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Abstract
Motivated by the well known “four-thirds conjecture” for the traveling salesman prob-
lem (TSP), we study the problem of uniform covers. A graph G = (V , E) has an
α-uniform cover for TSP (2EC, respectively) if the everywhere α vector (i.e., {α}E )
dominates a convex combination of incidence vectors of tours (2-edge-connected
spanning multigraphs, respectively). The polyhedral analysis of Christofides’ algo-
rithm directly implies that a 3-edge-connected, cubic graph has a 1-uniform cover for
TSP. Sebő asked if such graphs have (1− ε)-uniform covers for TSP for some ε > 0.
Indeed, the four-thirds conjecture implies that such graphs have 8

9 -uniform covers.
We show that these graphs have 18

19 -uniform covers for TSP. We also study uniform
covers for 2EC and show that the everywhere 15

17 vector can be efficiently written as
a convex combination of 2-edge-connected spanning multigraphs. For a weighted,
3-edge-connected, cubic graph, our results show that if the everywhere 2

3 vector is an
optimal solution for the subtour elimination linear programming relaxation for TSP,
then a tour withweight at most 2719 times that of an optimal tour can be found efficiently.
Node-weighted, 3-edge-connected, cubic graphs fall into this category. In this special
case, we can apply our tools to obtain an even better approximation guarantee. An
essential ingredient in our proofs is decompositions of graphs (e.g., cycle covers) that
cover small-cardinality cuts an even (nonzero) number of times. Another essential tool
we use is half-integral tree augmentation, which is known to have a small integrality
gap. To extend our approach to input graphs that are 2-edge-connected, we present
a procedure to decompose a point in the subtour elimination polytope into spanning,
connected subgraphs that cover each 2-edge cut an even number of times. Using this
decomposition, we obtain a 17

12 -approximation algorithm for minimumweight 2-edge-
connected spanning subgraphs on subcubic, node-weighted graphs.
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1 Introduction

The traveling salesman problem (TSP) and the minimum-weight 2-edge-connected
spanning multigraph problem (2EC) are two fundamental and well-studied problems
in combinatorial optimization. A folklore conjecture sometimes tersely called the
“four-thirds conjecture” (see, e.g., [11,18]) states that the optimal (integral) solution
for the metric TSP is no more than 4

3 times the value of the subtour elimination linear
programming relaxation. However, the best known approximation ratio for both TSP
and 2EC currently stands at 3

2 [7,14,30,31]. A recent spate of work has focused on
the special case of graph-TSP when the underlying weights arise from hop distances
in an undirected graph [6,24–26]. The current best ratio for this problem is 7

5 [29]. A
parallel line of work has improved the ratio for 2EC in the unweighted case (commonly
referred to as the 2-edge-connected spanning subgraph problem or 2ECSS for short)
and resulted in a 4

3 -approximation for this problem [2,29]. So far, these new techniques
have not been extended to more general metrics.

One approach to general metrics is via convex combinations of incidence vectors
of tours that can be derived from solutions to the well-known subtour elimination
linear programming relaxation, which we will refer to as Subtour=(G). It is by now
quite standard, but we invite the unfamiliar reader to visit Sect. 2.1 for the formal
definition. For a solution x ∈ Subtour=(G), we use Gx = (V , Ex ) to denote the
graph G = (V , E) with edge set Ex ⊆ E restricted to the support of x . Goemans and
Carr and Vempala showed that the four-thirds conjecture is equivalent to the following
conjecture [11,18].

Conjecture 1 If x ∈ Subtour=(G), the vector 4
3 x dominates a convex combination

of tours in Gx .

Based on a polyhedral analysis of Christofides’ algorithm, we know that 32 x dominates
a convex combination of tours in Gx [30,31]; so far we cannot replace 3

2 with any
smaller constant. Following the terminology of Boyd and Sebő [5], for a graph G =
(V , E) on n vertices, let the everywhere r vector for G, be the vector inR(V2) that is r in
all coordinates corresponding to edges of G and 0 in all other coordinates. Conjecture
1 is closely related to the problem of uniform covers, which we now formally define.

Definition 1 A graph G has an α-uniform cover for TSP (2EC) if the everywhere α

vector for G dominates a convex combination of incidence vectors of tours (2-edge-
connected spanning multigraphs).

This close connection is described in Proposition 1. Proposition 1 was observed by
Carr andVempala [11] but for completeness we provide a (quite straightforward) proof
in Sect. 3.

Proposition 1 The following statements are equivalent.

(a) If x ∈ Subtour=(G), the vector 4
3 x dominates a convex combination of tours in

Gx .
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(b) For any positive integer k and an arbitrary k-edge-connected k-regular graph G,
the everywhere 8

3k vector for G dominates a convex combination of tours in G.

The first interesting case is when k = 3 (i.e., the case of 3-edge-connected, cubic
graphs). Since the everywhere 2

3 vector for a 3-edge-connected, cubic graph G is in
Subtour=(G), Sebő pointed out that the four-thirds conjecture implies that for a
3-edge-connected, cubic graph, the everywhere 8

9 vector dominates a convex com-
bination of tours [27]. The following is therefore a relaxed version of Conjecture 1
[5,27].

Conjecture 2 Let G = (V , E) be a 3-edge-connected, cubic graph. The everywhere
8
9 vector for G dominates a convex combination of tours of G.

For such graphs, the everywhere 1 vector does indeed dominate a convex com-
bination of tours, which can be shown via the aforementioned polyhedral proof of
Christofides’ algorithm byWolsey [30,31]. In other words, a 3-edge-connected, cubic
graph has a 1-uniform cover. Sebő [27] asked if this bound can be improved: Does a
3-edge-connected, cubic graph have a (1− ε)-uniform cover (for some small constant
ε)? For the special class of 3-edge-connected, cubic graphs that are also Hamiltonian,
Boyd and Sebő show that the everywhere 6

7 vector for G dominates a convex combi-
nation of tours [5]. We give an affirmative answer to Sebő’s question and improve this
factor from 1 to 18

19 for all 3-edge-connected, cubic graphs.1

Theorem 1 Let G = (V , E) be a 3-edge-connected, cubic graph. The everywhere 18
19

vector forG dominates a convex combinationof tours ofG and this convex combination
can be found in polynomial time.

The same question can be posed replacing tours with 2-edge-connected spanning
multigraphs: for an arbitrary positive integer k and an arbitrary k-edge-connected
k-regular graph G, can the everywhere αk vector be decomposed into a convex com-
bination of 2-edge-connected spanning multigraphs? For general k, the best-known
factor for this question (as in the case for tours) is αk = 3

k , which can be obtained
via the polyhedral proof of Christofides’ algorithm [31]. For special cases, however,
better factors are known. For k = 4, Carr and Ravi showed that the everywhere 2

3
vector can be decomposed into a convex combination of 2-edge-connected spanning
multigraphs [10]. Their proof is constructive but is not guaranteed to run in polynomial
time.

For a 3-edge-connected, cubic graph (i.e., the case k = 3), Boyd and Legault
showed that the everywhere 4

5 vector can be written as a convex combination of 2-
edge-connected spanning multigraphs [4]. This factor was subsequently improved to
7
9 by Legault [22]. These convex combinations are a key ingredient for a related result
on half-triangle graphs [4]. Both the factors 4

5 and 7
9 are obtained via constructive

procedures that are not shown to run in polynomial time. In this paper, we show that
for a 3-edge-connected, cubic graph, there is a polynomial-time algorithm to write
the everywhere 15

17 vector as a convex combination of 2-edge-connected spanning
multigraphs.

1 Applying Theorem 2.3 from [4], we note that this theorem applies to all 3-edge-connected (i.e., possibly
noncubic) graphs.
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Theorem 2 Let G = (V , E) be a 3-edge-connected, cubic graph. The everywhere 15
17

vector for G dominates a convex combination of 2-edge-connected spanning multi-
graphs of G and this convex combination can be found in polynomial time.

One implication of Theorem 1 is that for a weighted, 3-edge-connected, cubic graph
for which the everywhere 2

3 vector is an optimal solution for Subtour=(G), we can
achieve an approximation ratio of 27

19 for TSP, which improves over the approximation
factor of Christofides’ algorithm for these graphs.2 A natural class of such graphs
are 3-edge-connected, cubic, node-weighted graphs. In the node-weight metric, each
vertex of an undirected graph is assigned a positive integer weight; the weight of an
edge is the sum of the weights of its two endpoints. (The node-weight metric is an
intermediate class between weighted and unweighted graphs for studying the TSP
and has been previously studied by Frank [15].) In fact, we show that using some of
the same tools applied to the uniform cover problems, we can prove the following
improved approximation ratio for such graphs.

Theorem 3 There is a 7
5 -approximation algorithm for TSP on node-weighted, 3-edge-

connected, cubic graphs.

Similarly, Theorem 2 implies that for a weighted, 3-edge-connected, cubic graph
for which the everywhere 2

3 vector is an optimal solution for Subtour=(G), we can
obtain an approximation ratio of 45

34 for 2EC, which improves upon the best-known
approximation factor for such graphs derived fromChristofides’ algorithm.We explore
this problem further when the input graph is no longer 3-edge-connected and prove
the following theorem for subcubic, node-weighted graphs.

Theorem 4 If G is a node-weighted, subcubic graph, then there exists a 17
12 -

approximation for 2EC on G.

1.1 Outline and organization

In Sect. 2, after stating some basic notation, we formally present the tools we use to
prove our main theorems. The first tool, presented in Sect. 2.2, is an efficient algorithm
by Boyd, Iwata and Takazawa to find a cycle cover that covers all 3- and 4-edge cuts
in a bridgeless, cubic graph [3]. This is an essential tool in the proofs of Theorems 1,
2 and 3.

In Sect. 2.3, we present a key tool for proving Theorems 2 and 4, which is a
theorem by Cheriyan, Jordán and Ravi proving a small integrality gap for the half-
integral 1-cover problem [8]. The 1-cover problem generalizes the tree augmentation
problem: given a connected subgraph S, the goal is to find an additional subset of edges
(from the edges not in the subgraph S) to make S 2-edge-connected. The best-known
approximation factor for this problem is 2 [13], but when the solution is half-integral,

2 We remark that characterizing instances by their optimal LP solutions is how classes of fundamental
points are defined. Incidentally, many fundamental classes of TSP and 2EC extreme points are either cubic
or subcubic [1,10,11].
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there is a 4
3 -approximation [8]. This latter result has been generalized by Iglesias and

Ravi [19].
In Sect. 3, we show how to apply these tools to prove our main theorems on uniform

covers, which we introduced and motivated in the introduction. In Sect. 4, we show
how to apply these tools to go beyond the approximation guarantee obtained via
uniform covers and present several applications to connectivity problems on node-
weighted, 3-edge-connected, cubic graphs. In addition to Theorem 3, we present a 13

10 -
approximation algorithm for 2EC in cubic, 3-edge-connected graphs. This improves
the approximation ratio of 3

2 for this problem that follows fromChristofides’ algorithm.
A natural question is if we can extend these results to graphs that are 2-edge-connected
and either cubic or subcubic.

Extending our approach to input graphs that are 2-edge-connected necessitates
finding methods for covering 2-edge cuts. In Sect. 4.2, we present a procedure to
decompose a solution for the subtour elimination linear program into spanning, con-
nected sub(multi)graphs that cover each 2-edge cut an even (nonzero) number of
times. In Sect. 4.3.1, we demonstrate an application of this decomposition theorem
for TSP on node-weighted, cubic graphs; we show that an algorithm similar to that of
Christofides has an approximation factor better than 3

2 when the weight of an optimal
subtour solution is strictly larger than twice the sum of the node weights. In Sect. 4.3.2,
we give another application of our decomposition theorem, which allows us to (again)
apply the aforementioned theorem of Cheriyan, Jordán and Ravi and augment these
spanningmultigraphswith half-integral tree augmentations. Combining thiswith ideas
from Sect. 4.3.1, we prove Theorem 4.

2 Preliminaries and tools

In the remainder of this paper,G = (V , E) denotes aweighted graph andw(e) denotes
the weight of edge e ∈ E . We can assume that G is 2-vertex-connected (e.g., applying
Lemma 2.1 from [24]). Graph G is node-weighted if there is a function f : V → R

+
such that for each e = uv ∈ E , we have w(e) = f (v) + f (u). In this case, we
say G is node-weighted with node-weight function f . Denote by w(E) the total edge
weight:

∑
e∈E w(e). For ease of notation let n = |V |. For vectors a, b ∈ R

m we say
a dominates b if ai ≥ bi in each coordinate i ∈ {1, . . . ,m}.

We will work with multisets of edges of G. For a multisubset F of E , the submulti-
graph induced by F (henceforth referred to simply as a multigraph) is a graph that has
the same number of copies of each edge as in F . For a positive integer t , the multiset
t · F is the multiset that contains t copies of each element in F . For multisets F and
F ′, we denote by F ∪ F ′ the multiset that contains as many copies of each edge as
those in F plus those in F ′. For a multiset F and edge e ∈ F , we denote by F − e the
multiset that results from removing a single copy of e from F . By F + e, we denote
the multiset that results from adding a single copy of e to F . For a multiset of edges
(or a multigraph) F the summand

∑
e∈F w(e) counts each edge e ∈ F as many times

as it appears in the multiset F .
A multigraph F of G is a tour if the vertex set of F spans V , F is connected, and

every vertex in F has even degree. For the sake of brevity, we henceforth use the term
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2-edge-connectedmultigraph ofG to refer to a 2-edge-connected spanningmultigraph
(i.e., a multigraph that spans all the vertices of G). For a subset of edges S ⊆ E , the
graph G/S is the graph obtained from G by contracting the edges in S (and deleting
self-loops). For a subset S of vertices of G let δ(S) ⊂ E denote the edges crossing
the cut (S, V \S).

2.1 Subtour elimination linear program

Consider a (not necessarily complete) weighted graph G = (V , E) with edge weights
w(e) for e ∈ E . The output of TSP and 2EC on input graph G is a minimum weight
tour and a minimum weight 2-edge connected multigraph of G, respectively. The
following relaxation provides a lower bound on the weight of an optimal solution for
both problems.

zG = min
∑

e∈E
w(e)xe

x(δ(S)) ≥ 2 for ∅ ⊂ S ⊂ V (Subtour(G))

xe ≥ 0 for e ∈ E .

The metric completion of G is the complete graph Gmet on the vertex set of G such
that for u, v ∈ V the weight of the uv edge in Gmet is the weight of the shortest path
between u and v in G. Clearly, these weights obey the triangle inequality. TSP on G is
equivalent to finding aminimumweight tour inGmet . SinceGmet contains a minimum
weight tour that is a Hamilton cycle, the following degree constraints are valid and
yield the following seemingly stronger lower bound for TSP.

zGmet = min
∑

u,v∈V
w(uv)xuv

∑

u∈S,v /∈S
xuv ≥ 2 for ∅ ⊂ S ⊂ V (Subtour=(G))

∑

v∈V \{u}
xuv = 2 for u ∈ V

xuv ≥ 0 for u, v ∈ V .

Note that in the above formulation, edges uv and vu are the same, so xuv and xvu

represent the same variable. Cunningham showed that the bounds zG and zGmet are
in fact equal [16,23]. For a solution x ∈ Subtour=(G) let Gx = (V , Ex ), where
Ex = {uv : u, v ∈ V and xuv > 0}.

We will frequently use the following well-known fact [17].

Fact 1 Any point x ∈Subtour(G) dominates a convex combination of spanning trees,
which can be found efficiently.
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2.2 Cycle covers covering all 3- and 4-edge cuts

We now present one of our main tools for proving Theorems 1 and 2. Given a graph
G = (V , E), a cycle cover (also known as a 2-factor) of G is a collection of vertex
disjoint cycles whose vertex sets partition V . Cycle covers have been extensively
studied in the area ofmatching theory and have been also used to obtain approximation
algorithms for TSP.

Kaiser and Škrekovski [21] proved that every bridgeless, cubic graph has a cycle
cover that covers all 3-edge and 4-edge cuts of the graph. Their proof is not algorithmic
and an efficient, constructive version was given by Boyd, Iwata and Takazawa [3].

Theorem 5 (Boyd et al. [3]) Let G be a bridgeless, cubic graph. Then there is an
algorithm whose running time is polynomial in the size of G that finds a cycle cover
of G covering every 3-edge and 4-edge cut of G.

A straightforward observation is the following.

Observation 1 Let G be a 3-edge-connected, cubic graph. Let C be a cycle cover that
covers 3-edge cuts and 4-edge cuts in the graph. Then G/C is a 5-edge-connected
multigraph.

Cubic, bipartite graphs exhibit even more structure, allowing for a stronger corol-
lary.

Observation 2 Let G be a cubic, bipartite graph. Let C be a cycle cover of G. Then
the graph G/C is Eulerian.

Proof Each vertex in G/C corresponds to a cycle in C and the degree of this vertex
has the same parity as the number of edges in the cycle. Since G is bipartite, every
cycle in C is an even cycle. Therefore, each vertex in G/C has even degree, since it is
obtained by contracting a cycle in C . We can conclude that G/C is an Eulerian graph.


�
Observation 3 Let G be a 3-edge-connected, cubic, bipartite graph. Let C be a cycle
cover that covers 3-edge cuts and 4-edge cuts in the graph. Then G/C is a 6-edge-
connected graph.

Proof Graph G/C is 5-edge-connected by Observation 1. By Lemma 2, G/C is Eule-
rian. Therefore, G/C does not contain any cuts crossed by an odd number of edges.
In particular, G/C contains no 5-edge cuts. 
�

2.3 Tree augmentation

Wenext present one of ourmain tools for proving Theorem 2.We first state the 1-cover
problem on a laminar family of sets. A family of sets S is called laminar if for any
S and S′ in S, the set S ∩ S′ is equal to either S, S′ or ∅. For a graph G = (V , E),
we are given a laminar family of sets, S, where each set in S consists of a subset of
vertices. Additionally, we are given a set of edges E with nonnegative edge weights
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w(e) for e ∈ E . The 1-cover problem on family S asks for a 1-cover of S: a minimum
weight subset of edges C ⊆ E such that |C ∩ δ(S)| ≥ 1 for all S ∈ S. Indeed, we are
interested in a special case of the 1-cover problem on a laminar family of sets. Let F
be a spanning, connected multigraph of a given graph G, and let S be the family of
1-edge cuts of F : S = {S : |δ(S)∩ F | = 1}. In this case, we refer to a 1-cover of S as
a 1-cover of F . Define a block to be a maximal 2-edge-connected induced subgraph
of F . Consider the tree obtained from contracting the blocks of F . Rooting this tree at
an arbitrary vertex, we can find a laminar family SF of sets in S such that the 1-covers
of S are exactly the 1-covers of SF . Hence, the natural linear programming relaxation
for the 1-cover problem for a graph G = (V , E) and multigraph F of G is:

min
∑

e∈E
w(e)ye

s.t .
∑

e∈E :e∈δ(S)

ye ≥ 1 for all S ∈ SF (Cover(G, F))

ye ≥ 0 for all e ∈ E .

Let us denote the feasible region of the above linear program by Cover(G, F).
By contracting the blocks of F , we get a tree on these contracted components and
the 1-cover problem on SF is equivalent to the tree augmentation problem [13]. Its
integrality gap is known to be between 3

2 and 2 [9,13,20]. However, in the special
case of half-integral points, the integrality gap is much smaller. Cheriyan, Jordan and
Ravi [8] proved that if y ∈ Cover(G, F) and ye ∈ {0, 1

2 , 1} for all e ∈ E , then there
is an algorithm, whose running time is polynomial in the size of G, that writes the
vector 4

3 · y as a convex combination of 1-covers C1, . . . ,Ch of F . Iglesias and Ravi
generalized this result [19].

Theorem 6 (Iglesias and Ravi [19]) If y ∈ Cover(G, F) and ye ≥ α or ye = 0 for
all e ∈ E, then there is an algorithm, whose running time is polynomial in the size of
G, that writes the vector 2

1+α
· y as a convex combination of 1-covers C1, . . . ,Ch of

F.

3 Uniform covers

First, we recall Proposition 1, stated in the introduction. This observation is due to
Carr and Vempala [11], but we prove the proposition for completeness.

Proposition 1 The following statements are equivalent.

(a) If x ∈ Subtour=(G), the vector 4
3 x dominates a convex combination of tours in

Gx .
(b) For any positive integer k and an arbitrary k-edge-connected k-regular graph G,

the everywhere 8
3k vector for G dominates a convex combination of tours in G.
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Proof (a) 
⇒ (b): If G is k-edge-connected and k-regular, then y, defined to be the
everywhere 2

k vector forG, is inSubtour=(G). Therefore 4
3 y,which is the everywhere

8
3k vector for G, is dominated by a convex combination of tours of Gy . Notice that
Gy = G.

(b) 
⇒ (a): Let x ∈ Subtour=(G) for graph G = (V , E). Let k be the smallest
integer such that xe is a multiple of 1

k for every edge e ∈ Ex . LetG ′ = (V , E ′) be such
that E ′ has kxe copies of each e ∈ Ex . It is easy to observe thatG ′ is 2k-edge-connected
and 2k-regular. Let y be the everywhere 8

6k vector for G ′. So by (b), y dominates a

convex combination of tours in G ′: y ≥ ∑�
i=1 λiχ

Fi , where
∑�

i=1 λi = 1, λi > 0,
and Fi is a tour of G ′ for i = {1, . . . , �}. Since G ′ = k ·Gx , each Fi also corresponds
to a tour in Gx , and

∑�
i=1 λiχ

Fi (e) = 8
6k kxe = 4

3 xe. 
�

3.1 Algorithms for uniform covers

Recall that the polyhedral proof of Christofides’ algorithm can be used to prove state-
ment (b) in Proposition 1 when the factor 8

3k is replaced by
3
k . The problem of reducing

this factor to anything less than 3
k has been open for decades. In the case where k = 3,

we can improve this result.

Theorem 1 Let G = (V , E) be a 3-edge-connected, cubic graph. The everywhere 18
19

vector forG dominates a convex combinationof tours ofG and this convex combination
can be found in polynomial time.

Proof By Theorem 5, graph G has a cycle cover C such that C covers every 3-edge
and 4-edge cut of G. Let G/C be the graph obtained by contracting each cycle of
C in G. By Observation 1, G/C is 5-edge-connected. Define vector y ∈ R

E(G/C)

as follows: ye = 2
5 for e ∈ E(G/C). Observe that y ∈ Subtour(G/C). Thus, y

dominates a convex combination of spanning trees ofG/C , which can be computed in
polynomial time (see Fact 1). More precisely, we can write y ≥ ∑�

i=1 λiχ
Ti , where Ti

is a spanning tree of G/C ,
∑�

i=1 λi = 1, and λi > 0 for i ∈ {1, . . . , �}. Consequently,
we have 2y ≥ ∑�

i=1 λiχ
2Ti (i.e., the vector 2y dominates a convex combination of

doubled spanning trees of G/C).
Let M be the set of edges in E\C that are not in G/C ; these are the edges that

connect two vertices of the same cycle in C . Define vector v ∈ R(V2) as follows:
ve = 1 for e ∈ C , ve = 4

5 for e ∈ E\(M ∪ C), and ve = 0 otherwise. Note that

v ≥ ∑�
i=1 λiχ

C∪2Ti . For i ∈ {1, . . . , �}, the graph induced by C ∪ 2Ti is a tour.

Now we define u ∈ R(V2) as follows: ue = 1
2 for e ∈ C and ue = 1 for e ∈ E\C ,

and ue = 0 otherwise. We have u ∈ Subtour=(G) : for each cut D of G, if |D| ≥ 4,
clearly

∑
e∈D ue ≥ 2. If |D| = 3, then |C ∩ D| = 2, so

∑
e∈D ue = 2 · 1

2 + 1 = 2.
We can write 3

2u as a convex combination of tours [31].
Now vector 15

19v + 4
19 (

3
2u) can be written as convex combination of tours of G. For

edge e ∈ C we have 15
19ve + 4

19 (
3
2ue) = 15

19 + 4
19 (

3
2 · 1

2 ) = 18
19 . For e ∈ E(G/C) we

have 15
19ve + 4

19 (
3
2ue) = 15

19 · 4
5 + 4

19 (
3
2 ) = 18

19 . For e ∈ M , we have 15
19ve + 4

19 (
3
2ue) =
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0 + 4
19 (

3
2 ) = 6

19 . Therefore
15
19v + 4

19 (
3
2u) is dominated by the everywhere 18

19 vector
for G. 
�

IfG is also bipartite, then by Observation 3, the graphG/C in the proof of Theorem
1 is 6-edge connected. We can therefore improve Theorem 1 in this case.

Theorem 7 Let G = (V , E) be a 3-edge-connected, cubic, bipartite graph. The every-
where 12

13 vector for G dominates a convex combination of tours of G and this convex
combination can be found in polynomial time.

Proof Let C be the cycle cover in G that covers 3-edge and 4-edge cuts of G. By
Observation 3, G/C is 6-edge-connected. Let M be the set of edges that have both
endpoints in the same cycle in the cycle cover C . Similar to the proof of Theorem 1,

define vector v ∈ R(V2) as follows: ve = 1 for e ∈ C , ve = 2
3 for e ∈ E(G/C), and

ve = 0 otherwise. The vector v can be written as a convex combination of tours of G.
Now define u ∈ R(V2) as follows: ue = 1

2 for e ∈ C , ue = 1 for e ∈ E\C , and
ue = 0 otherwise. Since u ∈ Subtour=(G), this implies that 3

2u can be written as a
a convex combination of tours of G.

Finally, vector 9
13v + 4

13 (
3
2u) can be written as a convex combination of tours

of G. For e ∈ C , 9
13ve + 4

13ue = 9
13 + 4

13 (
3
4 ) = 12

13 . For e ∈ E(G/C) we have
9
13ve + 4

13ue = 9
13 · 2

3 + 4
13 (

3
2 ) = 12

13 . Finally, if e ∈ M , 9
13ve + 4

13ue = 4
13 (

3
2 ) = 6

13 .
This proves the result. 
�

We can further relax Conjecture 2 and ask whether or not the everywhere 8
9 vector

for a 3-edge-connected, cubic graph G can be written as a convex combination of
2-edge-connected multigraphs of G. The answer to this question is yes, and is a direct
corollary of a decomposition theorem due to Carr and Ravi [10]. In fact, in Lemma 1,
we show that for a 3-edge-connected, cubic graph G, the problem of determining if G
has an α-uniform cover can be reduced to bounding the integrality gap of half-integer
solutions for Subtour=(G).

Lemma 1 Let G = (V , E) a 3-edge-connected, cubic graph. Suppose for any x ∈
Subtour=(G) such that x ∈ {0, 1

2 , 1}(
V
2), the vector αx dominates a convex combi-

nation of tours (2-edge-connected multigraphs) of Gx . Then the everywhere
2
3α vector

for G dominates a convex combination of tours (2-edge-connected multigraphs) of G.

Proof Let y ∈ R
E be such that ye = 2

3 for e ∈ E . ByCorollary 30.8a in [28], y is in the
convex hull of cycle covers of G. Thus, there are cycle covers C1, . . . ,C� and positive
multipliers λ1, . . . , λ� such that

∑�
i=1 λi = 1 and y = ∑�

i=1 λiCi . For i ∈ {1, . . . , �},
define vector yi ∈ R(V2) as follows: yie = 1

2 for e ∈ Ci , yie = 1 for e ∈ E\Ci , and
yie = 0 otherwise. Observe that yi ∈ Subtour=(G) for i ∈ {1, . . . , �}. Furthermore,
v = ∑�

i=1 λi yi is the everywhere 2
3 vector for G; for e ∈ E we have

∑
i :e∈Ci

λi = 2
3

and
∑

i :e/∈Ci
λi = 1

3 , and so
∑�

i=1 λi yie = ∑
i :e∈Ci

λi · 1
2 + ∑

i :e/∈Ci
λi = 2

3 .

Since the vector yi ∈ {0, 1
2 , 1}(

V
2), the vector αyi dominates a convex combination

of tours (2-edge-connected multigraphs) of Gyi = G for i ∈ {1, . . . , �}. Therefore,
the everywhere 2

3α vector for G dominates a convex combination of tours (2-edge-
connected multigraphs) of G. 
�
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Theorem 8 (Carr and Ravi [10]) If x ∈ Subtour=(G) and x ∈ {0, 1
2 , 1}(

V
2), then the

vector 4
3 x dominates a convex combination of 2-edge-connected multigraphs of Gx .

Corollary 8.1 Let G = (V , E) be a 3-edge-connected, cubic graph. The everywhere 8
9

vector for G dominates a convex combination of 2-edge-connected multigraphs of G.

Proof Follows directly from Lemma 1 and Theorem 8. 
�

However, this proof does not yield a polynomial-time decomposition since the num-
ber of multigraphs in the convex combination output via Theorem 8 is not guaranteed
to be polynomial in the size of G. In fact, Legault proved a result that is stronger than
Lemma 1: the everywhere 7

9 vector for G can be written as a convex combination of
2-edge-connected subgraphs [22]. Notice that the result of Legault is stronger not only
because the 7

9 is smaller than 8
9 , but also in the sense that it restricts the multigraphs

to subgraphs, i.e. no edge in G is doubled. However, the proof in [22] also does not
guarantee that the number of subgraphs in the decomposition is polynomial in the size
of G.

We now present a stronger version of Corollary 8.1. For the rest of this section we
will do all computations on the edges of the graph G = (V , E) so all the vectors are
in dimension of E . Thus, henceforth we slightly abuse the everywhere vector notation
to make the presentation simpler. Indeed, we can extend all the vectors to dimension(V
2

)
by adding zeros.

Theorem 9 Let G = (V , E) be a 3-edge-connected, cubic graph. The everywhere 8
9

vector for G dominates a convex combination of 2-edge-connected subgraphs of G
and this convex combination can be found in polynomial time.

Proof Let y ∈ R
E be such that ye = 2

3 for e ∈ E . Since y ∈ Subtour(G), we
can find in polynomial time spanning trees T1, . . . , T� of G and positive multipliers
λ1, . . . , λ� such that

∑�
i=1 λi = 1 and y ≥ ∑�

i=1 λiχ
Ti . For i ∈ {1, . . . , �} define

vector yi ∈ R
E as follows: yie = 0 for e ∈ Ti and yie = 1

2 for e /∈ Ti . Since G is 3-
edge-connected, we have yi ∈ Cover(G, Ti ) for i ∈ {1, . . . , �}. By Theorem 6, there
is a polynomial-time algorithm that finds 1-coversCi

1, . . . ,C
i
�i
of Ti for i ∈ {1, . . . , �}

and positive multipliers λi1, . . . , λ
i
�i
such that

∑�i
j=1 λij = 1 and 4

3 y
i = ∑�i

j=1 λijχ
Ci

j

for i ∈ {1, . . . , �}. Note that Ti + Ci
j is a 2-edge-connected subgraph of G for i ∈

{1, . . . , �} and j ∈ {1, . . . , �i }. Hence,

u =
∑

i∈{1,...,�}

∑

j∈{1,...,�i }
λiλ

i
jχ

Ti∪Ci
j , where

∑

i∈{1,...,�}

∑

j∈{1,...,�i }
λiλ

i
j = 1

is a convex combination of 2-edge-connected multigraphs of G. By construction, an
edge cannot belong both to a tree Ti and to a 1-cover Ci

j . Thus, there are no doubled

edges in any solution. Vector u is the everywhere 8
9 vector for G: for e ∈ E , we have
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ue =
∑

i :e∈Ti

�i∑

j=1

λiλ
i
j +

∑

i :e/∈Ti

∑

j :e∈Ci
j

λiλ
i
j ≤ 2

3
+ 1

3
· 2
3

= 8

9
.


�
Observe that in the proof of Lemma 9, we never double any edge in any of the

2-edge-connected subgraphs. (Hence, the statement of lemma uses subgraph rather
thanmultigraph.) If we relax this and allow doubled edges, we can indeed improve the
factor by combining the ideas from Theorem 1 and Theorem 9 to improve the bound
in Theorem 9 from 8

9 to 15
17 .

Theorem 2 Let G = (V , E) be a 3-edge-connected, cubic graph. The everywhere 15
17

vector for G dominates a convex combination of 2-edge-connected spanning multi-
graphs of G and this convex combination can be found in polynomial time.

Proof Let C be a cycle cover of G that covers every 3-edge and 4-edge cut of G. By
Observation 1, the graph G/C is 5-edge-connected. Let M = E\(C ∪ E(G/C)).
Define r ∈ R

E(G/C) as follows: re = 2
5 for e ∈ E(G/C). We have r ∈

Subtour(G/C), so 3
2r dominates a convex combination of tours of G/C : namely

R1, . . . , R�. Observe that the graph induced by C ∪ Ri is a 2-edge-connected multi-
graph of G for i ∈ {1, . . . , �}. So, the vector v ∈ R

E where ve = 1 for e ∈ C ,
ve = 3

5 for e ∈ E(G/C), and ve = 0 for e ∈ M dominates a convex combination of
2-edge-connected multigraphs of G.

Now define y ∈ R
E as follows: ye = 1

2 for e ∈ C and ye = 1 for e ∈ E\C .
Since y ∈ Subtour(G), we can efficiently find spanning trees T1, . . . , T� of G and
convex multipliers λ1, . . . , λ� such that y ≥ ∑�

i=1 λiχ
Ti . For i ∈ {1, . . . , �} define

yi ∈ R
E as follows: yie = 1

2 for e /∈ Ti and yie = 0 otherwise. Notice, that yi ∈
Cover(G, Ti ), hence by Theorem 6, there is a polynomial-time algorithm that finds
1-coversCi

1, . . . ,C
i
�i
of Ti for i ∈ {1, . . . , �} and positive multipliers λi1, . . . , λ

i
�i
such

that
∑�i

j=1 λij = 1 and 4
3 y

i = ∑�i
j=1 λijχ

Ci
j for i ∈ {1, . . . , �}. Note that Ti + Ci

j is a
2-edge-connected subgraph of G for i ∈ {1, . . . , �} and j ∈ {1, . . . , �i }. Hence,

u =
∑

i∈{1,...,�}

∑

j∈{1,...,�i }
λiλ

i
jχ

Ti∪Ci
j , where

∑

i∈{1,...,�}

∑

j∈{1,...,�i }
λiλ

i
j = 1

is a convex combination of 2-edge-connected multigraphs of G. For e ∈ C , we have

ue =
∑

i :e∈Ti

�i∑

j=1

λiλ
i
j +

∑

i :e/∈Ti

∑

j :e∈Ci
j

λiλ
i
j ≤ 1

2
+ 1

2
· 2
3

= 5

6
.

For e /∈ C , we have

ue =
∑

i :e∈Ti

�i∑

j=1

λiλ
i
j +

∑

i :e/∈Ti

∑

j :e∈Ci
j

λiλ
i
j ≤ 1 + 0 = 1.
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Finally we conclude that the vector 5
17v + 12

17u can be efficiently written as convex
combination of 2-edge-connectedmultigraphs ofG. For e ∈ C we have 5

17ve+ 12
17ue =

5
17 + 12

17 · 5
6 = 15

17 . For e ∈ G/C we have 5
17ve + 12

17ue = 5
17 · 3

5 + 12
17 = 15

17 . For e ∈ M

we have 5
17ve + 12

17ue = 5
17 · 0 + 12

17 = 12
17 . Therefore

5
17v + 12

17u is dominated by the
everywhere 15

17 vector for G. 
�
We note that in the proof of Theorem 2, since the vector y is half-integral, we

can apply Theorem 8 to conclude that 4
3 y dominates a convex combination of 2-edge-

connectedmultigraphs ofG. This shows that the everywhere 7
8 vector forG dominates

a convex combination of 2-edge-connected multigraphs. (Specifically, 3
8 (

4
3 y) + 5

8v is
dominated by the everywhere 7

8 vector for G.) But this approach does not produce a
convex combination in polynomial-time. We can improve Theorem 2 slightly when
the graph G is also bipartite.

Theorem 10 Let G = (V , E) be a 3-edge-connected, cubic, bipartite graph. The
everywhere 7

8 vector for G dominates a convex combination of 2-edge-connected
multigraphs of G and this convex combination can be found in polynomial time.

Proof Let C be the cycle cover in G that covers 3-edge and 4-edge cuts of G. Let M
be the set of edges in G that have both endpoints in the same cycle of C . Since G/C
is 6-edge-connected, the vector r with re = 1

3 for e ∈ E(G/C) is in Subtour(G/C).
Therefore, we can show, similarly as in the proof of Theorem 2, that the vector v

such that ve = 1 for e ∈ C and ve = 3
2 · 1

3 = 1
2 for e ∈ E(G/C) and ve = 0 for

e ∈ M can be written as a convex combination of 2-edge-connected multigraphs of
G in polynomial time. Furthermore, as in the proof of Theorem 2, the vector u, where
ue = 5

6 for e ∈ C , ue = 1 for e ∈ E\C , can be written as a convex combination of
2-edge-connected subgraphs of G in polynomial time. Note that the vector 1

4v + 3
4u

is dominated by the everywhere 7
8 vector for G. 
�

For the case where k = 4 in Proposition 1, Carr and Ravi [10] showed that the
everywhere 2

3 vector can be written as a convex combination of 2-edge-connected
subgraphs.3 But as we mentioned earlier, their proof is constructive but might require
exponential time. The only known result on this problem before this work is applying
Wolsey [31]’s decomposition which implies that the everywhere 3

4 vector for a 4-
edge-connected 4-regular graph can be decomposed into a convex combination of
2-edge-connected spanning multigraphs in polynomial time. However, this is weaker
in terms of both the factor and the fact that we now allow doubled edges. By applying
Theorem 6 we can slightly improve this. The proof of the following theorem is very
similar to the proof of Theorem 9.

Theorem 11 Let G = (V , E) be a 4-edge-connected, 4-regular graph. The every-
where 3

4 vector for G dominates a convex combination of 2-edge-connected subgraphs
of G and this convex combination can be found in polynomial time.

3 [10] do not double half edges, so in fact here we obtain a convex combination of subgraphs.
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Proof Since G is a 4-edge-connected 4-regular graph the everywhere 1
2 vector for

G, call it v, is in Subtour(G). Therefore, v can be written as convex combination
of spanning trees of G: v ≥ ∑�

i=1 λiχ
Ti , where λ1, . . . , λ� are convex multipliers

and T1, . . . , T� are spanning trees of G. For i ∈ {1, . . . , �}, define a vector yi , where
yie = 0 if e ∈ Ti and yie = 1

3 if e /∈ Ti . Since G is 4-edge-connected we have
yi ∈ Cover(G, Ti ). By Theorem 6, we can find 1-covers Ci

1, . . . ,C
i
�i
of Ti for i ∈

{1, . . . , �} with convex multipliers λi1, . . . , λ
i
�i

such that 3
2 y

i = ∑�i
j=1 λijχ

Ci
j for

i ∈ {1, . . . , �}. Now Ti + Ci
j is a 2-edge-connected subgraph of G for i ∈ {1, . . . , �}

and j ∈ {1, . . . , �i }. Let

u =
∑

i∈{1,...,�}

∑

j∈{1,...,�i }
λiλ

i
jχ

Ti∪Ci
j , where

∑

i∈{1,...,�}

∑

j∈{1,...,�i }
λiλ

i
j = 1.

We can write u as a convex combination of 2-edge-connected subgraphs of G. Also,

ue =
∑

i :e∈Ti

�i∑

j=1

λiλ
i
j +

∑

i :e/∈Ti

∑

j :e∈Ci
j

λiλ
i
j = 1

2
+ 1

2
· 1
3

· 3
2

= 3

4
.


�

4 A bit beyond uniform covers: node-weight metrics

Theorems 1 and 2, which we proved in Sect. 3, imply that when G is a 3-edge-
connected, cubic graph and the everywhere 2

3 vector is an optimal solution for
Subtour=(G), we can efficiently find a tour and a 2-edge-connected spanning multi-
graphwhose costs are atmost 2719 and

45
34 , respectively, times that of an optimal solution.

A 3-edge-connected, cubic graph with node-weight function f : V → R
+ falls into

this category, aswewill show later on. However, for such graphswe can obtain approx-
imation guarantees better than 27

19 and 45
34 for the respective problems. The techniques

we use to show this are similar to those used in Sect. 3. However, these techniques
do not generalize to cubic graphs that have 2-edge cuts. In order to obtain improved
approximation algorithms for thismore general class of graphs,we introduce a connec-
tor decomposition theorem. We use this decomposition theorem to design algorithms
for 2EC and TSP on node-weighted, subcubic graphs.

4.1 3-Edge-connected cubic graphs

First we show that the everywhere 2
3 vector is in fact an optimal solution for

Subtour(G) when G is a cubic, 3-edge-connected graph.

Lemma 2 Let G = (V , E) be a 3-edge-connected, cubic graph with node-weight
function f : V → R

+. Then zG = 2 · ∑
v∈V fv .
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Proof For any x ∈ Subtour(G), we have x(δ(v)) ≥ 2. So,

∑

e∈E
w(e)xe =

∑

v∈V
x(δ(v)) · fv ≥ 2 ·

∑

v∈V
fv.

Thus, zG ≥ 2·∑v∈V fv .On theother hand, let x ′
e denote the everywhere

2
3 vector forG.

Note that x ′ ∈Subtour(G), sinceG is 3-edge-connected.Moreover,
∑

e∈E w(e)x ′
e =

2 · ∑
v∈V fv . Hence zG ≤ 2 · ∑

v∈V fv . 
�
Thus, we see that we can achieve a 27

19 -approximation for TSP on node-weighted,
cubic, 3-edge-connected graphs. We now show in fact this approximation ratio can be
improved in this special case. We start with the following observations.

Fact 2 Let C be a cycle cover of G. Then
∑

e∈C w(e) = 2 · ∑
v∈V fv = zG .

Fact 3 Let M be a perfect matching of G. Then
∑

e∈M w(e) = ∑
v∈V fv = zG

2 .

Theorem 3 There is a 7
5 -approximation algorithm for TSP on node-weighted, 3-edge-

connected, cubic graphs.

Proof Let C be a cycle cover of G that covers all 3-edge and 4-edge cuts of G. By
Observation 1, the graph G/C is 5-edge-connected. Let ye = 2

5 if e ∈ E(G/C), and
ye = 0 otherwise. Notice that y ∈ Subtour(G/C), since for every S ⊂ V (G/C), we
have y(δ(S)) ≥ 2

5 · 5 ≥ 2. By Fact 1, y dominates a convex combination of spanning
trees of G/C . Let T be a minimum spanning tree of G/C .

∑

e∈T
w(e) ≤

∑

e∈E(G/C)

w(e)ye

≤
∑

e∈E\C
w(e)ye (E(G/C) ⊆ E\C)

≤
∑

e∈E\C
w(e) · 2

5

(

ye ≤ 2

5
for e ∈ E\C

)

= zG
2

· 2
5

= zG
5

(By Fact 3; E\C is a perfect matching of G).

Finally, note that C ∪ 2T is a tour of G and

∑

e∈C∪2T
w(e) ≤

∑

e∈C
w(e) + 2 ·

∑

e∈T
w(e) ≤ zG + 2

5
zG = 7

5
zG .


�
Next we show that we can use a very similar approach to 2EC on node-weighted,

3-edge-connected, cubic graphs.

Theorem 12 There is a 13
10 -approximation algorithm for 2EC on node-weighted, 3-

edge-connected, cubic graphs.
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Proof Let C be a cycle cover of G that covers all 3-edge and 4-edge cuts of G.
By Observation 1 graph G/C is 5-edge-connected. For e ∈ E(G/C) let ye = 2

5 ,
and ye = 0 otherwise. Notice that y ∈ Subtour(G/C). By Christofides’ algorithm,
one can find a 2-edge-connected multigraph F on G/C , such that

∑
e∈F w(e) ≤

3
2

∑
e∈E(G/C) w(e)ye. In particular,

∑

e∈F
w(e) ≤ 3

2

∑

e∈E(G/C)

w(e)ye

≤ 3

2

∑

e∈E\C
w(e)ye (E(G/C) ⊆ E\C)

≤ 3

5

∑

e∈E\C
w(e)

(

ye ≤ 2

5
for e ∈ E\C

)

= 3

10
zG (By Fact 3; E\C is a perfect matching of G).

Note that C ∪ F is a 2-edge-connected multigraph of G and

∑

e∈C∪F

w(e) ≤
∑

e∈C
w(e) +

∑

e∈F
w(e) ≤ zG + 3

10
zG = 13

10
zG .


�
We note that for the 2EC problem on 3-edge-connected cubic graphs, there are

better (i.e., smaller) bounds on the integrality gap than those implied by Theorem
12. In particular, Boyd and Legault [4] and Legault [22] gave bounds of 6

5 and 7
6 ,

respectively, on the integrality gap. While their procedures are constructive, they do
not run in polynomial time. Thus, the best previously known approximation factor
for this problem is 3

2 via Christofides algorithm. Finally one can easily obtain the
following theorem using the ideas in the above theorems together with Observation 3.

Theorem 13 There is a 4
3 -approximation (respectively, 5

4 -approximation) algorithm
for TSP (respectively, 2EC) on node-weighted, 3-edge-connected, cubic, bipartite
graphs.

4.2 A tool for covering 2-edge cuts

The results in Theorems 3 and 12 do not apply to bridgeless, cubic graphs. In this
section, we give an alternative tool to the BIT cycle cover (from Theorem 5) for graphs
that are not 3-edge-connected (i.e., graphs that contain 2-edge cuts). In particular, we
find a decomposition of a point x∗ in Subtour(G) such that this decomposition has
certain properties.Many approaches for TSP decompose x∗ into a convex combination
of spanning trees,whose averageweight does not exceed zG . In this section,wepropose
an alternate way of decomposing x∗ into connectors.
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Definition 1 A connector F of graph G is a (multi) subset of edges of G such that F
is connected and spanning and contains at most two copies of each edge in G.

It is known that a vector x∗ ∈ Subtour(G) dominates a convex combination of
spanning trees (and hence connectors) ofG. We now show that x∗ can be decomposed
into connectors with the additional property that every 2-edge cut is covered an even
number of times. These connectors can be augmented to obtain a tour or a 2-edge-
connectedmultigraph ofG, and under certain conditions, this property can be exploited
to bound the weight of an augmentation.

Theorem 14 Let x∗ ∈ Subtour(G). We can find a family of connectors F =
{F1, . . . , F�} and multipliers λ1, . . . , λ�, in polynomial-time in the size of the graph
G, such that

(a) x∗ ≥ ∑�
i=1 λi Fi , where

∑
λi = 1 and λi > 0, and

(b) every Fi has an even number of edges crossing each 2-edge cut in G.

We note that G can be assumed to be the support of x∗, so every Fi will actually
have an even number of edges crossing each 2-edge cut in the support of G on x∗.

4.2.1 Proof of Theorem 14

To prove Theorem 14, we need to understand the structure of 2-edge cuts in a 2-edge
connected graph. Assume G = (V , E) is a 2-edge-connected graph. For S ⊆ V , let
G[S] denote the subgraph induced by vertex set S (i.e., the graph on the vertex set S
containing edges from E with both endpoints in S).

Lemma 3 If S ⊆ V and |δ(S)| = 2, then G[S] is connected.
Proof Suppose not, then S can be partitioned into S1 and S2, such that there is no
edge in G between S1 and S2. Hence, |δ(S1)| + |δ(S2)| = 2. However, since G is
2-edge-connected we have |δ(S1)| + |δ(S2)| ≥ 4, which is a contradiction. 
�
Lemma 4 Let e, f and g be distinct edges of G. If {e, f } and { f , g} are each 2-edge
cuts in G, then {e, g} is also a 2-edge cut in G.

Proof Let S, T ⊂ V be such that δ(S) = {e, f } and δ(T ) = { f , g}. Without loss of
generality, we can assume that neither endpoint of e belongs to T . (If both endpoints
of e belong to T , we set T equal to its complement.) Moreover, we can assume that
S ∩ T �= ∅ (since otherwise we can set S equal to its complement). We can also
assume that S\T �= ∅ (since one endpoint of e belongs to S but not to T ). Suppose
T \S is not empty. By Lemma 3,G[T ] is connected. Hence there exists an edge h from
S ∩ T to T \S. Notice h ∈ δ(S), and h /∈ δ(T ). Therefore, h = e. However, since both
endpoints of h are in T , this is a contradiction. So we can assume that T \S = ∅. In
other words, T ⊂ S.

Now we show that δ(S\T ) = {e, g}. Since T ⊂ S and neither endpoint of e
belongs to T , it follows that e ∈ δ(S\T ). Moreover, since only one endpoint of g
belongs to T (and therefore to S) and g /∈ δ(S), it follows that g ∈ δ(S\T ). So we
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have {e, g} ⊆ δ(S\T ). Suppose there is another edge h ∈ δ(S\T ) with endpoints
v ∈ S\T and u /∈ S\T . Note that h �= f , because neither endpoint of f belongs
to S\T . If u ∈ T , then h ∈ δ(T ) which is a contradiction to T being a 2-edge cut.
Otherwise if u ∈ V \S, then h ∈ δ(S) which is again a contradiction to S being a
2-edge cut. 
�

We will later use these properties when building a family of connectors to delete
and replace edges along the 2-edge cuts of the graph. Next, we need a decomposition
lemma for x∗.

Lemma 5 A vector x∗ ∈ Subtour(G) can be represented as a convex combination
of connectors of G, and the number of connectors in this convex combination is
polynomial in the number of vertices of G.

Proof By Corollary 50.8a in [28] the following polytope is the convex hull of connec-
tors of G.

x(δ(P)) ≥ |P| − 1 for P ∈ �n

0 ≤ xe ≤ 2 for e ∈ E

Here, �n is the collection of partitions of V . For P ∈ �n , we denote by δ(P) the set
of edges with endpoint in different parts of partition P , and |P| is the number of parts
in partition P . Notice that for any partition P of V with parts P1, . . . , P|P | we have

x∗(δ(P)) = 1

2

|P |∑

i=1

x∗(δ(Pi )) ≥ |P|.

Therefore, x∗ can be written as a convex combination of connectors of G. The fact
that the number of connectors in the convex combination is polynomial follows from
the fact that the polytope above is separable, and hence we can apply the constructive
version of Carathéodory’s theorem to get the result [17,28]. 
�

By Lemma 5, there exists positive reals λ1, . . . , λ�, such that
∑�

i=1 λi = 1, and
connectors F1, . . . , F� such that

x∗ =
�∑

i=1

λiχ
Fi , (1)

where χ Fi is the characteristic vector of Fi for i ∈ {1, . . . , �}. Furthermore, we can
find this decomposition in time polynomial in the size of G. Notice F1, . . . , F� satisfy
(a) in the statement of Theorem 14. We will now show that given F1, . . . , F�, we can
obtain a new family of connectors satisfying both (a) and (b) from Theorem 14.

Lemma 6 Given a family of connectors F1, . . . , F� of G such that x∗ = ∑�
i=1 λiχ

Fi ,
λi > 0 for i ∈ {1, . . . , �}, and ∑�

i=1 λi = 1, there is a polynomial-time algorithm
that outputs connectors F ′

1, . . . , F
′
� such that
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(1) x∗ = ∑�
i=1 λiχ

F ′
i .

(2) If x∗
e ≥ 1, then χ F ′

i (e) ≥ 1 for all i ∈ {1, . . . , �}.
(3) If x∗

e < 1, then there is no i ∈ {1, . . . , �} such that χ F ′
i (e) = 2.

Proof Call a tuple (e, i, j) where e ∈ E , i, j ∈ {1, . . . , �} bad if

χ Fi (e) = 2 and χ Fj (e) = 0.

Let m be the number of bad tuples and let (e, i, j) be a bad tuple. Then

F ′
i = Fi − e, F ′

j = Fj + e, and F ′
p = Fp for p ∈ {1, . . . , �}\{i, j}

satisfies property (1). Notice that now F ′
1, . . . , F

′
� has at most m − 1 bad tuples; no

new bad tuples are created by the above procedure. Thus, after at most m iterations,
we have that for each e ∈ E , there is no i, j ∈ {1, . . . , �} such that χ F ′

i (e) = 2 and

χ
F ′
j (e) = 0. This implies properties (2) and (3) in the statement of the lemma. Finally,

it is also easy to see that fixing each tuple can be done in polynomial time, and that
the number of tuples is polynomial in the size of G. 
�

We now proceed to the proof of Theorem 14. By Lemma 4, the relation “is in a
2-edge cut with” is transitive. So, we can partition the edges in 2-edge cuts of G into
equivalence classes via this relation. LetD be the collection of disjoint subsets of edges
of G such that for all D ∈ D: (i) |D| ≥ 2, and (ii) for each pair of edges {e, f } ⊆ D,
edges e and f form a 2-edge cut of G. Note that for D ∈ D and any distinct edges
e, f ∈ D, it cannot be the case that both x∗

e < 1 and x∗
f < 1, since {e, f } is a 2-edge

cut and x∗ ∈ Subtour(G). We classify the subsets in D into two types:

D1 = {D ∈ D : for all e ∈ D, x∗
e ≥ 1},

D2 = {D ∈ D : there is exactly one edge e ∈ D such that x∗
e < 1}.

Let F1, . . . , F� be a family of connectors satisfying properties (1), (2) and (3) in
Lemma 6. We propose a procedure to modify these connectors and output F ′

1, . . . , F
′
�

such that for each D ∈ D, property (b) in Theorem 14 is satisfied while property (a)
is preserved. In particular, by property (1) from Lemma 6, we have

�∑

i=1

χ Fi (e) = x∗
e for e ∈ E .

Our specific procedure depends on whether D ∈ D1 or D ∈ D2.

Case 1 (D ∈ D1): In this case, we have χ Fi (e) ≥ 1 for all e ∈ D and i ∈ {1, . . . , �},
by property (2) in Lemma 6. For i ∈ {1, . . . , �} let F ′

i be such that

χ F ′
i (e) = 1 for e ∈ D and χ F ′

i (e) = χ Fi (e) for e ∈ E\D.
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Now we reset F1, . . . , F� := F ′
1, . . . , F

′
�, and proceed to the next D ∈ D1.

It is easy to see that we can apply this procedure iteratively for D ∈ D1. This is
because after applying this operation on D ∈ D1, properties (2) and (3) in Lemma 6
are preserved. Moreover, property (1) in Lemma 6 is also preserved for every edge
not in D, i.e.

�∑

i=1

λiχ
F ′
i (e) = x∗

e for all e ∈ E\D
(

and
∑�

i=1
λiχ

F ′
i (e) ≤ x∗

e for all e ∈ D

)

.

In addition, given any 2-edge cut {e, f } such that {e, f } ⊆ D for D ∈ D1, we have
χ F ′

i (e) + χ F ′
i ( f ) = 1 + 1 = 2 for all i ∈ {1, . . . , �}.

Case 2 (D ∈ D2): Let e be the unique edge in D with x∗
e < 1. By property (3) in

Lemma 6, we have χ Fi (e) ≤ 1 for all i ∈ {1, . . . , �}. Without loss of generality,
assume for χ Fi (e) = 1 for i ∈ {1, . . . , p} and χ Fi (e) = 0 for i ∈ {p + 1, . . . , �}. For
i ∈ {1, . . . , p}, let F ′

i be such that

χ F ′
i ( f ) = 1 for f ∈ D and χ F ′

i ( f ) = χ Fi ( f ) for f ∈ E\D.

For i ∈ {p + 1, . . . , �}, let F ′
i be such that

χ F ′
i (e) = 0, χ F ′

i ( f ) = 2 for f ∈ D\{e} and χ F ′
i ( f ) = χ Fi ( f ) for f ∈ E\D.

Now we reset F1, . . . , F� := F ′
1, . . . , F

′
�, and proceed to the next D ∈ D2. After each

iteration, we observe that

�∑

i=1

λiχ
F ′
i (e) =

p∑

i=1

λiχ
F ′
i (e) +

�∑

i=p+1

λiχ
F ′
i (e)

=
p∑

i=1

λi = x∗
e . (2)

For f ∈ D\{e}, we have
�∑

i=1

λiχ
F ′
i ( f ) =

p∑

i=1

λiχ
F ′
i ( f ) +

�∑

i=p+1

λiχ
F ′
i ( f )

=
p∑

i=1

λi + 2
�∑

i=p+1

λi

= x∗
e + 2(1 − x∗

e ) (From (2))

= 2 − x∗
e

≤ x∗
f (Since x∗ ∈ Subtour(G)).
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This also clearly holds for any f ∈ E\D as we do not touch these edges. Note that
after the final iteration, F1, . . . , F� are connected, spanning multigraphs ofG, because
we began with connected, spanning multigraphs and we only remove an edge f from
Fi if it contained at least two copies of f .

Finally, note that given any 2-edge cut {e, f } ∈ D for D ∈ D2, we have χ Fi (e) +
χ Fi ( f ) = 1+1 = 2, χ Fi (e)+χ Fi ( f ) = 0+2 = 2 or χ Fi (e)+χ Fi ( f ) = 2+2 = 4
for all i ∈ {1, . . . , �}. This concludes the proof of Theorem 14.

4.3 Subcubic graphs

We now present two applications of Theorem 14. In the first application, we show that
for a node-weighted, subcubic graph, Christofides’ algorithm has an approximation
factor better than 3

2 when the weight of an optimal subtour solution is strictly larger
than twice the sum of the nodeweights. In the second application, we show that there is
a set of edges that can be added to a connector to yield a 2-edge-connected graph, and
this addition can be found via an application of the tree augmentation problem, which
we introduced in Sect. 2.3. This resembles methods used in the proof of Theorem 9.
We then show that combining the approaches in these applications, we can beat the
approximation ratio of Christofides’ algorithm for 2EC on node-weighted, subcubic
graphs.

A useful fact about node-weighted, subcubic graphs is that the total edge weight
cannot be too much larger than zG .

Fact 4 Let G = (V , E) be a node-weighted, subcubic graph. Then w(E) ≤ 3
2 zG.

Proof Observe that w(E) ≤ 3 · ∑
v∈V fv , where f : V → R

+ is the node-weight
function. Also, notice that zG ≥ 2 · ∑

v∈V fv . 
�
Since all graphs are assumed to be 2-vertex-connected (i.e., bridgeless), we can

show the following fact.

Fact 5 Let G = (V , E) be a node-weighted, subcubic graph. Then zG ≤ 3 ·∑v∈V fv .

Proof This follows from the fact that xe = 1 for all e ∈ E is a feasible solution for
Subtour(G) when G is a 2-vertex-connected subcubic graph. 
�

For the remainder of this section, let x∗ be an optimal solution for Subtour(G).
By Theorem 14, we have x∗ ≥ ∑�

i=1 λiχ
Fi where Fi is a connector satisfying (a) and

(b) in the statement of Theorem 14 for i ∈ {1, . . . , �}. Let x ′ = ∑�
i=1 λiχ

Fi . Clearly∑
e∈E w(e)x ′

e ≤ zG . Define x̄ ∈ R
E as follows: x̄e = min{1, x ′

e}.

4.3.1 An algorithm for TSP à la Christofides with simple deletions

In the graph metric, every (minimum) spanning tree has weight at most n. It follows
that in the case where zG ≥ (1 + ε)n, Christofides’ algorithm has an approximation
guarantee strictly better than 3

2 (in fact, at most ( 32 − ε
1+ε

)). This implies that, in some
sense, the most difficult case for graph-TSP is when zG = n. It seems that it should
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(a) (b)

Fig. 1 The graph in b has a total of 10t (here t = 5) vertices: each circular vertex corresponds to the
gadget in a. The weight of each square vertex in b is 1, and all other vertices have weight zero. A minimum
spanning tree (denoted by the thick, blue edges) has weight 5t − 2 while sum of the node weights is 2t . In
this case, Theorem 15 yields a tour of weight 7t − 2, providing a 7

5 -approximation for this instance (color
figure online)

also be the case for node-weighted graphs: the most difficult case should be when
zG = 2 · ∑

v∈V fv , and when zG ≥ (1 + ε) · 2 · ∑
v∈V fv , Christofides’ algorithm

should give an approximation guarantee strictly better than 3
2 .

However, in the case of node-weighted graphs (even for subcubic graphs), a min-
imum spanning tree of G may have weight exceeding 2 · ∑

v∈V fv when zG >

2 ·∑v∈V fv . See Fig. 1 for an example. Thus, proving an approximation factor strictly
better than 3

2 for node-weighted graphs in this scenario does not follow the same argu-
ment as in the graph metric. Nevertheless, we can use connectors to prove that we
can beat Christofides’ algorithm when G is a subcubic node-weighted graph and zG
is much larger than 2 · ∑

v∈V fv .

Lemma 7 Let G = (V , E) be a graph with nonnegative edge weights. There is an
efficient algorithm to find a tour in G with weight at most zG + w(E)

3 .

In fact, we prove something slightly stronger that will be useful later in the paper.

Lemma 8 Let G = (V , E) be a graph with nonnegative edge weights. There is an
efficient algorithm to find a tour in G with weight at most w(E)

3 + 1
3 · ∑e∈E w(e)x ′

e +
2
3 · ∑

e∈E w(e)x̄e.

For a subset T of vertices in V , where |T | is even, a T -join of G is a subgraph J of
G in which the set of odd-degree vertices of J are exactly T . Edmonds and Johnson
[12] proved that the inequalities below describe the convex hull of T -joins of G.

x(δ(U )\W ) − x(W ) ≥ 1 − |W | for U ⊆ V ,W ⊆ δ(U ), |U ∩ T | + |W | odd
(T - Join(G))

0 ≤ xe ≤ 1 for all e ∈ E .

In Christofides’ algorithm, one can write an optimal solution x∗ for Subtour(G)

as a convex combination of spanning trees (see Fact 1). Each of these spanning trees
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is then augmented with a T -join, where T ⊆ V is the set of odd-degree vertices in the
spanning tree. In particular, for a spanning tree F of G, let T be the set of odd-degree
vertices of F . Then, x

∗
2 dominates a point in the T -join polytope. This mean the vector

x∗ + x∗
2 = 3

2 x
∗ dominates a convex combination of tours of G.

If we decompose the optimal solution for Subtour(G) into a family of connectors
according to Theorem 14, then we can augment each connector by a T -join that is
obtained from writing the vector { 13 }E as a convex combination of T -joins.

Lemma 9 Let F be a family of connectors for G = (V , E) satisfying properties (a)
and (b) from Theorem 14. For an Fi ∈ F , let T denote the odd-degree vertices in Fi .
Then the vector { 13 }E belongs to T - Join(G).

Proof Let F be a connector of G and let T ⊆ V denote the vertices with odd degree
in F . Since all edges have value 1

3 , we only need to check that

|δ(U )|
3

+ |W |
3

≥ 1 for U ⊆ V ,W ⊆ δ(U ), |U ∩ T | + |W | odd. (3)

Consider U ⊂ V such that |δ(U )| = 2. Note that
∑

e∈δ(U ) χ F
e is even by the

properties of a connector. This implies that |U ∩ T | is even. So we need to check the
case where |W | = 1. In this case, we see that Inequality (3) is satisfied. Now consider
case in which |δ(U )| ≥ 3. In this case,

|δ(U )|
3

+ |W |
3

≥ |δ(U )|
3

≥ 1.

Hence, { 13 }E ∈ T - Join(G). 
�
Observe that Lemma 9 is sufficient to prove Lemma 7. To prove (the potentially

stronger) Lemma 8,wemodifyChristofides’ algorithm further by adding the following
deletion step. Suppose an edge e occurs in a connector F as a doubled edge. If this
edge e also belongs to the T -join J , we remove two copies of e from the multigraph
F ∪ J . We observe that the resulting multigraph remains a tour.

Observation 4 Let F be a connector for G = (V , E) and let J be a T -join, where T
is the set of vertices with odd degree in F. Let E ′ ⊂ E denote the set of edges that
occur doubled in F and also belong to J . Then the multigraph F ∪ J\{2E ′} is a tour.

We are now ready to prove Lemma 8 via an analysis of the modified Christofides’
algorithm we have just described.

Proof of Lemma 8 Wehave x ′ = ∑�
i=1 λiχ

Fi where Fi is a connector satisfying (a) and
(b) in the statement of Theorem 14 for i ∈ {1, . . . , �}. Choose i ∈ {1, . . . , �} uniformly
at random according to the probability distribution defined by λ1, . . . , λ�. Let Ti be

the set of odd-degree vertices of Fi . By Lemma 9, we have { 13 }E = ∑�i
j=1 λijχ

J ij ,

where J ij is a Ti -join of G. Choose j ∈ {1, . . . , �i } at random according to probability

distribution defined by λi1, . . . , λ
i
�i
. Let E ′ ⊂ E denote the edges that occur doubled
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in Fi and also belong to J ij . By Observation 4, H = Fi ∪ J ij\{2E ′} is a tour of G. We
have

E[w(H)] = E[w(Fi )] + E[w(J ij )] − 2 · E[w(E ′)]
=

∑

e∈E
w(e)x ′

e + w(E)

3
− 2 ·

∑

e∈E :x ′
e>1

w(e) · Pr[χ Fi
e = 2] · Pr[e ∈ J ij ]

=
∑

e∈E
w(e)x ′

e + w(E)

3
− 2 ·

∑

e∈E :x ′
e>1

w(e)(x ′
e − 1) · 1

3

=
∑

e∈E
w(e)x ′

e + w(E)

3
− 2

3

⎛

⎝
∑

e∈E :x ′
e>1

w(e)x ′
e −

∑

e∈E :x ′
e>1

w(e)

⎞

⎠

=
∑

e∈E
w(e)x ′

e + w(E)

3
− 2

3

(
∑

e∈E
w(e)x ′

e −
∑

e∈E
w(e)x̄e

)

=
∑

e∈E w(e)x ′
e

3
+ w(E)

3
+ 2

3
·
∑

e∈E
w(e)x̄e.


�
Theorem 15 Let G be a node-weighted, subcubic graph. If zG ≥ 2 ·(1+ε) ·∑v∈V fv ,
then there is an ( 32 − ε

3 )-approximation algorithm for TSP on G.

Proof For a node-weighted, subcubic graph, we have

w(E) ≤ 3 ·
∑

v∈V
fv. (4)

By the assumption of the theorem and (4), we have zG ≥ 2(1 + ε)
∑

v∈V fv ≥
2(1+ε)

3 w(E). Applying Lemma 7, we get a tour of weight at most

zG + w(E)

3
≤

(
3 + 2ε

2 + 2ε

)

· zG

=
(
3

2
− ε

2 + 2ε

)

· zG

≤
(
3

2
− ε

3

)

· zG .

The last inequality comes from the fact that ε ≤ 1
2 since zG ≤ 3 · ∑

v∈V fv , which
follows from Fact 5. 
�
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4.3.2 An algorithm for 2EC

Recall the set-up for 2EC.We are given a graphG = (V , E)with nonnegative weights
w(e) for e ∈ E . Our goal is to find a minimum weight 2-edge-connected multigraph
of G. We now prove the following lemma.

Lemma 10 Let G = (V , E) be a graph with nonnegative edge weights. We can find
a 2-edge-connected multigraph of G with weight at most

∑
e∈E w(e)x ′

e + 2
3w(E) −

2
3 · ∑

e∈E w(e)x̄e.

Proof Recall that we have x ′ = ∑�
i=1 λiχ

Fi where Fi is a connector satisfying (a)
and (b) in the statement of Theorem 14 for i ∈ {1, . . . , �}. For i ∈ {1, . . . , �}, let Si
be the family of 1-edge cuts of Fi . As discussed in Sect. 2.3, there is a laminar family
S∗
i ⊆ Si that is enough to describe Cover(G, Fi ) for all i ∈ {1, . . . , �}. Define vector

yi ∈ R
E as follows: yie = 0 for e ∈ Fi and yie = 1

2 for e ∈ E\Fi .

Claim 1 For i ∈ {i, . . . , �}, we have yi ∈ Cover(G, Fi ).

Proof Let S be a 1-edge cut of Fi . Then δ(S) ∩ Fi contains exactly one edge e. Note
that it cannot be the case that |δ(S)| = 2. This is because if δ(S) were a 2-edge cut of
G, then by property (b) in Theorem 14, there would be an even number of edges in Fi
that are also in δ(S). Hence, |δ(S)| ≥ 3. So we have

∑

e∈δ(S)

ye =
∑

e∈δ(S)\Fi

1

2
=

∑

e∈δ(S)\{e}

1

2
= |δ(S)\{e}|

2
≥ 1.

This concludes the proof of the claim. 
�

For i ∈ {1, . . . , �}, define vector r i as follows: r ie = 0 for e ∈ Fi and r ie = 2
3 for

e ∈ E\Fi .
Claim 2 For i ∈ {1, . . . , �}, the vector r i can be written as a convex combination of
1-covers of Fi .

Proof By Claim 1 and Theorem 6, vector 4
3 y

i can be written as a convex combination
of 1-covers of Fi , and 4

3 y
i = r i . 
�

By Claim 2, for i ∈ {1, . . . , �} we can write r i as
∑�i

j=1 λijC
i
j , where for j ∈

{1, . . . , �i }, Ci
j is a 1-cover for Fi . Let R

i
j = Fi ∪Ci

j . Notice, for all choices of i and

j , R j
i is a 2-edge-connected multigraph of G. To argue that there exists a low-weight,

2-edge-connected multigraph, we show the following claim.

Claim 3 There exists i ∈ {1, . . . , �} and j ∈ {1, . . . , �i } such that Ri
j ≤

∑
e∈E w(e)x ′

e + 2
3w(E) − 2

3 · ∑
e∈E w(e)x̄e.
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Proof Pick i ∈ {1, . . . , �} at random according to the probability distribution defined
by λ1, . . . , λ�. Now, pick j ∈ {1, . . . , �i } at random according to the probability
distribution defined by λi1, . . . , λ

i
�i
. We have

E[w(Ri
j )] = E[w(Fi )] + E[w(Ci

j )]
=

∑

e∈E

(
2w(e) · Pr[χ Fi (e) = 2] + w(e) · Pr[χ Fi (e) = 1]

)
+

∑

e∈E
w(e) · Pr[e ∈ Ci

j ]

=
∑

e∈E

(
2w(e) · Pr[χ Fi (e) = 2] + w(e) · Pr[χ Fi (e) = 1]

)
+

∑

e∈E

2

3
w(e) · Pr[χ Fi (e) = 0]

=
∑

e∈E :x ′
e>1

⎛

⎜
⎜
⎝2w(e) · Pr[χ Fi (e) = 2]

︸ ︷︷ ︸
=(x ′

e−1)

+w(e) · Pr[χ Fi (e) = 1]
︸ ︷︷ ︸

=(2−x ′
e)

+ 2

3
w(e) · Pr[χ Fi (e) = 0]

︸ ︷︷ ︸
=0

⎞

⎟
⎟
⎠

+
∑

e∈E :x ′
e≤1

⎛

⎜
⎜
⎝2w(e) · Pr[χ Fi (e) = 2]

︸ ︷︷ ︸
=0

+w(e) · Pr[χ Fi (e) = 1]
︸ ︷︷ ︸

=x ′
e

+ 2

3
w(e) · Pr[χ Fi (e) = 0]

︸ ︷︷ ︸
=(1−x ′

e)

⎞

⎟
⎟
⎠

=
∑

e∈E :x ′
e>1

(
2w(e)x ′

e − 2w(e) + 2w(e) − w(e)x ′
e

) +
∑

e∈E :x ′
e≤1

(

w(e)x ′
e + 2

3
w(e) − 2

3
w(e)x ′

e

)

=
∑

e∈E :x ′
e>1

w(e)x ′
e +

∑

e∈E :x ′
e≤1

(
1

3
w(e)x ′

e + 2

3
w(e)

)

=
∑

e∈E :x ′
e>1

w(e)(x ′
e − 1) +

∑

e∈E

(
1

3
w(e)x̄e + 2

3
w(e)

)

=
∑

e∈E
w(e)x ′

e −
∑

e∈E
w(e)x̄e +

∑

e∈E

1

3
w(e)x̄e +

∑

e∈E

2

3
w(e)

=
∑

e∈E
w(e)x ′

e + 2

3
w(E) − 2

3
·
∑

e∈E
w(e)x̄e.


�
This concludes the proof of Lemma 10. 
�
Assumew(E) ≤ 3

2 zG . In this case, Lemma 10 finds a 2-edge-connectedmultigraph
of weight at most 2zG − 2

3 · ∑
e∈E w(e)x̄e. If

∑
e∈E w(e)x̄e = zG , then this implies

a 4
3 -approximation for 2EC. (Note that this is the case if x∗ ≤ 1.) However, there are

instances for which this does not happen. Figure 2 illustrates an example where the
algorithm in Lemma 10 does not improve the bound of Christofides’ algorithm.

Lemma 11 Let G = (V , E) be a graph such that w(E) ≤ β · zG, then there is a
( 23 + β

2 )-approximation for 2EC on graph G.

Proof Taking the best of the guarantees from Lemmas 8 and 10,we have an algorithm
that outputs a 2-edge-connected multigraph of weight at most

1

2

(
4

3

∑

e∈E
w(e)x ′

e + w(E))

)

≤ 1

2

(
4

3
zG + w(E)

)

=
(
2

3
+ β

2

)

· zG .
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Fig. 2 Let G = (V , E) be the node-weighted K4 shown above. For e ∈ E , we is defined as the sum of the
node-weights of the two endpoints (e.g., wv1v2 = 2 + 1 = 3). The edge labels represents solution x∗ ∈
Subtour(G). Here we have x ′ = x∗. We have w(E) = 12,

∑
e∈E w(e)x ′

e = 8,
∑

e∈E w(e)x̄e = 6 + 4ε.

For this x∗, Lemma 10 yields a ( 3−ε
2 )-approximation, which does not outperform Christofides’ algorithm

by any constant factor. However, Lemma 8 provides a ( 4+ε
3 )-approximation for 2EC on the graph G

Note that the above bound is obtained by taking the average of the two guarantees. 
�
Theorem 4 If G is a node-weighted, subcubic graph, then there exists a 17

12 -
approximation for 2EC on G.

Proof For a node-weighted, subcubic graph, we have w(E) ≤ 3
2 zG (by Fact 4). By

Lemma 11, we get a 17
12 -approximation for 2EC on graph G. 
�

5 Concluding remarks

Carr and Ravi [10] proved that for any 4-regular 4-edge-connected graphG, the every-
where 2

3 vector can be decomposed into a convex combination of 2-edge-connected
subgraphs ofG. This implies an upper bound of 4

3 on the integrality gap of half-integer
points for the 2EC problem with metric weights. Their proof however does not lead to
a polynomial-time algorithm for such instances. In Theorem 11, we gave an alternate
way (as opposed to that of Wolsey [31]) to obtain such a convex combination for the
everywhere 3

4 vector. It is an interesting open problem to determine if the everywhere
3
4 − ε vector for G can be decomposed into convex combination tours of G in poly-
nomial time. Another open problem is stated in Conjecture 2, which is implied by the
four-thirds conjecture. Finally, for node-weighted metrics, it would be interesting to
find a 4

3 -approximation algorithm for TSP in bridgeless, cubic graphs to match the
corresponding bound for graph metrics [6].
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