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Abstract
Upper semicontinuous (usc) functions arise in the analysis of maximization problems,
distributionally robust optimization, and function identification, which includes many
problems of nonparametric statistics. We establish that every usc function is the limit
of a hypo-converging sequence of piecewise affine functions of the difference-of-max
type and illustrate resulting algorithmic possibilities in the context of approximate
solution of infinite-dimensional optimization problems. In an effort to quantify the
ease with which classes of usc functions can be approximated by finite collections,
we provide upper and lower bounds on covering numbers for bounded sets of usc
functions under the Attouch-Wets distance. The result is applied in the context of
stochastic optimization problems defined over spaces of usc functions. We establish
confidence regions for optimal solutions based on sample average approximations
and examine the accompanying rates of convergence. Examples from nonparametric
statistics illustrate the results.

Keywords Hypo-convergence · Attouch-Wets distance · Approximation theory ·
Solution stability · Stochastic optimization · Epi-splines · Rate of convergence
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1 Introduction

Extended real-valued upper-semicontinuous (usc) functions on Rn are fundamental
in the study of finite-dimensional constrained maximization problems as essentially
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all such problems can be represented by usc functions. They arise in probability the-
ory with distribution and càdlàg functions also being usc. Emerging applications of
usc functions in infinite-dimensional problems include nonparametric statistical M-
estimation [38], distributionally robust optimization [36], and more generally function
identification [35]. In these applications, optimization problems are formulated over
spaces of usc functions. Regardless of the setting, it becomes important to have means
to approximate usc functions as well as an understanding of the difficulty with such
an undertaking. This article provides three main results in these directions: (i) We
establish that every usc function is the limit of a hypo-converging sequence of mesh-
free piecewise affine functions of the difference-of-max type. Thus, as a corollary,
the difference-of-convex (dc) functions are hypo-dense in spaces of usc functions.
With the advances in computational treatment of dc functions (see for example [8]),
this leads to numerous algorithmic possibilities, which we illustrate in the context of
function identification problems. (ii) We provide upper and lower bounds on covering
numbers for bounded sets of usc functions under the Attouch-Wets (aw) distance and
thereby quantify the ease with which classes of usc functions can be approximated
by finite collections. (iii) For stochastic optimization problems defined over spaces
of usc functions, we establish confidence regions for optimal solutions in terms of
the aw-distance and sample average approximations, with rates of convergence as
the sample size grows. The result requires only semicontinuity of the objective func-
tion and therefore applies in challenging settings such as simulation optimization of
“black-box” stochastic systems where little structure may be known.

The consideration of approximations in the sense of hypo-convergence, which is
metrized by the aw-distance, is natural and convenient in many applications. If an
usc function is approximated in this sense, then the maximizers of the approximating
function will be “near” those of the actual function. This is exactly the desired prop-
erty when the usc function represents a constrained maximization problem. It is also
the goal when the usc functions is a probability density function and we need to esti-
mate its modes; the approximating density will have modes “near” the actual modes.
The situation is similar when the usc function is a surrogate model in an engineering
design problem that needs to be maximized to find an optimal design; see Sect. 5 for
an example. The notion of approximation is further motivated in the context of distri-
bution functions by the fact that for such functions hypo-convergence is equivalent to
convergence in distribution, a property that is leveraged to address optimization under
stochastic ambiguity in [36]. An alternative focus on approximations in the sense of
uniform convergence would have limited the scope to finite-valued continuous func-
tions with common compact domains, which is too restrictive in many applications.
Hypo-convergence permits treatment of usc functions defined on any subset of Rn .

The study of hypo-converging usc functions and, in parallel, epi-converging
extended real-valued lower-semicontinuous (lsc) functions has a long history, with
important accomplishments in convex and nonsmooth analysis as well as the approx-
imation theory of maximization and minimization problems; see [31] for details.
Connections to probability theory are established in [39,40] and more recently in
[36]. The first formulation of infinite-dimensional optimization problems over spaces
of semicontinuous functions appears in [34], with theoretical developments in [35].
In particular, the latter reference defines the class of epi-splines (see also [33]), which
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are piecewise polynomial functions, and establishes that the class is dense in spaces
of semicontinuous functions under the aw-distance. Even though epi-splines furnish
a means to approximate arbitrary semicontinuous functions using a finite number of
parameters, they suffer from the need to partition Rn into a finite number of subsets.
In the present paper, we show that semicontinuous functions can be approximated
by piecewise affine functions that are defined without specifying a partition and that
are characterized structurally as being the difference of two functions of the form
x �→ maxk=1,...,p〈ak, x〉 + αk . Consequently, we refer to these piecewise affine func-
tions asmesh free; the domain of each affine component adapts and is not preselected.
This is a significant feature for medium- and high-dimensional problems, where repre-
sentative low-dimensional subspaces need to be discovered and exploited and standard
polynomial approximations become challenging (see [47] for some progress in such
directions). Our approximation result for usc functions extends the well-known fact
that every continuous function on a convex compact set is the limit of a uniformly
convergent sequence of dc functions, which can be traced back to the local property
of dc functions established by [18]; see for example Proposition 2.3 in [21].

Covering numbers express the size of a class of functions in terms of the smallest
number of balls with a certain radius needed to cover the class and are central to most
consistency, rate of convergence, and error analysis in (non)parametric estimation and
machine learning; see for example [16,44,45]. The pioneering work [5,23] deal with
continuous and smooth functions; see [30] for a more recent discussion. Functions
of bounded variation are considered in [3] and analytic functions in [7]. An upper
estimate for the covering numbers of the unit ball of Gaussian reproducing kernel
Hilbert spaces is given in [48], with further refinements and applications in [24,46].
Covering numbers of sets of convex functions are established in [6,11], with significant
improvements in [14]. The present paper establishes an upper bound on the covering
numbers of bounded classes of usc functions under the aw-distance and show that it
is sharp within a logarithmic factor.

Although sample average approximations are often used to solving stochastic opti-
mization problems, it remains challenging to assess the quality of a solution obtained
through such approximations. Upper and lower bounds on minimum values can be
computed using the approaches in [4,20,27,29] (see also [42, Sect. 5.6]), at least when
problem relaxations can be solved to near global optimality. Validation approaches
based on optimality conditions are found in [19,25,26,32,43] and [42, Sect. 5.6].
Rates of convergence of optimization problems with Lipschitz continuous objective
functions defined on a compact subset ofRn are given in [42, Sect. 5.3]. We leverage
the results on covering numbers to establish confidence regions of optimal solutions of
infinite-dimensional stochastic optimization problems defined on spaces of usc func-
tions without assuming Lipschitz continuity. The result is novel even when specialized
to finite dimensions. For aHölder continuous case, we obtain, in some sense, a stronger
result.

After a section laying out notation and terminology, we proceed in Sect. 3 with
the result on piecewise affine approximations and its applications. Section 4 estab-
lishes bounds on covering numbers. Section 5 constructs confidence regions and
discusses rates of convergence for solutions of stochastic optimization problems and
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their applications to nonparametric estimation. The paper ends with an “Appendix”
supplementing a proof.

2 Preliminaries

In some applications, it would be natural and beneficial to consider usc functions
defined only on a strict subset ofRn and their extensions to the wholeRn by assigning
the value −∞ may not be meaningful. For example, if an usc function represents a
necessarily nonnegative probability density, then such an assignment would not imply
a useful extension. Consequently, we develop most results for usc functions defined
on a nonempty closed subset S ⊂ Rn , which could be all of Rn , and is assumed to
include the origin. Throughout, S will be such a set and the analysis will usually take
place on the metric spaces (S, ‖ ·− · ‖∞) and (S ×R, ‖ ·− · ‖∞); the difference from
the usual (Rn, ‖ · − · ‖∞) is anyhow minor and will be highlighted when significant.
Of course, the sup-norm can be replaced by any other norm, but this choice simplifies
some expressions in Sect. 4. Likewise, the assumption 0 ∈ S can be relaxed, with the
introduction of additional notation better avoided here. The facts of this section can
be found in or deduced from [31, Chapter 7] and [33].

We recall that hypo f = {(x, α) ∈ S × R | f (x) ≥ α} ⊂ S × R is the hypograph
of a function f : S → R = [−∞,∞]. The collection of usc functions on S is denoted
by

usc-fcns(S) = { f : S → R | hypo f is nonempty and closed}.

We letN = {1, 2, . . . }. The outer limit of a sequence of sets {Aν, ν ∈ N} in a topologi-
cal space, denoted by OutLim Aν , is the collection of points to which a subsequence of
{aν ∈ Aν, ν ∈ N} converges. The inner limit, denoted by InnLim Aν , is the collection
of points to which a sequence {aν ∈ Aν, ν ∈ N} converges. If both limits exist and
are equal to A, we say that {Aν, ν ∈ N} set-converges to A and write Aν → A or
Lim Aν = A. We denote by intA and clA the interior and closure of A, respectively.

For f ν, f ∈ usc-fcns(S),

f ν hypo-converges to f , written f ν → f ⇐⇒ hypo f ν → hypo f .

Set-convergence of hypographs in this case, and therefore also hypo-convergence, is
equivalent to having

∀xν ∈ S → x, limsup f ν(xν) ≤ f (x) (1)

∀x ∈ S, ∃xν ∈ S → x with liminf f ν(xν) ≥ f (x). (2)

The Attouch-Wets (aw) distance d, which quantifies the distance between usc func-
tions in terms of a distance between their hypographs, metrizes hypo-convergence.
Specifically, for f , g ∈ usc-fcns(S), it is defined as

d( f , g) =
∫ ∞

0
dρ( f , g)e−ρdρ,
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where, for ρ ≥ 0, the ρ-aw-distance

dρ( f , g) = maxz∈ρB∞
∣∣ dist∞ (

z, hypo f
)− dist∞

(
z, hypog

)∣∣,
with dist∞(z, A) being the usual point-to-set distance between a point z ∈ S ×R and
a set A ⊂ S × R under the sup-norm, ρB∞ = B∞(0, ρ), with B∞(z̄, ρ) = {z ∈
S × R | ‖z̄ − z‖∞ ≤ ρ} for any z̄ ∈ S × R. Since the meaning will be clear from the
context, we also write B∞(x̄, ρ) = {x ∈ S | ‖x̄ − x‖∞ ≤ ρ} with x̄ ∈ S. For any
nonempty closed set S ⊂ Rn , (usc-fcns(S),d) is a complete separable metric space.
Every closed and bounded subset F ⊂ (usc-fcns(S),d) is compact. Moreover, for all
f , g ∈ usc-fcns(S),

∣∣ dist∞(0, hypo f ) − dist∞(0, hypo g)
∣∣

≤ d( f , g) ≤ max
{
dist∞(0, hypo f ), dist∞(0, hypo g)

}+ 1 (3)

and, thus, if f , g ≥ 0, then 0 ≤ d( f , g) ≤ 1. We also see that a sufficient condition
for F to be bounded is that there exists (x, α) ∈ S × R such that f (x) ≥ α for all
f ∈ F .
If not specified otherwise, the index ν runs over N so that xν → x means that the

whole sequence {xν, ν ∈ N} converges to x . Let

N #∞ be all the subsets of N determined by subsequences,

i.e., N ∈ N #∞ is an infinite collection of strictly increasing natural numbers. Thus,
{xν, ν ∈ N } is a subsequence of {xν, ν ∈ N}; its convergence to x is noted by xν →N x .

A similar development is available for functions defined on the metric space
(usc-fcns(S),d). However, we adopt a slightly different set-up that highlights the
role of domains of definition. For F, Fν ⊂ usc-fcns(S), the functions ϕν : Fν → R

epi-converge to ϕ : F → R whenever

∀N ∈ N #∞ and f ν ∈ Fν →N f , liminfν∈N ϕν( f ν)

≥ ϕ( f ) if f ∈ F and ϕν( f ν)→N ∞ otherwise

∀ f ∈ F, ∃ f ν ∈ Fν → f with limsupϕν( f ν) ≤ ϕ( f ).

For ε ≥ 0, ε- argmin f ∈F ϕ( f ) = { f ∈ F | ϕ( f ) ≤ infg∈F ϕ(g) + ε}, with the
usual extended real-valued calculus in play when needed. We deviate slightly from
the convention in [31] by setting ε- argmin f ∈F ϕ( f ) = F when ϕ( f ) = ∞ for all
f ∈ F . This is tenable because we restrain from extending functions to the whole
space and ∞ is not assigned a special role in that regard. Consequently, we alleviate
the need for checking that functions are finite at least somewhere, which in an infinite-
dimensional setting may require excessively strong assumptions.
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3 Piecewise affine approximations

In this section, we establish that every usc function on S ⊂ Rn can be approximated by
piecewise affine functions with a particular structure under the additional assumption
that S is convex. For ρ ∈ [0,∞) and q ∈ N, let

pa-fcnsqρ(S) =
{
f : S → [−∞,∞)

∣∣∣ ∃ak, bk ∈ Rn,

αk, βk ∈ R, k = 1, . . . , q such that

f (x) = maxk=1,...,q
[〈ak, x〉 + αk

]− maxk=1,...,q
[〈bk, x〉 + βk

] ∀x ∈ S ∩ ρB∞;
f (x) = −∞ otherwise

}
.

A function in pa-fcnsqρ(S) is a difference of pointwise maxima of affine functions on
S∩ρB∞ and therefore is finite and continuous on that set.We say thatU ⊂ usc-fcns(S)

is hypo-dense in usc-fcns(S) if every f ∈ usc-fcns(S) is the limit of a hypo-converging
sequence { f ν ∈ U , ν ∈ N}.
Theorem 3.1 (piecewise affine approximations) Suppose that S is convex and ρν ∈
[0,∞) as well as qν ∈ N tend to ∞. Then,

⋃
ν∈N

pa-fcnsq
ν

ρν (S) is hypo-dense in usc-fcns(S).

Proof Let f ∈ usc-fcns(S). We construct a sequence in ∪ν∈Npa-fcnsq
ν

ρν (S) that hypo-

converges to f . Let f ν : S → R have f ν(x) = min{ f (x), ν} for all x ∈ S. Clearly,
f ν → f ; recall that → always denotes hypo-convergence when written between usc
functions. For any ν ∈ N, f ν is (upper) prox-bounded so that for every λ > 0, the
(upper) Moreau-envelope eλ f ν : S → R of f ν , which is given by

eλ f
ν(x) = supy∈S f ν(y) − 1

2λ
‖y − x‖22,

is finite and continuous. Moreover, eλ f ν → f ν as λ↘0 (see for example the discus-
sion after Proposition 7.4 in [31]). Thus, there exists {λν > 0, ν ∈ N} → 0 such
that

eλν f ν → f .

Next, we define ϕν : S → R as

ϕν(x) = eλν f ν(x) ∀x ∈ S ∩ ρνB∞ and ϕν(x) = −∞ otherwise.

Since ρνB∞ → Rn , we also have that ϕν → f .
Every real-valued continuous function on a convex compact subset of Rn is the

limit in the sup-norm of finite-valued dc functions defined on the same set; see for
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example [21, Prop. 2.3]. Consequently, for every ν ∈ N, there exist convex functions
{gν

μ, hν
μ : S → R, μ ∈ N}, finite on S ∩ ρνB∞, with the property that

supx∈S∩ρνB∞
∣∣ϕν(x) − [gν

μ(x) − hν
μ(x)]∣∣ → 0 as μ → ∞.

Let ψν
μ : S → R be defined by

ψν
μ(x) = gν

μ(x) − hν
μ(x) for x ∈ S ∩ ρνB∞ and ψν

μ(x) = −∞ otherwise.

Since already ϕν → f , we can construct {μν ∈ N, ν ∈ N} → ∞ as ν → ∞ such
that ψν

μν → f . Let ψν = ψν
μν .

The convex functions {gν
μν , hν

μν , ν ∈ N} are lsc and proper. Let gν = gν
μν and

hν = hν
μν . Consequently, for every ν ∈ N,

gν(x) = sup(a,α)∈A(gν ){〈a, x〉 + α} and hν(x) = sup(a,α)∈A(hν ){〈a, x〉 + α} for x ∈ S,

where for u : S → R,

A(u) = {(a, α) ∈ Rn × R | 〈a, x〉 + α ≤ u(x) ∀x ∈ S}.

Since A(gν), A(hν) ⊂ Rn+1, which is separable, there exist increasing sets
{Aμ(gν), Aμ(hν), μ ∈ N}, each with finite cardinality, such that

⋃
μ∈N

Aμ(gν) is dense in A(gν) and
⋃
μ∈N

Aμ(hν) is dense in A(hν).

For ν, μ ∈ N, we define g̃ν
μ, h̃ν

μ : S → R by setting

g̃ν
μ(x) = max(a,α)∈Aμ(gν ){〈a, x〉 + α} and

h̃ν
μ(x) = max(a,α)∈Aμ(hν ){〈a, x〉 + α} for x ∈ S ∩ ρνB∞,

and g̃ν
μ(x) = h̃ν

μ(x) = ∞ otherwise. The characterization of hypo-convergence in (1)
and (2) enables us to conclude that for all ν ∈ N,

−g̃ν
μ → −gν and − h̃ν

μ → −hν as μ → ∞,

with pointwise convergence holding as well on S ∩ ρνB∞.
Let ψ̃ν

μ : S → R be defined by

ψ̃ν
μ(x) = g̃ν

μ(x) − h̃ν
μ(x) for x ∈ S ∩ ρνB∞ and ψ̃ν

μ(x) = −∞ otherwise.

If ψ̃ν
μ → ψν as μ → ∞, then we can construct {μν ∈ N, ν ∈ N} → ∞ such that

ψ̃ν
μν → f
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because already ψν → f . Since ψ̃ν
μν ∈ pa-fcnsq

ν

ρν (S), with qν being the largest

cardinality of Aμν
(gν) and of Aμν

(hν), the conclusion will follow.
It only remains to establish that ψ̃ν

μ → ψν as μ → ∞. For this purpose, we
again leverage the characterization of hypo-convergence in (1) and (2). Suppose that
xμ ∈ S ∩ ρνB∞ → x . Then,

limsupμ

(
g̃ν
μ(xμ) − h̃ν

μ(xμ)
) = limsupμ g̃ν

μ(xμ) − liminfμ h̃ν
μ(xμ)

≤ limsupμ gν(xμ) − hν(x) ≤ gν(x) − hν(x),

where we use the facts that g̃ν
μ lower bounds gν , −h̃ν

μ → −hν , and gν is continuous
on S ∩ ρνB∞. Also, for x ∈ S ∩ ρνB∞,

liminfμ
(
g̃ν
μ(x) − h̃ν

μ(x)
) = liminfμ g̃ν

μ(x) − limsupμ h̃ν
μ(x) ≥ gν(x) − hν(x).

These inequalities are trivially satisfied for sequences outside of S ∩ ρνB∞. Hence,
the assertion is established. ��

We illustrate the usefulness of the theorem in the solution of function identification
problems of the form

(FIP) min
f ∈F ϕ( f ), where F ⊂ usc-fcns(S) and ϕ : F → R.

These problems arise in nonparametric estimation, spatial statistics, and curve fit-
ting; see [34] for applications to estimation of financial curves, electricity demand,
commodity prices, and uncertainty in physical systems. For example, if F is a class
of n-dimensional probability density functions and ϕ( f ) = − 1

m

∑m
j=1 log f (x j ),

then any minimizer of (FIP) is a maximum likelihood estimate based on the data
x1, . . . xm ∈ S. When ϕ( f ) = 1

m

∑m
j=1(y

j − f (x j ))2, a minimizer furnishes a least-

squares fit of the data {(x j , y j ) ∈ S×R, j = 1, . . . ,m} over the class F . We refer to
[35,38] for numerous examples. Further unexplored applications for usc functions and
their piecewise affine approximations may arise in stochastic and robust optimization
where problems can be formulated over spaces of decision rules and be approximated
using polynomial and piecewise polynomial functions [2], finite collections of poli-
cies [17], and linear decision rules, possibly in a higher dimensional spaces [12]. In
special cases of (FIP), such as when F consists of concave functions only, one might
be able to reformulate the problem as an equivalent finite-dimensional one; see [9]
for the context of maximum likelihood estimation over the log-concave class and [41]
for least-squares regression over convex functions. However, this is not possible in
general and we need to settle for approximations.

Forρν ∈ [0,∞) and qν ∈ N, we consider the approximating function identification
problem

(FIP)ν min
f ∈Fν

ϕ( f ), where Fν = F ∩ pa-fcnsq
ν

ρν (S).
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Every function in pa-fcnsq
ν

ρν (S) is described by 2qν(n+1) parameters1. Thus, (FIP)ν is
equivalent to a finite-dimensional optimization problemwith the same number of vari-
ables. The number grows only linearly in n, which makes the approach promising for
high-dimensional problems. In comparison, approximations based on epi-splines (see
[35,38]) require a preselected partition of S not easily decided on in a computation-
ally tractable manner beyond four or five dimensions. The piecewise approximations
in (FIP)ν are mesh free, with the domain of each affine component adapting to the
problem at hand. Thus, we expect to be able to identify and leverage low-dimensional
structures, if present, when solving (FIP) by means of (FIP)ν .

It is apparent that an application may demand approximations also of the objec-
tive function in (FIP), which we address in Sect. 5 for the central case of stochastic
optimization where ϕ = E[ψ(ξ , ·)]; the expectation with respect to the distribution
of a random element ξ is denoted by E. Here, we concentrate on the application of
Theorem 3.1 to justify (FIP)ν .

Let ϕν : Fν → R be the function defined by ϕν( f ) = ϕ( f ) for f ∈ Fν . Suppose
that S is convex, F is a nonempty and solid subset of (usc-fcns(S),d), i.e., F =
cl(intF), and ϕ : F → R is continuous on F . Then, a standard argument (see
for example the proof of Theorem 3.16 in [35]) in conjunction with Theorem 3.1
establishes that

ϕν epi-converges to ϕ provided that ρν, qν → ∞.

Thus, when {εν ≥ 0, ν ∈ N} → 0,

OutLim
(
εν- argmin f ∈Fν ϕ( f )

)
⊂ argmin f ∈F ϕ( f ),

which can be deduced, for example, from [33]. The constraint qualification that F
is solid cannot be relaxed without introducing some other assumption. Obviously,
F ∩ pa-fcnsq

ν

ρν (S) can, in general, be empty for all ν, but when F is solid this is ruled
out.

In view of this discussion, the challenge of solving an infinite-dimensional func-
tion identification problem from the broad class (FIP) is shifted to that of obtaining a
near-minimizer of a finite-dimensional problem. Of course, the difficulty of that task
depends on the specific properties of ϕ and F . Typically, (FIP)ν would be nonconvex,
but the special affine structure of functions in pa-fcnsq

ν

ρν (S) is bound to be important in
developing computational procedures. Initial efforts in that direction are already found
in [8], which presents several algorithms with guarantees to obtain at least certain sta-
tionary points and numerical results from nonparametric least-squares regression, as
well as in [28], which approximates functions in up to n = 41 dimensions using piece-
wise affine functions in the context of nonparametric support vector machines. The
nonconvexity of (FIP)ν encountered in [28] appears to be only moderately challenging
and handled by common randomization strategies.

1 We stress that ν is an index and not the power of q.
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4 Covering numbers

It is well known that every bounded F ⊂ (usc-fcns(S),d) has a finite cover by virtue
of being totally bounded. However, this is not sufficient to establish certain rates of
convergence results for sample average approximations of stochastic optimization
problems of the form min f ∈F E[ψ(ξ , f )]. It is usually necessary to bound for all
ε > 0 the covering number of F , denoted by N (F, ε), which is the smallest number
of closed d-balls of radius ε needed to cover F . We next provide such a bound and
show that it is nearly sharp. Section 5 applies the result to establish rates of convergence
of minimizers of stochastic optimization problems.

We start by recording a useful estimate of the hypo-distance. For f , g ∈ usc-fcns(S)

and ρ ≥ 0, we define the auxiliary quantity

d̂ρ( f , g) = inf
{
τ ≥ 0

∣∣∣
supy∈B∞(x,τ ) g(y) ≥ min{ f (x), ρ} + τ,∀x ∈ ρB∞ with f (x) ≥ −ρ

supy∈B∞(x,τ ) f (y) ≥ min{g(x), ρ} + τ,∀x ∈ ρB∞ with g(x) ≥ −ρ
}
.

As the notation indicates, d̂ρ is closely related to dρ (see Proposition 3.1 in [33]) and
therefore also to d. We record the relevant properties next.

Lemma 4.1 For f , g ∈ usc-fcns(S) and ρ ≥ 0,

e−ρd̂ρ( f , g) ≤ d( f , g) ≤ (1 − e−ρ)d̂2ρ+δ( f , g) + e−ρ(δ + ρ + 1),

where δ = max{dist∞(0, hypo f ), dist∞(0, hypog)}.
Proof The results can be deduced from Propositions 3.1 and 3.2 in [33]. ��

As mentioned in Sect. 1, epi-splines [33,35] furnish a dense subset of classes of
semicontinuous functions and associated error bounds are known. We leverage these
results here. Although the piecewise affine functions of Sect. 3 are also dense in the
usc functions, they have unknown error and cannot presently serve as the basis for the
construction in the proof of the next theorem. This is anyhow less critical as we see
through a lower bound result (Theorem 4.4 below) that the obtained upper bound on
covering numbers is within a logarithmic factor of being sharp.

For any f : S → R and x ∈ S, let liminf x̄→x f (x̄) = limδ↓0 inf x̄∈B∞(x,δ) f (x̄).
Epi-splines are defined in terms a finite collection of subsets of S. A finite collection
R1, R2, . . . , RK of open subsets2 of S is a partition of S if ∪K

k=1clRk = S and
Rk ∩ Rl = ∅ for all k �= l. Specifically, an epi-spline s : S → R, with partition
R = {R1, . . . , RK } of S, is a function that

on each Rk , k = 1, . . . , K , takes a constant real number as value,

and for every x ∈ S, has s(x) = liminfx ′→x s(x
′).

2 Recall that “open” here is according to the metric space (S, ‖ · − · ‖∞).
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The family of all such epi-splines is denoted by e-spl(R). Epi-splines are lsc by
construction and approximate lsc functions in the sense of epi-convergence. Since the
present setting involves usc functions and hypo-convergence, we “reorientation” and
introduce minus in some expressions. We refer to [33,35] for further information and
extensions that go beyond these zeroth order epi-splines and also beyond Rn .

Proposition 4.2 For a partition R = {R1, . . . , RK } of S and ρ ≥ 0, we have that for
every f ∈ usc-fcns(S), there exists an s ∈ e-spl(R) such that

d̂ρ( f ,−s) ≤ μρ(R)

= inf
{
τ ≥ 0 | Rk ⊂ B∞(x, τ ) for all x ∈ ρB∞ and k satisfying x ∈ clRk

}
.

Ifμρ(R) ≤ ρ, then s canbe taken to satisfy−ρ′ ≤ s(x) ≤ max{−ρ′,min[ρ′,− f (x)]}
for any ρ′ > ρ and x ∈ S.

Proof The first part of the proposition is a direct application of [33, Theorem 5.9]. The
fact that s can be taken to satisfy −ρ′ ≤ s(x) ≤ max{−ρ′,min[ρ′,− f (x)]} for any
ρ′ > ρ follows from an examination of that theorem’s proof. ��

The quantity μρ(R) is the meshsize of R = {R1, . . . , RK } and, essentially, quan-
tifies the size of the largest Rk .

Theorem 4.3 (covering numbers) For every bounded subset F of (usc-fcns(S),d),
there exist c ≥ 0 and ε̄ > 0 (both independent of n, the dimension of S) such that

log N (F, ε) ≤
(c
ε

)n (
log

1

ε

)n+1

for all ε ∈ (0, ε̄].

Proof Since F is bounded, there exists an r > 0 such that dist∞(0, hypo f ) ≤ r for
all f ∈ F . Let γ1, γ2, γ3 > 0 be such that γ1 + γ2 + γ3 = 1. Set ε̄ ∈ (0, 1) such that

2(r + 1)

r

[
log

1

ε
+ log

1

γ1
+ r

2
+ log (r + 1)

]
− 1 > γ2ε for all ε ∈ (0, ε̄]. (4)

Fix ε ∈ (0, ε̄] and define ρ to be the expression on the left-hand side of (4). We next
construct a partition of S and set ω > 1 and

ν =
⌈
2ωρ

γ2ε

⌉
,

where �a� is the smallest integer no smaller than a. The partition is obtained by
dividing the box [−ωρ,ωρ]n ⊂ Rn into νn boxes of equal size and then intersecting
with S. Let K = νn + 1. Specifically, for k = 1, 2, . . . , νn , set

Rk = int
(
S ∩

n∏
i=1

(lki , u
k
i )
)
, with lki = 2(k − 1)ωρ/ν − ωρ and uki = lki + 2ωρ/ν
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so that ∪K−1
k=1 clRk = S ∩ [−ωρ,ωρ]n . Also, RK = int(S \ [−ωρ,ωρ]n). Again, we

recall that the interior and closure are taken relative to (S, ‖ · − · ‖∞). We denote
by R = {R1, . . . , RK } this partition. Clearly, μρ(R) = 2ωρ/ν. Next, we consider a
discretization of parts of the range of functions and set

m =
⌈

ωρ

γ3ε

⌉
+ 1.

The points σ j = −ωρ + 2( j − 1)ωρ/(m − 1), j = 1, 2, . . . ,m, discretize the
interval [−ωρ,ωρ]. Let F0 be the collection of piecewise constant functions on
R with values in {σ1, . . . .σm} defined as follows. If f ∈ F0, then for every
k ∈ {1, . . . , K } there exists a jk ∈ {1, . . . ,m} such that f (x) = σ jk for x ∈ Rk

and f (x) = limδ↓0 supy∈B∞(x,δ) f (y) otherwise. By construction, f is usc. Obvi-
ously, F0 contains mK functions. We now show that every f ∈ F has d( f , f0) ≤ ε

for some f0 ∈ F0.
Let f ∈ F be arbitrary. By Proposition 4.2 and the fact that μρ(R) = 2ωρ/ν ≤

γ2ε < ρ, there exists s ∈ e-spl(R) such that

d̂ρ( f ,−s) ≤ μρ(R) and − ωρ ≤ s(x) ≤ max{−ωρ,min[ωρ,− f (x)]} for x ∈ S.

Since dist(0, hypo f ) ≤ r , there exists x ∈ rB∞ such that f (x) ≥ −r . Consequently,
−s(x) ≥ min{ωρ,max[−ωρ, f (x)]} ≥ −r . So we also have that dist∞(0, hypo −
s) ≤ r .

Since ε, γ1 ≤ 1,

ρ ≥ 2(r + 1)

r

[ r
2

+ log(r + 1)
]

− 1 = r + 2(r + 1)

r
log(r + 1) ≥ r .

Thus, using the notation ρ̄ = (ρ − r)/2, Lemma 4.1 gives that

d( f ,−s) ≤ d̂ρ( f ,−s) + e−ρ̄ (r + ρ̄ + 1) ≤ μρ(R) + e−ρ̄ (r + ρ̄ + 1)

= 2ωρ/ν + e−ρ̄ (r + ρ̄ + 1).

In view of [35, Theorem 3.17], there exists f0 ∈ F0 such thatd(−s, f0) ≤ ωρ/(m−1)
since we can select f0 such that |s(x) − f0(x)| ≤ ωρ/(m − 1) for all x ∈ S. The
triangle inequality then gives that

d( f , f0) ≤ ωρ/(m − 1) + 2ωρ/ν + e−ρ̄ (r + ρ̄ + 1). (5)

It remains to show that the right-hand side is no greater than ε. We start with the last
term in (5). By concavity of the log-function, we have that

log

(
1

2
(ρ + r) + 1

)
≤ log (r + 1) + ρ − r

2r + 2
.
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Consequently,

log
[
e−ρ̄ (r + ρ̄ + 1)

]

= 1

2
(r − ρ) + log

(
1

2
(ρ + r) + 1

)
≤ 1

2
(r − ρ) + log (r + 1) + ρ − r

2r + 2

= r

2
− r(ρ + 1)

2(r + 1)
+ log(r + 1) = log γ1ε,

where the last equality follows from inserting the expression for ρ. Thus, e−ρ̄ (r + ρ̄ +
1) ≤ γ1ε. We next examine the second term on the right-hand side of (5). Inserting
the expression for ν, we obtain that

2ωρ

ν
≤ γ2ε.

Finally, we consider the first term on the right-hand side of (5). In view of the definition
of m, we have that

ωρ

m − 1
≤ γ3ε.

Thus, d( f , f0) ≤ ε and we have established that d-balls with radius ε and centered at
points in F0 cover F . The logarithm of the number of functions in F0 is (νn +1) logm.
At this point, the order of the result is immediate. A possible expression for the constant
c is obtained as follows. Let c1 = 2(r + 1)/r and

c2 = 2(r + 1)

r

[
log

1

γ1
+ r

2
+ log (r + 1)

]
− 1.

Thus, ρ = c1 log ε−1 + c2. Moreover, let c3 = 2ω/γ2 and c4 = ω/γ3. Using these
expressions, we find that

(νn + 1) logm ≤
[(

c1c3 + c2c3 + 1

log ε̄−1

)n (1

ε
log

1

ε

)n

+ 1

]

log

[(
c1c4 + c2c4 + 2

log ε̄−1

)
1

ε
log

1

ε

]
.

Let

c5 = c1c3 + c2c3 + 1

log ε̄−1 and c6 = c1c4 + c2c4 + 2

log ε̄−1 .

We then find that

(νn + 1) logm ≤ cn7

(
1

ε
log

1

ε

)n [
log c6 + log

1

ε
+ log log

1

ε

]
,
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where c7 = c5 + 1
ε̄−1 log ε̄−1 .

Using the fact that log log ε−1/ log ε−1 ≤ e−1 for ε ∈ (0, 1), we obtain

(νn + 1) logm ≤ cn7

[
log c6
log ε̄−1 + 1 + e−1

]
1

εn

(
log

1

ε

)n+1

, (6)

which gives a particular expression for c in the theorem statement. Since the choice
of ε̄ is independent of n, this c is independent of n. For example, for ε̄ = 0.01,
ω = 0.00000001, r = 3.22, then c7 = 13.5 and the term in brackets in (6) evaluates
to 2.3. ��

Although a comparison to the classical result of O(ε−n) for Lipschitz continuous
functions on bounded subsets, which goes back to [23] (see for example [44, Theorem
2.7.1]), is not entirely relevant due to the different settings, we note that our bound is
only slightly worse (a logarithmic term) for larger families of usc functions. We do not
require any bound on the variation of the functions and allow functions defined on all
of Rn , possibly extended real-valued. Still, the entropy integral3

∫ ε̄

0

√
log N (F, ε)dε

is finite only for n = 1 and, therefore, these families are “large,” and increasingly so
as n grows.

Theorem 4.4 (covering numbers; lower bound)For every n ∈ N, there exist a bounded
subset F ⊂ usc-fcns(Rn) and corresponding c ≥ 0 and ε̄ > 0 (independent of n)
such that

log N (F, ε) ≥
(c
ε

)n
log

1

ε
for all ε ∈ (0, ε̄].

Proof See the “Appendix”. ��
In comparison with the upper bound of Theorem 4.3, we see that the lower bound

differs by a logarithmic factor only and therefore the upper bound is nearly sharp.
The size of the bounded set F in Theorem 4.4 does not have to be large. In fact, an
examination of the proof reveals that F might be selected to have d(0, f ) ≤ r for all
f ∈ F , with r being only slightly above one. Here, 0 is the function in usc-fcns(Rn)

that is identical to zero.
The proof of Theorem 4.4 constructs a collection of functions which is finite on

a grid of points in [0, ρ]n , with ρ > 0 and grid points spaced roughly ε apart. At
each of these grid points, a function takes on a value among a set of discretized
values between −ρ and 0, again spaced roughly ε apart. Outside these grid points, the
functions are assigned −∞. It is clear that the number of such functions is (ρ/ε)ν ,
where ν = (ρ/ε)n . Thus, its logarithm is of the order O(ε−n log ε−1).

5 Applications to stochastic optimization and statistical estimation

Suppose that (�,A,P) is a complete probability space, F ⊂ usc-fcns(S) is closed,
and ψ : � × F → R is a function with suitable properties as discussed below. We

3 For the significance of entropy integrals we refer to [44].
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denote by boldface, for example ξ , random elements with values in�. Then, a function
identification problem under uncertainty takes the form

(FIP-U) min
f ∈F E[ψ(ξ , f )] =

∫
ψ(ξ, f )dP(ξ).

Section 3 furnishes some instances ofψ in the context of probability density estimation
and regression, see also below, but there are numerous other examples.

A sample average approximation of the problem leverages a sample ξ1, ξ2, . . . of
independent random elements, each with values in � and distributed according to P,
and leads to the approximating problem

(FIP-U)ν min
f ∈F

1

ν

ν∑
j=1

ψ(ξ j , f ).

Under mild assumptions (see Proposition 5.1 below), minimizers of (FIP-U)ν tend
to those of (FIP-U) almost surely. However, a main challenge in the justification of
such an approach is to quantify the rate with which the error in solutions of (FIP-U)ν

vanishes as ν grows. Before stating the results that rely on the covering numbers of
the previous section, we formalize the setting. The following definitions and facts are
well known; see for example4 [31, Ch. 14].

We say that ψ : � × F → R is a random lsc function if for all ξ ∈ �, ψ(ξ, ·) is
lsc as a function on the metric space (F,d) and ψ is measurable with respect to the
product sigma-algebra5 on � × F . A random lsc function ψ : � × F → R is locally
inf-integrable if6

∀ f ∈ F ∃ρ > 0 such that
∫

infg∈F {ψ(ξ, g) | d(g, f ) ≤ ρ} dP(ξ) > −∞.

If ψ : � × F → R is a locally inf-integrable random lsc function, then f �→
E[ψ(ξ , f )] is well-defined, always greater than −∞, and lsc.

Proposition 5.1 Suppose that (�,A,P) is a complete probability space, F ⊂
usc-fcns(S) is closed, and ψ : � × F → R is an inf-integrable random lsc func-
tion. If ξ1, ξ2, . . . is a sequence of independent random elements each with values in
� and distribution P and {εν ≥ 0, ν ∈ N} → 0, then, almost surely,

OutLim

⎛
⎝εν- argmin f ∈F

1

ν

ν∑
j=1

ψ(ξ j , f )

⎞
⎠ ⊂ argmin f ∈F E[ψ(ξ1, f )].

4 This reference states results only for finite dimensions, but since (F,d) is a complete separable metric
space, with compact balls, the proofs of the required results carry over nearly verbatim.
5 On (F,d), we adopt the Borel sigma-algebra.
6 For measurable h : � → R,

∫
h(ξ)dP(ξ) = ∫

max{0, h(ξ)}dP(ξ) − ∫
max{0,−h(ξ)}dP(ξ), with

∞ − ∞ = ∞.
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Moreover, if F is bounded, then almost surely

lim

⎛
⎝inf f ∈F

1

ν

ν∑
j=1

ψ(ξ j , f )

⎞
⎠ = inf f ∈F E[ψ(ξ1, f )] > −∞.

Proof This is a consequence of a law of large numbers for lsc functions and epi-
convergence; see for example Proposition 7.1 in [38]. ��

In the following, we assume that F ⊂ usc-fcns(S) is closed and bounded as it
results in some simplifications. In particular, (F,d) then becomes a compact metric
space. The assumption is anyhow minor as it is often acceptable in applications to
impose a lower bound on the functions in usc-fcns(S) under considerations; see the
remark in conjunction with (3).

The excess of a set F1 ⊂ F over a set F2 ⊂ F is given by

exs(F1, F2) = sup f ∈F1 dist( f , F2) if F1, F2 are nonempty,

exs(F1, F2) = ∞ if F1 nonempty and F2 empty, and exs(F1, F2) = 0 otherwise.
Here, dist( f , F2) = infg∈F2 d( f , g) is the usual point-to-set distance in (F,d). The
Pompeiu-Hausdorff distance H(F1, F2) = max{exs(F1, F2), exs(F2, F1)}. Let the
level sets of any ϕ : F → R be denoted by

lev≤δ ϕ = { f ∈ F | ϕ( f ) ≤ δ}.

If ψ : � × F → R is a random lsc function and F1, F2 ⊂ F are closed, then

ξ �→ exs
(
ε- argmin f ∈F1 ψ(ξ, f ), F2

)
and ξ �→ exs

(
F2, lev≤δ ψ(ξ, ·))

are random variables on (�,A,P) for any ε ≥ 0 and δ ∈ R.
When considering sample average approximations with sample size ν, the relevant

probability space is theν-fold product space formedby (�,A,P); the abovedefinitions
apply also for this probability space. The sample average function

(
(ξ1, . . . , ξ ν), f

) �→ 1

ν

ν∑
j=1

ψ(ξ j , f )

is then a random lsc function on the product probability space provided thatψ > −∞
is a random lsc function on (�,A,P). Since this is the case below, the following
probabilistic statements are meaningful. Themeasure on the product probability space
is denoted by Pν and the sample space by �ν .

We also need a quantitative result about differences between minimizers and
related quantities. The following result improves on [33, Thms. 4.3 and 4.5]; see
also [10] for related results in the convex setting. We denote by B( f , ρ) = {g ∈
usc-fcns(S) | d( f , g) ≤ ρ}.
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Proposition 5.2 For a closed and bounded F ⊂ usc-fcns(S), let F1, F2 ⊂ F be
nonempty and ϕ1 : F1 → (−∞,∞] as well as ϕ2 : F2 → (−∞,∞] be lsc functions
on the metric space (F,d). Suppose that for some τ, γ ≥ 0,

B(g, γ ) ∩ F1 �= ∅ and inf f ∈B(g,γ )∩F1 ϕ1( f ) ≤ ϕ2(g) + τ ∀g ∈ F2.

Then, for any δ ∈ R,

exs
(
lev≤δ ϕ2, lev≤δ+τ ϕ1

) ≤ γ. (7)

If in addition

B(g, γ ) ∩ F2 �= ∅ and inf f ∈B(g,γ )∩F2 ϕ2( f ) ≤ ϕ1(g) + τ ∀g ∈ F1,

then for any ε ≥ 0,

exs
(
ε- argmin f ∈F1 ϕ1( f ), (ε + 2τ)- argmin f ∈F2 ϕ2( f )

) ≤ γ. (8)

Proof Let g ∈ lev≤δ ϕ2. Since ϕ1 is lsc and B(g, γ ) is compact, there exists f � ∈
B(g, γ ) ∩ F1 such that

ϕ1( f
�) = inf f ∈B(g,γ )∩F1 ϕ1( f ) ≤ ϕ2(g) + τ ≤ δ + τ.

We have established that f � ∈ lev≤δ+τ ϕ1. Thus, dist(g, lev≤δ+τ ϕ1) ≤ γ and (7)
follows.

For (8), we note that there exists f � ∈ argmin f ∈F2 ϕ2( f ) because F2 is totally
bounded. Thus,

inf f ∈F1 ϕ1( f ) ≤ inf f ∈B( f �,γ )∩F1 ϕ1( f ) ≤ ϕ2( f
�) + τ = inf f ∈F2 ϕ2( f ) + τ.

Suppose that g ∈ ε- argmin f ∈F1 ϕ1( f ). Again, there exists f �� ∈ B(g, γ ) ∩ F2 such
that

ϕ2( f
��) = inf f ∈B(g,γ )∩F2 ϕ2( f ) ≤ ϕ1(g) + τ

≤ inf f ∈F1 ϕ1(g) + ε + τ ≤ inf f ∈F2 ϕ2(g) + ε + 2τ.

We have established that f �� ∈ (ε + 2τ)- argmin f ∈F2 ϕ2( f ). Thus, dist(g, (ε +
2τ)- argmin f ∈F2 ϕ2( f )) ≤ γ and (8) follows. ��

We observe that if ϕ1 and ϕ2 in the proposition are pointwise within δ of each other
uniformly on F , then τ can be set to δ and γ to zero. However, the focus on uniform
bounds is limiting as it rules out discontinuous functions and especially cases with
F1 �= F2.
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5.1 Confidence regions

We are then in a position to state the first of the two main results in this section.

Theorem 5.3 (confidence region) For a complete probability space (�,A,P) and a
closed and bounded set F ⊂ usc-fcns(S), suppose that ψ : �× F → (−∞,∞] is an
inf-integrable random lsc function, ξ1, ξ2, . . . are independent random elements, each
with values in � and distributed according to P, and ψ(ξ1, f ) is sub-exponential7

for all f ∈ F. Given α ∈ (0, 1) and δ > inf f ∈F E[ψ(ξ1, f )], there exist ν̄ ∈ N and
c ∈ [0,∞) such that for all ν ≥ ν̄

Pν

[
exs

(
argmin f ∈F E[ψ(ξ1, f )], lev≤δ

{1
ν

ν∑
j=1

ψ(ξ j , ·)
})

≤ c(log ν)1+1/n

ν1/n

]

≥ 1 − α.

Proof Let ϕ : F → R have values ϕ( f ) = E[ψ(ξ1, f )], which is well-defined, lsc,
and indeed finite valued due the sub-exponential assumption. Let ϕν : �ν × F →
(−∞,∞] have values ϕν((ξ1, . . . , ξ ν), f ) = ν−1∑ν

j=1 ψ(ξ j , f ), which then is
a random lsc function on the product probability space. At a given f ∈ F , with
probability one, ϕν((ξ1, . . . , ξ ν), f ) < ∞ because otherwise E[ψ(ξ1, f )] would not
have been finite.

As in Theorem 4.3, there is a finite number N = N (F, γ1) of closed balls in
(usc-fcns(S),d) with radius γ1 > 0 and center fk ∈ usc-fcns(S) covering F .
Without loss of generality, we can assume that B( fk, γ1) ∩ F �= ∅. Moreover, let
f �
k ∈ argmin f ∈B( fk ,γ1)∩F ϕ( f ). Since ψ(ξ1, f �

k ) is sub-exponential, there exists by
Bernstein’s inequality γ2 ∈ (0, δ − inf f ∈F ϕ( f )) and c0 > 0 such that

Pν
(|ϕν((ξ1, . . . , ξ ν), f �

k ) − ϕ( f �
k )| ≥ γ2

) ≤ 2e−νc0γ 2
2 for all k = 1, . . . , N .

Consequently, as long as

2Ne−νc0γ 2
2 ≤ α or, equivalently, ν ≥ log N − log(α/2)

c0γ 2
2

(9)

we have that

Pν

(
max

k=1,...,N

∣∣∣ϕν((ξ1, . . . , ξ ν), f �
k ) − ϕ( f �

k )

∣∣∣ ≥ γ2

)
≤ α.

Suppose that we have an event (ξ1, . . . , ξ ν) ∈ �ν where

max
k=1,...,N

∣∣∣ϕν((ξ1, . . . , ξ ν), f �
k ) − ϕ( f �

k )

∣∣∣ < γ2.

7 A random variable Y is sub-exponential if for some λ ≥ 0, E[exp(τ (Y − EY ))] ≤ exp(τ2λ2/2) for
all |τ | ≤ 1/λ. Another assumption that ensures a Bernstein-type large-deviation result could have been
substituted here.
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Next, we apply Proposition 5.2 and start by establishing the required condition. Let
g ∈ F and δ0 = inf f ∈F ϕ( f ), which is finite because F is compact. Then, there exists
k� ∈ {1, . . . , N } such that g ∈ B( fk� , γ1) and

inf f ∈B(g,2γ1)∩F ϕν((ξ1, . . . , ξ ν), f ) ≤ ϕν((ξ1, . . . , ξ ν), f �
k� )

≤ ϕ( f �
k� ) + γ2 ≤ ϕ(g) + δ − δ0.

Thus, the first condition in Proposition 5.2 holds with γ = 2γ1 and τ = δ − δ0, and

exs
(
lev≤δ0 ϕ, lev≤δ0+τ ϕν((ξ1, . . . , ξ ν), ·)) ≤ 2γ1.

Equivalently,

exs
(
argmin f ∈F ϕ( f ), lev≤δ ϕν((ξ1, . . . , ξ ν), ·)) ≤ 2γ1.

By Theorem 4.3, there exists ε̄ > 0 such that log N is bounded from above by a
term proportional to γ −n

1 (log γ −1
1 )n+1 for all γ1 ∈ (0, ε̄]. Thus, there is a constant

c1 > 0 such that

log N − log(α/2)

c0γ 2
2

≤ c1γ
−n
1 (log γ −1

1 )n+1 for γ1 ∈ (0, ε̄]. (10)

In view of (9), the right-hand side of (10) provides the rate of increase in sample size
that is needed to guarantee an excess of at most 2γ1 with confidence level 1 − α.
Inverting the expression, we find that γ1 can be propositional to ν−1/n(log ν)1+1/n as
long as ν is sufficiently large, which establishes the conclusion. ��

When f � ∈ argmin f ∈F E[ψ(ξ1, f )], the theorem guarantees that with probability
1 − α

dist
(
f �, lev≤δ

{1
ν

ν∑
j=1

ψ(ξ j , ·)
})

≤ c(log ν)1+1/n

ν1/n

for sufficiently large ν. Hence, the minimizer f � of (FIP-U) is covered by the given
level set when appropriately enlarged with a quantity that vanishes with increasing
sample size at nearly the rate ν−1/n . The confidence region is not given in terms
of minimizers of the approximating problem (FIP-U)ν , but rather certain level sets.
Membership in such a level set is trivially assessed, does not require solving the
approximating problem, and can be used to rule out the optimality of a candidate f . In
general, minimizers of (FIP-U)ν are not well behaved and depend on the conditioning
of (FIP-U) as discussed in [33]. Theorem 5.3 bypasses this issue by considering level
sets. Other strengths of Theorem 5.3 are its mild assumption on the (random) objective
function ψ and the wide range of constraints that is permitted; the family F can be
any bounded closed set in (usc-fcns(S),d). The functions f �→ ψ(ξ, f ) is only
required to be lsc. The assumption about sub-exponential distribution of ψ(ξ1, f )
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can be checked pointwise for each f ∈ F . Actually, this assumption can be relaxed
because the proof of Theorem 5.3 only requires that sample averages are sufficiently
low relative to the actual expectations, but this merely improves c in the theorem and
we omit this refinement.

The practical construction of confidence regions is hampered by the unknown and
hard-to-estimate constants c and ν̄ in Theorem 5.3. In practice, coveragemay therefore
only be guaranteed asymptotically. The other unknown parameter δ is easy to estimate
conservatively because for any f ∈ F , the sample average 1

ν

∑ν
j=1 ψ(ξ j , f ), using

a different sample, furnishes an estimator of E[ψ(ξ1, f )], which in turn is an upper
bound on inf f ∈F E[ψ(ξ1, f )]. An effort to select a low δ would obviously result in a
smaller level set, but typically also large c and ν̄.

The effect of n on the rate of convergence is profound and in line with the growth
of the covering numbers as n increase. It highlights, for example, the fundamental
challenge associated with high-dimensional nonparametric estimation already well
documented (see [1,22]). On the positive note, if n = 1, which already captures many
interesting applications [37], then the convergence rate is nearly ν−1 and therefore
faster than the canonical ν−1/2 rate. If F is restricted to some finite-dimensional
subset of usc-fcns(S), then the covering numbers from Theorem 4.3 can be replaced
by much improved ones, typically of order O(ε−1) so that their logarithm is of order
O(log ε−1) and the rate improves from essentially ν−1/n to e−ν in Theorem 5.3.

We illustrate the application of Theorem 5.3 on stochastic optimization problems
arising in nonparametric statistics.

Example 1 Maximum likelihood estimation of probability densities. Suppose that we
would like to estimate an unknown probability density function f 0 ∈ usc-fcns(S).
Since we permit densities to have value zero on a subset of S, there is no requirement
that the support of f 0 is known; S just needs to contain the support. Given a sample
ξ1, . . . , ξ ν , which in this case takes values in S, i.e., � = S, a maximum likelihood
estimator of f 0 over a class F ⊂ usc-fcns(S) is any minimizer of

min f ∈F −1

ν

ν∑
j=1

log f (ξ j )

and, in the notation above, ψ(ξ, f ) = − log f (ξ). The function (ξ, f ) �→ − log f (ξ)

is a random lsc function on the probability space (S,B, P), where P is the probability
distribution of f 0 and B contains the Borel sets of (S, ‖ · − · ‖∞) supplemented with
the necessary probability-zero sets to make the probability space complete. This fact
is easily realized because the function is actually lsc jointly in its arguments; see [38]
for details.

In this case, ψ(ξ1, f ) being sub-exponential amounts to having F consist of sub-
exponential densities. The requirement about inf-integrability is extensively discussed
in [38]. For example, suppose F is a nonempty closed subset of

{
f ∈ usc-fcns(S)

∣∣∣∣
∫

f (x)dx = 1,
∫

x f (x)dx ∈ C, u(x) ≤ f (x) ≤ v(x), ∀x ∈ S

}
,
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where C ⊂ Rn is closed and u, v : S → (0,∞), with v ∈ usc-fcns(S). Moreover,
suppose that the actual density f 0 ∈ F and for some γ1 ≥ 0, γ2 > 0, and, ζ1, ζ2 ∈ R,

u(x) ≥ e−γ1‖x‖∞+ζ1 and v(x) ≤ e−γ2‖x‖∞+ζ2 .

All the assumptions of Theorem 5.3 are then satisfied. The requirement that F is
bounded is automatically satisfied because f ≥ 0 for all f ∈ F .

In this example the maximum likelihood estimator finds the best estimate that
satisfies the given pointwise bounds and moment restriction. There is no requirement
that the actual density or its estimate should be smooth or even continuous. Of course, a
large variety of other constraints can be brought in too; see [38] for some possibilities.

We recall that a subset F0 ⊂ usc-fcns(S) is equi-usc [31, Sect. 7.B] if there exists
δ : S × (0,∞) × (0,∞) → (0,∞) such that for any ε, ρ > 0, x̄ ∈ S, and f ∈ F0,

supx∈B∞(x̄,δ(x̄,ε,ρ)) f (x̄) ≤ max{ f (x) + ε,−ρ}.

If F0 is a singleton, then the condition reduces to that of usc. If F0 contains only
Lipschitz continuous functions, or only piecewise Lipschitz continuous functions, or
only finite-valued concave functions on Rn , to mention some examples, then F0 is
equi-usc.

Example 2 Least-Squares Regression. Suppose that we are given the random design
model

y j = f 0(x j ) + z j , j = 1, 2, . . . , ν

where x1, x2, . . . , xν are independent and identically distributed n-dimensional ran-
dom vectors that take values in a closed set S ⊂ Rn , z1, z2, . . . , zν are zero-mean
random variables that are also independent of x1, x2, . . . , xν , and f 0 : S → R is
an unknown function to be estimated based on observations of ξ1 = (x1, y1). In this
case, � = S × R, again we adopt a sigma-algebra that contains the Borel sets on �

and that results in a complete probability space under the distribution of (x1, y1). The
least-squares estimator of f 0 over the class F ⊂ usc-fcns(S) is then any minimizer
of

min f ∈F
1

ν

ν∑
j=1

(
y j − f (x j )

)2
.

Resulting estimates furnish approximations of f 0 that in an engineering design context
can be maximized to find an optimal design without any (additional) costly simulation
of system performance. The only simulations required are those needed to generate a
data set {(x j , y j ), j = 1, . . . , ν}.

In this case, ψ((x, y), f ) = (y − f (x))2. Since (x, f ) �→ f (x) is usc and thus
measurable, we also have thatψ is measurable. Consequently,ψ is a random lsc func-
tion provided that F is equi-usc, an assumption that provides the necessary pointwise
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convergence (cf. [31, Thm. 7.10]). Its nonnegativity ensures that ψ is also locally
inf-integrable.

A confidence region for f 0 ∈ F emerges from Theorem 5.3 when (y1 − f (x1))2 is
sub-exponential for all f ∈ F . For example, this will be the case when z1 and every
component of x1 are sub-Gaussian, and for some γ, ζ ∈ R,

f ∈ F �⇒ | f (x)| ≤ γ ‖x‖∞ + ζ, ∀x ∈ S.

Since f 0 must be a minimizer of min f ∈F E[(y1 − f (x1))2], provided that f 0 ∈ F ,
Theorem 5.3 guarantees that f 0 is covered by the stipulated level set when appropri-
ately enlarged.

5.2 Rates of convergence under Hölder condition

Theorem5.3 does not rule out the possibility that the limit of the given level sets strictly
contains argmin f ∈F E[ψ(ξ1, f )]. In fact, this cannot be ruled out unless additional
assumptions are brought in; [33] contains a discussion. Still, aHölder condition enables
us to “reverse” Theorem 5.3 and quantify the rate of convergence of the excess of
minimizers of (FIP-U)ν over those of (FIP-U). Since it is relatively straightforward,
we also address approximating constraints. Although the approximating constraints
can be rather general, the rate of convergence in the following theorem depends on the
rate with which the approximating feasible set approaches the actual one. Thus, it is
not immediately clear how the piecewise affine functions discussed in Sect. 3, which
have unknown rate of convergence, can be used for constructing these approximations.

As usual, we let αν = o(rν) imply that for every δ > 0 there exists ν̄ such that
αν ≤ δrν for all ν ≥ ν̄.

Theorem 5.4 (rate of convergence) For a complete probability space (�,A,P) and
closed and bounded sets Fν, F0 ⊂ F ⊂ usc-fcns(S), suppose that ψ : � × F →
(−∞,∞] is a random lsc function for which there exist p ∈ (0,∞) and integrable
random variable κ : � → [0,∞) such that

|ψ(ξ, f ) − ψ(ξ, g)| ≤ κ(ξ)[d( f , g)]p for all f , g ∈ F and ξ ∈ �.

Suppose also that ξ1, ξ2, . . . are independent random elements, each with values in
� and distributed according to P, and ψ(ξ1, f ) is sub-exponential for all f ∈ F. Let

rν = ν
−1

2+n/p (log ν)
1+n

2+n/p .

If H(Fν, F0) = o(min{rν, (rν)1/p}) and α ∈ (0, 1), then there exist c ∈ [0,∞) and
ν̄ ∈ N such that for ν ≥ ν̄ and εν ≥ 0,

Pν

[
exs

(
εν- argmin f ∈Fν

1

ν

ν∑
j=1

ψ(ξ j , f ), (εν + crν)- argmin f ∈F0 E[ψ(ξ1, f )]
)

≤ H(Fν, F0)

]
≥ 1 − α.
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Proof Let ζ > 0. Since κ(ξ1) is integrable, there exists ν̄0 ∈ N such that
Pν(|ν−1∑ν

j=1 κ(ξ j ) −E[κ(ξ1)]| ≥ ζ ) ≤ α/2 for all ν ≥ ν̄0. Let γ1 > 0. As in The-
orem 4.3, there is a finite number N = N (F, γ1/2) of closed balls in (usc-fcns(S),d)

with radius γ1/2 and center f ′
k covering F . To make sure that the balls are centered at

points in F , we can always select some other centers fk ∈ F and balls with radius γ1
and still cover F .

Let ϕ and ϕν be as defined in the proof of Theorem 5.3. We note that ψ is locally
inf-integrable due to the Hölder condition and the pointwise sub-exponential property.
Since ψ(ξ1, fk) is sub-exponential, there exists by Bernstein’s inequality γ̄2 > 0 and
c0 > 0 such that for γ2 ∈ [0, γ̄2],

Pν
(|ϕν((ξ1, . . . , ξ ν), fk) − ϕ( fk)| ≥ γ2

) ≤ 2e−νc0γ 2
2 for all k = 1, . . . , N .

Consequently, as long as ν ≥ ν̄0 and 2Ne−νc0γ 2
2 ≤ α/2, or, equivalently,

ν ≥ max
{
ν̄0,

log N − log(α/4)

c0γ 2
2

}

we have that

Pν

(
max

k=1,...,N

∣∣∣ϕν((ξ1, . . . , ξ ν), fk) − ϕ( fk)
∣∣∣ ≥ γ2 or

∣∣∣1
ν

ν∑
j=1

κ(ξ j ) − E[κ(ξ1)]
∣∣∣ ≥ ζ

)

≤ α.

Suppose that we have an event (ξ1, . . . , ξ ν) ∈ �ν where

max
k=1,...,N

∣∣∣ϕν((ξ1, . . . , ξ ν), fk) − ϕ( fk)
∣∣∣ < γ2 and

∣∣∣1
ν

ν∑
j=1

κ(ξ j ) − E[κ(ξ1)]
∣∣∣ < ζ.

Next, we apply Proposition 5.2 for the lsc functions ϕ̄ : F0 → R given by ϕ̄( f ) =
ϕ( f ) and ϕ̄ν : Fν → R given by ϕ̄ν( f ) = ϕν((ξ1, . . . , ξ ν), f ). In view of the
Hölder assumption on ψ , this implies that ϕ̄ν is finite when defined. Moreover, for all
f , g ∈ F ,

∣∣ϕ( f ) − ϕ(g)
∣∣ ≤ E[κ(ξ1)][d( f , g)]p.

Let δν = H(Fν, F0). Suppose that f ∈ Fν . Then, there is f ′ ∈ F0 and k� ∈
{1, . . . , N } such that d( f , f ′) ≤ δν and d( f ′, fk� ) ≤ γ1. Thus,

infg∈B( f ,δν )∩F ϕ̄(g) ≤ ϕ̄( f ′) ≤ ϕ̄( fk� ) + E[κ(ξ1)]γ p
1

< ϕ̄ν( fk� ) + γ2 + E[κ(ξ1)]γ p
1
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≤ ϕ̄ν( f ) + γ2 + E[κ(ξ1)]γ p
1 + 1

ν

ν∑
j=1

κ(ξ j )(δν + γ1)
p

≤ ϕ̄ν( f ) + γ2 + E[κ(ξ1)](γ p
1 + (δν + γ1)

p) + ζ(δν + γ1)
p.

Similarly, suppose that f ∈ F0. Then, there is f ′ ∈ Fν and k� ∈ {1, . . . , N } such
that d( f , f ′) ≤ δν and d( f ′, fk� ) ≤ γ1. Consequently,

infg∈B( f ,δν )∩F ϕ̄ν(g) ≤ ϕ̄ν( f ′) ≤ ϕ̄ν( fk� ) + 1

ν

ν∑
j=1

κ(ξ j )γ
p
1

< ϕ̄( fk� ) + γ2 + 1

ν

ν∑
j=1

κ(ξ j )γ
p
1

≤ ϕ̄( f ) + E[κ(ξ1)](δν + γ1)
p + γ2 + 1

ν

ν∑
j=1

κ(ξ j )γ
p
1

≤ ϕ̄( f ) + E[κ(ξ1)][(δν + γ1)
p + γ

p
1 ] + γ2 + ζγ

p
1 .

Thus, we have shown that the conditions of Proposition 5.2 hold for the functions ϕ̄

and ϕ̄ν with

δν and τ0 = γ2 + E[κ(ξ1)](γ p
1 + (δν + γ1)

p) + ζ(δν + γ1)
p

as the two error parameters (γ and τ ) and we therefore have that

exs
(
εν- argmin f ∈Fν ϕν((ξ1, . . . , ξ ν), f ), (εν + 2τ0)- argmin f ∈F0 ϕ( f )

) ≤ δν.

By Theorem 4.3, log N is bounded from by a term proportional to γ −n
1 (log γ −1

1 )n+1

for sufficiently small γ1. Thus, there exist constants c1, c2 > 0 such that

log N − log(α/4)

c0γ 2
2

≤ c1γ
−n
1 (log γ −1

1 )n+1γ −2
2 + c2γ

−2
2 ,

which gives the rate of growth in ν as γ1 and γ2 vanish. For τ > 0, the error τ0 can be
kept below τ if γ1 is proportional to τ 1/p, γ2 is proportional to τ , δν is proportional
to min{τ, τ 1/p}, and the (positive) proportionality constants are selected sufficiently
close to zero. In view of these choices about γ1 and γ2, there is a constant c3 > 0 such
that

c1γ
−n
1 (log γ −1

1 )n+1γ −2
2 + c2γ

−2
2 ≤ c3τ

−2−n/p(log τ−1/p)n+1.

With ν above ν̄0 as well as the previous right-hand side, or equivalently for some
c4 > 0,

τ ≥ c4ν
−1

2+n/p (log ν)
1+n

2+n/p ,

we ensure the required confidence level and the conclusion follows. ��
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A corollary of the theorem for the case with εν = 0 and Fν = F0 = F is that

argmin f ∈F
1

ν

ν∑
j=1

ψ(ξ j , f ) ⊂ crν- argmin f ∈F E[ψ(ξ1, f )]

with at least probability 1 − α. Thus, minimizers of (FIP-U)ν converge at the rate rν

to a minimizer of (FIP-U). The rate depends on the Hölder coefficient p as well as the
dimension n of the space of function under considerations.

We illustrate the assumptions of the theorem for two stochastic optimization prob-
lems arising in nonparametric statistics, but start with an intermediate result.

Proposition 5.5 For Lipschitz continuous functions f , g ∈ usc-fcns(S) with common
modulus κ ∈ [0,∞),

| f (x) − g(x)| ≤ (1 + κ)eρ(x)d( f , g) for all x ∈ S,

where ρ(x) = max{‖x‖∞, | f (x)|, |g(x)|}.
Proof Let x ∈ S. The first result is trivial if ρ(x) = ∞. Suppose that ρ(x) < ∞.
From Lemma 4.1, d( f , g) ≥ e−ρ(x)d̂ρ(x)( f , g). Set τ ∈ (d̂ρ(x)( f , g),∞). Again,
by Lemma 4.1, there exists y ∈ B∞(x, τ ) such that f (y) ≥ g(x) − τ . Thus, g(x) −
f (x) = g(x) − f (y) + f (y) − f (x) ≤ τ + κτ . A similar argument establishes that
f (x) − g(x) ≤ τ + κτ . Hence, by letting τ tends to its lower limit, we obtain that
| f (x) − g(x)| ≤ (1 + κ)d̂ρ(x)( f , g) and the conclusion follows. ��
Example 3 Least-Squares Regression. We return to the setting of Example 2, but now
let F be a family that contains only Lipschitz continuous functions with common
modulus κ0 ≥ 0. Suppose also that z1 and every component of x1 are sub-Gaussian,
the unknown function f 0 ∈ F , and there exists β < ∞ such that f (0) ≤ β for all
f ∈ F . Then, F is equi-usc and there are γ, ζ ∈ R such that | f (x)| ≤ γ ‖x‖∞ + ζ

for all f ∈ F . Proposition 5.5 then ensures that the Hölder condition in Theorem 5.4
holds with p = 2 and κ((x, y)) = (1 + κ0)

2 exp(2max{‖x‖∞, γ ‖x‖∞ + ζ }), which
is integrable in view of the sub-Gaussianity of x1.

Using the bound on | f (x)|, we also have that (y1 − f (x1))2 = ( f 0(x1) − f (x1) +
z1)2 is sub-exponential. The assumptions of Theorem 5.4 therefore hold,

rν = ν
−2
4+n (log ν)

1+n
2+n/2 ,

and, for closed Fν, F0 ⊂ F , there exist c ∈ [0,∞) and ν̄ ∈ N such that

Pν

[
exs

(
argmin f ∈Fν

1

ν

ν∑
j=1

(y j − f (x j ))2, crν- argmin f ∈F0 E[(y1 − f (x1))2]
)

≤ H(Fν, F0)

]
≥ 1 − α

123



314 J. O. Royset

provided that ν ≥ ν̄ and H(Fν, F0) = o(rν). Thus, when H(Fν, F0) = 0 and
f̂ ν ∈ argmin f ∈Fν

1
ν

∑ν
j=1 (y j − f (x j ))2 is measurable,

Pν
(
E
[
( f̂ ν(x1) − f 0(x1))2

] ≤ crν
)

≥ 1 − α.

The rates developed here apply in rather general settings and remain in effect even if
f 0 /∈ F0. More specific settings give improved results as in the case of regression with
fixed design andLipschitz continuous functions defined on compact convex subset [44,
p. 333] and in the univariate case [15].

Example 4 Least-Squares Probability Density Estimation. We return to the setting of
Example 1, but now consider the least-squares estimator of f 0, which is anyminimizer
of

min f ∈Fν −2

ν

ν∑
j=1

f (ξ j ) +
∫

[ f (x)]2dx .

This estimator is motivated by the fact that the unknown function

f 0 ∈ argmin f ∈F
∫ [

f (x) − f 0(x)
]2
dx = argmin f ∈F −2E[ f (ξ1)] +

∫
[ f (x)]2dx

whenever f 0 ∈ F . To make the case rather concrete, let κ ∈ [0,∞) and for some
bounded function h : S → [0,∞), with

∫
h(x)dx < ∞,

F =
{
f ∈ usc-fcns(S)

∣∣∣∣
∫

f (x)dx = 1, 0 ≤ f (x) ≤ h(x), | f (x)

− f (y)| ≤ κ‖x − y‖∞,∀x, y ∈ S

}
,

which can be shown to be closed and bounded; see arguments in [38]. In this case,
(ξ, x) �→ ψ(ξ, f ) = −2 f (ξ)+∫ [ f (x)]2dx is a random lsc function as can be seen by
invoking Fatou’s Lemma and pointwise convergence; again see [38]. Then, ψ(ξ1, f )
is sub-exponential for all f ∈ F as it is in fact bounded.

It remains to check the Hölder condition in Theorem 5.4. Suppose that E

[exp(‖ξ1‖∞)] < ∞. In view of Proposition 5.5, if the integral term in ψ had not
been present, then the condition holds with p = 1; Lipschitz continuity and the fact
that E[exp(‖ξ1‖∞)] < ∞ ensures integrability of the Hölder modulus. If S were
compact, then ψ would still satisfy the condition with p = 1. For a noncompact S,
the argument needs to be slightly modified by first “ignoring” the integral term and
second reintroduce it in a slightly generalized version of Theorem 5.4. We omit the
details.

In summary, for the given F and under the assumption that E[exp(‖ξ1‖∞)] < ∞,
we can show by invoking Theorem 5.4 (or the mentioned extensions) that for any
α ∈ (0, 1) there exist c ∈ [0,∞) and ν̄ ∈ N such that for every ν ≥ ν̄ and εν ≥ 0
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Pν

[
εν- argmin f ∈F −2

ν

ν∑
j=1

f (ξ j ) +
∫

[ f (x)]2dx ⊂

(εν + crν)- argmin f ∈F −2E[ f (ξ1)] +
∫

[ f (x)]2dx
]

≥ 1 − α with rν = ν
−1
2+n (log ν)

1+n
2+n .

A sharper result is available in the univariate case over the class of nonincreasing
convex functions [13].
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Appendix

Proof of Theorem 4.4 Let ρ > 0 and F = { f ∈ usc-fcns(Rd) | f (x) ≥
−ρ for at least one x ∈ [0, ρ]n}. We show that F cannot be covered with a lower
number of balls than stipulated. Clearly, dist∞(0, hypo f ) ≤ ρ for all f ∈ F . Thus,
in view of (3), d(0, f ) ≤ ρ + 1 for all f ∈ F , where 0 is the zero function on Rn ,
and F is therefore bounded.

Next, let ε ∈ (0, ρe−ρ/6]. We discretize [0, ρ]n by defining xki = kρ/νε, k =
1, . . . , νε − 1 and i = 1, . . . , n, where

νε =
⌊

ρe−ρ

3ε

⌋
≥ 2,

with �a� being the largest integer not exceeding a. The discretization of [0, ρ]n then
contains the points (xk11 , xk22 , . . . , xknn ), with ki ∈ {1, 2, . . . , νε − 1} and i = 1, . . . , n.
Clearly, the distance between any two such points in the sup-norm is at least ρ/νε ≥
3εeρ . We carry out a similar discretization of [−ρ, 0] and define yl = lρ/νε, l =
1, . . . , νε. The functions that are finite on the discretization points of [0, ρ]n , with
values at each such point equal to yl for some l, and have valueminus infinity elsewhere
are given by Fε, i.e.,

Fε ={ f ∈ usc-fcns(Rn) | for each x = (xk11 , . . . , xknn ),

with ki ∈ {1, 2, . . . , νε − 1}, f (x) = yl

for some l = 1, . . . , νε; f (x) = −∞ otherwise}.

Certainly, Fε ⊂ F . We next define

Gε( f ) = {g ∈ usc-fcns(Rn) | d̂ρ( f , g) ≤ εeρ}, for f ∈ usc-fcns(Rn).
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We establish that Gε( f ) ∩ Gε( f ′) = ∅ for f , f ′ ∈ Fε, f �= f ′. Suppose for the sake
of a contradiction that there is a g with g ∈ Gε( f ) and g ∈ Gε( f ′) for f , f ′ ∈ Fε,
f �= f ′. Then, d̂ρ( f , g) ≤ εeρ and d̂ρ( f ′, g) ≤ εeρ . However, since f �= f ′, there
exists a point x ∈ [0, ρ]n with | f (x) − f ′(x)| ≥ 3εeρ . Without loss of generality,
suppose that f (x) ≥ f ′(x) + 3εeρ . Since f (z), f ′(z) = −∞ for all z �= x with
‖z − x‖∞ < 3εeρ , we have that d̂ρ( f , g) ≤ εeρ implies that g(z) ≥ f (x) − εeρ for
some z ∈ B(x, εeρ). Moreover, d̂ρ( f ′, g) ≤ εeρ implies that g(z) ≤ f ′(x) + εeρ ≤
f (x)−3εeρ+εeρ = f (x)−2εeρ for all z ∈ B(x, εeρ). Since this is not possible for g,
we have reached a contradiction. Thus, Gε( f )∩Gε( f ′) = ∅ for f , f ′ ∈ Fε, f �= f ′.

By Lemma 4.1, for any f ∈ usc-fcns(Rn),

d( f , g) ≥ e−ρd̂ρ( f , g) > e−ρεeρ = ε for all g /∈ Gε( f ).

Hence, for f ∈ Fε, an d-ball with radius ε that contains f needs to be centered at
some g ∈ Gε( f ). Since the sets Gε( f ), f ∈ Fε, are nonoverlapping, a cover of Fε

by d-balls with radius ε must involve a number of balls that is at least as great as the
number of functions in Fε, which is ν

mε
ε , where mε = (νε − 1)n . Thus,

log N (F, ε) ≥ νnε log νε ≥
(

ρe−ρ

3ε
− 2

)n

log

(
ρe−ρ

3ε
− 1

)
. (11)

Let c1 = | log(ρe−ρ/4)| and ε̄ = min{ρe−ρ/12, e−2c1}. Continuing from (11), we
then find that

log N (F, ε) ≥
(

ρe−ρ

6

)n [
1 + log(ρe−ρ/4)

log ε−1

]
1

εn
log

1

ε
.

Since log ε−1 ≥ 2| log(ρe−ρ/4)| for ε ∈ (0, ε̄], we have that

log N (F, ε) ≥
(

ρe−ρ

6

)n 1

2

1

εn
log

1

ε
for ε ∈ (0, ε̄],

and the conclusion is reached. ��
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