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Abstract
On solving a convex-concave bilinear saddle-point problem (SPP), there have been
many works studying the complexity results of first-order methods. These results are
all about upper complexity bounds, which can determine at most how many itera-
tions would guarantee a solution of desired accuracy. In this paper, we pursue the
opposite direction by deriving lower complexity bounds of first-order methods on
large-scale SPPs. Our results apply to the methods whose iterates are in the linear
span of past first-order information, as well as more general methods that produce
their iterates in an arbitrary manner based on first-order information. We first work
on the affinely constrained smooth convex optimization that is a special case of SPP.
Different from gradient method on unconstrained problems, we show that first-order
methods on affinely constrained problems generally cannot be accelerated from the
known convergence rate O(1/t) to O(1/t2), and in addition, O(1/t) is optimal for
convex problems. Moreover, we prove that for strongly convex problems, O(1/t2)
is the best possible convergence rate, while it is known that gradient methods can
have linear convergence on unconstrained problems. Then we extend these results to
general SPPs. It turns out that our lower complexity bounds match with several estab-
lished upper complexity bounds in the literature, and thus they are tight and indicate
the optimality of several existing first-order methods.
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1 Introduction

In recent years, first-order methods have been particularly popular partly due to the
huge scale of many modern applications. These methods only access the function
value and gradient information of the underlying problems, and possibly also other
“simple” operations. For example, on solving the constrained optimization problem
f ∗ := minx∈X f (x), the projected gradient (PG) method

x(t+1) ← ProjX
(
x(t) − α∇ f (x(t))

)

is a first-order method if the projection operator ProjX is easy to evaluate such as pro-
jection onto a box constraint set. For convex problems, if ∇ f is Lipschitz continuous
and α is appropriately chosen, the PG method can have convergence rate in the order
of 1

t , namely, f (x(t)) − f ∗ = O( 1t ), where t is the number of gradient evaluations.
Through smart extrapolation, the rate can be improved to O( 1

t2
); see [3,36]. In addi-

tion, there exists an instance showing that the order 1
t2
cannot be further improved (see

[31–34]) and thus is optimal.
In this paper, we consider the bilinear saddle-point problem (SPP):

min
x∈X max

y∈Y L(x, y) := f (x) + 〈Ax − b, y〉 − g(y). (1.1)

Here, X ⊆ R
n and Y ⊆ R

m are closed convex sets, f : R
n → R and g : R

m → R

are closed convex functions, A ∈ R
m×n , and b ∈ R

m . We assume that the function f
is L f -smooth, namely, f is differentiable, and ∇ f is L f -Lipschitz continuous:

‖∇ f (x1) − ∇ f (x2)‖ ≤ L f ‖x1 − x2‖, ∀ x1, x2 ∈ X . (1.2)

In addition, we assume that g is simple such that its proximal mapping can be easily
computed. The scale of the problem is large, so it is expensive to form the Hessian of
f and also, it is expensive to solve or project onto a linear system of size m × n.
Two optimization problems are associated with (1.1). One is called the primal

problem

φ∗ := min
x∈X

{
φ(x) := f (x) + max

y∈Y 〈Ax − b, y〉 − g(y)
}

, (1.3)

and the other is the dual problem

ψ∗ := max
y∈Y

{
ψ(y) := −g(y) + min

x∈X 〈Ax − b, y〉 + f (x)
}

. (1.4)

The weak duality always holds, i.e., ψ∗ ≤ φ∗. Under certain mild assumptions (e.g.,
X and Y are compact [38]), the strong duality holds, i.e., ψ∗ = φ∗, and in this case,
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Lower complexity bounds of first-order methods… 3

(1.1) has a saddle point (x∗, y∗), namely,

L(x∗, y) ≤ L(x∗, y∗) ≤ L(x, y∗), ∀ x ∈ X , ∀y ∈ Y . (1.5)

Many applications can be formulated into an SPP. For instance, it includes as special
cases all affinely constrained smooth convex optimization problems. To see this, let
Y = R

m and g ≡ 0. Then maxy〈Ax − b, y〉 = 0 if Ax = b and ∞ otherwise, and
thus (1.3) becomes

f ∗ := min
x∈X

{
f (x), s.t. Ax = b

}
. (1.6)

1.1 Main goal

We aim at answering the following question:

For anydeterministic first-ordermethod,what is the best possible performance
on solving a general large scale saddle-point problem (1.1)?

More precisely, our goal is to study the lower information-based complexity bound
of first-order methods on solving the class of problems that can be formulated into
(1.1). In the literature, all existing works about first-order methods on solving saddle-
point problems only provide upper complexity bounds. Establishing lower complexity
bounds is important because they can tell us whether the existing methods are improv-
able and also because they can guide us to design “optimal” algorithms that have the
best performance. To achieve this goal, we will construct worst-case SPP instances
such that the complexity result of a first-order method to reach a desired accuracy is
lower bounded by a problem-dependent quantity.

In the above question, we say an iterative algorithm for solving (1.1) is a first-order
method if it accesses the information of the function f and the matrix A through a
first-order oracle, denoted byO : R

n × R
m → R

n × R
m × R

n . For an inquiry on any
point (x, y) ∈ R

n × R
m , the oracle returns

O(x, y) := (∇ f (x),Ax,A�y
)
. (1.7)

Given an initial point (x(0), y(0)), a first-order methodM for solving SPPs, at the t-th
iteration, calls the oracle on (x(t), y(t)) to collect the oracle information O(x(t), y(t))

and then obtains a new point (x(t+1), y(t+1)) by a rule It . The complete method M
can be described by the initial point (x(0), y(0)) ∈ X × Y and a sequence of rules
{It }∞t=0 such that

(
x(t+1), y(t+1), x̄(t+1), ȳ(t+1)) = It

(
ϑ;O(x(0), y(0)), . . . ,O(x(t), y(t))

)
, ∀ t ≥ 0,

(1.8)

where (x(t), y(t)) ∈ X × Y denotes the inquiry point, and (x̄(t), ȳ(t)) ∈ X × Y is the
approximate solution by the method. We are interested at the performance of M for
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4 Y. Ouyang, Y. Xu

solving very large scale instances of (1.1), namely, m and n are so large that we can
only afford t � m oracle calls. In (1.8), ϑ contains all rest information in an SPP,
including the sets X and Y , the function g, the vector b, and the Lipschitz constant
L f and its associated norm. Given a maximum number T of iterations, we assume
without loss of generality that the output by M coincides with the last inquiry point,
namely, x̄(T+1) = x(T+1) and ȳ(T+1) = y(T+1).

1.2 Literature review

Among existing works on complexity analysis of numerical methods, many more are
about showing upper complexity bounds instead of lower bounds. Usually, the upper
complexity bounds are established on solving problems with specific structures. They
are important because they can tell the users at most how many iterations would guar-
antee a desired solution. On the contrary, lower complexity bounds, which were first
studied in the seminal work [31], are usually information-based and shown on solving
a general class of problems. Their importance lies in telling if a certain numerical
method can still be improved for a general purpose and also in guiding the algorithm
designers to make “optimal” methods. Although there are not many works along this
line, each of them sets a base for designing numerical approaches. Below we review
these lower complexity bound results on different classes of problems.

Proximal gradient methods On solving convex problems in the form of F∗ :=
minx{F(x) := f (x)+g(x)}, the proximal gradient method (PGM) iteratively updates
the estimated solution by acquiring information of ∇ f and proxηg at certain points,
where η > 0 is the stepsize, and the proximal mapping of ηg is defined as

proxηg(z) = arg min
x

g(x) + 1

2η
‖x − z‖2.

For the problem class that has L f -smooth f , the lower bound has been established
in [15,31,32,34]. For example, [34, Theorem 2.1.7] establishes a lower convergence

rate bound: F(x̄(t)) − F∗ ≥ 3L f ‖x(0)−x∗‖2
32(t+1)2

, where x̄(t) is the approximate solution
output by PGM after t iterations, and x∗ is one optimal solution. In addition, setting
η = 1

L f
, [3,36] show that the PGM can achieve O(L f /t2) convergence rate, and more

precisely, F(x̄(t))− F∗ ≤ 2L f ‖x(0)−x∗‖2
(t+1)2

. Comparing the lower and upper bounds, one
can easily see that they differ only by a constant multiple. Hence, the lower bound is
tight in terms of the dependence on t , L f , and ‖x(0) − x∗‖, and also the method given
in [3,36] is optimal1 among all methods that only access the information of ∇ f and
proxηg .

For the class of problems where f is L f -smooth and also μ-strongly convex (μ-
SC), namely,

〈∇ f (x1) − ∇ f (x2), x1 − x2〉 ≥ μ‖x1 − x2‖2, ∀ x1, x2,

1 By “optimal”, we mean that the convergence rate cannot be further improved for the considered problem
class.
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the lower bound has been established in [31–34]. For example, [34, Theorem 2.1.13]

establishes a lower convergence rate bound: F(x̄(t)) − F∗ ≥ μ‖x(0)−x∗‖2
2

(√
κ−1√
κ+1

)2t ,
whereκ = L f

μ
denotes the condition number. In addition, assuming the knowledgeofμ

and L f , [36, Theorem6] shows the convergence rate: F(x̄(t))−F∗ ≤ L f ‖x(0)−x∗‖2
4

(
1+

1√
2κ

)−2t . Note that both lower and upper bounds of convergence rate are linear, and

they have the same dependence on ‖x(0) − x∗‖ and κ . In this sense, the lower bound
is tight, and the method is optimal.

Inexact gradient methods On the convex problem f ∗ := minx f (x) for which only
approximation of ∇ f is available, there have been several studies on the correspond-
ing lower complexity bound. For example, on solving the convex stochastic program
f ∗ := minx{ f (x) := Eξ fξ (x)}, the stochastic gradient method (SGM) performs iter-
ative update to the solution by accessing the stochastic approximation of subgradient
∇̃ f at a certain point. For the class of problemswhose f is Lipschitz continuous2, [31]
shows that to find a stochastic ε-optimal solution x̄, i.e., E f (x̄) − f ∗ ≤ ε, the algo-
rithm needs to run O(1/ε2) iterations. On the other hand, as shown in [30], the order
1/ε2 is achievable with appropriate setting of algorithm parameters. Hence, the lower
complexity bound O(1/ε2) is tight, and the stochastic gradient method is optimal on
finding an approximate solution to the convex stochastic program. Further study of
lower complexity bound of inexact gradient methods is also performed in [10]. When
f (x) has a special finite-sum structure, the lower complexity bound of randomized
gradient method is studied in [1,26,40].

Primal-dual first-order methods On an affinely constrained problem (1.6) or the more
general saddle-point problem (1.1), many works have studied primal-dual first-order
methods, e.g., [6,7,9,11–13,16,18,24,37,42,44]. To obtain an ε-optimal solution in a
certain measure, an O(1/ε) complexity result is established by many of them for con-
vex problems. In addition, for strongly convex cases, an improved result of O(1/

√
ε)

has been shown in a few works such as [14,16,42,43]. All these results are about upper
complexity bounds and none about lower bounds. Hence, it is unclear if these methods
achieve the optimal order of convergence rate. Our results fill the missing part and can
be used to determine the optimality of these existing algorithms.

Others In adddition to the above list of lower complexity bounds, there are also a few
results on special types of problems. For convex quadratic minimization, [39] gives
a high-probability lower complexity bound of randomized first-order method. The
lower complexity bound of subgradient methods for uniformly convex optimization
has been studied in [20]. Under the assumption that an algorithm has access to gradient
information and is only allowed to perform linear optimization (instead of computing
a projection), the lower complexity bounds have been studied in [19,21]. The lower
complexity bounds of oblivious algorithms are studied in [2],where theway to generate
new iterates by the algorithms is restricted. To find stationary points of smooth convex

2 f is Lipschitz continuous on a set X if there is a constant L such that | f (x1) − f (x2)| ≤ L‖x1 − x2‖
for any x1, x2 ∈ X .
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6 Y. Ouyang, Y. Xu

or nonconvex problems [4,5], study the lower complexity bounds of first-order and
also higher-order methods.

We list in Table 1 several results that are reviewed above and also the results we
establish in this paper.

1.3 Research tools, main results, and contributions

In this subsection, without specifying many technical details, we state the main results
obtained in this paper, and the research tools that lead to such results. We start with a
brief review of the seminal research tools developed in [31–34] that lead to the classical
lower complexity bound result of first-ordermethods for unconstrained smooth convex
optimizationminx∈Rn f (x). Then, we describe our efforts adapting their research tools
to derive lower complexity bounds of first-order methods for SPPs, and state our main
results.

The work in [32,33] constructs a worst-case instance of unconstrained smooth
convex optimization in the form of a quadratic problem:

f ∗ := min
x∈Rn

{
f (x) := 1

2
x�Qx − q�x

}
, (1.9)

which is also equivalent to solving the linear system Qx = q. Briefly speaking, the
main research tool in [32,33] is rotating into a certain linear subspace the iterates
given by a deterministic first-order method for solving (1.9). Ignoring most of the
technical details, given (Q,q) and a deterministic first-order method M, the tool
allows us to analyze the performance of M by simply assuming that the output x̄(t)

lies in K2t+1 := span{q,Qq, . . . ,Q2tq}, the Krylov subspace generated by Q and q.
To construct a worst-case instance of (1.9), it then suffices to maximize the objective
value difference minx∈K2t+1 f (x) − f ∗ with respect to (Q,q). In [32,33], it is proved
that theworst-caseQ can be anymatrix (e.g., diagonalmatrix) that has certain specified
eigenvalues, which are computed throughChebyshev Equioscillation theorem. In [34],
a tri-diagonal worst-case matrix Q is constructed along with a worst-case vector q.
The tri-diagonal Q has eigenvalues specified in [32,33]. Also, with the (Q,q), K2t+1
is spanned by standard basis vectors. This makes it easier to prove that the constructed
Q and q yield worst-case performance of first-order methods. The analysis in [34]
focuses only onfirst-ordermethodswhose iterates lie in theKrylov subspace.However,
combiningwith the aforementioned research tool in [32,33], the result can be extended
to an arbitrary deterministic first-order method.

Our main contribution is to establish lower complexity bounds of deterministic
first-order methods on solving bilinear saddle-point problem (1.1), through adapting
the techniques in [32,33] and [34]. First, we design a worst-case instance of the convex
constrained problem (1.6). It is an affinely constrained convex quadratic program:

f ∗ := min
x∈Rn

{
f (x) := 1

2
x�Hx − h�x, s.t. Ax = b

}
.

Our design of (H,h,A,b) is inspired by the setting in [34] of (Q,q) in a worst-
case instance of (1.9). Also, we follow the constructive proof in [34] and focus on
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(ȳ

)
≤

ε
.H

er
e,

f
is
L
f
-s
m
oo

th
if
(1
.2
)
ho

ld
s,
an
d
SC

st
an
ds

fo
r
st
ro
ng

ly
co
nv
ex

123



8 Y. Ouyang, Y. Xu

first-order methods whose iterates lie in a certain linearly spanned subspace. This
way, we establish the lower complexity bound of deterministic first-order methods on
solving (1.6). Secondly, we adapt the rotation technique in [32,33] to relax the linear
span restriction and show lower complexity of any deterministic first-order method on
solving (1.6). Due to the additional linear constraint, the analysis in [32,33] cannot be
directly applied. It may not be true that for any (H,h,A,b), the iterates by a given first-
order method M can be rotated into a Krylov subspace. However, with our specific
designed (H,h,A,b), we are able to do so. Finally, we use as a bridge the designed
worse-case instance of (1.6) to design a worst-case instance of (1.1) and thus address
our main question posed in Sect. 1.1.

The main results we obtain in this paper are summarized in the following two
theorems. Throughout this paper, by at = Ω(bt ), we mean that there is a positive
constant C independent of t such that at ≥ C · bt .
Theorem 1.1 (Lower complexity bounds for affinely constrained problems) Let t be a
positive integer, L f > 0, and L A > 0. For any first-order methodM that is described
in (1.8), there exists a problem instance of (1.6) such that f is L f -smooth, ‖A‖ = L A,
the instance has a primal-dual solution (x∗, y∗), and

∣∣ f (x̄(t)) − f (x∗)
∣∣ = Ω

(
L f ‖x∗‖2

t2
+ L A‖x∗‖ · ‖y∗‖

t

)
,

‖Ax̄(t) − b‖ = Ω

(
L A‖x∗‖

t

)
,

where x̄(t) is the approximate solution output by M. In addition, given μ > 0, there
exists an instance of (1.6) with μ-strongly convex function f , and it has a primal-dual
solution (x∗, y∗) satisfying

‖x̄(t) − x∗‖2 = Ω

(
L2
A‖y∗‖2
μ2t2

)
.

Theorem 1.2 (Lower complexity bounds for bilinear saddle-point problems) Let t be a
positive integer, L f > 0, and L A > 0. For any first-order methodM that is described
in (1.8), there exists a problem instance of (1.1) such that f is L f -smooth, ‖A‖ = L A,
X and Y are Euclidean balls with radii RX and RY respectively, and

φ(x̄(t)) − ψ(ȳ(t)) = Ω

(
L f R2

X

t2
+ L ARX RY

t

)
,

where φ and ψ are the associated primal and dual objective functions in (1.3) and
(1.4), and (x̄(t), ȳ(t)) is the approximate solution output by M. In addition, given
μ > 0, there exists an instance of (1.1) such that f is μ-strongly convex, X and Y are
Euclidean balls with radii RX and RY respectively, and

φ(x̄(t)) − ψ(ȳ(t)) = Ω

(
L2
AR

2
Y

μt2

)
.
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Comparing to upper complexity bounds of several existing first-order methods,
we find that our lower complexity bounds are tight, up to the difference of constant
multiples and/or logarithmic terms.

1.4 Notation and outline

We use bold lower-case letters x, y, c, . . . for vectors and bold upper-case letters
A,Q, . . . for matrices. For any vector x ∈ R

n , we use xi to denote its i-th com-
ponent. When describing an algorithm, we use x(k) for the k-th iterate. A� denotes
the transpose of a matrix A. We use 0 for all-zero vector and 1 for all-one vec-
tor, and we use O for a zero matrix and I for the identity matrix. Their sizes will
be specified by a subscript, if necessary, and otherwise are clear from the context.
We adopt MATLAB’s operations to concatenate matrices and vectors. For example,
e j,p = [0 j−1; 1; 0p− j ] ∈ R

p denotes the j-th standard basis vector in R
p. We use

Z++ for the set of positive integers and S
n+ for the set of all n × n symmetric positive

semidefinite matrices. Without further specification, ‖ · ‖ is used for the Euclidean
norm of a vector and the spectral norm of a matrix.

The rest of the paper is organized as follows. In Sect. 2, for affinely constrained
problems, we present lower complexity bounds of first-order methods that satisfy a
linear span requirement. We drop the linear span assumption in Sect. 3 and show
lower complexity bounds of first-order methods that are described in (1.8). Section 4
is about the bilinear saddle-point problems. Lower complexity bounds are established
there for first-order methods described in (1.8). In Sect. 5, we show the tightness
of the established lower complexity bounds by comparing them with existing upper
complexity bounds. Finally, Sect. 6 proposes a few interesting topics for future work
and concludes the paper.

2 Lower complexity bounds under linear span assumption for affinely
constrained problems

In this and the next sections, we study lower complexity bounds of first-order methods
on solving the affinely constrained problem (1.6). Our approach is to design a “hard”
problem instance such that the convergence rate of any first-order method is lower
bounded. The designed instances are convex quadratic programs in the form of

f ∗ := min
x∈Rn

{
f (x) := 1

2
x�Hx − h�x, s.t. Ax = b

}
, (2.1)

whereA ∈ R
m×n , andH ∈ S

n+. Note that the above problem is a special case of (1.6).
Throughout this section, we assume that

– the dimensions m, n ∈ Z++ are given and satisfy m ≤ n, and
– a fixed positive integer number k < m

2 is specified.

Our lower complexity analysis will be based on the performance of the k-th iterate
of a first-order method on solving the designed instance. It should be noted that the
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10 Y. Ouyang, Y. Xu

assumption k < m
2 is valid if the problem dimensions m and n are very big and we do

not run too many iterations of the algorithm.
To have a relatively simple start, we focus on a special class of first-order methods

in this section. More precisely, we make the following assumption.

Assumption 2.1 (Linear span) The iterate sequence {x(t)}∞t=0 satisfies x
(0) = 0 and

x(t) ∈ span
{
∇ f (x(0)),A�r(0), ∇ f (x(1)),A�r(1), . . . , ∇ f (x(t−1)),A�r(t−1)

}
, t ≥ 1,

where r = Ax − b denotes the residual.

In the context, we refer to the above assumption as the linear span assumption. It is not
difficult to find rules {It }∞t=0 such that the iterate sequence {x(t)} in Assumption 2.1
can be obtained by (1.8). Note that we do not lose generality by assuming x(0) = 0,
because otherwise we can consider a shifted problem

min
x

f (x − x(0)), s.t. A(x − x(0)) = b.

It should be noted that Assumption 2.1may not always hold for a first-ordermethod,
e.g., when there is projection involved in the algorithm. The lower complexity bound
analysis can be performed without the linear span assumption, thanks to a technique
introduced in [32,33] that utilizes a certain rotational invariance of quadratic functions
over a Euclidean ball. To facilitate reading, we defer the incorporation of such a
technique to Sect. 3, where we will elaborate on the technical details and perform the
lower complexity bound analysis without Assumption 2.1.

2.1 Special linear constraints

In this subsection, we describe a set of special linear constraints, which will be used to
study the lower complexity bound of first-order methods satisfying Assumption 2.1.

We let the matrix Λ and vector c be

Λ =
[
B O
O G

]
∈ R

m×n and c =
[
12k
0

]
∈ R

m, (2.2)

where G ∈ R
(m−2k)×(n−2k) is any matrix of full row rank such that ‖G‖ = 2, and

B :=

⎡
⎢⎢⎢⎢⎣

−1 1

. .
.

. .
.

−1 1
−1 1
1

⎤
⎥⎥⎥⎥⎦

∈ R
2k×2k . (2.3)

All the designed “hard” instances in this paper are built upon Λ and c given in (2.2).
Two immediate observations regarding (2.2) and (2.3) are as follows. First, for any
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Lower complexity bounds of first-order methods… 11

u = (u1; · · · ; u2k) ∈ R
2k , we have

‖Bu‖2 = (u2k − u2k−1)
2 + · · · + (u2 − u1)

2 + u21 ≤ 2(u22k + u22k−1)

+ · · · + 2(u22 + u21) + u21 ≤ 4‖u‖2,

so

‖B‖ ≤ 2. (2.4)

Consequently, noting ‖G‖ = 2 and the block diagonal structure of Λ, we have

‖Λ‖ = max{‖B‖, ‖G‖} = 2. (2.5)

Second, it is straightforward to verify that

B−1 =

⎡
⎢⎢⎣

1
1 1

. .
. ...

...

1 · · · 1 1

⎤
⎥⎥⎦ . (2.6)

Krylov subspacesWe study two Krylov subspaces that are associated with the matrix
Λ and vector c described in (2.2). In particular, we consider the Krylov subspaces

Ji := span
{
c, (ΛΛ�)c, (ΛΛ�)2c, . . . , (ΛΛ�)ic

}
⊆ R

m

and Ki := Λ�Ji ⊆ R
n, for i ≥ 0. (2.7)

As shown below in (2.17), restricting on the first 2k entries, the above two Krylov
subspaces reduce to

Fi := span
{
12k,B212k, . . . ,B2i12k

}
and Ri := span

{
B12k, . . . ,B2i+112k

}
.

(2.8)

We first establish some important properties of Fi and Ri as follows.

Lemma 2.1 Let Fi and Ri be defined in (2.8). For any 0 ≤ i ≤ 2k − 1, we have

Fi = span{12k , e1,2k , e2,2k , . . . , ei,2k}, Ri = span{e2k−i,2k , e2k−i+1,2k , . . . , e2k,2k},
(2.9)

and

BRi = span{e1,2k, e2,2k, . . . , ei+1,2k} ⊆ Fi+1, (2.10)

where we have used the convention e0,2k = 0.
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12 Y. Ouyang, Y. Xu

Proof From the definition of B in (2.3), we have

B12k = e2k,2k,Be2k,2k = e1,2k,

Bei,2k = e2k−i+1,2k − e2k−i,2k, ∀i = 1, . . . , 2k − 1. (2.11)

Hence, from (2.8) and (2.11), it holds that

F0 = span{12k},
R0 = span{B12k} = span{e2k,2k},

BR0 = span{Be2k,2k} = span{e1,2k},
F1 = span{12k,B212k} = span{12k, e1,2k},
R1 = span{B12k,B312k} = span{e2k,2k,Be1,2k} = span{e2k−1,2k, e2k,2k},

BR1 = span{B212k,B412k} = span{e1,2k,B2e1,2k} = span{e1,2k, e2,2k}.

Therefore, the results in (2.9) and (2.10) hold for i = 0 and i = 1.
Below we prove the results by induction. Assume that there is a positive integer

s < 2k and (2.9) holds for i = s − 1, namely,

Fs−1 = span{12k, e1,2k, e2,2k, . . . , es−1,2k}, Rs−1 = span{e2k−s+1,2k, . . . , e2k,2k}.
(2.12)

From (2.11) and (2.12), it follows that

BRs−1 = B span{e2k−s+1,2k, . . . , e2k,2k} ⊆ span{es,2k, es−1,2k, . . . , e1,2k}. (2.13)

Since B is nonsingular, dim
(
BRs−1

) = dim
(Rs−1

) = s. Hence, from (2.13) and
also noting

dim
(
span{es,2k, es−1,2k, . . . , e1,2k}

) = s,

we have
BRs−1 = span{es,2k, es−1,2k, . . . , e1,2k}. (2.14)

Observing span{B212k, . . . ,B2s12k} = BRs−1, we have

Fs = span{12k,B212k, . . . ,B2s12k} = span{12k, e1,2k, e2,2k, . . . , es,2k},

and thus by (2.14), it follows that BRs−1 ⊆ Fs . Through essentially the same argu-
ments, one can use (2.11), the above equation, and the fact Rs = BFs to conclude
Rs = span{e2k−s,2k, . . . , e2k,2k}, and thus we complete the proof. ��

Through relating Ji (resp. Ki ) to Fi (resp. Ri ), we have the following result.
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Lemma 2.2 Let Ji and Ki be defined in (2.7). For any 0 ≤ i ≤ 2k − 1, it holds

Ji = span{c, e1,m, e2,m, . . . , ei,m}, Ki = span{e2k−i,n, e2k−i+1,n, . . . , e2k,n},
(2.15)

and

ΛKi = span{e1,m, e2,m, . . . , ei+1,m} ⊆ Ji+1. (2.16)

Proof Observe that for any i = 0, . . . , 2k − 1 we have

(ΛΛ�)ic =
[
B2i12k
0m−2k

]
and Λ�(ΛΛ�)ic =

[
B2i+112k
0n−2k

]
. (2.17)

Consequently, the definitions in (2.7) becomes

Ji = Fi × {0m−2k} and Ki = Ri × {0n−2k}.

Therefore, the results in (2.15) and (2.16) immediately follow from Lemma 2.1. ��
Two remarks are in place for theKrylov subspacesKi andJi . First, by the definitions

of Ki and Ji in (2.7) and the relation (2.16), we have

ΛKi ⊆ Ji+1 and Λ�Ji = Ki , ∀i = 1, . . . , 2k − 1. (2.18)

Second, by (2.15) we have

Ki−1 � Ki and Ji−1 � Ji , ∀i = 1, . . . , 2k − 1. (2.19)

An important lemma We conclude this subsection by showing a lemma that will be
used a few times in our analysis. It specifies the conditions on (2.1) to guarantee that
any iterate sequence {x(t)}kt=1 satisfying Assumption 2.1 is in the subspace Kk−1.

Lemma 2.3 Let Λ and c be given in (2.2). Given any L A ∈ R, let

A = L A

2
Λ and b = L A

2
c. (2.20)

Consider (2.1) with A and b defined as above, h ∈ K0 andH satisfyingHKt−1 ⊆ Kt

for any 1 ≤ t ≤ k, where Ki is defined in (2.7). Then under Assumption 2.1, we have
x(t) ∈ Kt−1 for any 1 ≤ t ≤ k.

Proof It suffices to prove that for any t = 1, . . . , k,

span
{
∇ f (x(0)),A�r(0),∇ f (x(1)),A�r(1), . . . ,∇ f (x(t−1)),A�r(t−1)

}
⊆ Kt−1.

(2.21)
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14 Y. Ouyang, Y. Xu

We prove the result by induction. First, since x(0) = 0, from (2.2) and (2.20) we have
A�r(0) = −A�b ∈ span{e2k,n} = K0. In addition, from the condition h ∈ K0, it
follows that ∇ f (x(0)) = −h ∈ K0. Therefore, (2.21) holds when t = 1. Assume that
for a certain 1 ≤ s < k, (2.21) holds for t = s, and consequently

x(s) ∈ Ks−1. (2.22)

Wego to prove the result in (2.21) for t = s+1, or equivalently∇ f (x(s)),A�r(s) ∈ Ks ,
and finish the induction. From (2.19) we have K0 ⊆ Ks . By this observation, noting
x(s) ∈ Ks−1, and using the conditions h ∈ K0 andHKs−1 ⊆ Ks , we have∇ f (x(s)) =
Hx(s) − h ∈ Ks . In addition, from (2.18) and (2.22), we have A�Ax(s) ∈ Ks . Since
A�b ∈ K0 ⊆ Ks , then A�r(s) = A�Ax(s) − A�b ∈ Ks . Therefore, ∇ f (x(s)) and
A�r(s) are both inKs , and by induction (2.21) holds for any 1 ≤ t ≤ k. This completes
the proof. ��

2.2 A lower complexity bound for convex case

In this subsection,we establish a lower complexity bound of anyfirst-ordermethod that
satisfies the linear span assumption (Assumption 2.1) on solving (2.1). Our approach
is to build an instance such that the iterate x(t) ∈ Kk−1, ∀t ≤ k and then estimate the
values

min
x∈Kk−1

f (x) − f ∗, and min
x∈Kk−1

‖Ax − b‖. (2.23)

In the above equation, the former value is used to measure the performance of an
algorithm by the objective value difference and the latter by the feasibility error. The
instance we construct is in the form of (2.1) with

H = L f

4

[
B�B

In−2k

]
∈ R

n×n, h = L f

2
e2k,n, A = L A

2
Λ, b = L A

2
c, (2.24)

where L f and L A are given nonnegative numbers, B, Λ and c are those given in (2.2)
and (2.3). From (2.4), (2.5), and the block diagonal structure of H above, we have
‖H‖ = (L f /4)‖B‖2 ≤ L f and ‖A‖ = LA. Therefore, (2.1) with data specified in
(2.24) provides an instance of (1.6) whose objective function f is L f -smooth.

To establish the lower complexity bound, we first present three technical lemmas.
We show in Lemma 2.4 below that under Assumption 2.1, the iterates generated by
a first-order method on solving the designed instance would satisfy x(t) ∈ Kt−1 for
any 1 ≤ t ≤ k. In Lemma 2.5, we give a pair of optimal primal-dual solution and also
the optimal objective value of the instance. Then, in Lemma 2.6, we provide lower
bounds of the values in (2.23).

Lemma 2.4 Consider the instance of (2.1) with data described in (2.24). Under
Assumption 2.1, we have x(t) ∈ Kt−1 for any 1 ≤ t ≤ k, where Kt−1 is defined
in (2.7).
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Lower complexity bounds of first-order methods… 15

Proof To prove the lemma, it suffices to verify that h ∈ K0 and HKt−1 ⊆ Kt for
any 1 ≤ t ≤ k and then apply Lemma 2.3. Since h is a multiple of e2k,n , from
(2.15) we immediately have h ∈ K0. Using the definition of H and the second
line of equation in (2.11), one can easily verify that H span{e2k−t+1,n, . . . , e2k,n} =
span{e2k−t,n, e2k−t+1,n, . . . , e2k,n} for any 1 ≤ t ≤ k. Hence we have all the con-
ditions required by Lemma 2.3, and thus x(t) ∈ Kt−1, which completes the proof.

��
The next lemma gives the primal-dual solution and optimal objective value of the

considered instance.

Lemma 2.5 Let L f > 0 and L A > 0 be given. The instance of (2.1)with data given in
(2.24) has a unique optimal solution x∗ with a unique associated Lagrange multiplier
y∗ given by

x∗ = (1; 2; · · · ; 2k; 0n−2k), y∗ = − L f

2L A
(12k; 0m−2k) . (2.25)

In addition, the optimal objective value is

f ∗ = −3kL f

4
, (2.26)

and the norm of the dual solution is

‖y∗‖ = L f

2L A

√
2k. (2.27)

Proof We split x into two parts as x = (u; v)with u ∈ R
2k and v ∈ R

n−2k . Then from
the block structure of H and A in (2.24), we obtain the following two optimization
problems with respect to u and v:

min
u

1

2
u�Su − s�u, s.t.

L A

2
Bu = L A

2
12k, (2.28)

min
v

L f

8
‖v‖2, s.t.

L A

2
Gv = 0, (2.29)

where

S = L f

4
B�B and s = L f

2
e2k,2k .

Since LA > 0 andB is nonsingular, we have that u∗ = (1; 2; · · · ; 2k) is the unique
feasible and thus optimal solution of (2.28). In addition, since L f > 0, (2.29) clearly
has a unique solution v∗ = 0. Hence, x∗ is unique and given in (2.25). Consequently,

f ∗ = 1

2
(u∗)�Su∗ − s�u∗ = L f

8
‖Bu∗‖2 − s�u∗ = −3kL f

4
.
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16 Y. Ouyang, Y. Xu

To derive the corresponding dual variable, we split y = (λ;π) with λ ∈ R
2k and

π ∈ R
m−2k . It follows from the KKT conditions of (2.28) that

L A

2
B�λ∗ = Su∗ − s,

L A

2
G�π∗ = L f

4
v∗ = 0.

SinceG has full row rank, we have π∗ = 0. In addition, noting the description of B−1

in (2.6), we have

λ∗ = 2

L A

(
B�)−1

(Su∗ − s) = − L f

2L A
12k .

Therefore, (2.25) follows immediately, and it is straightforward to have (2.27). ��
Using Lemma 2.5, we have the following estimate.

Lemma 2.6 Let L f > 0 and L A > 0 be given. Then for the instance of (2.1) with
data given in (2.24), we have

min
x∈Kk−1

f (x) − f ∗ = kL f

4
, (2.30a)

min
x∈Kk−1

‖Ax − b‖ ≥
√
3L A‖x∗‖

4
√
2(k + 1)

, (2.30b)

where x∗ is given in (2.25), and Kk−1 is defined in (2.7).

Proof Using the formula

p∑
i=1

i2 = p(p + 1)(2p + 1)

6
, ∀ p ∈ Z++, (2.31)

and the description of x∗ in (2.25), we have

‖x∗‖2 =
2k∑
i=1

i2 = k(2k + 1)(4k + 1)

3
. (2.32)

For any x ∈ Kk−1, we observe from (2.2), (2.16) and (2.20) that Ax can only have
nonzeros on its first k components. Since the first 2k components of b all equal L A

2 ,
we have

‖Ax − b‖2 ≥ L2
A

4
k

(2.32)= 3L2
A‖x∗‖2

4(2k + 1)(4k + 1)
≥ 3L2

A‖x∗‖2
32(k + 1)2

, (2.33)

and hence (2.30b) holds.
To prove (2.30a), we need to compute the minimal objective value of f (x) over

Kk−1. By (2.15) we have Kk−1 = span{ek+1,n, . . . , e2k,n}. Hence, for any x ∈ Kk−1,
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we can write it as x = (0k; z; 0n−2k) where z ∈ R
k . Recalling (2.24), we have

h�x = L f

2
e�
2k,nx = L f

2
zk, x�Hx = L f

4
‖B(0k; z)‖2 = L f

4
‖B̄z‖2,

where

B̄ :=

⎡
⎢⎢⎢⎢⎣

−1 1

. .
.

. .
.

−1 1
−1 1
1

⎤
⎥⎥⎥⎥⎦

∈ R
k×k

is a k × k submatrix of B. Therefore,

min
x∈Kk−1

f (x) = min
z∈Rk

L f

8
‖B̄z‖2 − L f

2
zk . (2.34)

Let z∗ be the optimal solution to the right hand side minimization problem in (2.34).
Then it must satisfy the optimality condition:

L f
4 B̄2z∗ = L f

2 ek,k,which has the unique
solution z∗ = 2(1; · · · ; k). Plugging z = z∗ into the right hand side of (2.34) yields

min
x∈Kk−1

f (x) = −kL f

2
. (2.35)

From the above result and (2.26), we have (2.30a) and complete the proof. ��
Using Lemmas 2.4 through 2.6, we are ready to establish the following lower

complexity bound results.

Theorem 2.1 (Lower complexity bound for convex case under linear span assumption)
Let m ≤ n be positive integers, L f > 0, and L A > 0. For any positive integer t < m

2 ,
there exists an instance of (1.6) such that f is L f -smooth, ‖A‖ = LA, and it has a
unique primal-dual solution (x∗, y∗). In addition, on solving (1.6), if the algorithm
satisfies Assumption 2.1, then

f (x(t)) − f (x∗) ≥ 3L f ‖x∗‖2
64(t + 1)2

+
√
3L A‖x∗‖ · ‖y∗‖
16(t + 1)

, (2.36a)

‖Ax(t) − b‖ ≥
√
3L A‖x∗‖

4
√
2(t + 1)

. (2.36b)

Proof Set k = t < m
2 and consider the instance (2.1) with data given in (2.24). Clearly,

this instance is in the form of (1.6), f is L f -smooth, and ‖A‖ = LA.
Lemma 2.5 indicates that the considered instance has a unique primal-dual solution

(x∗, y∗) given in (2.25). By Lemma 2.4 and noting t = k, we have x(t) ∈ Kk−1.
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18 Y. Ouyang, Y. Xu

Consequently,

f (x(t)) − f (x∗) ≥ min
x∈Kk−1

f (x) − f ∗, and ‖Ax(t) − b‖ ≥ min
x∈Kk−1

‖Ax − b‖.

From (2.30a), (2.32) and (2.27), it follows that

min
x∈Kk−1

f (x) − f ∗ = kL f

8
+ kL f

8
= 3L f ‖x∗‖2

8(2k + 1)(4k + 1)
+

√
3L A‖x∗‖ · ‖y∗‖

4
√
2
√

(2k + 1)(4k + 1)
.

Since k = t , we conclude (2.36a) from the above relation, and (2.36b) from (2.30b).
��

Remark 2.1 The norm ‖y∗‖ in (2.27) depends on the ratio
L f
L A

. With the assump-
tion L f ≥ L A, we can remove such a dependence. In particular, setting h =(
L f
4 + L A

4
√
2

)
e2k,n in (2.24), we can obtain that

‖y∗‖ =
√
k

2
, and min

x∈Kk−1

f (x) − f ∗ = L f

16
k +

√
2L A

8
k + L2

f − L2
A

16L f
k.

Hence, assuming L f ≥ L A and taking k = t we have

f (x(t)) − f (x∗) ≥ min
x∈Kt−1

f (x) − f ∗ ≥ L f

16
t +

√
2L A

8
t

= 3L f ‖x∗‖2
16(2t + 1)(4t + 1)

+
√
6L A‖x∗‖ · ‖y∗‖

4
√

(2t + 1)(4t + 1)
.

The proof of the above claim follows the same lines of arguments throughout this
subsection. We do not repeat it here but leave the details to interested readers.

2.3 A lower complexity bound for strongly convex case

In this subsection, we develop a lower complexity bound for solving (1.6) when f
is μ-strongly convex. The measure we use is different from those in (2.36). Instead
of bounding the objective and feasibility error, we directly bound the distance of
generated iterate to the unique optimal solution. Similar to the previous subsection,
the “hard” instance we design is also a quadratic program in the form of (2.1). The
following theorem summarizes our result.

Theorem 2.2 (Lower complexity bound for strongly convex case under linear span
assumption) Let m ≤ n be positive integers, μ > 0, and LA > 0. For any positive
integer t < m

2 , there exists an instance of (1.6) such that f is differentiable and μ-
strongly convex, ‖A‖ = LA, and it has a unique primal-dual solution pair (x∗, y∗). In
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addition, for any algorithm on solving (1.6), if it satisfies Assumption 2.1, then

‖x(t) − x∗‖2 ≥ 5L2
A‖y∗‖2

256μ2(t + 1)2
.

Proof Set k = t and consider an instance of (2.1) with H = μI, h = 0, and A and b
given in (2.20). Clearly, f is differentiable and μ-strongly convex, and ‖A‖ = LA. It
is easy to verify that Lemma 2.3 applies to this instance, and thus x(t) ∈ Kt−1. Also,
by the KKT condition μx∗ = A�y∗, we can easily verify that the system has a unique
primal-dual solution (x∗, y∗) with x∗ given in (2.25) and y∗ given by

y∗
i =

{ μ

L A
i(4k − i + 1), if 1 ≤ i ≤ 2k,

0, if i ≥ 2k + 1.
(2.37)

From the formula of Ki in (2.15), it follows that for any x ∈ Kk−1,

‖x − x∗‖2 ≥
k∑

i=1

i2
(2.31)= k(k + 1)(2k + 1)

6
. (2.38)

Moreover, by (2.31) and also the formulas

p∑
i=1

i3 = p2(p + 1)2

4
,

p∑
i=1

i4 = p(p + 1)(2p + 1)(3p2 + 3p − 1)

30
,

we have from (2.37) that

‖y∗‖2 = μ2

L2
A

2k∑
i=1

i2(4k − i + 1)2

= μ2

L2
A

(
(4k + 1)2

2k∑
i=1

i2 − 2(4k + 1)
2k∑
i=1

i3 +
2k∑
i=1

i4
)

= 2k(2k + 1)(4k + 1)μ2

L2
A

(
(4k + 1)2

6
− k(2k + 1) + 12k2 + 6k − 1

30

)

= 2k(2k + 1)(4k + 1)μ2

15L2
A

(16k2 + 8k + 2).

Since t = k and x(t) ∈ Kt−1, it is not difficult to verify the desired result from (2.38)
and the above equation, and thus we complete the proof. ��
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3 Lower complexity bounds of general deterministic first-order
methods for affinely constrained problems

In this section, we drop the linear span assumption (see Assumption 2.1) and establish
lower complexity bounds of general first-order methods described in (1.8) on solving
(1.6). The key idea is to utilize certain rotational invariance of quadratic functions
and linear systems, a technique that was introduced in [32,33]. Specifically, we first
establish a key proposition (i.e., Proposition 3.1 below) as our main tool and then
derive the lower complexity bounds by the results obtained in the previous section.

For ease of notation, we define a specific class of SPPs as follows.

Definition 3.1 (A special class of SPPs) Given H ∈ S
n+, A ∈ R

m×n , and θ =
(h,b, RX , RY , λ) where RX , RY ∈ [0,+∞] and λ ≥ 0, P(θ;H,A) is defined as
one instance of (1.3) with

f (x) = 1

2
x�Hx − h�x, g(y) = λ‖y‖, X = {x ∈ R

n : ‖x‖ ≤ RX },
and Y = {y ∈ R

m : ‖y‖ ≤ RY }. (3.1)

Hence, by P(θ;H,A) or more specifically P
(
(h,b, RX , RY , λ);H,A

)
, we mean the

instance

φ∗ := min‖x‖≤RX

{
φ(x) := 1

2
x�Hx − h�x + max‖y‖≤RY

〈Ax − b, y〉 − λ‖y‖
}

. (3.2)

Remark 3.1 We will call (θ;H,A) as the data in the instance P(θ;H,A). Given
H ∈ S

n+, A ∈ R
m×n , h ∈ R

n and b ∈ R
m , then an instance of (2.1) can be denoted as

P(θ;H,A) with θ = (h,b,+∞,+∞, 0).

Proposition 3.1 Let m ≤ n, k < m
2 , and t ≤ k

2 − 1 be positive integers, and let
L f and L A be nonnegative numbers. Suppose that we have an instance P(θ;H,A),
called original instance, where ‖H‖ ≤ L f , and A and b are those given in (2.20).
Moreover, assume that H ∈ S

n+ and satisfies HK2s−1 ⊆ K2s for any s ≤ k
2 and

h ∈ K0, where Ki is defined in (2.7). Then for any deterministic first-order method
M that is described in (1.8), there exists another instance P(θ; H̃, Ã), called rotated
instance, where H̃ = U�HU, Ã = V�AV, U and V are certain orthogonal matrices
dependent on t such that Uh = h and Vb = b, and

1. In addition, (x∗, y∗) is a saddle point that satisfies (1.5) to the original instance if
and only if (x̂, ŷ) := (U�x∗,V�y∗) is a saddle point to the rotated instance.

2. Furthermore, whenM is applied to solve P(θ; H̃, Ã), its t-th computed approxi-
mate solution x̄(t) satisfies

φ̃(x̄(t)) − φ̃∗ ≥ min
x∈Kk−1

φ(x) − φ∗, (3.3)

f̃ (x̄(t)) − f̃ (x̂) ≥ min
x∈Kk−1

f (x) − f (x∗), (3.4)
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‖Ãx̄(t) − b‖ ≥ min
x∈Kk−1

‖Ax − b‖, (3.5)

‖x̄(t) − x̂‖2 ≥ min
x∈Kk−1

‖x − x∗‖2, (3.6)

where φ and f are the functions in the original instance (see the definitions in
(3.1) and (3.2)), and φ̃ and f̃ are those in the rotated instance.

The proof of Proposition 3.1 is rather technical and deferred after we present the
lower complexity bound results. Here we give a few remarks on this proposition. First,
in Proposition 3.1 there are two problem instances, which have been distinguished as
original and rotated instances, respectively. Second, the results in (3.3) through (3.6)
establish an important relation between the original and rotated instances. Specifically,
by this relation,we are able to study the best possible performance of general first-order
methods through the linear subspace Kk−1.

3.1 Lower complexity bounds

In this subsection, we apply Proposition 3.1 together with Theorems 2.1 and 2.2 to
establish the lower complexity bounds of general first-order methods on solving (1.6).
The theorem below extends the results in Theorem 2.1.

Theorem 3.1 (Lower complexity boundof general first-ordermethods)Let 8 < m ≤ n
be positive integers, L f > 0, and L A > 0. For any positive integer t < m

4 −1 and any
deterministic first-order method M that is described in (1.8), there exists an instance
of (1.6) such that f is L f -smooth and ‖A‖ = LA. In addition, the instance has a
unique primal-dual solution (x∗, y∗), and

f (x̄(t)) − f ∗ ≥ 3L f ‖x∗‖2
64(2t + 5)2

+
√
3L A‖x∗‖ · ‖y∗‖
16(2t + 5)

, (3.7a)

‖Ax̄(t) − b‖ ≥
√
3L A‖x∗‖

4
√
2(2t + 5)

, (3.7b)

where x̄(t) is the output byM.

Proof Set k = 2t + 2 < m
2 in the definition of Λ and c given in (2.2). Consider

(2.1) with data given in (2.24). By Remark 3.1, this problem instance is P(θ;H,A)

with θ = (h,b,+∞,+∞, 0). It is easy to check that the data satisfy the conditions
required in Proposition 3.1. Hence, there exists a rotated instance P(θ; H̃, Ã), i.e.,

f̃ ∗ := min
x∈Rn

{
f̃ (x) := 1

2
x�H̃x − h�x, s.t. Ãx = b

}
, (3.8)

where H̃ = U�HU and Ã = V�AV with orthogonal matrices U and V dependent on
t , and in addition (3.4) and (3.5) hold. From the proof of Theorem 2.1 together with
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these two inequalities, we have

f̃ (x̄(t)) − f̃ ∗ ≥ min
x∈Kk−1

f (x) − f ∗ ≥ 3L f ‖x∗‖2
64(k + 1)2

+
√
3L A‖x∗‖ · ‖y∗‖
16(k + 1)

,

‖Ãx̄(t) − b‖ ≥ min
x∈Kk−1

‖Ax − b‖ ≥
√
3L A‖x∗‖

4
√
2(k + 1)

,

(3.9)

where (x∗, y∗) is the unique primal-dual solution to the original instance. By item 1
of Proposition 3.1, the rotated instance (3.8) also has a unique primal-dual solution
(x̂, ŷ) given by x̂ = U�x∗ and ŷ = V�y∗. Since U and V are orthogonal, it holds
that ‖x∗‖ = ‖x̂‖ and ‖y∗‖ = ‖ŷ‖. Therefore, noting that k = 2t + 2 and (3.8) is an
instance of (1.6), we obtain the desired results from the two inequalities in (3.9) and
abusing the notation ( f ,A, x∗, y∗) for ( f̃ , Ã, x̂, ŷ). ��

For strongly convex case, we below generalize Theorem 2.2 to any first-order
method given in (1.8).

Theorem 3.2 (Lower complexity bound of general first-order methods for strongly
convex case) Let 8 < m ≤ n be positive integers, and μ and LA be positive numbers.
For any positive integer t < m

4 − 1 and any deterministic first-order methodM that is
described in (1.8), there exists an instance of (1.6) such that f is μ-strongly convex,
and ‖A‖ = LA. In addition, the instance has a unique primal-dual solution (x∗, y∗),
and

‖x̄(t) − x∗‖2 ≥ 5L2
A‖y∗‖2

256μ2(2t + 5)2
, (3.10)

where x̄(t) is the output byM.

The proof of Theorem 3.2 is similar to that of Theorem 3.1: one can use (3.6)
together with Theorem 2.2. We omit the details.

3.2 Proof of Proposition 3.1

This subsection is dedicated to the technical details on the proof of Proposition 3.1. On
an instance P(θ;H,A) defined in Definition 3.1, the first-order methodM described
in (1.8) can be written as
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(
x(t+1), y(t+1), x̄(t+1), ȳ(t+1)

)

= It
(
θ;Hx(0),Ax(0),A�y(0), . . . ,Hx(t),Ax(t),A�y(t)

)
, ∀ t ≥ 0. (3.11)

We start our proof with several technical lemmas. The following lemma is an
elementary result of linear subspaces and will be used several times in our analysis.

Lemma 3.1 Let X � X̄ ⊆ R
p be two linear subspaces. Then for any x̄ ∈ R

p, there
exists an orthogonal matrix V ∈ R

p×p such that

Vx = x, ∀x ∈ X , and Vx̄ ∈ X̄ . (3.12)

Proof If x̄ ∈ X , then we can simply choose V = I. Otherwise, we decompose x̄ =
y + z, where z ∈ X and y �= 0 is in the complement subspace X⊥. Let s = dim(X )

and t = dim(X̄ ) > s. Assume u1, . . . ,us to be an orthonormal basis of X . We
extend it to u1, . . . ,ut , an orthonormal basis of X̄ . The desired result in (3.12) is then
obtained by choosing V as an orthogonal matrix such that Vui = ui , ∀ i = 1, . . . , s,
and Vy = ‖y‖us+1. ��

By Lemma 3.1, we show the results below.

Lemma 3.2 Given m ≤ n and k < m
2 , let Λ be the matrix in (2.2). Let s ≤ k

2 be
a positive integer, H ∈ S

n+, and U,Φ ∈ R
n×n and V,Ψ ∈ R

m×m be orthogonal
matrices. If HK2s−1 ⊆ K2s , and

Φx = x,∀ x ∈ U�K2s, and Ψ y = y, ∀ y ∈ V�J2s, (3.13)

then for any x ∈ U�K2s−1 and any y ∈ V�J2s−1, it holds:

Ũ�HŨx = U�HUx, Ṽ�ΛŨx = V�ΛUx, and Ũ�Λ�Ṽy = U�Λ�Vy,

where Ũ = UΦ and Ṽ = VΨ .

Proof Let x ∈ U�K2s−1 and y ∈ V�J2s−1. Since U and V are orthogonal, it holds
that Ux ∈ K2s−1 and Vy ∈ J2s−1. Hence, from the assumption on H, the properties
of Ji and Ki in (2.18) and (2.19), and noting 2s − 1 ≤ k − 1, we have

HUx ∈ K2s, ΛUx ∈ J2s, and Λ�Vy ∈ K2s−1 � K2s,

which implies

U�HUx ∈ U�K2s, V�ΛUx ∈ V�J2s, and U�Λ�Vy ∈ U�K2s .

From (3.13), we obtain

ΦU�HUx = U�HUx, ΨV�ΛUx = V�ΛUx, and ΦU�Λ�Vy = U�Λ�Vy.
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Because Φ and Ψ are orthogonal matrix, the above equations indicate that

Φ�U�HUx = U�HUx, Ψ �V�ΛUx = V�ΛUx, and Φ�U�Λ�Vy = U�Λ�Vy.
(3.14)

Moreover, since x ∈ U�K2s−1 and y ∈ V�J2s−1, it follows from (2.19) that
x ∈ U�K2s and y ∈ V�J2s , and thus using (3.13) again and also the definition of Ũ
and Ṽ, we have

Ũx = UΦx = Ux, and Ṽy = VΨ y = Vy. (3.15)

Therefore, we conclude that for any x ∈ U�K2s−1 and y ∈ V�J2s−1,

Ũ�HŨx
(3.15)= Φ�U�HUx

(3.14)= U�HUx,

Ṽ�ΛŨx
(3.15)= Ψ �V�ΛUx

(3.14)= V�ΛUx,

Ũ�Λ�Ṽy = Φ�U�Λ�Vy (3.14)= U�Λ�Vy.

Hence, we complete the proof. ��
Proposition 3.2 Givenm ≤ n and k < m

2 , letΛ and c be thematrix and vector in (2.2),
and let h ∈ K0, RX , RY ∈ [0,+∞], and λ ≥ 0. Suppose thatA and b are respectively
a multiple of Λ and c and H ∈ S

n+ satisfying HK2s−1 ⊆ K2s for all s ≤ k
2 . Then for

any 0 ≤ t ≤ k
2 − 1 and any deterministic first-order method M described in (1.8),

there exist orthogonal matrices Ut ∈ R
n×n and Vt ∈ R

m×m and a problem instance
P(θ;U�

t HUt ,V�
t AUt ) with θ = (h,b, RX , RY , λ) such that Uth = h, Vtc = c,

and in addition, whenM is applied to solve the instance, the iterates {(x(i), y(i))}ti=0
satisfy

x(i) ∈ U�
t K2t+1, y(i) ∈ V�

t J2t+1, ∀ i = 0, . . . , t,

whereK2t+1 andJ2t+1 are the Krylov subspaces defined in (2.7). Moreover, the output
x̄(t) ∈ U�

t K2t+1.

Proof Note K0 � K1 and J0 � J1 from Lemma 2.2. Hence, by Lemma 3.1 there
exist orthogonal matrices U0 and V0 such that

U0x = x,∀x ∈ K0, and U0x(0) ∈ K1

V0y = y,∀y ∈ J0, and V0y(0) ∈ J1.

Therefore, from the condition h ∈ K0 and c ∈ J0 by Lemma 2.2, we have U0h = h
and V0c = c. Consequently, the results in the lemma hold for t = 0. Below we prove
the results for any t < k

2 − 1 by induction.
Assume that for some 1 ≤ s < k

2 − 1, the results hold for t = s − 1, namely, there
exist orthogonal matrices Us−1 ∈ R

n×n and Vs−1 ∈ R
m×m such that Us−1h = h,
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Vs−1c = c, and when M is applied to the instance P(θ;U�
s−1HUs−1,V�

s−1AUs−1),

the iterates {(x(i), y(i))}s−1
i=0 satisfy

x(i) ∈ U�
s−1K2s−1, and y(i) ∈ V�

s−1J2s−1, ∀i = 0, . . . , s − 1. (3.16)

Suppose the next inquiry point generated by M is (x(s), y(s)). Since s < k
2 − 1, it

holds that 2s < k, and from (2.19) we have U�
s−1K2s−1 � U�

s−1K2s � U�
s−1K2s+1

and V�
s−1J2s−1 � V�

s−1J2s � V�
s−1J2s+1. By Lemma 3.1, there exist orthogonal

matrices Φ ∈ R
n×n and Ψ ∈ R

m×m such that

Φx = x, ∀x ∈ U�
s−1K2s, and Φx(s) ∈ U�

s−1K2s+1,

Ψ y = y, ∀y ∈ V�
s−1J2s, and Ψ y(s) ∈ V�

s−1J2s+1. (3.17)

Since c ∈ J2s and Vs−1c = c, we have c ∈ V�
s−1J2s , and thus it follows from (3.17)

that Ψ c = c. Let Us = Us−1Φ and Vs = Vs−1Ψ . Clearly, both Us and Vs are
orthogonal matrices, and because Vs−1c = c and Ψ c = c, we have Vsc = c. By a
similar argument we also haveUsh = h. In addition, from (3.17), Lemma 3.2, and the
assumptions on H and A, it follows that for any x ∈ U�

s−1K2s−1 and y ∈ V�
s−1J2s−1,

U�
s HUsx = U�

s−1HUs−1x, V�
s AUsx = V�

s−1AUs−1x, and U�
s A

�Vsy

= U�
s−1A

�Vs−1y. (3.18)

Therefore, from the induction hypothesis (3.16) and the equations in (3.18), we con-
clude that the first s + 1 iterates obtained fromM applied to P(θ;U�

s HUs,V�
s AUs)

are exactly the same as the first s + 1 iterates obtained from M applied to
P(θ;U�

s−1HUs−1,V�
s−1AUs−1), because exactly the same information is used

to generate those iterates (cf. (3.11)). Consequently, when M is applied to
P(θ;U�

s HUs,V�
s AUs), the first s + 1 iterates are (x(i), y(i)), i = 0, 1, . . . , s. Hence,

from (2.19), (3.16) and (3.17), and also the facts Us = Us−1Φ and Vs = Vs−1Ψ , we
have

x(i) ∈ U�
s K2s+1, y(i) ∈ V�

s J2s+1, ∀i = 0, . . . , s.

This finishes the induction. Recalling that in the discussion below (1.8) we have
assumed that the output by M coincides with the last inquiry point, we have x̄(t) =
x(t) ∈ U�

t K2t+1, and hence complete the proof. ��
Using Proposition 3.2, we are now ready to prove Proposition 3.1.

Proof (of Proposition 3.1)Note that for the original instance P(θ ;H,A) in Proposition
3.1, its data H,A,b and h satisfy the conditions in Proposition 3.2. Hence, we apply
Proposition 3.2 to obtain a rotated instance P(θ;U�HU,V�AU), where U and V are
orthogonal matrices such that Uh = h and Vb = b, and we have used the fact that b
is a multiple of c.
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Let Ã = V�AU, φ and f denote the functions in the original instance P(θ;H,A),
and φ̃ and f̃ denote those in the rotated instance P(θ;U�HU,V�AU). Then it is
straightforward to observe the relations

f̃ (x) = f (Ux), and φ̃(x) = φ(Ux). (3.19)

By the optimality conditions (e.g., [29]) of the original instance and the rotated
instance, it is also easy to show that the pair (x∗, y∗) is a saddle point to the orig-
inal instance if and only if (x̂, ŷ) = (U�x∗,V�y∗) is a saddle point to the rotated
instance, and that φ̃∗ = φ∗.

It remains to prove the inequalities from (3.3) through (3.6). By Proposition 3.2,
whenM is applied to the rotated instance, the approximate solution x̄(t) ∈ U�K2t+1,
which indicates Ux̄(t) ∈ K2t+1 by the orthogonality of U. Since t ≤ k

2 − 1, we
have 2t + 1 ≤ k − 1, and thus from (2.19), it follows that Ux̄(t) ∈ K2t+1 ⊆ Kk−1.
Therefore, from the facts Ã = V�AU, Uh = h and Vb = b, and the relations in
(3.19), we have

φ̃(x̄(t)) − φ̃∗ = φ(Ux̄(t)) − φ∗ ≥ min
x∈Kk−1

φ(x) − φ∗,

f̃ (x̄(t)) − f̃ (x̂) = f (Ux̄(t)) − f (Ux̂) ≥ min
x∈Kk−1

f (x) − f (x∗),

‖Ãx̄(t) − b‖ = ‖A(Ux̄(t)) − b‖ ≥ min
x∈Kk−1

‖Ax − b‖,

‖x̄(t) − x̂‖2 = ‖Ux̄(t) − x∗‖2 ≥ min
x∈Kk−1

‖x − x∗‖2,

which complete the proof. ��

4 Lower complexity bounds on bilinear saddle-point problems

In this section,wederive lower complexity bounds offirst-ordermethods on solving the
bilinear saddle-point problem (1.1) through considering its associated primal problem
(1.3). As we mentioned in the beginning, the affinely constrained problem (1.6) is a
special case of (1.3) if Y = R

m and g = 0. Hence, the results obtained in previous
sections also apply to (1.3), namely, our designed instances of (1.6) are also “hard”
instances of (1.3). However, they will not be the instance of (1.3) if we require Y to
be a compact set. On solving (1.1) with both X and Y being compact, [35] gives a
first-order method that can be described as (1.8), and it proves

0 ≤ φ(x̄(t)) − ψ(ȳ(t)) ≤ 4L f D2
X

(t + 1)2
+ 4DX DY ‖A‖

t + 1
, (4.1)

where DX and DY are the diameters3 of X and Y respectively. It is an open question
if the convergence rate in (4.1) can still be improved. Under the Euclidean setting, a

3 In fact, more general results are established in [35]. It adopts general norm (that is not necessary Euclidean
norm) and general prox-functions to define ‖A‖, DX and DY .
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lower complexity bound for the special case L f = 0 has been shown in [29]. We give
instances below to show a lower complexity bound under the Euclidean setting but
with L f > 0. The bound is in the same form as that in (4.1) and differs only at the
constants, and thus the convergence rate result in [35] is optimal under the Euclidean
setting. The ingredients in the designed “hard” SPP instances are the same as those
used in Sect. 2.

Let m ≤ n and k < m
2 be positive integers, and let L f > 0 and L A > 0. We

consider the instance P
(
(h,b, RX , RY , λ);H,A

)
with (H,h,A,b) given in (2.24),

and

RX = (2k + 1)
√
k, RY = L f

2L A

√
2k, λ = L A

√
k

4
. (4.2)

Clearly the above problem is a special instance of (1.3). In the following lemma, we
give a lower bound of its optimal objective value.

Lemma 4.1 Let m ≤ n and k < m
2 be positive integers, and let L f > 0 and L A > 0.

Set (H,h,A,b) as those in (2.24) with RX , RY , and λ as in (4.2). Then the optimal
objective value of the instance P(θ;H,A) defined in Definition 3.1 satisfies

φ∗ ≤ −3L f

4
k. (4.3)

Proof Since λ‖y‖ ≥ 0, we have

φ∗ ≤ l∗ := min
x∈X

{
f (x) + max

y∈Y 〈Ax − b, y〉
}

, (4.4)

where f , X , and Y are defined in (3.1), and thus to prove (4.3), it suffices to show
l∗ = − 3L f

4 k. By the optimality condition (e.g., [29]), x∗ ∈ R
n is an optimal solution

to (4.4) if x∗ ∈ X , and there exists y∗ ∈ Y such that

〈∇ f (x∗) + A�y∗, x∗ − x〉 ≤ 0, 〈b − Ax∗, y∗ − y〉 ≤ 0,∀ x ∈ X , y ∈ Y . (4.5)

Let x∗ and y∗ be the vectors given in (2.25). Note from the proof of Lemma 2.5,
it holds that ∇ f (x∗) = Hx∗ − h = A�y∗ and Ax∗ − b = 0. Hence, (x∗,−y∗)
satisfies the optimality condition in (4.5). In addition, from (2.32) and (2.27), it follows
that ‖x∗‖ ≤ RX and ‖y∗‖ ≤ RY . Therefore, x∗ is an optimal solution, and it is
straightforward to compute l∗ = f (x∗) = − 3L f

4 k. This completes the proof. ��
In the following lemma, we compute the minimum value of φ(x) over Kk−1.

Lemma 4.2 Let m ≤ n and k < m
2 be positive integers, and let L f > 0 and L A > 0.

Set (H,h,A,b) as those in (2.24)with RX , RY , andλ as in (4.2). Consider the instance
P(θ;H,A) defined in Definition 3.1, i.e.,

φ∗ := min‖x‖≤RX

{
φ(x) := 1

2
x�Hx − h�x + max‖y‖≤RY

〈Ax − b, y〉 − λ‖y‖
}

.
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Then

min
x∈Kk−1

φ(x) − φ∗ ≥ L f R2
X

4(2k + 1)2
+ L ARX RY

4(2k + 1)
. (4.6)

Proof Let f , X , and Y be defined in (3.1). Observing 〈Ax − b, y〉 ≤ ‖Ax − b‖ · ‖y‖,
we have

max
y∈Y 〈Ax − b, y〉 − λ‖y‖ =

{
0 if ‖Ax − b‖ ≤ λ,

RY (‖Ax − b‖ − λ) if ‖Ax − b‖ > λ.

For any x ∈ Kk−1, we have from (2.33) and (4.2) that ‖Ax − b‖ − λ ≥ L A
√
k

4 > 0,
and thus

φ(x) = f (x) + RY (‖Ax − b‖ − λ) ≥ f (x) + L ARY
√
k

4
(4.2)= f (x) + L ARX RY

4(2k + 1)
.

(4.7)

In addition, note that f (x) here is exactly the same as that discussed in Lemma 2.6.
Thus by (2.35), we have that for any x ∈ Kk−1,

f (x) ≥ − L f

2
k. (4.8)

Applying (4.8) to (4.7), and noting the bound of φ∗ in Lemma 4.1, we have for any
x ∈ Kk−1 that

φ(x) − φ∗ ≥ L f

4
k + L ARX RY

4(2k + 1)
(4.2)= L f R2

X

4(2k + 1)2
+ L ARX RY

4(2k + 1)
,

which implies the desired result in (4.6). ��
Using Proposition 3.1 and Lemma 4.2, we are able to show a lower complexity

bound of deterministic first-order methods on (1.1) as summarized in the following
theorem.

Theorem 4.1 (Lower complexity bound for SPPs) Let 8 < m ≤ n and t < m
4 − 1 be

positive integers, L f > 0, and L A > 0. Then for any deterministic first-order method
M described in (1.8) on solving (1.1), there exists a problem instance of (1.1) such
that f is L f -smooth, ‖A‖ = L A, and X and Y are Euclidean balls with radii RX and
RY respectively. In addition,

φ(x̄(t)) − ψ(ȳ(t)) ≥ L f R2
X

4(4t + 5)2
+ L ARX RY

4(4t + 5)
, (4.9)

where φ and ψ are the associated primal and dual objective functions, and (x̄(t), ȳ(t))

is the approximate solution output byM.
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Proof Set k = 2t+2 < m
2 and consider the problem instance P(θ;H,A) described in

Lemma4.2.Note that the data (H,h,A,b, RX , RY , λ) satisfies the conditions required
by Proposition 3.1. Hence, there is a rotated instance P(θ; H̃, Ã), and from (3.3) and
Lemma 4.2, it follows that

φ̃(x̄(t)) − φ̃∗ ≥ min
x∈Kk−1

φ(x) − φ∗ ≥ L f R2
X

4(4t + 5)2
+ L ARX RY

4(4t + 5)
, (4.10)

where φ and φ̃ are respectively the primal objective functions of the original instance
P(θ;H,A) and the rotated instance P(θ; H̃, Ã). Let ψ̃ be the dual objective function
of the rotated instance. Then since ȳ(t) ∈ Y , it holds ψ̃(ȳ(t)) ≤ ψ̃∗ ≤ φ̃∗, where the
second inequality follows from the weak duality. Therefore we have the desired result
from (4.10) and by abusing the notation (φ,ψ) for (φ̃, ψ̃). ��
Remark 4.1 The lower bound in (4.9) has exactly the same form as the upper bound
in (4.1), and they differ only on the constants. Hence, the order of the convergence
rate result in (4.1) is not improvable under the Euclidean setting, and one can only
improve that result by possibly decreasing the constants.

We finish this section by showing a lower complexity bound for SPPs when the
function f (x) in (1.1) is strongly convex.

Theorem 4.2 (Lower complexity bound for SPPs with strong convexity) Let 8 < m ≤
n and t < m

4 −1 be positive integers, andμ and LA be positive numbers. Then for any
deterministic first-order methodM described in (1.8), there exists a problem instance
of (1.1) such that f is μ-strongly convex, ‖A‖ = LA, X and Y are Euclidean balls
with radii RX and RY respectively, and the associated primal problem (1.3) has a
unique optimal solution x∗ ∈ X . In addition,

‖x̄(t) − x∗‖2 ≥ 5L2
AR

2
Y

256μ2(4t + 5)2
(4.11)

and

φ(x̄(t)) − ψ(ȳ(t)) ≥ 5L2
AR

2
Y

512μ(4t + 5)2
, (4.12)

where φ and ψ are the associated primal and dual objective functions, and (x̄(t), ȳ(t))

is the output by M.

Proof Set k = 2t + 2 < m
2 and consider the problem instance of (1.1), where f (x) =

μ
2 ‖x‖2, A and b are those in (2.20), g ≡ 0, and

X =
{
x ∈ R

n|‖x‖2 ≤ R2
X := k(2k + 1)2

}
,

Y =
{
y ∈ R

m |‖y‖2 ≤ R2
Y := 128μ2

15L2
A

k(k + 1)3(2k + 1)

}
. (4.13)
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From the proof of Theorem 2.2, it is easy to verify that x∗ in (2.25) and y∗ in (2.37)
satisfy x∗ ∈ X , y∗ ∈ Y , and the optimality condition in (4.5) holds for (x∗,−y∗).
Since f is strongly convex, x∗ must be the unique optimal solution to the instance.
From (2.38) and also the definitions of X and Y in (4.13), it follows that

min
x∈Kk−1

‖x − x∗‖2 ≥ 5L2
AR

2
Y

256μ2(2k + 1)2
. (4.14)

Note that the above instance can be represented as P
(
(0,b, RX , RY , 0);μI,A

)
by

Definition 3.1, and the data in the instance satisfy all the conditions in Proposition
3.1. Hence, we can obtain a rotated instance P

(
(0,b, RX , RY , 0);μI, Ã

)
, and it has a

unique optimal solution x̂ ∈ X . Now use (3.6) and (4.14) to obtain (4.11) by recalling
k = 2t + 2 and abusing x∗ for x̂.

Let φ̃ and ψ̃ be the primal and dual objective functions of the rotated instance. By
the strong convexity and the optimality of x̂, we have

φ̃(x̄(t)) − φ̃∗ ≥ μ

2
‖x̄(t) − x̂‖2.

Together with (4.11) and the fact ψ̃(ȳ(t)) ≤ ψ̃∗ ≤ φ̃∗, the above inequality gives
(4.12) by abusing the notation (φ,ψ, x∗) for (φ̃, ψ̃, x̂). Therefore, we complete the
proof. ��

Remark 4.2 In the proof of Theorem 4.2, we have g = 0 in the obtained rotated
instance. Similar to Theorem 4.1, we can have an instance with a nonzero g and have a
result similar to that in (4.12). Specifically, we consider P

(
(0,b, RX , RY , λ);μI,A

)
,

where λ = L A
6

√
k, and the tuple (A,b, RX , RY ) is the same as that in the above proof.

Let φ be the primal objective of the new instance. Then by the same arguments as
those in the proof of Lemma 4.1, we can show φ∗ ≤ μ

2 ‖x∗‖2, where x∗ is given in
(2.25). Furthermore, similar to (4.7), we can show that for any x ∈ Kk−1, it holds

φ(x) ≥ μ

2
‖x‖2 + L ARY

√
k

3
≥ L ARY

√
k

3
.

Therefore, minx∈Kk−1 φ(x) − φ∗ ≥ L ARY
√
k

3 − μ
2 ‖x∗‖2. Now applying Proposition

3.1, we obtain a rotated instance P
(
(0,b, RX , RY , λ);μI, Ã

)
with primal objective

φ̃, and by (3.3), we have

φ̃(x̄(t)) − φ̃∗ ≥ L ARY
√
k

3
− μ

2
‖x∗‖2 ≥ 4

√
2

3

(
2√
15

− 1

2

)
μk
√

(k + 1)3(2k + 1)

= Ω
( L2

AR
2
Y

μk2
)
.
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5 On the tightness of the established lower complexity bounds

In this section, we compare the established lower complexity bounds to the best known
upper complexity bounds. It turns out that the lower complexity bounds developed in
this paper are tight in terms of the order, and thus they can be used to justify the
optimality of first-order methods in the literature.

5.1 Upper complexity bounds of first-order methods on affinely constrained
problems

The work [37] proposes an accelerated linearized alternating direction method of
multipliers (AL-ADMM). Applying to (1.6), i.e., setting one block to zero, we have
from one convergence rate result in [37, eqn. (2.34)] that

f (x(t)) − f ∗ ≤ 2L f D2
X

t(t + 1)
+ 2‖A‖DX DY

t + 1
,

where DX and DY are the diameters of the primal and dual feasible sets. If the size
of the optimal primal and dual solutions is assumed, then the above result coincides
with that in (3.7a) up to the difference of a constant multiple.

For the strongly convex case, the result in (3.10) indicates that given any ε > 0, to
have an iterate within

√
ε-neighborhood of x∗, the iterate number is at least

t =
⌈√

5L A‖y∗‖
32μ

√
ε

− 5

2

⌉
, (5.1)

where �a� denotes the smallest integer no less than a ∈ R. In [42, proof of Thm.4], it
is shown that

f (x(t)) − f (x∗) + 〈y∗,Ax(t) − b〉 ≤ ‖y∗‖2
2ρ0

+ ε0, (5.2)

where (x∗, y∗) is a pair of primal-dual solution, and x(t) is the output of Nesterov’s
optimal first-ordermethod applied to a penalized problem after t iterations. In addition,

with ρ0 = 2‖y∗‖2
με

and ε0 = με
4 in (5.2), [42, eqn.(49)] shows that the iteration number

t satisfies:

t ≤ 2

(√
L f

μ
+ 2L A‖y∗‖

μ
√

ε

)(
O(1) + log

1

ε

)
. (5.3)

From the strong convexity of f , it follows that

f (x(t)) − f (x∗) + 〈y∗,Ax(t) − b〉 ≥ μ

2
‖x(t) − x∗‖2,

which together with (5.2) gives ‖x(t) − x∗‖2 ≤ ε. Hence, the dominant term in the
upper bound (5.3) is the same as that in (5.1) except for a logarithmic term.
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5.2 Upper complexity bounds of first-order methods on saddle-point problems

For optimization problems in the form of (1.3), a smoothing technique is proposed in
[35]. It first approximates the nonsmooth objective function by a smooth one and then
minimizes the smooth approximation function by an accelerated gradient method. In
[35], it is shown that, if X and Y are compact with diameter DX and DY respectively,
and the total number of iterations is pre-specified to t , then the convergence rate of
this smoothing scheme applied to (1.3) is given in (4.1). Comparing the upper bound
in (4.1) and the lower bound in (4.9), we conclude that our lower complexity bound
in Theorem 4.1 is tight in terms of the order, and that Nesterov’s smooth scheme is an
optimal method for computing approximate solutions to bilinear SPPs in the form of
(1.1).

Note that Theorem 4.1 also confirms the optimality of several follow-up works
of [35]. For example, when the algorithms in [7,8] are applied to solve (1.3), their
convergence rates all coincide with the lower bound in (4.9) up to a constant multiple,
and hence these methods are all optimal first-order methods for solving problems in
the form of (1.3).

In the literature, there have also been several results on either the saddle point or
the variational inequality formulation of (1.3) [6,17,27–29]. When applied to solve
(1.3) with f ≡ 0 (and hence L f ≤ L A), those results all imply

φ(x(t)) − φ∗ = O

(
L ADX DY

t

)
,

where DX and DY are the diameters of X and Y . The above result indicates the
tightness of the lower bound in (4.9).

6 Concluding remarks

On finding solutions to bilinear saddle-point problems, we have established lower
complexity bounds of first-order methods that acquire problem information through a
first-order oracle and are described by a sequence of updating rules. Through designing
“hard” instances of convex quadratic programming,wefirst show the lower complexity
bound results under a linear span assumption on solving affinely constrained problems.
Then by a rotation invariance technique, we extend the results to general first-order
methods that are still applied to affinely constrained problems. Finally, we establish
the results for general first-order methods on solving bilinear saddle-point problems
with compact primal and dual feasible regions. The established lower complexity
bounds have been compared to several existing upper bound results. The comparison
implies the tightness of our bounds and optimality of a few first-order methods in the
literature.

We conclude the paper with a few more remarks. First, note that for affinely
constrained problems, the feasibility residual in none of our results depends on the
objective; see (2.36b) and (3.7b) for example. This is reasonable because we can
choose not to use the objective gradient though the oracle (1.7) provides such infor-
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mation. However, towards finding an optimal solution, the objective information must
be used. All existing works (e.g., [8,24,41]) on primal-dual first-order methods have
objective-dependent quantity in their upper bounds on the feasibility error. One inter-
esting question is how to derive a lower complexity bound of the feasibility residual
that depends on the constraint itself and also the objective. To achieve that, we would
need to enforce a minimum portion of objective information to be used in the solu-
tion update. Second, a few existing works [22,23,25] have shown that if ∇ f is much
more expensive than matrix-vector multiplication Ax and A�y, it could be beneficial
to skip computing ∇ f at the cost of more Ax and/or A�y. This setting is different
from what we have made. In (1.7), we assume that one inquiry of the first-order oracle
will obtain gradient and matrix-vector multiplications simultaneously. In the future
work, we will allow multiple oracles that can return separate pieces of information,
and we will pursue the lower bound of each oracle inquiry to reach a solution with
desired accuracy and also design optimal oracle-based algorithms. Thirdly, in all our
established results, we do not pre-specify the size of X and Y but allow them to be
determined in the designed instances. That is the key reason why we obtain a lower
complexity bound that looks greater than existing upper bound, e.g., by comparing
(4.1) and (4.9). It is interesting to design “hard” instances to establish similar lower
complexity bound results, provided that L f , L A and the diameters of X ,Y are all
given. We leave this to the future work.
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