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Abstract
In distributionally robust optimization the probability distribution of the uncertain
problem parameters is itself uncertain, and a fictitious adversary, e.g., nature, chooses
the worst distribution from within a known ambiguity set. A common shortcoming of
most existing distributionally robust optimization models is that their ambiguity sets
contain pathological discrete distributions that give nature too much freedom to inflict
damage. We thus introduce a new class of ambiguity sets that contain only distribu-
tions with sum-of-squares (SOS) polynomial density functions of known degrees. We
show that these ambiguity sets are highly expressive as they conveniently accommo-
date distributional information about higher-order moments, conditional probabilities,
conditional moments or marginal distributions. Exploiting the theoretical properties
of a measure-based hierarchy for polynomial optimization due to Lasserre (SIAM J
Optim 21(3):864–885, 2011), we prove that certain worst-case expectation constraints
are polynomial-time solvable under these new ambiguity sets. We also show how SOS
densities can be used to approximately solve the general problem of moments. We
showcase the applicability of the proposed approach in the context of a stylized port-
folio optimization problem and a risk aggregation problem of an insurance company.
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1 Introduction

Since George Dantzig’s 1955 paper on linear programming under uncertainty [11],
the field of stochastic programming has developed numerous methods for solving
optimization problems that depend on uncertain parameters governed by a known
probability distribution, see, e.g., [5,41,47]. Stochastic programming usually aims to
minimize a probability functional such as the expected value, a percentile or the con-
ditional value-at-risk of a given cost function. In practice, however, the distribution
needed to evaluate this probability functional is at best indirectly observable through
independent training samples. Thus, the stochastic programming approach is primar-
ily useful when there is abundant training data. If data is scarce or absent, on the other
hand, it may be more adequate to use a robust optimization approach, which models
the uncertainty through the set of all possible (or sufficiently likely) uncertainty real-
izations and minimizes the worst-case costs. Robust optimization is the appropriate
modeling paradigm for safety-critical applications with little tolerance for failure and
has been popularized in the late 1990’s, when it was discovered that robust optimiza-
tion models often display better tractability properties than stochastic programming
models [1]. Distributionally robust optimization is a hybrid approach that attempts
to salvage the tractability of robust optimization while maintaining the benefits of
(limited) distributional information. In this context, uncertainty is modeled through an
ambiguity set, that is, a family of typically infinitely many different distributions that
are consistent with the available training data or any prior distributional information,
and the objective is to minimize the worst-case expected costs across all distribu-
tions in the ambiguity set. A distributionally robust newsvendor model that admits
an analytical solution has been investigated as early as in 1958 [44], and the theo-
retical properties of distributionally robust linear programs were first studied in 1966
[52]. Interest in distributionally robust optimization has also been fuelled by important
applications in finance [38,39]. However, only recently it was recognized that many
distributionally robust optimization problems of practical relevance can actually be
solved in polynomial time. Tractability results are available both formoment ambiguity
sets, which contain all distributions that satisfy a finite number of moment conditions
[12,17,51], as well as for metric-based ambiguity sets, which contain all distributions
within a prescribed distance from a nominal distribution with respect to some prob-
ability metric [7,36]. In all these cases, the extremal distributions that determine the
worst-case expectation are discrete, and the number of their discretization points is
often surprisingly small, e.g., proportional to the number of moment constraints. As
these unnatural discrete distributions are almost always inconsistent with the avail-
able training samples, distributionally robust optimization models with moment and
metric-based ambiguity sets are often perceived as overly pessimistic.

In an attempt to mitigate the over-conservatism of traditional distributionally robust
optimization, several authors have studied moment ambiguity sets that require their
member distributions to satisfy additional structural properties such as symmetry, uni-
modality, monotonicity or smoothness etc. By leveraging ideas from Choquet theory
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and polynomial optimization, it has been shown that the resulting distributionally
robust optimization problems admit hierarchies of increasingly accurate semidefinite
programming (SDP) bounds [40]. An exact SDP reformulation for the worst-case
probability of a polytope with respect to all unimodal distributions with known first
and second moments is derived in [50], while second-order conic reformulations of
distributionally robust individual chance constraints with moment and unimodality
information are reported in [31]. For a survey of recent results on distributionally
robust uncertainty quantification and chance constrained programming problems with
moment and structural information we refer to [22]. Even though unimodality or
monotonicity conditions eliminate all discrete distributions from a moment ambigu-
ity set, the extremal distributions that critically determine all worst-case expectations
remain pathological. For example, all extremal unimodal distributions are supported
on line segments emanating from a single point in space (the mode) and thus fail to
be absolutely continuous with respect to the Lebesgue measure. Thus, the existing
distributionally robust optimization models with structural information remain overly
conservative. This observation motivates us to investigate a new class of ambiguity
sets that contain only distributions with non-degenerate polynomial density functions.

This paper aims to study worst-case expectation constraints of the form

inf
P∈P

EP f (x, z) ≥ 0, (1)

where x ∈ R
n is a decision vector, z ∈ R

m is an uncertain parameter governed by an
ambiguous probability distribution P ∈ P , and f (x, z) is an uncertainty-affected con-
straint function that can be interpreted as a cost. In words, the constraint (1) requires
that the expected value of the function f (x, z) given the decision x be nonnegative for
every distribution in the ambiguity set P . Throughout the paper we will assume that
f (x, z) depends polynomially on z and that each distribution P ∈ P admits a sum-of-
squares (hence nonnegative) polynomial density function h(z) with respect to some
prescribed reference measure μ on R

m (e.g., the Lebesgue measure). Imposing an
upper bound on the polynomial degree of h(z) thus yields a finite-dimensional param-
eterization of the ambiguity set P . Moreover, many popular distributional properties
can be expressed through linear constraints on the coefficients of h(z) and are thus
conveniently accounted for in the definition of P . Examples include moment bounds,
probability bounds for certain subsets of Rm , bounds on conditional tail probabilities
and marginal distribution conditions. Note that by fixing the marginal distributions of
all components of z, the worst-case expectation problem on the left-hand side of (1)
reduces to a Fréchet problem that seeks the worst-case copula of the uncertain param-
eters.

By leveraging a measure-based hierarchy for polynomial optimization due to
Lasserre [28], we will demonstrate that the subordinate worst-case probability prob-
lem in (1) admits an exact SDP reformulation. Under mild additional conditions on
f (x, z), we will further prove that the feasible set of the constraint (1) admits a
polynomial-time separation oracle. Moreover, we will analyze the convergence of the
worst-case expectation in (1) as the polynomial degree of h(z) tends to infinity, and we
will illustrate the practical use of the proposed approach through numerical examples.
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More succinctly, themain contributions of this paper can be summarized as follows:

(i) Modeling power: We introduce a new class of ambiguity sets containing dis-
tributions that admit sum-of-squares polynomial density functions of degree at
most 2r , r ∈ N, with respect to a given reference measure. Ambiguity sets of
this type are highly expressive as they conveniently accommodate distributional
information about higher-ordermoments, conditional probabilities or conditional
moments. They also allow the modeler to prescribe (not necessarily discrete)
marginal distributions that must be matched exactly by all distributions in the
ambiguity set.

(ii) Computational tractability: A key advantage of working with sum-of-squares
polynomial density functions is computational tractability in the sense that one
may often formulate the emerging problems as SDPs. Specifically, we identify
general conditions under which the worst-case expectations over the new ambi-
guity sets can be reformulated exactly as tractable SDPs with O(n+r

r

)
variables.

Finally, we delineate conditions under which the feasible sets of the worst-case
expectation constraints admit a polynomial-time separation oracle and thus lend
themselves to efficient optimization via the ellipsoid method.

(iii) Convergence analysis:We demonstrate that, as r tends to infinity, the worst-case
expectations over the new ambiguity sets converge monotonically to classical
worst-case expectations over larger ambiguity sets that relax the polynomial den-
sity requirement. At the same time, we show that the extremal density functions
converge to pathological discrete worst-case distributions characteristic for clas-
sical moment ambiguity sets without restrictions on the density functions. This
convergence analysis showcases that our approach naturally embeds classical
stochastic programming (for r = 0) and the traditional approach to (distribution-
ally) robust optimization (for r → ∞) into a unifying framework.

(iv) Numerical results: We showcase the practical applicability of the proposed
approach in the context of a stylyzed portfolio optimization problem and a simple
Fréchet problem inspired by [49] that models the risk aggregation problem of an
insurance company.

The intimate relation between polynomial optimization and the problem of
moments has already been exploited in several papers on distributionally robust opti-
mization. For example, ideas from polynomial optimization give rise to SDP bounds
on the probability of a semi-algebraic set [3] or the expected value of a piecewise
polynomial [53] across all probability distributions satisfying a given set of moment
constraints. These SDP bounds are tight in the univariate case or if only marginal
moments are specified. Otherwise, one may obtain hierarchies of asymptotically tight
SDP bounds. As an application, these techniques can be used to derive bounds on
the prices of options with piecewise polynomial payoff functions, based solely on the
knowledge of a few moments of the underlying asset prices [2]. Moreover, asymptot-
ically tight SDP bounds that account for both moment and structural information are
proposed in [40]. All these approaches differ from our work in that the ambiguity sets
have discrete or otherwise degenerate extremal distributions.

Distributionally robust polynomial optimization problems over non-degenerate
polynomial density functions that are close to a nominal density estimate (obtained,
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e.g., via a Legendre series density estimator) in terms of the L2-distance are con-
sidered in [35]. In this work the non-negativity of the candidate density functions is
not enforced explicitly, which considerably simplifies the problem and may be jus-
tified if the distance to the nominal density is sufficiently small. It is shown that the
emerging distributionally robust optimization problems are equivalent to deterministic
polynomial optimization problems that are not significantly harder than the underly-
ing nominal problem and can be addressed by solving a sequence of tractable SDP
relaxations.

Distributionally robust chance constraints with ambiguity sets containing all possi-
ble mixtures of a given parametric distribution family are studied in [30]. Themixtures
are encoded through a probability density function on a compact parameter space. The
authors propose an asymptotically tight SDP hierarchy of inner approximations for the
feasible set of the distributionally robust chance constraint. In contrast, we explicitly
represent all probability distributions in the ambiguity set through polynomial density
functions that can capture a wide range of distributional features.

The paper is structured as follows. Section 2 reviews themeasure-based approach to
polynomial optimization due to Lasserre [28], which is central to this paper. Section 3
develops SDP hierarchies for worst-case expectations over ambiguity sets that contain
probability measures with polynomial densities and investigates the convergence as
the polynomial degree tends to infinity. Section 4 extends this analysis to ambiguity
sets imposing moment conditions. Section 5 highlights the modeling power of the
proposed approach, while Sect. 6 reports on numerical results for a portfolio design
and a risk aggregation problem of an insurance company. Conclusions are drawn in
Sect. 7.

2 Lasserre’s measure-based hierarchy for polynomial optimization

In what follows, we denote by xα := ∏n
i=1 x

αi
i the monomial of the variables

x = (x1, . . . , xn) with respective exponents α = (α1, . . . , αn) ∈ N
n
0, and we define

N (n, r) := {α ∈ N
n
0 : ∑n

i=1 αi ≤ r} as the set of all exponents that give rise to
monomials with degrees of at most r . We letΣ[x] denote the set of all sum-of-squares
(SOS) polynomials in the variables x , and we define Σ[x]r as the subset of all SOS
polynomials with degrees of at most 2r .

Now consider the polynomial global optimization problem

pmin,K := min
x∈K p(x) = min

x∈K
∑

α∈N (n,d)

pαx
α, (2)

where p(x) = ∑
α∈N (n,d) pαxα is an n-variate polynomial of degree d, and K ⊂ R

n

a closed set with nonempty interior. In the subsequent discussion we always assume
that a global minimizer exists. We also assume that the moments of a finite Borel
measure μ supported on K are known in the sense that they are either available
in closed form or efficiently computable. Recall that a finite Borel measure μ on
R
n as a nonnegative set function defined on the Borel σ -algebra of Rn , that is, the

σ -algebra generated by all open sets in R
n . By definition, μ must satisfy μ(∅) = 0
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and μ(∪∞
i=1Si ) = ∑∞

i=1 μ(Si ) for any countable collection of disjoint, measurable
sets Si ⊂ R

n , i ∈ N, and μ(Rn) < ∞. The support of μ, denoted by supp(μ), is
defined as the smallest closed set K with μ (Rn\K) = 0.

In the following we denote the (known) moments of μ by

mα(K) :=
∫

K
xαdμ(x) for α ∈ N

n
0 . (3)

Lasserre [28] introduced the following upper bound on pmin,K,

p(r)
K

:= min
h∈Σ[x]r

{∫

K
p(x)h(x)dμ(x) :

∫

K
h(x)dμ(x) = 1

}

= min
h∈Σ[x]r

Ex∼(K,h)[p(x)], (4)

where r is a fixed integer, and x ∼ (K, h) indicates that x is a random vector supported
onK that is governed by the probability measure h · dμ. It is known that p(r)

K
is equal

to the smallest generalized eigenvalue of the system

Av = λBv, (5)

where v �= 0 is the generalized eigenvector corresponding to λ, while the symmetric
matrices A and B are of size

(n+r
r

)
with rows and columns indexed by N (n, r), and

Aα,β =
∑

δ∈N (n,d)

pδmα+β+δ(K), Bα,β = mα+β(K) for α, β ∈ N (n, r). (6)

A review of solution techniques for the generalized eigenvalue problem may be
found in [18, §8.7.2]. Lasserre [28] established conditions on μ and K ensuring
that limr→∞ p(r)

K
= pmin,K, and the rate of convergence was subsequently studied

in [8–10] for special choices of μ and K. The most general condition under which
convergence is known to hold, as shown in [29, Theorem 2.2], is when μ is supported
on a closed, basic semi-algebraic setK with nonempty interior, all moments of μ are
finite, and there is M > 0 such that

∫

K
x2ki dμ(x) ≤ (2k)!M ∀i ∈ {1, . . . , n}, k ∈ N. (7)

For example, if one defines μ in terms of a finite Borel measure ϕ with supp(ϕ) = K
via

dμ(x) = exp (−c|x1| − · · · − c|xn|) dϕ(x) (8)

for some fixed c > 0, then μ satisfies the conditions (7); see [28, §3.2].
We summarize the known convergence results in Table 1.
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Table 1 Known rates of convergence for the Lasserre hierarchy

K ⊂ R
n p(r)

K − pmin,K Measure μ, supp(μ) = K References

Closed, basic semi-algebraic,
nonempty interior

o(1) Satisfies (7) and all moments
finite

[29]

Compact, nonempty interior o(1) Finite Borel measure [28]

Compact, satisfies interior
cone condition

O
(

1√
r

)
Lebesgue measure [10]

Convex body O
(
1
r

)
Lebesgue measure [8]

[−1, 1]n Θ
(

1
r2

)
dμ(x)=∏n

i=1(1−x2i )−1/2dxi [9]

2.1 Examples of knownmoments

The moments (3) are available in closed form, for example, if μ is the Lebesgue
measure and K is an ellipsoid or triangulated polytope; see, e.g., [10,28]. For the
canonical simplex, Δn = {x ∈ R

n+ : ∑n
i=1 xi ≤ 1}, we have

mα(Δn) =
∏n

i=1 αi !
(
∑n

i=1 αi + n)! , (9)

see, e.g., [26, Equation (2.4)] or [21, Equation (2.2)]. One may trivially verify that the
moments for the hypercube Qn = [0, 1]n are given by

mα(Qn) =
∫

Qn

xαdx =
n∏

i=1

∫ 1

0
xαi
i dxi =

n∏

i=1

1

αi + 1
.

The moments for the unit Euclidean ball are given by

mα(B1(0)) =
{

π(n−1)/22(n+1)/2∏n
i=1(αi−1)!!

(n+∑n
i=1 αi )!! if αi is even for all i,

0 otherwise,
(10)

where the double factorial of any integer k is defined through

k!! =
⎧
⎨

⎩

k · (k − 2) · · · 3 · 1 if k > 0 is odd,
k · (k − 2) · · · 4 · 2 if k > 0 is even,
1 if k = 0 or k = −1.

When K is an ellipsoid, one may obtain the moments from (10) via an affine variable
transformation. Another tractable support set that will become relevant in Sect. 6.1
of this paper is the knapsack polytope, that is, the intersection of a hypercube and
a half-space; the moments for this and other related polytopes are derived in [34].
Finally, in Sect. 6.3 we will work with the nonnegative orthant K = R

n+. Since K is
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unbounded in this case, we need to introduce a measure of the form (8). A suitable
choice that corresponds to c = 1/2 and dϕ(x) = exp

(− 1
2

∑n
i=1 xi

)
dx in (8) is

dμ(x) = exp

(

−
n∑

i=1

xi

)

dx .

This is the exponential measure associated with the orthogonal Laguerre polynomials.
We will also use another choice of measure for K = R

n+ in Sect. 6.3, namely the
lognormal measure,

dμ(x) =
n∏

i=1

1

xivi
√
2π

exp

(

− (ln(xi ) − z̄i )2

2v2i

)

dxi , (11)

where z̄i and vi represent prescribed location and scale parameters for all i = 1, . . . , n.
In this case the moments of μ are given by

mα(K) =
n∏

i=1

exp(αi z̄i + (αivi )
2/2). (12)

One may verify that these moments do not obey the bounds in (7). When using
the lognormal measure we are therefore not guaranteed convergence of the Lasserre
hierarchy.

We stress that, even though these examples of known moments are limited, they
include typical sets that are routinely used in (distributionally) robust optimization
to represent uncertainty sets or supports, most notably budget uncertainty sets and
ellipsoids.

3 Distributionally robust constraints with ambiguous polynomial
density functions

Consider now a worst-case feasibility expectation of the form (1), where z ∈ R
m

represents a random vector with support K ⊂ R
m , assumed to be closed and with

nonempty interior. Suppose that the constraint function f (x, z) displays a polynomial
dependence on z. In particular, assume that f (x, z) = ∑

β∈N (m,d) fβ(x)zβ has degree
d in z, where the fβ : Rn → R are functions of x only.

If the ambiguity setP contains all distributions that have anSOSpolynomial density
of degree at most 2r , r > 1, with respect to a fixed, finite Borel measure μ supported
on K, then the worst-case expectation constraint (1) reduces to

f (r)
K (x) := inf

h∈Σ[z]r

{∫

K
f (x, z)h(z)dμ(z) :

∫

K
h(z)dμ(z) = 1

}
≥ 0. (13)
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Formally speaking, we consider an ambiguity set of the form

P =
{
h · dμ : h ∈ Σ[z]r ,

∫

K
h(z)dμ(z) = 1

}
. (14)

We assume that the moments of the measure μ on K are available, and we again use
the notation

mα(K) :=
∫

K
zαdμ(z) for α ∈ N

m
0 .

Expressing h ∈ Σ[z]r as h(z) = ∑
α∈N (m,2r) hαzα , the left-hand-side of (13) may be

re-written as
inf

hα :α∈N (m,2r)

∑

β∈N (m,d)

fβ(x)
∑

α∈N (m,2r)

hαmα+β(K)

s.t.
∑

α∈N (m,2r)

hαmα(K) = 1,

∑

α∈N (m,2r)

hαz
α ∈ Σ[z]r .

(15)

Since the condition that h be a sum-of-squares polynomial is equivalent to a linear
matrix inequality in the coefficients of h, problem (15) constitutes a tractable SDP in
hα ,α ∈ N (m, 2r), if x is fixed.Thenext theoremestablishes thatwe can also efficiently
optimize over the feasible set of the constraint (13) whenever the coefficient functions
fβ are concave and K ⊂ R

m+.

Theorem 1 Assume that all fβ are concave functions of x whose supergradients are
efficiently computable. Moreover, assume that K ⊂ R

m+. Then, the set of x ∈ R
n that

satisfy the worst-case expectation constraint (13) is convex and admits a polynomial-
time separating hyperplane oracle.

Proof We have to show that the function f (r)
K (x) defined in (13) is concave in x . To

this end, we may rewrite this function as

f (r)
K (x) = inf

h∈Σ[z]r
∑

β∈N (m,d)

Ez∼(K,h)

[
zβ
]
fβ(x).

For each h ∈ Σ[z]r , the functionEz∼(K,h)

[
zβ
]
fβ(x) is concave in x becauseK ⊂ R

m+
implies that Ez∼(K,h)

[
zβ
] ≥ 0. Thus, f (r)

K (x) is the point-wise infimum of an infinite
collection of concave functions and is therefore itself concave (see, e.g., [42, Theorem
5.5]). This allows us to conclude that the set C := {x ∈ R

n | f (r)
K (x) ≥ 0} is convex.

If x̄ /∈ C, i.e., f (r)
K (x̄) < 0, then we may construct a hyperplane that separates x̄

from C as follows. Let h̄ ∈ Σ[z]r be such that

fh̄(x̄) :=
∑

β∈N (m,d)

Ez∼(K,h̄)

[
zβ
]
fβ(x̄) < 0.
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In particular, we may choose h̄ to be the worst-case density obtained by solving the
SDP (15) with fixed x = x̄ . Now let ∂ fh̄(x̄) denote a supergradient of fh̄ at x̄ . Note
that, by assumption, such a supergradient is available in polynomial time. By the
definition of a supergradient, we now have

∂ fh̄(x̄)
T (x − x̄) ≥ fh̄(x) − fh̄(x̄) ≥ − fh̄(x̄) > 0 ∀x ∈ C.

Thus, the hyperplane {x ∈ R
n | ∂ fh̄(x̄)

T (x − x̄) = 0} separates x̄ from C. ��
Theorem1 implies that if all coefficient functions fβ are concave, onemayminimize

a convex function of x over a feasible set given by constraints of the type (13) in
polynomial time, e.g., by using the ellipsoid method, provided that an initial ellipsoid
is known that contains an optimal solution [20].

Finally, we point out that, due to the convergence properties of the Lasserre hier-
archy, one recovers the usual robust counterpart (robust against the single worst-case
realization of z as in [1]) in the limit as r tends to infinity.

Theorem 2 Assume that K ⊂ R
n is closed with nonempty interior. Then, in the limit

as r → ∞, the constraint (13) reduces to the usual robust counterpart constraint

min
z∈K f (x, z) ≥ 0.

More precisely, if x ∈ K is fixed, and (K, μ) satisfies one of the assumptions in Table 1,
one has

lim
r→∞ f (r)

K (x) = min
z∈K f (x, z).

Moreover, the rate of convergence is as given in Table 1, depending on the choice of
(K, μ).

Proof For fixed x , the computation of f (r)
K (x) is an SDP problem of the form (4), and

the required convergence result therefore follows from the convergence of the Lasserre
hierarchy (4), as summarized in Table 1. ��

4 Approximate solution of the general problem of moments

In applications it is often possible to reduce the ambiguity setP by including informa-
tion about the moments of the unknown probability distribution at play. For example,
if there is prior information about the location or the dispersion of the random vec-
tor z, one can include constraints on its mean vector or its covariance matrix into the
definition of the ambiguity set. Specifically, if it is known that Ez∼(K,h)[zβi ] = γi for
some βi ∈ N

n
0 and γi ∈ R for i = 1, . . . , p, one can restrict the ambiguity set (14) by

including the moment constraints

∫

K
zβi h(z)dμ(z) =

∑

α∈N (m,2r)

hαmα+βi (K) = γi ∀i = 1, . . . , p,
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which reduce to simple linear equations for the coefficients hα , α ∈ N (m, 2r), of the
density function h. In this setup, the maximization over the ambiguity set corresponds
to a general problem of moments (see, e.g., [46]), where one optimizes the expectation
of a function of a random variable over a set of probability measures with known
generalized moments. To formalize this problem and to showcase how our approach
relates to it, we assume throughout this section thatK ⊂ R

n is a nonempty closed set,
while f0, f1, . . . , f p are real-valued Borel-measurable functions onK. Moreover, we
assume that μ is a finite Borel measure on K such that f0, . . . , f p are μ-integrable.

Definition 1 The general problem of moments is defined as the optimization problem

b0 := inf
ν∈P0

{∫

K0

f0(z)dν(z) :
∫

Ki

fi (z)dν(z) = bi ∀i = 1, . . . , p

}
, (16)

where P0 is the set of all Borel probability measures supported on K, and Ki is a
Borel-measurable subset of K for each i = 0, . . . , p.

We now showcase that in the presence of moment information our polynomial-based
approach may be used to approximately solve problem (16), and we will illustrate this
through concrete examples in Sect. 6. We begin by recalling the following result due
to Rogosinsky [43].

Theorem 3 Let Ki , i = 0, . . . , p, be Borel-measureable subsets of K. Then there
exists an atomic Borel measure μ′ on K with a finite support of at most p + 2 points
so that

∫

Ki

fi (z)dμ(z) =
∫

Ki

fi (z)dμ′(z) ∀i = 0, . . . , p.

Proof An elementary proof is given by Shapiro [46, Lemma 3.1]; see also Lasserre
[27]. ��

The following corollary is an immediate consequence of Theorem 3.

Corollary 1 If the problem (16) has a solution, it has a solution that is an atomic
measure supported on at most p+ 2 points inK, i.e., a convex combination of at most
p + 2 Dirac delta measures supported on K.

In what follows we show how the atomic measure solution, whose existence is
guaranteed by Corollary 1, may be approximated arbitrarily well by SOS polynomial
density functions.

Theorem 4 Assume that problem (16) has an optimal solution,K ⊂ R
n has nonempty

interior, the functions f0, f1, . . ., f p are polynomials, and that the sets Ki are closed
(i = 0, . . . , p). Also assume that K and μ satisfy one of the assumptions in Table 1.
Then, as r tends to infinity,

ε(r) := inf
h∈Σr

max
i∈{0,...,p}

∣∣∣∣

∫

Ki

fi (z)h(z)dμ(z) − bi

∣∣∣∣

converges to zero at the rate (see also Table 1):
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1. ε(r) = o(1) if K is basic semi-algebraic, all moments of μ are finite, and (7)
holds;

2. ε(r) = o(1) if K is compact and μ a finite Borel measure;
3. ε(r) = O(r−1/4) if K is compact and satisfies an interior cone condition, and μ

is the Lebesgue measure;
4. ε(r) = O(r−1/2) if K is a convex body, and μ is the Lebesgue measure;
5. ε(r) = O(r−1) if K = [−1, 1]n, and dμ(x) = ∏n

i=1(1 − x2i )
−1/2dxi .

Proof We first outline the proof strategy. The high-level idea is to approximate the
discrete solution of the moment problem (16) by a convex combination of probability
distributions with SOS density functions. Each density is obtained from the Lasserre
hierarchy (4), applied to a suitable polynomial (denoted by p̂ below).

Define the functions

f̂i (z) =
{
fi (z) if z ∈ Ki ,

0 else,

for i = 0, . . . , p. Thus, each f̂i is Borel-measurable. Moreover, fix a ∈ K, and let p̂
be a polynomial with global minimizer a such that p̂(a) = 0 and

p̂(z) ≥ [ f̂i (z) − f̂i (a)]2 ∀z ∈ K, i ∈ {0, . . . , p}. (17)

For example, p̂ may be defined through

p̂(z) =
p∑

i=0

[ fi (z) − fi (a)]2 +
∑

i :a /∈Ki

fi (z)2‖z − a‖2
(dist(a,Ki ))2

+
∑

i :a∈Ki

fi (a)2‖z − a‖2
(min j :a /∈K j dist(a,K j ))2

,

where dist(a,Ki ) = inf z∈Ki ‖z − a‖ is the Euclidean distance of a to the closed set
Ki . Indeed, the polynomial p̂ is nonnegative and has the global minimizer z = a with
p̂(a) = 0. Moreover, one may verify that (17) holds by distinguishing the four cases
(for fixed i ∈ {0, 1, . . . , p}):
(i) a ∈ Ki and z ∈ Ki ,
(ii) a ∈ Ki and z /∈ Ki ,
(iii) a /∈ Ki and z ∈ Ki ,
(iv) a /∈ Ki and z /∈ Ki .

It is immediate to verify that (17) holds for cases (i) and (iv). For case (ii), note that

p̂(z) ≥ [ fi (z) − fi (a)]2 + fi (a)2‖z − a‖2
(min j :a /∈K j dist(a,K j ))2

≥ fi (a)2 − 2 fi (z) fi (a) + fi (z)
2 + fi (a)2

= [ f̂i (z) − f̂i (a)]2 + ( fi (z) − fi (a))2

≥ [ f̂i (z) − f̂i (a)]2.
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Case (iii) may be verified similarly.
The idea is now to apply the Lasserre hierarchy to minimize p̂. For a given proba-

bility density h ∈ Σ[z]r with
∫
K h(z)dμ(z) = 1, we write as before

Ez∼(K,h)[ p̂(z)] =
∫

K
p̂(z)h(z)dμ(z).

Recalling the notation of the Lasserre hierarchy from (4), we set p̂(r)
K

= minh∈Σ[z]r
Ez∼(K,h)[ p̂(z)]. If μ and K satisfy any of the conditions in Table 1, we have
limr→∞ p̂(r)

K
= 0, with the rate of convergence as indicated in the table. Thus, for any

ε > 0 there is a sufficiently large ra ∈ N and a density ha ∈ Σ[z]ra such that

Ez∼(K,ha)

[
( f̂i (z) − f̂i (a))2

]
≤ p̂(d)

K
≤ ε2 ∀i ∈ {0, . . . , p}. (18)

The asymptotics of the polynomial degree ra needed to drive the error below ε follows
from the convergence rates reported in Table 1. For example, if K is a convex body

and μ is the Lebesgue measure, we may assume that ra = O
(

1
ε2

)
, or equivalently

that ε = ε(ra) = O(r−1/2
a ).

Using Jensen’s inequality, we have, for each i ∈ {0, . . . , p},
Ez∼(K,ha)

[
( f̂i (z) − f̂i (a))2

]
≥ (

Ez∼(K,ha)[( f̂i (z) − f̂i (a))])2

=

⎧
⎪⎨

⎪⎩

[∫
Ki

fi (z)ha(z)dμ(z) − fi (a)
]2

if a ∈ Ki ,
[∫

Ki
fi (z)ha(z)dμ(z)

]2
if a /∈ Ki .

We conclude that, for i ∈ {0, . . . , p},
∣∣
∣∣

∫

Ki

fi (z)ha(z)dμ(z) − fi (a)

∣∣
∣∣ ≤ ε if a ∈ Ki ,

∣∣
∣∣

∫

Ki

fi (z)ha(z)dμ(z)

∣∣
∣∣ ≤ ε if a /∈ Ki .

(19)
In this sense, the measure ha(z)dμ(z) can be viewed as an approximation of the Dirac
point measure δa that concentrates unit mass at a.

In the following we denote by ν = ∑p+1
j=0 λ jδa j an atomic measure that is optimal

in (16) with atoms a j ∈ K and corresponding probabilities λ j ≥ 0, j = 0, . . . , p+1,

where
∑p+1

j=0 λ j = 1. The atomic measure ν exists due to Corollary 1 and because the
generalized moment problem (16) is solvable by assumption.

By the optimality and feasibility of ν in (16) we have
∫

Ki

fi dν =
∑

j :a j∈Ki

λ j fi (a j ) = bi ∀i ∈ {0, . . . , p}.

Wenowapproximate the atomicmeasureν byameasure of the form
∑

j λ j ha j (z)dμ(z),
where ha j is an SOS density of degree ra j , say, as in (18) with a = a j . Setting
r = max j ra j and h = ∑

j λ j ha j ∈ Σ[z]r , we may use (19) to conclude that
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∣∣
∣∣

∫

Ki

fi (z)h(z)dμ(z) − bi

∣∣
∣∣

≤
∑

j :a j∈Ki

λ j

∣∣∣∣

∫

Ki

fi (z)ha j (z)dμ(z) − fi (a j )

∣∣∣∣

+
∑

j :a j /∈Ki

λ j

∣
∣∣∣

∫

Ki

fi (z)ha j (z)dμ(z)

∣
∣∣∣ ≤

∑

j

λ jε = ε,

for each i ∈ {0, . . . , p}.
Note again that the relation between ε and r follows from Table 1. For example, if

K is a convex body and μ is the Lebesgue measure, we may assume that ε = ε(r) =
O(r−1/2). The other cases listed in the theorem statement can be proved analogously.

��
As a consequence of Theorem 4, we may obtain approximate solutions to the

generalized problem of moments (16) by solving SDPs of the form:

min
h∈Σ[z]r

{∫

K0

f0(z)h(z)dμ(z) :
∫

Ki

fi (z)h(z)dμ(z) ∈ [bi − ε(r), bi + ε(r)]

∀i = 1, . . . , p

}
(20)

for r ∈ N, and where we may assume ε(r) > 0 depends on r as indicated in the
theorem statement.

In analogy toTheorem2, Theorem4has interesting implications for distributionally
robust optimization. Indeed, if we replace the set P0 of all probability measures used
in (16) by the ambiguity set (14) of all probability measures with SOS densities of
degree at most 2r , then we essentially obtain the SDP problem (20) (modulo the
tolerance ε(r) that is needed to ensure feasibility). By Theorem 4, the solution of the
SDP (20) converges to the solution of (16) as r → ∞. Thus we may again view r as
the degree of conservatism (or risk-aversion), to be chosen by a user for the problem
at hand. We will see detailed examples of such modeling in Sect. 6.

Finally, we emphasize that the tolerance ε(r) is unavoidable. For example, the
constraint

∫ 1

0
z2dμ(z) = 0

forμ is solved by the Dirac delta centered at zero, but it admits no solution of the form
dμ(z) = h(z)dz with h ∈ Σr for any r .

We remark that the SDP hierarchy (20) is different from the one studied by Lasserre
[27], where an outer approximation of the cone of finite Borel measures supported
on K is used, whereas we use an inner approximation. The advantage of the inner
approximation is that it allows us to derive the convergence result of Theorem 4, which
quantifies the error in terms of the SOS density degrees.
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5 Modeling power

The ambiguity set P defined in (14) contains all distributions supported on a convex
body K that have an SOS polynomial density h ∈ Σ[z]r with respect to a prescribed
reference measure μ.

In stochastic programming, it is common to model μ as a probability measure that
best reflects one’s information about the stochastics of the uncertain problem parame-
ter z. Thus, μ is typically constructed by fitting a parametric model to a given dataset
by using some methods of statistics. Classical stochastic programming takes this esti-
mated model at face value and ignores the possibility that the true data-generating
distribution might deviate from μ. In this paper, we suggest to construct μ as one
would do in stochastic programming, which implies that stochastic programming
actually emerges as a special case of our distributionally robust optimization approach
if we set r = 0. Setting r > 0, on the other hand, implies that we do not place full trust
in μ but take into consideration other probability measures that have a polynomial
density function h ∈ Σ[z]r with respect to μ. Intuitively, the less we trust in μ, the
higher we should set r . Thus, r can be interpreted as a regularization parameter to be
tuned via cross-validation, for instance.

Another possible motivation for the choice of r comes from approximation theory.
If one wants to safeguard against a class of distributions, e.g., truncated multivariate
normal distributions on some convex body K with norm of the covariance matrix in
some range and mean in some interval, then there are theorems from approximation
theory that tell one what the degree of the polynomial SOS density should be to get
an approximation of the truncated normal density within ε on K .

For example, the following result is implicit in [8].

Theorem 5 Consider a convex body K and a truncated exponential-type distribution
on K with probability density given by

Pf (x) = exp(− f (x))
∫
K exp(− f (x))dx

,

where f is a polynomial of degree d that is nonnegative on K. Then, there exists a
probability density h ∈ Σrd such that

Pf (x) ≤ h(x) ≤ Pf (x) + ( f (x))2r+1

(2r + 1)! ∫K exp(− f (x))dx
.

One may therefore choose r such that h is a sufficiently good approximation of Pf ,
for some class of f where the maximal value of f on K may be bounded.

We have seen that for any fixed r , the worst-case expectation f (r)
K (x) on the left-

hand-side of the worst-case feasibility constraint (13) can be computed efficiently
for any fixed x by solving the SDP (15). As decision-makers may have access to
prior information that restricts the set of admissible density functions h ∈ Σ[z]r , we
demonstrate now that the ambiguity setP admits several generalizations that preserve
the SDP-representability of the worst-case expectation.
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Moment information As discussed at length in Sect. 4, conditions on (mixed) moment
values of different random variables give rise to simple linear conditions on the poly-
nomial coefficients of h.

Confidence information If the random vector z is known to materialize inside a given
Borel set C ⊂ R

m with probability γ ∈ [0, 1], we can add the condition Pz∼(K,h)[z ∈
C] = γ to the definition of the ambiguity setP . Moreover, if the momentsmα(K∩C)

of the reference measure μ over K ∩ C are either available analytically or efficiently
computable for all α ∈ N (m, 2r), then this condition can be re-expressed as the
following simple linear equation in the polynomial coefficients of h.

∫

K
1C h(z)dμ(z) =

∑

α∈N (m,2r)

hαmα(K ∩ C) = γ

Upper and lower bounds on Pz∼(K,h)[z ∈ C] can be handled similarly in the obvi-
ous manner. In the context of purely moment-based ambiguity sets, such probability
bounds have been studied in [51].

Conditional probabilitiesGiven any twoBorel setsC1,C2 ⊂ R
m and a probabilityγ ∈

[0, 1],we can also enforce the conditionPz∼(K,h)[z ∈ C2|z ∈ C1] = γ in the definition
of P . If the moments mα(K ∩C1) and mα(K ∩C1 ∩C2) of the reference measure μ

are either available analytically or efficiently computable for all α ∈ N (m, 2r), then
this condition can be re-expressed as

∫

K
1C1∩C2 h(z)dμ(z) = γ

∫

K
1C1 h(z)dμ(z)

⇐⇒
∑

α∈N (m,2r)

hα (mα(K ∩ C1 ∩ C2) − γ mα(K ∩ C1)) = 0,

which is again linear in the coefficients of h. Upper and lower bounds on conditional
probabilities can be handled similarly.

Conditional moment information If it is known that Ez∼(K,h)[zβ |C] = γ for some
β ∈ N

n
0, Borel set C ⊂ R

m and γ ∈ R, while the moments mα+β(K ∩ C) of the
reference measure μ over set K ∩ C are either available analytically or efficiently
computable for all α ∈ N (m, 2r), then one can add the following condition to the
ambiguity set P , which is linear in the coefficients of h.

∫

K
zβ1C h(z)dμ(z) = γ

∫

K
1C h(z)dμ(z)

⇐⇒
∑

α∈N (m,2r)

hα

(
mα+β(K ∩ C) − γ mα(K ∩ C)

) = 0,

Multiple reference measures The distributions in the ambiguity set P defined in (14)
depend both on the reference measure μ as well as the density function h. A richer
ambiguity set can be constructed by specifying multiple reference measures μi with
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corresponding density functions hi ∈ Σ[z]r , i = 1, . . . , p. The distributions in the
resulting ambiguity set are of the form

∑p
i=1 h

i · dμi . If the moments mi
α(K) of the

referencemeasureμi overK are either available analytically or efficiently computable
for all α ∈ N (m, 2r) and i = 1, . . . , p, then the normalization constraint can be
recast as

∑

α∈N (m,2r)

hiαm
i
α(K) = γi ∀i = 1, . . . , p and

p∑

i=1

γi = 1,

where γ = (γ1, . . . , γp) ≥ 0 constitutes an auxiliary decision vector. The resulting
ambiguity set can be interpreted as a convex combination of p ambiguity sets of the
form (14) and thus lends itself for modeling multimodality information; see, e.g., [24].
In this case, γi captures the probability of the i-th mode, whichmay itself be uncertain.
Thus, γ should range over a subset of the probability simplex, e.g., a φ-divergence
uncertainty set of the type studied in [7].

Marginal distributions It is often easier to estimate the marginal distributions of all
m components of a random vector z instead of the full joint distribution. Marginal
distribution information can also be conveniently encoded in ambiguity sets of the
type (14). To see this, assume that the marginal distribution of zi is given by μi and
is supported on a compact interval Ki ⊂ R, i = 1, . . . ,m. In this case it makes sense
to set K =×m

i=1Ki and to define the reference measure μ through dμ = ∏m
i=1 dμi .

Thus, μ coincides with the product of the known marginals. The requirement

∫

×j �=i K j

h(z)
∏

j �=i

dμ j (z j ) = 1 ∀zi ∈ Ki , ∀i = 1, . . . ,m

then ensures that the marginal distribution of zi under h · dμ exactly matches μi .
If the moments mαi (Ki ) of the marginal distribution μi over Ki are either available
analytically or efficiently computable for all αi = 1, . . . , 2r , then the above condition
simplifies to the linear equations

∑

α∈N (m,2r)
αi=0

hα

∏

j �=i

mα j (K j ) = 1 and

∑

α∈N (m,2r)
αi=�

hα

∏

j �=i

mα j (K j ) = 0 ∀� = 1, . . . , 2r , ∀i = 1, . . . ,m. (21)

Situations where the marginals of groups of random variables are known can be han-
dled analogously. Note that when all marginals are known, there is only ambiguity
about the dependence structure or copula of the components of z [45]. Quantifying
the worst-case copula amounts to solving a so-called Fréchet problem. In distribution-
ally robust optimization, Fréchet problems with discrete marginals or approximate
marginal matching conditions have been studied in [13,14,49].
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We emphasize that, in contrast to the existing approaches in the literature, our
method allows us to match any (continuous or discrete) marginal distributions exactly
instead of matching only some of their moments.

We illustrate the proposed construction in the following example, where, for ease
of exposition, μ1 and μ2 are chosen to be uniform measures.

Example 1 Consider a bivariate random vector z = (z1, z2) supported onK = [0, 1]2,
and assume that the marginal distributions of z1 and z2 are known to be governed by
the uniform probability measures μ1 and μ2 supported on [0, 1], respectively. In this
case it makes sense to define the reference measure μ through dμ = dμ1 · dμ2. For
ease of exposition, we model the probability density function of z with respect to μ

as a polynomial h of degree 2, that is, we set

h(z) = h00 + h10z1 + h01z2 + h11z1z2 + h20z
2
1 + h02z

2
2.

Integrating h with respect to μ2 and μ1 along z2 and z1 yields the marginal densities

hz1(z1) = h00 + h10z1 + 1

2
h01 + 1

2
h11z1 + h20z

2
1 + 1

3
h02,

hz2(z2) = h00 + 1

2
h10 + h01z2 + 1

2
h11z2 + 1

3
h20 + h02z

2
2,

respectively. Here we used the assumption that μ1 and μ2 are uniform measures on
[0, 1], which implies that their (non-central) first and second moments are given by 1

2
and 1

3 , respectively. For z1 to be distributed according to μ1, its marginal density must
satisfy hz1(z1) = 1 for all z1 ∈ [0, 1], which is equivalent to the conditions h20 = 0,
h10 + h11/2 = 0 and h00 + h01/2+ h02/3 = 1. Similarly, z2 is distributed according
to μ2 if and only if h02 = 0, h01 + h11/2 = 0 and h00 + h10/2 + h20/3 = 1. If we
set h11 = ε, these conditions imply that h20 = h02 = 0, h10 = h01 = −ε/2 and
h00 = 1 + ε/4. In summary, any admissible quadratic density function of z can be
represented as

h(z) = 1 + ε

4
− ε

2
(z1 + z2) + εz1z2

and is thus determined by the single parameter ε. Note that h is nonnegative on K if
ε ∈ [−4, 4].

Besides the ambiguity set P , the constraint function f also admits some general-
izations that preserve the SDP-representability of the worst-case expectation in (13).

Uncertainty quantification problems If the constraint function f in (13) is given by
f (x, z) = 1C for some Borel set C ⊂ R

m , then the worst-case expectation reduces
to the worst-case probability of the set C. Moreover, if the moments mα(K ∩ C) of
the reference measure μ over K ∩ C are either available analytically or efficiently
computable for all α ∈ N (m, 2r), then the worst-case probability can be computed
by solving a variant of the SDP (15) with the alternative objective function
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∑

α∈N (m,2r)

hαmα(K ∩ C).

6 Numerical experiments

In the following we will exemplify the proposed approach to distributionally robust
optimization in the context of financial portfolio analysis (Sect. 6.1), portfolio selection
(Sect. 6.2) and risk aggregation (Sect. 6.3).

6.1 Portfolio analysis

Consider a portfolio optimization problem, where the decision vector x ∈ R
n captures

the percentageweights of the initial capital allocated to n different assets. By definition,
one thus has xi ∈ [0, 1] for all i = 1, . . . , n and

∑
i xi = 1. We assume that the asset

returns ri = (ui + li )/2+ zi (ui − li )/2 depend linearly on some uncertain risk factors
zi ∈ [−1, 1] for all i = 1, . . . , n, where ui and li represent known upper and lower
bounds on the i-th return, respectively. In this framework, we denote by z ∈ R

n the
vector of all risk factors and by K = [−1, 1]n its support. Moreover, the portfolio
return can be expressed as

f (x, z) =
n∑

i=1

xi · ((ui + li )/2 + zi (ui − li )/2).

Unless otherwise stated, we set μ to the Lebesgue measure on R
n . Modeling the

probability density functions as SOS polynomials allows us to account for various
statistical properties and stylized facts of real asset returns as described in [6]. For
example, the proposed approach can conveniently capture gain loss asymmetry, i.e.,
the observation that large drawdowns in stock prices and stock index values are more
common than equally large upward movements. This feature can be modeled by
assigning a higher probability to an individual asset’s large upward returns than to
its low downward returns. Specifically, the ambiguity set may include the conditions
Pz∼(K,h)(zi ≤ ai ) = γ1 and Pz∼(K,h)(zi ≥ bi ) = γ2 for some thresholds ai < bi and
confidence levels γ1 > γ2.

Similarly, our approach can handle correlations of extreme returns. As pointed out
in [6], in spite of the widespread use of the covariance matrix, ‘in circumstances when
stock prices undergo large fluctuations [...], a more relevant quantity is the conditional
probability of a large (negative) return in one stock given a large negative movement
in another stock.’ An example constraint on the conditional probability of one asset’s
low performance given another assets’ lower performance is Pz∼(K,h)(zi ≤ r i |z j ≤
r j ) ≤ γ , where r i and r j are given thresholds, while γ is a confidence level.

In this numerical experiment we evaluate the probability that the return of a fixed
portfolio x materializes below a prescribed threshold r , that is, we evaluate the worst
case of the probability
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Pz∼(K,h)

(
r(x, z) ≤ r

)

over an ambiguity set P of the form (14) with the additional moment constraints
Ez∼(K,h)[zβi ] = γi for some given exponents βi ∈ N

n
0 and targets γi ∈ R for i =

1, . . . , p. This corresponds to computing the integral of the density function over the
knapsack polytope K ∩ A(x, u, l, r), where

A(x, u, l, r) =
{

z ∈ R
n :

n∑

i=1

xi (ui − li )zi/2 ≤ r −
n∑

i=1

xi (ui + li )/2

}

represents a halfspace in R
n that depends on the fixed portfolio x , the return bounds

l = (l1, . . . ln) and u = (u1, . . . , un), and the threshold r . To formulate this problem
as an SDP, we first need to compute the moments of the monomials with respect to
the Lebesgue measure over the given knapsack polytope by using the results of [34].
The worst-case probability problem can then be reformulated as the SDP

sup
h(z)

∑

α∈N (n,2r)

hαmα(K ∩ A(x, u, l, r))

s.t.
∑

α∈N (n,2r)

hαmα(K) = 1,

∑

α∈N (n,2r)

hαmα+βi (K) = γi ∀i = 1, . . . , p,

∑

α∈N (n,2r)

hαz
α ∈ Σ[z]r .

(22)

In the numerical experiment we assume that there are n = 2 assets with lower and
upper return bounds l = (0.8, 0.7)� and u = (1.2, 1.3)�, respectively. We evaluate
the probability that the return of the fixed portfolio x = (0.75, 0.25)� falls below the
threshold r = 0.9 (the minimum possible return of the portfolio is 0.775). We assume
that the only knownmoment information about the asset returns is that theirmeans both
vanish, that is, we set p = 2, β1 = (1, 0), β2 = (0.1) and γ1 = γ2 = 0. Table 2 reports
the exact optimal values of the SDP (22) for r = 1, . . . , 12. The last value in the table
(labeled r = ∞) provides the worst-case probability across all distributions satisfying
the prescribed moment conditions (not only those with a polynomial density) and was
computed using the methods described in [23]. In this case, one can also show that
there exists a worst-case distribution with only two atoms. It assigns probability 0.31
to the scenario z = (1, 1)� and probability 0.69 to the scenario z = (−0.44,−0.44)�.
All SDPs are solved using SeDuMi [48] via the CVX interface [19].

Table 2 Worst-case probability of the portfolio return falling below r computed by solving the SDP (22)

r 0 1 2 3 4 5 6 7 8 9 10 11 12 ∞
0 0.17 0.39 0.48 0.50 0.53 0.55 0.56 0.58 0.59 0.59 0.60 0.61 0.61 0.69
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6.2 Mean-variance portfolio selection

Wenow study a portfolio optimization problem thatminimizes theworst-case variance
subject to a lower bound on the worst-case mean of the portfolio return. This amounts
to solving a distributionally robust optimization problem where an investor selects the
portfolio allocation vector x , while a fictitious adversary chooses the density function
h(z) of the asset return distribution with the goal to inflict maximum damage to the
investor. Specifically, we solve the optimization problem

min
x

sup
P∈P

EP

[(
n∑

i=1
xi · ((ui + li )/2 + zi (ui − li )/2)

−EP

[
n∑

i=1
xi · ((ui + li )/2 + zi (ui − li )/2)

])2
]

s.t. inf
P∈P

EP

[
n∑

i=1
xi · ((ui + li )/2 + zi (ui − li )/2)

]
≥ r

1�x = 1
x ≥ 0,

(23)

where the asset returns are explained by a vector of risk factors z ∈ K = [−1, 1]n as
in Sect. 6.1, while the ambiguity set containing all possible distributions of z is defined
as

P =
{
h · dz : h ∈ Σ[z]r ,

∫

K
h(z) dz = 1,

∫

K
z h(z) dz = 0

}
.

In the numerical experiments we will assume that there are n = 3 assets whose returns
have known upper and lower bounds u = (1, 1.2, 1.3)� and l = (1, 0.85, 0.8)�,
respectively, and known mean values (u + l)/2. This choice implies that asset 1 is
risk-free. For ease of exposition, we henceforth set v±

i = (ui ± li )/2 for i = 1 . . . , n.
As z has zero mean under every P ∈ P , the return target constraint reduces to the
linear inequality

∑n
i=1 xiv

+
i ≥ r , while the objective function simplifies to

sup
h∈Σ[z]r

⎧
⎨

⎩

∫

K

(
n∑

i=1

xi ziv
−
i

)2

h(z)dz :
∫

K
h(z) dz = 1,

∫

K
z h(z) dz = 0

⎫
⎬

⎭
. (24)

Next, we define mr (z) as the vector of all monomials of degree at most r in the
variables z. Then, any SOS density function h ∈ Σ[z]r can be represented as h(z) =
mr (z)�Hmr (z) for some positive semidefinite coefficient matrix H . Moreover, it is
useful to introduce the matrices

M0 =
∫

K
mr (z)mr (z)

�dz, Mi =
∫

K
zimr (z)mr (z)

�dz ∀i = 1, . . . , n,
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and

Ai j =
∫

K
ziv

−
i z jv

−
j mr (z)mr (z)

�dz ∀i, j = 1, . . . , n.

Using this notation, the worst-case variance problem (24) can be reformulated as the
SDP

sup
H�0

n∑

i, j=1
xi x j 〈H , Ai j 〉

s.t. 〈H , M0〉 = 1, 〈H , Mi 〉 = 0 ∀i = 1, . . . , n,

where 〈·, ·〉 stands for the trace inner product. The SDP dual to the above problem is
given by

inf
γ

γ0

s.t.
n∑

i=0
γi Mi �

n∑

i, j=1
xi x j Ai j .

(25)

Strong duality holds because M0 � 0 as an outer product of the vector mr (z) of
all monomials of degree at most r in the variables z, integrated over a convex body
with non-empty interior. Therefore, the dual SDP is strictly feasible. Substituting (25)
into (23) converts the distributionally robust portfolio selection problem to the non-
linear SDP

inf
x,γ

γ0

s.t.
n∑

i=0
γi Mi �

n∑

i, j=1
xi x j Ai j

n∑

i=1
xivi ≥ r

1�x = 1
x ≥ 0.

(26)

In the following we will demonstrate that (26) is a convex optimization problem.
Indeed, by recalling the definition of the matrices Ai j , introducing a Borel-measurable
matrix-valued function Y (z) and using Schur complements, the nonlinear matrix
inequality in (26) can be reformulated as

n∑

i=0
γi H i � ∫

K

(
n∑

i=1
xi zivi

)2

mr (z)mr (z)�dz

⇐⇒

⎧
⎪⎪⎨

⎪⎪⎩

∃Y (·) Borel-measurable :
n∑

i=0
γi H i � ∫

K Y (z) dz,

Y (z) �
(

n∑

i=1
xi zivi

)2

mr (z)mr (z)� ∀z ∈ K
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⇐⇒

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∃Y (·) Borel-measurable :
n∑

i=0
γi H i � ∫

K Y (z) dz,
⎛

⎜
⎜
⎝

1

(
n∑

i=1
xi zivi

)
mr (z)�

(
n∑

i=1
xi zivi

)
mr (z) Y (z)

⎞

⎟
⎟
⎠ � 0 ∀z ∈ K.

This reasoning shows that the feasible set of the first constraint in (26) can be expressed
through uncountably many linear matrix inequalities. Thus, the feasible set of (26)
can be viewed as a finite-dimensional projection of an infinite-dimensional convex
set. As convexity is preserved under projections, we conclude that (26) is indeed a
convex optimization problem. We can thus solve (26) to global optimality using the
PENLAB solver [15] via the YALMIP modeling language [32].

Figures 1 and 2 visualize the worst-case standard deviation of the portfolio return
and the corresponding optimal portfolio weights as the return threshold r is swept.
The following observations are in order. First, if r is smaller or equal to the risk-free
return, it is optimal to allocate all the capital to the risk-free asset, in which case
the standard deviation of the portfolio return vanishes. As r increases, the investor
is forced to shift capital to the risky assets, which leads to an increase of the worst-
case standard deviation. Moreover, increasing the degree 2r of the polynomial density
functions amounts to giving the adversary more flexibility to inflict damage. Thus, the
worst-case standard deviation increases with r for any fixed return target r . We further
observe that the portfolio weights as well as the worst-case standard deviation display
a distinct kink when the structure of the optimal portfolio changes, that is, when the
weight of the risk-free asset drops to 0, in which case the corresponding no-short-sales
constraint becomes active.

Fig. 1 Mean-standard deviation
efficient frontiers for
r ∈ {0, 2, 4, 6}
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Fig. 2 Optimal portfolio compositions for r ∈ {0, 4}

6.3 Risk aggregation

In the third experiment we study the risk aggregation problem of an insurer holding a
portfolio of different random losses zi , i = 1, . . . , n, corresponding to different types
of insurance claims, e.g., life, vehicle, health or home insurance policies, etc. Inspired
by [49, § 6], we aim to estimate the worst-case probability that the sum of the n losses
exceeds a critical threshold b = 10 beyond which the insurance company would be
driven into illiquidity. Formally, we aim to maximize

Pz∼(K,h) (z1 + . . . + zn ≥ b) (27)

across all distributions in an ambiguity set P , which reflects the prior distributional
information available to the insurer. We will consider different models for the domain
K of z = (z1, . . . , zn), the reference measure μ on K and the ambiguity set P .
Throughout the experiments we will always assume that the reference measure is
separable with respect to the losses, that is, we assume that

dμ(z) = �1(z1) · · · �n(zn)dz,

where �i denotes a given density function (with respect to the Lebesgue measure)
of the random variables zi for each i = 1, . . . , n. We will consider the following
complementary settings:

1. Lognormal densities: We set K = R
n+ and let �i be a lognormal density function

defined earlier in (11), but repeated here for convenience:

�i (zi ) = 1

zivi
√
2π

exp

(

− (log(zi ) − z̄i )2

2v2i

)

, (28)
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where z̄i and vi represent prescribed location and scale parameters, i = 1, . . . , n.
2. Exponential densities:We setK = R

n+ and let �i be the exponential density func-
tion with unit rate parameter defined through �i (zi ) = exp(−zi ), i = 1, . . . , n.
The resulting reference measure is intimately related to the orthogonal Laguerre
polynomials.

3. Uniform densities:We setK = [0, M]n for some constant M > 0 and let �i be the
uniform density function defined through �i (zi ) = 1/M , i = 1, . . . , n. Note that
under this choice the reference measure is proportional to the Lebesgue measure.

In order to reformulate the risk aggregation problem as a tractable SDP, we need
the moments of the reference measure μ over the hypercubeK and over the knapsack
polytope K ∩ C, where

C = {z ∈ R
n : z1 + . . . + zn ≥ b}.

For all classes of density functions described above, the moments of μ are indeed
accessible. Specifically, under the lognormal densities, the moments of μ over K are
given by (12) and are repeated here for convenience:

mα(K) =
∫

K

(
n∏

i=1

zαii

)
n∏

i=1

1

zivi
√
2π

exp

(

− (log(zi ) − z̄i )2

2v2i

)

dz

=
n∏

i=1

exp(αi z̄i + (αivi )
2/2).

Moreover, the moments of μ over K ∩ C can be expressed as

mα(K ∩ C) = mα(K) − mα(K\C)

= mα(K) −
∫

K\C

(
n∏

i=1

zαii

)
n∏

i=1

1

zivi
√
2π

exp

(

− (log(zi ) − z̄i )2

2v2i

)

dz.

To evaluate the integral in the last line, we use the cubature routine adsimp(·) in
MATLAB, which greedily refines a simplicial partition of the integration domain by
iteratively subdividing the simplices with the largest estimated integration errors [16].
For the polynomial degrees considered in our experiments, the moments computed
with this routine are sufficiently precise to result in numerically stable optimization
problems. For higher degrees, however, computing sufficiently precise moments takes
too much time or is not achievable. Note that for the exponential and the uniform
densities, the moments of the reference measure μ over K and K ∩C are available in
closed form.

We assume that the insurance company is able to estimate the marginal distribu-
tions of the individual losses either exactly or approximately by using a combination
of statistical analysis and probabilistic modeling. However, the insurer has no infor-
mation about the underlying copula. This type of distributional information is often
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Fig. 3 Histograms of the lognormal marginal distributions of z1 (left) and z2 (right)

justified in practice because obtaining reliable marginal information requires signifi-
cantly less data than obtaining exact dependence structures; see, e.g., [33]. Throughout
the experiment we assume that there are n = 2 random losses governed by lognormal
probability density functions of the form (28) with parameters z̄1 = −0.3, z̄2 = 0.4,
v1 = 0.8 and v2 = 0.5. The ambiguity set P then contains all distributions of the
form h · dμ, h ∈ Σ[z]r , under which the marginals of the losses follow the prescribed
lognormal distributions either exactly or approximately. More precisely, we model the
marginal distributional information as follows:

1. Marginal distribution matching: The lognormal distributions of the individual
losses are matched exactly by any distribution h ·dμ in the ambiguity set. This can
be achieved by defining the reference measure μ as the product of the marginal
lognormal distributions and by requiring that h satisfies (21). Note that under the
alternative reference measures corresponding to the uniform or exponential den-
sity functions, lognormal marginals cannot be matched exactly with polynomial
densities of any degrees. This is because the lognormal density function can nei-
ther be expressed as a polynomial nor as the product of a polynomial with the
exponential density. Note also that an exact matching of (non-discrete) marginal
distributions cannot be enforcedwith the existing numerical techniques for solving
Fréchet problems proposed in [13,14,49].

2. Marginal moment matching: The marginals of the individual losses have the same
moments of order 0, 1 or 2 as the prescribed lognormal distributions. Note that this
kind of moment matching can be enforced under any of the reference measures
corresponding to lognormal, exponential or uniform density functions. Moreover,
moment matching is also catered for in [49] bar the extra requirement that the joint
distribution of the losses must have an SOS polynomial density.

3. Marginal histogram matching:We may associate a histogram with each marginal
lognormal distribution as illustrated in Fig. 3 and require that the marginals of the
losses under the joint distribution h ·dμ have the same histograms. This condition
can be enforced under any of the reference measures corresponding to lognormal,
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exponential or uniform density functions. In the numerical experiments, we use
histograms with 20 bins of width 0.25 starting at the origin. Histogram matching
is also envisaged in [49]. Formally, we thus define the ambiguity set as

P =
{
h · dμ : h ∈ Σ[z]r ,

∫

K
h(z)dμ(z) = 1,

∫

K
1Bl (z)h(z) dμ(z) = pl ∀l = 1, . . . , L

}
,

where Bl ⊂ K is the l-th bin, pl = ∫
K 1Bl (z) dμ(z) is its probability under the

reference measure and L ∈ N is the total number of bins. As indicated above,
in the numerical experiments we set L = 40. Moreover, we define the bins as
Bl = {z ∈ K : (l − 1)/4 ≤ z1 ≤ l/4} for l = 1, . . . , 20 and Bl = {z ∈ K :
(l − 1)/4 ≤ z2 ≤ l/4} for l = 21, . . . , 40. Note that since lognormal distributions
are supported on R+, we have

∑20
l=1 pl = ∑40

l=21 pl < 1, and thus P is empty
unless the square [0, 5]2 is a strict subset ofK. In the experiments this condition is
enforced both for the lognormal and the exponential reference measures, in which
case we set K = R

2+, as well as for the uniform reference measure, in which case
we set K = [0, 10]2.
For K = R

2+ and the reference measure corresponding to the lognormal density
functions, the worst-case values of the probability (27) are reported in Table 3. Results
are shown for r ≤ 5, which corresponds to polynomial densities of degrees at most
10. The last row of the table (r = ∞) provides the worst-case probabilities across
all distributions satisfying the prescribed moment or histogram conditions (not only
those with a polynomial density) and was computed using the methods described in
[49]. Note that under moment matching up to order 2, the worst-case probability for
r = 5 amounts to 0.0021, as opposed to themuch higher probability of 0.0615 obtained
with the approach from [49]. A similar observation holds for histogrammatching. The
requirement that the distributions in the ambiguity set be sufficiently regular in the
sense that they admit a polynomial density function with respect to the reference mea-
sure is therefore restrictive and effectively rules out pathological discrete worst-case

Table 3 Worst-case probabilities for the lognormal reference measure

r Moment matching up to order Histogram Distribution

0 1 2 matching matching

0 0.0017 0.0017 0.0017 0.0017 0.0017

1 0.1432 0.0042 0.0017 0.0017 0.0017

2 0.8255 0.0106 0.0020 0.0019 0.0018

3 0.9982 0.0114 0.0021 0.0022 0.0019

4 1.0000 0.0117 0.0021 0.0026 0.0023

5 1.0000 0.0118 0.0021 0.0026 0.0023

∞ 1.0000 1.0000 0.0615 0.0198 n/a
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Table 4 Worst-case probabilities for the exponential reference measure

r Moment matching up to order Histogram matching

0 1 2 �1-dist. ≤ 0.1 �1-dist. ≤ 0.05 �1-dist. ≤ 0.02

0 0.0005 – – – – –

1 0.0214 0.0147 – – – –

2 0.2058 0.0823 – – – –

3 0.6481 0.1484 – – – –

4 0.9393 0.1497 0.0086 – – –

5 0.9953 0.1699 0.0104 – – –

6 0.9998 0.1709 0.0139 – – –

7 1.0000 0.1800 0.0158 – – –

8 1.0000 0.1860 0.0182 0.0802 – –

9 1.0000 0.1862 0.0207 0.1076 – –

10 1.0000 0.1928 0.0224 0.1144 0.0515 –

11 1.0000 0.1968 0.0244 0.1156 0.0633 0.0204

12 1.0000 0.1971 0.0262 0.1160 0.0652 0.0320

∞ 1.0000 1.0000 0.0615 n/a n/a n/a

distributions. Moreover, the worst-case probabilities under exact distribution match-
ing and under histogram matching are of the same order of magnitude for all r ≤ 5
but significantly smaller than the worst-case pobability under histogram matching for
r = ∞. A key question to be asked in practice is thus whether one deems the class
of distributions h · dμ with h ∈ Σ[z]r to be rich enough to contain all ‘reasonable’
distributions.

Table 4 reports the worst-case probabilities corresponding to the reference mea-
sure on K = R

2+ induced by the exponential density functions. For low values of r ,
the polynomial densities lack the necessary degrees of freedom to match all imposed
moment constraints. In these situations, the worst-case probability problem becomes
infeasible (indicated by ‘−’). When feasible, however, we managed to solve the prob-
lem for r up to 12. The density functions corresponding to large values of r are highly
flexible and thus result in worst-case probabilities that are closer to those obtained by
the benchmark method from [49], which relaxes the restriction to a subspace of poly-
nomial densities. Similar phenomena are also observed in the context of histogram
matching. It was impossible to match the prescribed histogram probabilities exactly
for all r ≤ 12. We thus relaxed the histogram matching conditions in the definition of
the ambiguity set to allow for densities whose implied marginal histograms are within
a prescribed �1-distance from the target histograms.

This approximate histogrammatching condition is easily captured in our framework
and gives rise to a few extra linear constraints on the coefficients of the polynomial
density function. Table 4 reports the worst-case probabilities for three different tol-
erances on the histogram mismatch in terms of the �1-distance. We observe that the
resulting worst-case probabilities are significantly larger than those obtained under
the lognormal reference measure and increase with the �1-tolerance.
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Table 5 Worst-case probabilities for the uniform reference measure

r Moment matching up to order Histogram matching

0 1 2 �1-dist. ≤ 0.1 �1-dist. ≤ 0.05 �1-dist. ≤ 0.02

0 0.5000 – – – – –

1 0.9082 – – – – –

2 0.9933 – – – – –

3 0.9997 0.0304 – – – –

4 1.0000 0.1035 – – – –

5 1.0000 0.1340 – – – –

6 1.0000 0.1612 0.0089 – – –

7 1.0000 0.1783 0.0166 – – –

8 1.0000 0.1935 0.0192 – – –

9 1.0000 0.2042 0.0216 0.0738 – –

10 1.0000 0.2133 0.0274 0.1066 0.0407 –

11 1.0000 0.2202 0.0292 0.1142 0.0609 –

12 1.0000 0.2274 0.0311 0.1163 0.0653 0.0178

∞ 1.0000 1.0000 0.0615 n/a n/a n/a

Finally, Table 5 reports the worst-case probabilities corresponding to the uniform
reference measure on K = [0, 10]2. The results are qualitatively similar to those of
Table 4, but they also show that the choice of the reference measure plays an important
role when r is small.

7 Conclusions

In this paper, we present first steps towards using SOS polynomial densities in distri-
butionally robust optimization for problems that display a polynomial dependence on
the uncertain parameters. The main advantages of this approach may be summarized
as follows:

1. The proposed framework is tractable (in the sense of polynomial-time solvability)
for SOS density functions of any fixed degree.

2. The approach offers considerable modeling flexibility. Specifically, one may con-
veniently encode various salient features of the unknown distribution of the
uncertain parameters trough linear constraints and/or linear matrix inequalities.

3. In the limit as the degree of the SOSdensity functions tends to infinity, one recovers
the usual robust counterpart or generalized moment problem. One may therefore
view the degree of the density as a tuning parameter that captures the model’s
‘level of conservativeness.’

The approach also suffers from shortcomings that necessitate further work and
insights:
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1. The approach is not applicable to objective or constraint functions that display a
general (decision-dependent) piecewise polynomial dependence on the uncertain
parameters as is the case for the recourse functions of linear two-stage stochastic
programs.

2. The proposed distributionally robust optimization problems can be reduced to
generalized eigenvalue problems or even semidefinite programs of large sizes that
are often poorly conditioned.
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