄ = ZB , i.e., S̄ is
feasible if and only if ZB is feasible. Then, the conclusion follows from the strong
NP-hardness of (Binary Program) in (11). 
�
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Next, we identify two important sufficient conditions where ZB is convex. Similar
to Theorem 5, the first condition holds for left-hand uncertain constraints with a small
risk parameter ε.

Theorem 9 Suppose that Assumption (A3) holds and Bi = 0 and ξ i ∼ N (μi ,Σi ) for
all i ∈ [I ] and ε ≤ 1

2 − 1
2 erf

(√
η + √

η + 0.75
)
, where η = maxi∈[I ] μ�

i Σ−1
i μi and

erf(·), erf−1(·) denote the error function and its inverse, respectively. Then the set ZB

is convex and is equivalent to

ZB =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

x :

ai (x)
�μi ≤ bi ,∀i ∈ [I ],

1

1 + 2
(
erf−1(1 − 2si )

)2 ≥ ai (x)�Σi ai (x)

ai (x)�Σi ai (x) + (
bi − ai (x)�μi

)2 ,∀i ∈ [I ],
∑
i∈[I ]

si ≤ ε, s ≥ 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(19)

Proof First, bi (x) = bi because Bi = 0 for all i ∈ [I ]. Since ξ i ∼ N (μi ,Σi ) for all
i ∈ [I ], it follows from (18) that ZB is equivalent to (19).

Let fi (x) := ai (x)�Σi ai (x)/[ai (x)�Σi ai (x)+ (bi −ai (x)�μi )
2]. Since ε ≤ 1

2 −
1
2 erf

(√
η + √

η + 0.75
)
and si ≤ ε, thuswehave fi (x) ≤ 1/[1+(2

√
η+√

4η + 3)2].
Hence, from the proof of Theorem 5, fi (x) is convex in x ∈ ZB . Hence, it remains

to show that G(si ) := 1/[1 + 2
(
erf−1(1 − 2si )

)2] is concave in variable si when
si ∈ [0, ε]. This is indeed so because

d2G(si )

ds2i
= −4πe2 erf

−1(1−2si )2
[
1 − 2 erf−1(1 − 2si )2

]2
[
1 + 2 erf−1(1 − 2si )2

]3 ≤ 0

for all 0 ≤ si ≤ ε. 
�
Note that if μi = 0 for each i ∈ [I ], then η = 0 and the threshold in Theorem 9 is
1
2 − 1

2 erf
(√

0.75
)

≈ 0.11.

Similar to Theorem 6, the second condition only holds for right-hand uncertain
constraints with a relatively large risk parameter ε.We need the notion “concave point”
(see [31]) for the next result. If F(·) represents the cumulative distribution function of
a random variable ξ , then the concave point r of F represents the minimal value such
that F is concave in the domain [r ,∞). Please see Table 1 in [9] for examples of the
concave points of some commonly used distributions.

Theorem 10 Suppose that Assumption (A3) holds and mi = 1, Ai = 0, ai = 1
for all i ∈ [I ] and ε ≤ mini∈[I ]{1 − Fi (ri )}, where Fi (·) represents the cumulative
distribution function of ξ i and ri represents its concave point. Then the set ZB is
convex and is equivalent to

ZB =
⎧⎨
⎩x : Fi (bi (x)) ≥ 1 − si ,∀i ∈ [I ],

∑
i∈[I ]

si ≤ ε, s ≥ 0

⎫⎬
⎭ . (20)
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Proof By assumption, ξ i is a 1-dimensional random variable and so ZB is equivalent
to (20). Since si ≤ ε, ε ≤ 1− Fi (ri ) by assumption, and bi (x) is affine in x , it follows
that the constraint Fi (bi (x)) ≥ 1 − si is convex. Thus ZB is convex. 
�

Similar to Theorem 7, we note that when either the condition of Theorem 9 holds
or that of Theorem10 holds, the set ZB is not only convex but also computationally
tractable. We summarize this result in the following theorem and omit its proof.

Theorem 11 Under Assumption (A3), suppose that set S is closed and compact, and it
is equipped with an oracle that can, for any x ∈ R

n, either confirm x ∈ S or provide a
hyperplane that separates x from S in time polynomial in n. Additionally, suppose that
either condition of Theorem 9 or that of Theorem10 holds. Then, for any α ∈ (0, 1),
one can find an α-optimal solution to the problem minx {c�x : x ∈ S ∩ ZB}, in time
polynomial in log(1/α) and the size of the formulation.

When modeling constraint uncertainty, besides the (parametric) probability distri-
butions mentioned in Table 1 in [9], a nonparametric alternative employs the empirical
distribution of ξ that can be directly established from the historical data. In the
following theorem, we consider right-hand side uncertainty with discrete empirical
distributions and show that the optimized Bonferroni approximation can be recast as
a mixed-integer linear program (MILP).

Theorem 12 Suppose that Assumption (A3) holds and mi = 1, Ai = 0, and ai = 1
for all i ∈ [I ]. Additionally, suppose that P{ξ i = ξ

j
i } = p j

i for all j ∈ [Ni ] such that∑
j∈[Ni ] p

j
i = 1 for all i ∈ [I ], and {ξ j

i } j∈[Ni ] ⊂ R+ is sorted in the ascending order.
Then,

ZB =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x :

si ≥ 0, z ji ∈ {0, 1},∀i ∈ [I ], j ∈ [Ni ],∑
j∈[Ni ]

ξ
j
i z

j
i ≤ Bi x + bi ,∀i ∈ [I ], j ∈ [Ni ],

∑
j∈[Ni ]

(∑
t∈[ j]

pti

)
z ji ≥ 1 − si ,∀i ∈ [I ], j ∈ [Ni ],

∑
j∈[Ni ]

z ji = 1,∀i ∈ [I ],
∑
i∈[I ]

si ≤ ε.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(21a)

(21b)

(21c)

(21d)

(21e)

Proof By (18), x ∈ ZB if and only if there exists an si ≥ 0 such that Pi {ξ i ≤
Bi x + bi } ≥ 1 − si , i ∈ [I ], and ∑

i∈[I ] si ≤ ε. Hence, it suffices to show that
Pi {ξ i ≤ Bi x + bi } ≥ 1 − si is equivalent to constraints (21a)–(21d).

To this end, we note that nonnegative random variable ξ i takes value ξ
j
i with

probability p j
i , and so Pi {ξ i ≤ ξ

j
i } = ∑

t∈[ j] pti for all j ∈ [Ni ]. It follows that
Pi {ξ i ≤ Bi x + bi } ≥ 1 − si holds if and only if 1 − si ≤ ∑

t∈[ j] pti whenever

Bi x + bi ≥ ξ
j
i . Then, we introduce additional binary variables {z ji } j∈[Ni ],i∈[N ] such

that z ji = 1 when Bi x + bi ≥ ξ
j
i and z ji = 0 otherwise. It follows that Pi {ξ i ≤

Bi x + bi } ≥ 1 − si is equivalent to constraints (21a)–(21d). 
�
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Remark 3 The nonegativity assumption of {ξ j
i } j∈[Ni ] for each i ∈ [I ] can be relaxed.

If not, then for each i ∈ [I ] we can subtract Mi , where Mi := min j∈[Ni ] ξ
j
i , from

{ξ j
i } j∈[Ni ] and the right-hand side of uncertain constraint Bi x+bi , i.e., ξ j

i := ξ
j
i −Mi

for each j ∈ [Ni ] and Bi x + bi := Bi x + bi − Mi .

We close this section by demonstrating that ZB may not be convex when the con-
dition of Theorem 10 does not hold.

Example 6 Consider set ZB with regard to a projected ambiguity set satisfying
Assumption (A3),

ZB =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
x ∈ R

2 :

infP1∈D1 P1
{
ξ1 : ξ1 ≤ x1

} ≥ 1 − s1
infP2∈D2 P2

{
ξ2 : ξ2 ≤ x1

} ≥ 1 − s2
infP3∈D3 P3

{
ξ3 : ξ3 ≤ x2

} ≥ 1 − s3
s1 + s2 + s3 ≤ ε

s1, s2, s3 ≥ 0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

where

D1 = {
P1 : ξ1 ∼ N (0, 1)

}
,D2 = {

P2 : ξ2 ∼ N (0, 1)
}
, and D3 = {

P3 : ξ3 ∼ N (0, 1)
}

with standard normal distribution N (0, 1). Projecting out variables s1, s2, s3 yields

ZB =
{
x ∈ R

2 : 2 erf
(

x1√
2

)
+ erf

(
x2√
2

)
≥ 2 − 2ε

}
.

We depict ZB in Fig. 3 with ε = 0.25, 0.50, and 0.75, respectively, where the dashed
line denotes the boundary of ZB for each ε. Note that this figure confirms condition of
Theorem 10 that for normal random variables {ξ i }, ZB is convex if ε ≤ 0.5 but may
not be convex otherwise. 
�

5 Binary decision variables andmoment-based ambiguity sets

In this section, we focus on the projected ambiguity sets specified by first twomoments
as in Assumption (A2) and also assume that all decision variables x are binary, i.e.,
S ⊆ {0, 1}n . Distributionally robust joint chance constrained optimization involving
binary decision variables arise in a wide range of applications including the multi-
knapsack problem (cf. [8,44]) and the bin packing problem (cf. [38,45]). In this case,
ZB is naturally non-convex due to the binary decision variables. Our goal, however, is
to recast S ∩ ZB as a mixed-integer second-order conic set (MSCS), which facilitates
efficient computation with commercial solvers like GUROBI and CPLEX.

First, we show that S ∩ ZB can be recast as an MSCS in the following result.
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Fig. 3 Illustration of Example 6

Theorem 13 Under Assumption (A2), suppose that S ⊆ {0, 1}n. Then, S ∩ ZB =
S ∩ Ẑ B , where

ẐB =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x :

μ�
i (Ai x + ai ) ≤ Bi x + bi , i ∈ [I ],

∣∣∣∣
∣∣∣∣
[
2Σ1/2

i (Ai x + ai )
si − ti

]∣∣∣∣
∣∣∣∣ ≤ si + ti , i ∈ [I ],

ti ≤
(
bi − μ�

i a
i
)2 + (ai )�Σi a

i + 2
(
bi − μ�

i a
i
) (

Bi − μ�
i Ai

)
x

+ 2(ai )�Σi A
i x + 〈

(
Bi − μ�

i Ai
) (

Bi − μ�
i Ai

)� + (Ai )�Σi A
i , w〉, i ∈ [I ]

∑
i∈[I ]

si ≤ ε,

w jk ≥ x j + xk − 1, 0 ≤ w jk ≤ x j , w jk ≤ xk ,∀ j, k ∈ [n],
si ≥ 0, ti ≥ 0,∀i ∈ [I ].

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(22)
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Proof By Lemma 1, we recast ZB as

ZB =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(x, y) :

ai (x)
�μi ≤ bi (x),

ai (x)
�Σi ai (x) ≤ si

[
(bi (x) − ai (x)

�μi )
2 + ai (x)

�Σi ai (x)
]
,∀i ∈ [I ],

∑
i∈[I ]

si ≤ ε,

si ≥ 0,∀i ∈ [I ].

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

It is sufficient to linearize (bi (x) − ai (x)�μi )
2 + ai (x)�Σi ai (x) in the extended

space for each i ∈ [I ]. To achieve this, we introduce additional continuous variables
ti := (bi (x) − ai (x)�μi )

2 + ai (x)�Σi ai (x), i ∈ [I ], as well as additional binary
variables w := xx� and linearize them by using McCormick inequalities (see [26]),
i.e.,

w jk ≥ x j + xk − 1, 0 ≤ w jk ≤ x j , w jk ≤ xk,∀ j, k ∈ [n]

which lead to reformulation (22). 
�
The reformulation of S ∩ ZB in Theorem 13 incorporates n2 auxiliary binary vari-

ables {w jk} j,k∈[n]. Next, under an additional assumption that ε ≤ 0.25, we show that
it is possible to obtain a more compact reformulation by incorporating n× I auxiliary
continuous variables when I < n.

Theorem 14 Under Assumption (A2), suppose that S ⊆ {0, 1}n and ε ≤ 0.25. Then,
S ∩ ZB = S ∩ Z̄ B , where

Z̄B =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x :

μ�
i (Ai x + ai ) ≤ Bi x + bi , i ∈ [I ],∣∣∣
∣∣∣Σ1/2

i (Ai x + ai )
∣∣∣
∣∣∣ ≤

(
bi − μ�

i a
i
)
ri +

(
Bi − μ�

i Ai
)
qi ·, ∀i ∈ [I ],

∑
i∈[I ]

si ≤ ε,

ri ≤
√

si
1 − si

, ∀i ∈ [I ],

qi j ≥ ri −
√

ε

1 − ε
(1 − x j ), 0 ≤ qi j ≤

√
ε

1 − ε
x j , qi j ≤ ri , ∀i ∈ [I ], j ∈ [n],

si ≥ 0, ri ≥ 0,∀i ∈ [I ],

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(23a)

(23b)

(23c)

(23d)

(23e)

(23f)

where vector qi · := [qi1, . . . , qin]� for all i ∈ [I ].
Proof By Lemma 1, we recast ZB as

ZB =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(x, y) :

ai (x)
�μi ≤ bi (x),√

ai (x)�Σi ai (x) ≤
√

si
1 − si

(bi (x) − ai (x)
�μi ), ∀i ∈ [I ],

∑
i∈[I ]

si ≤ ε,

si ≥ 0, ∀i ∈ [I ].

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(24a)

(24b)

(24c)

(24d)
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Wenote that nonlinear constraints (24b) hold if andonly if there exist {ri }i∈[I ] such that
0 ≤ ri ≤ √

si/(1 − si ) and
√
ai (x)�Σi ai (x) ≤ ri (bi (x) − ai (x)�μi ) for all i ∈ [I ].

Note that si ∈ [0, ε] and so ri ≤ √
si/(1 − si ) ≤ √

ε/(1 − ε). Defining n-dimensional
vectors qi · := ri x , i ∈ [I ], we recast constraints (24b) as (23b), (23d)–(23f), where
constraints (23e) are McCormick inequalities that linearize products ri x . Note that
constraints (23d) characterize a convex feasible region because 0 ≤ si ≤ ε ≤ 0.25
and so

√
si/(1 − si ) is concave in si . 
�

Remark 4 When solving the optimized Bonferroni approximation as a mixed-integer
convex programbased on reformulation (23), we can incorporate the supporting hyper-
planes of constraints (23d) as valid inequalities in a branch-and-cut algorithm. In
particular, for given ŝ ∈ [0, ε], the supporting hyperplane at point (̂s,√ŝ/(1 − ŝ)) is

ri ≤
[
1

2
ŝ−1/2(1 − ŝ)−3/2

]
si + ŝ1/2(1 − ŝ)−3/2

(1
2

− ŝ
)
. (25a)

Remark 5 We can construct inner and outer approximations of reformulation (23) by
relaxing and restricting constraints (23d), respectively. More specifically, constraints
(23d) imply ri ≤ √

si/(1 − ε) because si ≤ ε for all i ∈ [I ]. It follows that constraints
(23d) imply the second-order conic constraints

∣∣∣∣
∣∣∣∣
[

ri
si−(1−ε)
2(1−ε)

]∣∣∣∣
∣∣∣∣ ≤ si + (1 − ε)

2(1 − ε)
,∀i ∈ [I ]. (25b)

In the branch-and-cut algorithm, we could start by relaxing constraints (23d) as (25b)
and then iteratively incorporate valid inequalities in the form of (25a). In contrast to
(25b), we can obtain a conservative approximation of constraints (23d) by noting that
these constraints hold if ri ≤ √

si . It follows that constraints (23d) are implied by the
second-order conic constraints

∣∣∣∣
∣∣∣∣
[

ri
si−1
2

]∣∣∣∣
∣∣∣∣ ≤ si + 1

2
,∀i ∈ [I ]. (25c)

Hence, we obtain an inner approximation of Bonferroni approximation by replacing
constraints (23d) with (25c).

5.1 Numerical study

In this subsection,we present a numerical study to compare theMCSC reformulation in
Theorem13with anotherMCSCreformulationproposedby [44] on thedistributionally
robustmultidimensional knapsack problem (DRMKP) [8,38,44]. InDRMKP, there are
n items and I knapsacks. Additionally, c j represents the value of item j for all j ∈ [n],
ξ i := [ξi1, . . . , ξin]� represents the vector of random item weights in knapsack i , and
bi represents the capacity limit of knapsack i , for all i ∈ [I ]. The binary decision
variable x j = 1 if the j th item is picked and 0 otherwise. We suppose that the
ambiguity set is separable and satisfies Assumption (A2). DRMKP is formulated as
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Optimized Bonferroni approximation 103

v∗ = max
x∈{0,1}n c�x,

s.t. inf
P∈P

P

{
ξ�
i x ≤ bi ,∀i ∈ [I ]

}
≥ 1 − ε. (26)

We generate 10 random instances with n = 20 and I = 10. For each i ∈ [I ] and
each j ∈ [n], we independently generate μi j and c j from the uniform distribution on
the interval [1, 10]. Additionally, for each i ∈ [I ], we set bi := 100 and Σi := 10I20,
where I20 represents the 20 × 20 identity matrix. We test these 10 random instances
with risk parameter ε ∈ {0.05, 0.10}.

Our first approach is to solve the MCSC reformulation of DRMKP in Theorem 13,
which reads as follows:

v∗ = max
x∈{0,1}n c�x,

s.t. μ�
i x ≤ bi , i ∈ [I ],∣∣∣∣
∣∣∣∣
[
2Σ1/2

i x
si − ti

]∣∣∣∣
∣∣∣∣ ≤ si + ti , i ∈ [I ],

ti ≤
(
bi

)2 − 2biμ�
i x + 〈μiμ

�
i + Σi , w〉, i ∈ [I ],

∑
i∈[I ]

si ≤ ε,

w jk ≥ x j + xk − 1, 0 ≤ w jk ≤ x j , w jk ≤ xk,∀ j, k ∈ [n],
si ≥ 0, ti ≥ 0,∀i ∈ [I ]. (27)

We compare our approach with anotherMCSC reformulation of DRMKP proposed
by [44] (see Example 4 in [44]), which is as follows:

v∗ = max
x∈{0,1}nc

�x,

s.t. λ −
∑
j∈[I ]

〈
Σ j , w·· j

〉 ≥ 1 − ε,

λ +
∑
j∈[I ]

t0 j ≤ 1,

λ +
∑
j∈[I ]

ti j ≤ αi b
i − μ�

i y
i ,∀i ∈ [I ],

γ 2
1 j ≤ 4ti jγ2 j ,∀i ∈ [I ], j ∈ [I ]\{i},

(γ1i − αi )
2 ≤ 4tiiγ2i ,∀i ∈ [I ],

γ 2
1 j ≤ 4t0 jγ2 j ,∀ j ∈ [I ],

0 ≤ yij ≤ Mi x j , αi − Mi (1 − x j ) ≤ yij ≤ αi ,∀i ∈ [I ], j ∈ [n],
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0 ≤ wik j ≤ ε

δη
xi , 0 ≤ wik j ≤ ε

δη
xk,

γ2 j − ε

δη
(2 − xi − xk) ≤ wik j ≤ γ2 j ,∀i, k ∈ [n], j ∈ [I ]

γ2i ≥ 0, αi ≥ 0,∀i ∈ [I ], (28)

where

Mi = 4ε

δη

[
(bi + ‖μi‖1) +

√
(bi + ‖μi‖1)2 + δη − δη

2ε

]

for each i ∈ [I ] with η = minx∈{0,1}n :x �=0 ‖x‖22 = 1 and δ the smallest eigenvalue of
matrices {Σ j } j∈[I ]. Note that [44] did not explore the separability of the formulation
and the ambiguity set, leading to theMCSC reformulation (28)with big-M coefficients
and more variables.

We use the commercial solver Gurobi (version 7.5, with default settings) to solve
all the instances to optimality using both formulations. The results are displayed in
Table 1. We use Opt. Val. and Time to denote the optimal objective value and the total
running time, respectively. All instances were executed on aMacBook Pro with a 2.80
GHz processor and 16 GB RAM.

From Table 1, we observe that the overall running time of our newMCSC reformu-
lation (27) significantly outperforms that of (28) proposed in [44]. The main reasons
are two-fold: (i) Model (28) involvesO(n2 I ) continuous variables andO(I 2) second-
order conic constraints, while model (27) involvesO(I +n2) continuous variables and
O(I ) second-order conic constraints; and (ii) Model (28) contains big-M coefficients,
while model (27) is big-M free. We also observe that, as the risk parameter increases,
both models take longer to solve but model (27) still significantly outperforms model
(28). These results demonstrate the effectiveness our proposed approaches.

6 Extension: ambiguity set with one linking constraint

In previous sections, we have shown that Z = ZB under the separability condition of
Assumption (A1) and established several sufficient conditions under which the set ZB

is convex. In this section, we demonstrate that these results may help establish new
convexity results for the set Z even when the ambiguity set is not separable.

In this section, we consider an ambiguity set specified by means of random vectors
{ξ i }i∈[I ] and a bound on the overall deviation from mean. In particular, the ambiguity
set is as follows.

(A4) The ambiguity set P is given as

P =
⎧⎨
⎩P : EP[ξ ] = μ,

∑
i∈[I ]

EP[‖ξ i − μi‖] ≤ Δ

⎫⎬
⎭ . (29)
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Table 1 Performance comparison of Model (27) and Model (28)

ε Instances n I Model (27) (this paper) Model (28) in [44]

Opt. Val. Time Opt. Val. Time

0.5 0 20 10 29 15.8 29 24.8

1 20 10 29 19.3 29 64.1

2 20 10 30 30.8 30 65.0

3 20 10 30 14.3 30 50.0

4 20 10 30 21.4 30 85.9

5 20 10 27 8.7 27 65.9

6 20 10 28 16.2 28 51.0

7 20 10 27 14.3 27 21.9

8 20 10 29 7.3 29 58.4

9 20 10 28 17.0 28 58.9

Average running time 16.5 54.6

0.1 0 20 10 41 15.9 41 259.9

1 20 10 50 328.6 50 267.7

2 20 10 43 14.2 43 203.2

3 20 10 48 86.0 48 297.3

4 20 10 46 19.0 46 191.9

5 20 10 41 12.3 41 119.9

6 20 10 40 9.3 40 96.1

7 20 10 48 517.6 48 484.6

8 20 10 47 7.7 47 99.1

9 20 10 40 44.6 40 181.5

Average running time 105.5 220.1

Note that we can equivalently express P as follows:

P = {
P : Proji (P) = Pi ∈ Di (δi ),∀i ∈ [I ],∀δ ∈ K}

, (30a)

whereK := {δ : δ ≥ 0,
∑

i∈[I ] δi ≤ Δ} and for each i ∈ [I ] and δ ∈ K. The marginal
ambiguity sets {Di (δi )}i∈[I ] are defined as

Di (δi ) = {
P : EP[ξ i ] = μi , EP[‖ξ i − μi‖] ≤ δi

}
, (30b)

where Ξi = R
mi for all i ∈ [I ].

The following theorem shows that under Assumption (A4), the set Z can be refor-
mulated as a convex program.

Theorem 15 Suppose that the ambiguity setP is defined as (30a) andΞ = ∏
i∈[I ] Ξi ,

then the set Z is equivalent to

Z = {
x : Δ

2ε ‖ai (x)‖∗ + ai (x)�μi ≤ bi (x),∀i ∈ [I ]} , (31)
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where ‖ · ‖∗ is the dual norm of ‖ · ‖.
Proof We can reformulate Z as

Z = {x : x ∈ Z(δ),∀δ ∈ K} (32a)

where K := {δ : δ ≥ 0,
∑

i∈[I ] δi ≤ Δ} and

Z(δ) :=
{
x ∈ R

n : inf
P∈P(δ)

P

{
ξ : ai (x)�ξ i ≤ bi (x),∀i ∈ [I ]

}
≥ 1 − ε

}
(32b)

with

P(δ) = {
P : Proji (P) = Pi ∈ Di (δ),∀i ∈ [I ]} .

By Theorem 3, we know that Z(δ) is equivalent to its Bonferroni Approximation
ZB(δ) for any given δ ∈ K, i.e.,

Z(δ) = ZB(δ)

=
⎧
⎨
⎩x : inf

Pi∈Di (δi )
Pi

{
ξ i : ai (x)�ξ i ≤ bi (x)

}
≥ 1 − si ,∀i ∈ [I ],

∑
i∈[I ]

si ≤ ε, s ≥ 0

⎫
⎬
⎭ .

Let {γ1i , γ2i }i∈[I ] be the dual variables corresponding to the moment constraints in
(30b). Thus, by Theorem 4 in [44], set ZB(δ) is equivalent to

ZB(δ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x :

1

si
γ2i δi + (1 − si )

si
sup
ξi

(
γ �
1i (ξi − μi ) − γ2i‖ξi − μi‖

)

+ sup
ξi

(
γ �
1i (ξi − μi ) − γ2i‖ξi − μi‖ − (bi (x) − ai (x)

�ξi )
)

≤ 0,∀i ∈ [I ],
∑
i∈[I ]

si ≤ ε,

γ2 ≥ 0, s ≥ 0,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

where by convention, 0 ·∞ = 0. By solving the inner supremums, ZB(δ) is equivalent
to

ZB(δ) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩
x :

γ2i δi

si
≤ bi (x) − ai (x)

�μi , ‖γ1i‖∗ ≤ γ2i , ‖γ1i + ai (x)‖∗ ≤ γ2i ,∀i ∈ [I ], γ2 ≥ 0,

∑
i∈[I ]

si ≤ ε, s ≥ 0.

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

(32c)
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Now let

Z̃ B(δ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
x :

γ2iδi

si
≤ bi (x) − ai (x)

�μi , ‖ai (x)‖∗ ≤ 2γ2i ,∀i ∈ [I ], γ2 ≥ 0,
∑
i∈[I ]

si ≤ ε, s ≥ 0.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(32d)

Note that ZB(δ) ⊆ Z̃ B(δ). This is because for each i ∈ [I ], by aggregating ‖γ1i‖∗ ≤
γ2i , ‖γ1i + ai (x)‖∗ ≤ γ2i and using triangle inequality, we have

‖ai (x)‖∗ ≤ 2γ2i .

On the other hand, by letting γ1i = − 1
2ai (x) in (32c), we obtain set Z̃ B(δ), thus

Z̃ B(δ) ⊆ ZB(δ). Hence Z̃ B(δ) = ZB(δ).
By projecting out {γ2i }i∈[I ], (32d) yields

ZB(δ) =
⎧⎨
⎩x : δi‖ai (x)‖∗

2si
≤ bi (x) − ai (x)

�μi ,∀i ∈ [I ],
∑
i∈[I ]

si ≤ ε, s ≥ 0

⎫⎬
⎭ .

(32e)

Finally, by projecting out variables s, (32e) is further reduced to

ZB(δ) =
⎧⎨
⎩x : bi (x) ≥ ai (x)

�μi ,∀i ∈ [I ],
∑
i∈[I ]

δi‖ai (x)‖∗
2(bi (x) − ai (x)�μ)

≤ ε

⎫⎬
⎭ .

Therefore,

Z =
⎧⎨
⎩x : bi (x) ≥ ai (x)

�μi ,∀i ∈ [I ],
∑
i∈[I ]

δi‖ai (x)‖∗
2(bi (x) − ai (x)�μ)

≤ ε,∀δ ∈ K
⎫⎬
⎭ ,

with K = {δ : δ ≥ 0,
∑

i∈[I ] δi ≤ Δ}, which is equivalent to

Z =
⎧
⎨
⎩x : bi (x) ≥ ai (x)

�μi ,∀i ∈ [I ],
∑
i∈[I ]

δi‖ai (x)‖∗
2(bi (x) − ai (x)�μ)

≤ ε,∀δ ∈ ext(K)

⎫
⎬
⎭ ,

(32f)

with ext(K) := {0} ∪ {Δei }i∈[I ] denoting the set of extreme points of K. Thus, (32f)
leads to (31). 
�
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Remark 6 The technique for proving Theorem 15 is quite general and may be applied
to other settings. For example, if the ambiguity set P is defined by known mean and
sum of component-wise standard deviations, then we can reformulate Z as a second-
order conic set.

Next we consider the optimized Bonferroni approximation of Z .

Theorem 16 Suppose that the ambiguity setP is defined as (30a) andΞ = ∏
i∈[I ] Ξi ,

then the set ZB is equivalent to

ZB =
⎧⎨
⎩x : Δ

2

∑
i∈[I ]

‖ai (x)‖∗
bi (x) − ai (x)�μi

≤ ε, ai (x)
�μi ≤ bi (x),∀i ∈ [I ]

⎫⎬
⎭ , (33)

where ‖ · ‖∗ is the dual norm of ‖ · ‖.
Proof The optimized Bonferroni approximation of set Z is

ZB =
⎧⎨
⎩x : inf

P j∈D j (Δ)
P j

{
ξ j : a j (x)

�ξ j ≤ b j (x)
}

≥ 1 − s j ,∀ j ∈ [I ],
∑
j∈[I ]

s j ≤ ε, s ≥ 0

⎫⎬
⎭

i.e.,

ZB =
⎧
⎨
⎩x : inf

P j∈D j (Δ)
P j

{
ξ j : a j (x)

�ξ j ≤ b j (x)
}

≥ 1 − s j ,∀ j ∈ [I ],
∑
j∈[I ]

s j ≤ ε, s ≥ 0

⎫
⎬
⎭ .

By letting I = 1 in Theorem 15, we know that infP j∈D j (Δ) P j {ξ j : a j (x)�ξ j ≤
b j (x)} ≥ 1 − s j is equivalent to

Δ

2ε
‖a j (x)‖∗ + a j (x)

�μ j ≤ b j (x)

for each j ∈ [I ]. Thus, set ZB is further equivalent to

ZB =
⎧
⎨
⎩x : Δ

2s j
‖a j (x)‖∗ + a j (x)

�μ j ≤ b j (x),∀ j ∈ [I ],
∑
j∈[I ]

s j ≤ ε, s ≥ 0

⎫
⎬
⎭ ,

which leads to (33) by projecting out s. 
�
Remark 7 The constraints defining (33) are not convex in general. Thus even if Z is
convex (Theorem 15), its optimized Bonferroni approximation ZB may not be convex.

Remark 8 The constraints defining (33) are convex in case of only right-hand side
uncertainties, i.e. Ai = 0 for all i ∈ [I ].
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We conclude by demonstrating the limitations of the optimized Bonferroni approx-
imation by an example illustrating that, unless the established conditions hold, the
distance between sets Z and ZB can be arbitrarily large.

Example 7 Consider Z with regard to a projected ambiguity set in the form of (30a)

Z =
{
x ∈ R

I : inf
P∈P

P {
ξ : ξ i xi ≤ 1,∀i ∈ [I ]} ≥ 1 − ε

}

where

P = {P : EP[ξ ] = 0, EP[‖ξ‖] ≤ Δ} .

Thus, (31) and (33) yield

Z =
{
x ∈ R

I : |xi | ≤ 2ε

Δ
,∀i ∈ [I ]

}
,

and

ZB =
⎧⎨
⎩x ∈ R

I :
∑
i∈[I ]

|xi | ≤ 2ε

Δ

⎫⎬
⎭ .

These two sets are shown in Fig. 4 with 2ε
Δ

= 2 and I = 2, where the dashed lines
denote the boundaries of Z , ZB . Indeed, simple calculation shows that the Hausdorff
distance (c.f. [35]) between sets ZB and Z is I−1√

I
2ε
Δ
, which tends to be infinity when

Δ → 0 and I , ε are fixed, or I → ∞ and Δ, ε are fixed. 
�

Fig. 4 Illustration of Example 7
with 2ε

Δ
= 2 and I = 2

2−2

2

−2

Z

ZB
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7 Conclusion

In this paper, we study optimized Bonferroni approximations of distributionally robust
joint chance constrained problems. We first show that when the uncertain parameters
are separable in both uncertain constraints and ambiguity sets, the optimized Bon-
ferroni approximation is exact. We then prove that optimizing over the optimized
Bonferroni approximation set is NP-hard, and establish various sufficient conditions
under which the optimized Bonferroni approximation set is convex and tractable.
Finally, we extend our results to a distributionally robust joint chance constrained prob-
lem with one linking constraint in the ambiguity set. One future direction is to study
ambiguity sets containing more distributional information (e.g., bivariate marginal
distributions). Another possible direction is to study other bounding schemes for joint
chance constraints (see, e.g., [4,18,21,33]) in the distributionally robust setting and
their convex reformulations.

Acknowledgements This research has been supported in part by the National Science Foundation Awards
#1633196 and #1662774.
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