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Abstract
In a Hilbert space H, given A: H → 2H a maximally monotone operator, we study
the convergence properties of a general class of relaxed inertial proximal algorithms.
This study aims to extend to the case of the general monotone inclusion Ax � 0 the
acceleration techniques initially introduced by Nesterov in the case of convex mini-
mization. The relaxed form of the proximal algorithms plays a central role. It comes
naturally with the regularization of the operator A by its Yosida approximation with
a variable parameter, a technique recently introduced by Attouch–Peypouquet (Math
Program Ser B, 2018. https://doi.org/10.1007/s10107-018-1252-x) for a particular
class of inertial proximal algorithms. Our study provides an algorithmic version of the
convergence results obtained by Attouch–Cabot (J Differ Equ 264:7138–7182, 2018)
in the case of continuous dynamical systems.

Keywords Maximally monotone operators · Yosida regularization · Inertial proximal
method · Large step proximal method · Lyapunov analysis · (Over)Relaxation

Mathematics Subject Classification 49M37 · 65K05 · 65K10 · 90C25

1 Introduction

Throughout this paper,H is a real Hilbert space endowed with the scalar product 〈., .〉
and the corresponding norm ‖.‖. Given A : H → 2H amaximally monotone operator,
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we will study the convergence properties of a general class of inertial proximal based
algorithms that aim to solve the inclusion Ax � 0, whose solution set is denoted
by zerA. Given initial data x0, x1 ∈ H, we consider the Relaxed Inertial Proximal
Algorithm, (RIPA) for short, defined by, for k ≥ 1

(RIPA)

{
yk = xk + αk(xk − xk−1)

xk+1 = (1 − ρk)yk + ρk Jμk A(yk).

In the above formula, JμA = (I + μA)−1 is the resolvent of A with index μ > 0,
where I is the identity operator. It plays a central role in the analysis of (RIPA),
along with the Yosida regularization of A with parameter μ > 0, which is defined
by Aμ = 1

μ

(
I − JμA

)
, (see “Appendix A” for their main properties). We assume the

following set of hypotheses

⎧⎨
⎩

• A : H → 2H is a maximally monotone operator;
• (αk) is a sequence of nonnegative numbers;
• (μk) and (ρk) are sequences of positive numbers.

(H )

If ρk = 1 for every k ≥ 1, then algorithm (RIPA) reduces to the Inertial Proximal
Algorithm

(IPA)

{
yk = xk + αk(xk − xk−1)

xk+1 = Jμk A(yk).

On the other hand, if αk = 0 for every k ≥ 1, then algorithm (RIPA) boils down to
the Relaxed Proximal Algorithm

(RPA) xk+1 = (1 − ρk)xk + ρk Jμk A(xk).

For classical references on relaxed proximal algorithms, see for example [10,18,19].
An inertial version of such algorithms was first studied in [1], see also [22]. Recent
studies showed the importance of the case αk → 1. When A = ∂�, where � : H →
R∪ {+∞} is a proper closed convex function, this is a key property for obtaining fast
convergent methods, in line with the Nesterov and FISTA methods [9,24]. The case
of inertial methods for general maximally monotone operators remains largely to be
explored. Inertial proximal splittingmethodswere recently considered in [12,17,21,23,
27]. One important application concerns the design of inertial ADMM algorithms for
linearly constrained minimization problems. Recently, a new approach was delineated
by Attouch and Peypouquet [7] based on the Yosida regularization of Awith a varying
parameter. In this paper, we will provide a unifying approach to these problems that
extends [7] and opens new perspectives. Our study is the natural extension, in the
algorithmic case, of the convergence results obtained by Attouch–Cabot [5] in the
case of continuous dynamical systems.
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1.1 Relaxed proximal algorithms

The classical proximal algorithm is obtained by the implicit discretization of the dif-
ferential inclusion

ẋ(t) + A(x(t)) � 0. (1)

By contrast, the relaxed proximal algorithm (RPA) comes naturally by discretizing
the regularized differential equation

ẋ(t) + Aλ(x(t)) = 0, (2)

where Aλ is the Yosida approximation of A of index λ > 0. Since Aλ is Lipschitz
continuous, (2) is relevant owing to the Cauchy–Lipschitz theorem. Indeed, implicit
time discretization of (2), with step size hk > 0, gives the relaxed proximal algorithm
(details of the proof are given below in the inertial case)

xk+1 = (1 − ρk) xk + ρk Jμk A(xk),

withμk = λ+hk andρk = hk
λ+hk

. System (2) hasmany advantages over the differential
inclusion (1). Note that zerA = zerAλ, so the equilibria are the same for both systems.
Since Aλ is cocoercive, the trajectories of (2) converge weakly to equilibria, which is
a great contrast to the semigroup generated by A, for which, in general we only have
weak ergodic convergence. Thus, one can expect that the associated algorithms also
benefit from these favorable properties.

These aspects are even more striking when one considers inertial dynamics. The
damped inertial dynamics ẍ(t) + γ (t)ẋ(t) + A(x(t)) � 0 is ill-posed, and no general
convergence theory is available for this system. By contrast, the regularized dynamics

ẍ(t) + γ (t)ẋ(t) + Aλ(t)(x(t)) = 0 (3)

is well-posed. Some first results concerning the adjustments of the parameters γ (t)
and λ(t), in order to have good asymptotic convergence properties have been obtained
in [2,6] and [7]. A closely connected dynamical system with variable damping and
step sizes has been considered in [11].

Let’s proceed to the implicit temporal discretization of (3). Indeed, implicit dis-
cretizations tend to follow the continuous-time trajectories more closely than explicit
discretizations. Note that, due to the Yosida regularization, the explicit discretization
of (3) has the same numerical complexity as the implicit discretization (they each
need one resolvent computation per iteration). Taking a time step hk > 0, and set-
ting tk = ∑k

i=1 hi , xk = x(tk), λk = λ(tk), γk = γ (tk), an implicit finite-difference
scheme for (3) with centered second-order variation gives

1

h2k
(xk+1 − 2xk + xk−1) + γk

hk
(xk − xk−1) + Aλk (xk+1) = 0. (4)

123
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After expanding (4), we obtain xk+1 + h2k Aλk (xk+1) = xk + (1 − γkhk) (xk − xk−1).

Setting sk = h2k , we have

xk+1 = Jsk Aλk
(xk + (1 − γkhk) (xk − xk−1)) ,

where Jsk Aλk
is the resolvent of index sk > 0 of the maximally monotone operator

Aλk . Setting αk = 1 − γkhk , this gives the following algorithm

{
yk = xk + αk(xk − xk−1)

xk+1 = Jsk Aλk
(yk).

(5)

The resolvent equation, (Aλ)s = Aλ+s , gives JsAλ = λ
λ+s I + s

λ+s J(λ+s)A. Hence, (5)
is equivalent to

⎧⎨
⎩

yk = xk + αk(xk − xk−1)

xk+1 = λk

λk + sk
yk + sk

λk + sk
J(λk+sk )A(yk).

That’s algorithm (RIPA) with μk = λk + sk and ρk = sk
λk+sk

.

1.2 Geometrical aspects of (RIPA)

(RIPA) has a simple geometrical interpretation. This is illustrated in Fig. 1, where,
as a distinctive feature of the proximal method, the closed affine half-space{
z ∈ H : 〈yk − Jμk A(yk), z − Jμk A(yk)

〉 ≤ 0
}
separates yk from zerA.

In the Fig. 1, the parameter ρk has been taken between zero and one, so that xk+1
belongs to the line segment [yk, Jμk A(yk)]. Indeed, we will see that, under certain
conditions, the parameter ρk can vary in the interval [0, 2]. The case ρk > 1 is
particularly interesting, since it allows to combine inertial effect with over-relaxation.
These combined aspects have been little studied until now, see [20] for some recent
results in the case of a fixed resolvent operator JμA.

yk = xk + αk(xk − xk−1)

xk+1 = (1− ρk)yk + ρkJµkA(yk)

JµkA(yk)
•

•

xk•

xk−1•

•

zerA

Fig. 1 Algorithm (RIPA)
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For a maximally monotone operator A such that zerA �= ∅, we have limμ→+∞
JμA(x) = projzerAx , see [8, Theorem 23.47 (i)]. Thus, in the caseμk → +∞ (which,
we will see, is important for obtaining fast methods) we have Jμk A(yk) ∼ projzerAyk ,
as shown in Fig. 1.

1.3 Presentation of the results

The case A = 0 already reveals some crucial notions. In this case, Jμk A = I and
algorithm (RIPA) becomes xk+1 = xk + αk(xk − xk−1). It ensues that for every
k ≥ 1,

xk+1 − xk =
⎛
⎝ k∏

j=1

α j

⎞
⎠ (x1 − x0) which gives xk = x1 +

⎛
⎝k−1∑

l=1

l∏
j=1

α j

⎞
⎠ (x1 − x0).

Hence, (xk) converges if and only if x1 = x0 or if the following condition is satisfied∑+∞
l=1

∏l
j=1 α j < +∞. When A = ∂� is the subdifferential of a convex function

� : H → R ∪ {+∞} with a continuum of minima, this condition has been identified
as a necessary condition for the convergence of the iterates of (IPA), see [16]. From
now on, we assume that

+∞∑
l=i

⎛
⎝ l∏

j=i

α j

⎞
⎠ < +∞ for every i ≥ 1, (K0)

and we define the sequence (ti ) by

ti = 1 +
+∞∑
l=i

⎛
⎝ l∏

j=i

α j

⎞
⎠ . (6)

The sequence (ti ) plays a crucial role in the study of the asymptotic behavior of
the iterates of (IPA). This was recently highlighted by Attouch and Cabot [4] in the
potential case. However, most of the energetical arguments used in [4] are not available
in the general framework of maximally monotone operators. It follows that we must
develop different techniques.

As a model example of our results, let us give the following shortened version of
Theorem 2.6.

Theorem 1.1 Under (H), assume that zerA �= ∅. Suppose that αk ∈ [0, 1] and ρk ∈
]0, 2] for every k ≥ 1. Under (K0), let (ti ) be the sequence defined by (6). Assume
that there exists ε ∈]0, 1[ such that for k large enough,
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(1 − ε)
2 − ρk−1

ρk−1
(1 − αk−1) (K1)

≥ αk tk+1

(
1 + αk +

[
2 − ρk

ρk
(1 − αk) − 2 − ρk−1

ρk−1
(1 − αk−1)

]
+

)
.

Then for any sequence (xk) generated by (RIPA), we have

(i)
∑+∞

i=1
αi ti+1‖xi − xi−1‖2 < +∞.

(ii)
∑+∞

i=1
ρi (2 − ρi ) ti+1‖μi Aμi (xi )‖2 < +∞.

(iii) For any z ∈ zerA, limk→+∞ ‖xk − z‖ exists, and hence (xk) is bounded.

Assume moreover that lim supk→+∞ ρk < 2, and lim infk→+∞ ρk > 0. Then the
following holds

(iv) limk→+∞ μk Aμk (xk) = 0.
(v) If lim infk→+∞ μk > 0, then there exists x∞ ∈ zerA such that xk⇀x∞ weakly

inH as k → +∞.

These results are complemented inTheorem2.14 so as to cover the case of a possibly
vanishing parameter ρk . Then, the assumption lim infk→+∞ ρk > 0 is removed and
replaced with an alternative set of assumptions.

1.4 Organization of the paper

Our main convergence results are established in Sect. 2, see Theorem 2.6 and The-
orem 2.14. Based on the behavior of the sequences (αk), (μk), (ρk), we show the
weak convergence of the sequences (xk) generated by algorithm (RIPA). Thus, in
the general context of maximally monotone operators acting on Hilbert spaces, we
unify and extend most of the previously known results concerning the combination
of the proximal methods with relaxation and inertia. These results are illustrated in
Sect. 3 which presents applications to special classes of sequences (αk), (μk), (ρk).
In particular, we find the recent result obtained by Attouch–Peypouquet based on the
accelerated method of Nesterov. Finally, in Sect. 4, we provide ergodic convergence
results, extending the seminal result of Brezis–Lions. The paper is supplemented by
some auxiliary technical lemmas contained in the appendix.

2 Convergence results

2.1 Equivalent forms of (RIPA)

Let us give several equivalent formulations of (RIPA). Observe that

(1 − ρk)yk + ρk Jμk A(yk) = yk − ρkμk Aμk (yk).

123



Convergence of a relaxed inertial proximal algorithm for… 249

It ensues that (RIPA) can be equivalently rewritten as

{
yk = xk + αk(xk − xk−1)

xk+1 = yk − ρkμk Aμk (yk).
(7)

Recalling that ξ = Aμ(y) if and only if ξ ∈ A(y − μξ), we obtain the following
equivalences

− 1

ρkμk
(xk+1 − yk) = Aμk (yk)

⇐⇒ − 1

ρkμk
(xk+1 − yk) ∈ A

(
yk + 1

ρk
(xk+1 − yk)

)

⇐⇒ − 1

ρkμk
(xk+1 − yk) ∈ A

(
xk+1 +

(
1

ρk
− 1

)
(xk+1 − yk)

)
.

This gives rise to the equivalent formulation of (RIPA)

{
yk = xk + αk(xk − xk−1)

xk+1 − yk ∈ −ρkμk A
(
xk+1 +

(
1
ρk

− 1
)

(xk+1 − yk)
)

.
(8)

Depending on the situation, we will use one of the above mentioned equivalent for-
mulations.

2.2 The anchor sequence (hk)

Given z ∈ H and a sequence (xk) generated by (RIPA), let us define the sequence (hk)
by hk = 1

2‖xk − z‖2. The difference hk+1 − hk − αk(hk − hk−1) plays a central role
in the study of the asymptotic behavior of (xk) as k → +∞. Let us start with a basic
result that relies on algebraic manipulations of the terms hk−1, hk and hk+1.

Lemma 2.1 Let (xk) be a sequence inH, and let (αk) be a sequence of real numbers.
Given z ∈ H, let us define the sequence (hk) by hk = 1

2‖xk − z‖2. We then have

hk+1 − hk − αk(hk − hk−1) = 1

2
(αk + α2

k )‖xk − xk−1‖2 + 〈xk+1 − yk, xk+1 − z〉

−1

2
‖xk+1 − yk‖2, (9)

where yk = xk + αk(xk − xk−1).

Proof Observe that

‖yk − z‖2 = ‖xk + αk(xk − xk−1) − z‖2
= ‖xk − z‖2 + α2

k‖xk − xk−1‖2 + 2αk〈xk − z, xk − xk−1〉
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= ‖xk − z‖2 + α2
k‖xk − xk−1‖2

+αk‖xk − z‖2 + αk‖xk − xk−1‖2 − αk‖xk−1 − z‖2
= ‖xk − z‖2 + αk(‖xk − z‖2 − ‖xk−1 − z‖2)

+ (αk + α2
k )‖xk − xk−1‖2

= 2[hk + αk(hk − hk−1)] + (αk + α2
k )‖xk − xk−1‖2.

We deduce that

hk+1 − hk − αk(hk − hk−1) = 1

2
‖xk+1 − z‖2 − 1

2
‖yk − z‖2

+ 1

2
(αk + α2

k )‖xk − xk−1‖2

= 〈xk+1 − yk, xk+1 − z〉 − 1

2
‖xk+1 − yk‖2

+ 1

2
(αk + α2

k )‖xk − xk−1‖2.

��
Let us particularize Lemma 2.1 to sequences generated by (RIPA). In the following

statement, gphA stands for the graph of A, see “Appendix A”.

Lemma 2.2 Assume (H) and let (z, q) ∈ gphA. Given a sequence (xk) generated by
(RIPA), let (hk) be the sequence defined by hk = 1

2‖xk − z‖2. Then we have for every
k ≥ 1,

hk+1 − hk − αk(hk − hk−1) + ρkμk

〈
xk+1 +

(
1

ρk
− 1

)
(xk+1 − yk) − z, q

〉

≤ 1

2
(αk + α2

k )‖xk − xk−1‖2 − 2 − ρk

2ρk
‖xk+1 − yk‖2. (10)

Assume moreover that zerA �= ∅, and let z ∈ zerA. The following holds true for every
k ≥ 1

hk+1−hk −αk(hk −hk−1) ≤ 1

2
(αk +α2

k )‖xk −xk−1‖2− 2 − ρk

2ρk
‖xk+1− yk‖2. (11)

Proof Iteration (RIPA) can be expressed as

xk+1 − yk ∈ −ρkμk A

(
xk+1 +

(
1

ρk
− 1

)
(xk+1 − yk)

)
,

see (8). Since q ∈ A(z), the monotonicity of A yields

〈
xk+1 − yk + ρkμk q, xk+1 +

(
1

ρk
− 1

)
(xk+1 − yk) − z

〉
≤ 0.
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Hence

〈xk+1 − yk, xk+1 − z〉 ≤ −
(

1

ρk
− 1

)
‖xk+1 − yk‖2

−ρkμk

〈
q, xk+1 +

(
1

ρk
− 1

)
(xk+1 − yk) − z

〉
.

From equality (9) of Lemma 2.1, we deduce immediately that

hk+1 − hk − αk(hk − hk−1) + ρkμk

〈
q, xk+1 +

(
1

ρk
− 1

)
(xk+1 − yk) − z

〉

≤ 1

2
(αk + α2

k )‖xk − xk−1‖2 −
(

1

ρk
− 1

2

)
‖xk+1 − yk‖2,

which is nothing but (10). Finally, if z ∈ zerA, then inequality (11) is obtained by
taking q = 0 in (10). ��
Lemma 2.3 Under (H), assume that ρk ∈]0, 2] for every k ≥ 1. Suppose that
zerA �= ∅ and let z ∈ zerA. Given a sequence (xk) generated by (RIPA), let (hk)
be the sequence defined by hk = 1

2‖xk − z‖2. Then we have for every k ≥ 1,

hk+1 − hk − αk(hk − hk−1)

≤
(
1

2
(αk + α2

k ) − 2 − ρk

2ρk
(1 − αk)

2
)

‖xk − xk−1‖2

−2 − ρk

2ρk
(1 − αk)(‖xk+1 − xk‖2 − ‖xk − xk−1‖2). (12)

Proof Let us formulate Lemma 2.2 in a recursive form. Observe that

‖xk+1 − yk‖2 = ‖xk+1 − xk − αk(xk − xk−1)‖2
= ‖xk+1 − xk − (xk − xk−1) + (1 − αk)(xk − xk−1)‖2
= ‖xk+1 − 2xk + xk−1‖2 + (1 − αk)

2‖xk − xk−1‖2
+ 2(1 − αk)〈xk+1 − 2xk + xk−1, xk − xk−1〉.

On the other hand, we have

‖xk+1 − xk‖2 = ‖xk+1 − 2xk + xk−1‖2 + ‖xk − xk−1‖2
+ 2〈xk+1 − 2xk + xk−1, xk − xk−1〉.

By combining the above equalities, we obtain

‖xk+1 − yk‖2 = αk‖xk+1 − 2xk + xk−1‖2 + (1 − αk)
2‖xk − xk−1‖2

+ (1 − αk)(‖xk+1 − xk‖2 − ‖xk − xk−1‖2)
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≥ (1 − αk)
2‖xk − xk−1‖2

+ (1 − αk)(‖xk+1 − xk‖2 − ‖xk − xk−1‖2).
Since ρk ∈]0, 2] by assumption, the expected inequality follows immediately
from (11). ��

2.3 The sequences (ti) and (ti,k)

Let us introduce the sequences (ti ) and (ti,k) which will play a central role in the
analysis of algorithm (RIPA) (the sequence (ti ) has already been briefly defined in the
introduction). Throughout the paper, we use the convention

∏i−1
j=i α j = 1 for i ≥ 1.

Given i , k ≥ 1, we write ti,k the quantity defined by

ti,k =
k−1∑

l=i−1

⎛
⎝ l∏

j=i

α j

⎞
⎠ = 1 +

k−1∑
l=i

⎛
⎝ l∏

j=i

α j

⎞
⎠ if i ≤ k, (13)

and ti,k = 0 if i > k. Observe that for every i ≥ 1 and k ≥ i + 1,

1 + αi ti+1,k = 1 + αi

⎛
⎝k−1∑

l=i

⎛
⎝ l∏

j=i+1

α j

⎞
⎠
⎞
⎠ = 1 +

k−1∑
l=i

⎛
⎝ l∏

j=i

α j

⎞
⎠ = ti,k . (14)

From now on, we assume that

+∞∑
l=i

⎛
⎝ l∏

j=i

α j

⎞
⎠ < +∞ for every i ≥ 1. (K0)

We define the sequence (ti ) by

ti =
+∞∑
l=i−1

⎛
⎝ l∏

j=i

α j

⎞
⎠ = 1 +

+∞∑
l=i

⎛
⎝ l∏

j=i

α j

⎞
⎠ . (15)

For each i ≥ 1, the sequence (ti,k)k converges increasingly to ti . By letting k → +∞
in (14), we obtain

1 + αi ti+1 = ti ,

for every i ≥ 1. Let us summarize the above results.

Lemma 2.4 Let (αk) be a sequence of nonnegative real numbers. Then we have

(i) The sequence (ti,k) defined by (13) satisfies the recursive relation: for every i ≥ 1
and k ≥ i + 1

1 + αi ti+1,k = ti,k

123



Convergence of a relaxed inertial proximal algorithm for… 253

(ii) Under (K0), the sequence (ti ) given by (15) is well-defined and satisfies for every
i ≥ 1

1 + αi ti+1 = ti .

2.4 Weak convergence of the iterates

Our convergence results are based on Lyapunov analysis. The weak convergence of
the sequences generated by (RIPA) is based on the Opial lemma [25], which we recall
in its discrete form.

Lemma 2.5 (Opial). Let S be a nonempty subset ofH, and (xk) a sequence of elements
of H satisfying

(i) for every z ∈ S, limk→+∞ ‖xk − z‖ exists;
(ii) every sequential weak cluster point of (xk), as k → +∞, belongs to S.

Then the sequence (xk) converges weakly as k → +∞ toward some x∞ ∈ S.

Let us state the main result of this section.

Theorem 2.6 Under (H), assume that zerA �= ∅. Suppose that αk ∈ [0, 1] and ρk ∈
]0, 2] for every k ≥ 1. Under (K0), let (ti ) be the sequence defined by (15). Assume
that there exists ε ∈]0, 1[ such that for k large enough,

(1 − ε)
2 − ρk−1

ρk−1
(1 − αk−1) (K1)

≥ αk tk+1

(
1 + αk +

[
2 − ρk

ρk
(1 − αk) − 2 − ρk−1

ρk−1
(1 − αk−1)

]
+

)
.

Then for any sequence (xk) generated by (RIPA), we have

(i)
∑+∞

i=1

2 − ρi−1

ρi−1
(1 − αi−1)‖xi − xi−1‖2 < +∞, and as a consequence∑+∞

i=1
αi ti+1‖xi − xi−1‖2 < +∞.

(ii)
∑+∞

i=1
ρi (2 − ρi ) ti+1‖μi Aμi (yi )‖2 < +∞, and

∑+∞
i=1

ρi (2 − ρi ) ti+1

‖μi Aμi (xi )‖2 < +∞.
(iii) For any z ∈ zerA, limk→+∞ ‖xk − z‖ exists, and hence (xk) is bounded.

Assume moreover that

lim sup
k→+∞

ρk < 2 (K2)

lim inf
k→+∞ ρk > 0. (K3)

Then the following holds

(iv) limk→+∞ μk Aμk (yk) = 0, and limk→+∞ μk Aμk (xk) = 0.
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(v) If lim infk→+∞ μk > 0, then there exists x∞ ∈ zerA such that xk⇀x∞ weakly
inH as k → +∞.

Proof (i) Let z ∈ zerA, and let us set hk = 1
2‖xk − z‖2 for every k ≥ 1. Setting

ak = hk − hk−1 and

wk :=
(
1

2
(αk + α2

k ) − 2 − ρk

2ρk
(1 − αk)

2
)

‖xk − xk−1‖2

−2 − ρk

2ρk
(1 − αk)(‖xk+1 − xk‖2 − ‖xk − xk−1‖2),

we can rewrite inequality (12) of Lemma 2.3 in the condensed form ak+1 ≤ αkak+wk .
By applying Lemma B.1 (i), we obtain for every k ≥ 1

hk − h0 =
k∑

i=1

ai ≤ t1,k(h1 − h0) +
k−1∑
i=1

ti+1,kwi

= t1,k(h1−h0)−
k−1∑
i=1

ti+1,k

[(
2−ρi

2ρi
(1−αi )

2 − 1

2
(αi + α2

i )

)
‖xi − xi−1‖2

+2 − ρi

2ρi
(1 − αi )(‖xi+1 − xi‖2 − ‖xi − xi−1‖2)

]
.

Since t1,k ≤ t1 and hk ≥ 0, we deduce that

k−1∑
i=1

ti+1,k

[(
2 − ρi

ρi
(1 − αi )

2 − (αi + α2
i )

)
‖xi − xi−1‖2

+ 2 − ρi

ρi
(1 − αi )(‖xi+1 − xi‖2 − ‖xi − xi−1‖2)

]
≤ C,

with C := 2h0 + 2t1|h1 − h0|. Now observe that (we perform a discrete form of
integration by parts)

k−1∑
i=1

ti+1,k
2 − ρi

ρi
(1 − αi )(‖xi+1 − xi‖2 − ‖xi − xi−1‖2)

=
k−1∑
i=1

(
ti,k

2 − ρi−1

ρi−1
(1 − αi−1) − ti+1,k

2 − ρi

ρi
(1 − αi )

)
‖xi − xi−1‖2

+ tk,k
2 − ρk−1

ρk−1
(1 − αk−1)‖xk − xk−1‖2 − t1,k

2 − ρ0

ρ0
(1 − α0)‖x1 − x0‖2.
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Since the second last term is nonnegative and since t1,k ≤ t1, we deduce from the
above equality that

k−1∑
i=1

ti+1,k
2 − ρi

ρi
(1 − αi )(‖xi+1 − xi‖2 − ‖xi − xi−1‖2)

≥
k−1∑
i=1

(
ti,k

2 − ρi−1

ρi−1
(1 − αi−1) − ti+1,k

2 − ρi

ρi
(1 − αi )

)
‖xi − xi−1‖2

− t1
2 − ρ0

ρ0
(1 − α0)‖x1 − x0‖2.

Collecting the above results, we infer that

k−1∑
i=1

δi,k‖xi − xi−1‖2 ≤ C1, (16)

with C1 = 2h0 + 2t1|h1 − h0| + t1
2−ρ0
ρ0

(1 − α0)‖x1 − x0‖2 and

δi,k = ti+1,k

(
2 − ρi

ρi
(1 − αi )

2 − (αi + α2
i )

)

+ ti,k
2 − ρi−1

ρi−1
(1 − αi−1) − ti+1,k

2 − ρi

ρi
(1 − αi ).

Now recall that ti,k = 1+ αi ti+1,k for every i ≥ 1 and k ≥ i + 1, see Lemma 2.4 (i).
It ensues that

δi,k = 2 − ρi−1

ρi−1
(1 − αi−1) + ti+1,k

(
2 − ρi

ρi
(1 − αi )

2 − (αi + α2
i )

+ αi
2 − ρi−1

ρi−1
(1 − αi−1) − 2 − ρi

ρi
(1 − αi )

)

= 2 − ρi−1

ρi−1
(1 − αi−1) + ti+1,k

(
−αi

2 − ρi

ρi
(1 − αi ) − (αi + α2

i )

+ αi
2 − ρi−1

ρi−1
(1 − αi−1)

)

= 2 − ρi−1

ρi−1
(1 − αi−1) − αi ti+1,k

(
1 + αi + 2 − ρi

ρi
(1 − αi )

− 2 − ρi−1

ρi−1
(1 − αi−1)

)

≥ 2 − ρi−1

ρi−1
(1 − αi−1) − αi ti+1

(
1 + αi +

[
2 − ρi

ρi
(1 − αi )

− 2 − ρi−1

ρi−1
(1 − αi−1)

]
+

)
.
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We then infer from (16) that for every k ≥ 2,

k−1∑
i=1

⎡
⎣2 − ρi−1

ρi−1
(1 − αi−1) − αi ti+1

⎛
⎝1 + αi +

⎡
⎣2 − ρi

ρi
(1 − αi )

− 2 − ρi−1

ρi−1
(1 − αi−1)

]
+

⎞
⎠
⎤
⎦ ‖xi − xi−1‖2 ≤ C1.

By assumption, inequality (K1) holds true for k large enough.Without loss of general-
ity, we may assume that it is satisfied for every k ≥ 1. In view of the above inequality,
it ensues that

k−1∑
i=1

ε
2 − ρi−1

ρi−1
(1 − αi−1)‖xi − xi−1‖2 ≤ C1.

Taking the limit as k → +∞, we find

+∞∑
i=1

2 − ρi−1

ρi−1
(1 − αi−1)‖xi − xi−1‖2 ≤ C1

ε
< +∞.

By using again (K1), we deduce that

+∞∑
i=1

αi ti+1‖xi − xi−1‖2 < +∞. (17)

(ii) Let us come back to inequality (11). Using that αk ∈ [0, 1], we get

hk+1 − hk − αk(hk − hk−1) ≤ αk‖xk − xk−1‖2 − 2 − ρk

2ρk
‖xk+1 − yk‖2. (18)

Since xk+1 − yk = −ρkμk Aμk (yk), this implies that

hk+1 − hk − αk(hk − hk−1) ≤ αk‖xk − xk−1‖2 − 1

2
ρk(2 − ρk)‖μk Aμk (yk)‖2.

By invoking Lemma B.1 (i) with ak = hk − hk−1 and

wk = αk‖xk − xk−1‖2 − 1

2
ρk(2 − ρk)‖μk Aμk (yk)‖2,
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we obtain for every k ≥ 1,

hk − h0 =
k∑

i=1

ai ≤ t1,k(h1 − h0)

+
k−1∑
i=1

ti+1,k

[
αi‖xi − xi−1‖2 − 1

2
ρi (2 − ρi )‖μi Aμi (yi )‖2

]
.

Since hk ≥ 0 and ti+1,k ≤ ti+1, we deduce that

1

2

k−1∑
i=1

ρi (2 − ρi )ti+1,k‖μi Aμi (yi )‖2 ≤ h0 + t1,k(h1 − h0)

+
k−1∑
i=1

αi ti+1‖xi − xi−1‖2.

Recalling from (i) that
∑+∞

i=1 αi ti+1‖xi − xi−1‖2 < +∞, we infer that for every
k ≥ 1,

k−1∑
i=1

ρi (2 − ρi ) ti+1,k‖μi Aμi (yi )‖2 ≤ C2,

where we have set

C2 := 2h0 + 2t1|h1 − h0| + 2
+∞∑
i=1

αi ti+1‖xi − xi−1‖2 < +∞.

Since ti+1,k = 0 for i ≥ k, this yields in turn

+∞∑
i=1

ρi (2 − ρi ) ti+1,k‖μi Aμi (yi )‖2 ≤ C2.

Letting k tend to +∞, the monotone convergence theorem then implies that

+∞∑
i=1

ρi (2 − ρi ) ti+1‖μi Aμi (yi )‖2 ≤ C2 < +∞, (19)

which gives the first estimate of (ii). Using the 1
μi
-Lipschitz continuity property of

Aμi , we have
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‖Aμi (xi )‖2 ≤ 2‖Aμi (yi )‖2 + 2‖Aμi (xi ) − Aμi (yi )‖2

≤ 2‖Aμi (yi )‖2 + 2

μ2
i

‖xi − yi‖2

= 2‖Aμi (yi )‖2 + 2α2
i

μ2
i

‖xi − xi−1‖2.

It ensues that

ρi (2 − ρi ) ti+1‖μi Aμi (xi )‖2 ≤ 2ρi (2 − ρi ) ti+1‖μi Aμi (yi )‖2
+ 2α2

i ρi (2 − ρi ) ti+1‖xi − xi−1‖2
≤ 2ρi (2 − ρi ) ti+1‖μi Aμi (yi )‖2

+ 2αi ti+1‖xi − xi−1‖2,

where we have used αi ≤ 1 and ρi (2 − ρi ) ≤ 1 in the second inequality. The first
(resp. second) term of the above right-hand side is summable by (19) [resp. (17)]. We
deduce that the left-hand side is also summable. This proves the second estimate of
(ii).

(iii) From (18), we derive that for every k ≥ 1,

hk+1 − hk ≤ αk(hk − hk−1) + αk‖xk − xk−1‖2.

Recall that, from (i), we have
∑+∞

i=1 αi ti+1‖xi − xi−1‖2 < +∞. Applying
Lemma B.1 (ii) with ak = hk − hk−1 and wk = αk‖xk − xk−1‖2, we infer that∑+∞

i=1 (hk − hk−1)+ < +∞. This classically implies that limk→+∞ hk exists. Thus,
we have obtained that limk→+∞ ‖xk − z‖ exists for every z ∈ zerA, whence in par-
ticular the boundedness of the sequence (xk).

(iv)From (K2) and (K3), there exist r > 0 and r < 2 such thatρk ∈ [r , r ] for k large
enough.We deduce from the first estimate of (ii) that

∑+∞
i=1 ti+1‖μi Aμi (yi )‖2 < +∞,

hence limi→+∞ ti+1‖μi Aμi (yi )‖2 = 0. Since ti ≥ 1 for every i ≥ 1, this implies
in turn that limi→+∞ ‖μi Aμi (yi )‖ = 0. The proof of limi→+∞ ‖μi Aμi (xi )‖ = 0
follows the same lines.

(v) To prove the weak convergence of (xk) as k → +∞, we use the Opial lemma
with S = zerA. Item (iii) shows the first condition of the Opial lemma. For the second
one, let (xkn ) be a subsequence of (xk) which converges weakly to some x . By (iv),
we have limk→+∞ μk Aμk (xk) = 0 strongly in H. Since lim infk→+∞ μk > 0, we
also have limk→+∞ Aμk (xk) = 0 strongly in H. Passing to the limit in

Aμkn
(xkn ) ∈ A

(
xkn − μkn Aμkn

(xkn )
)
,

and invoking the graph-closedness of the maximally monotone operator A for the
weak–strong topology inH×H, we find 0 ∈ A(x ). This shows that x ∈ zerA, which
completes the proof. ��
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Remark 2.7 The main role of assumption (K1) is to guarantee the summability con-
dition +∞∑

i=1

αi ti+1‖xi − xi−1‖2 < +∞, (20)

obtained in (i). A careful examination of the proof of Theorem 2.6 shows that conclu-
sions (ii), (iii), (iv) and (v) hold true if we assume directly condition (20). The latter
condition involves the sequence (xk) that is a priori unknown. However, in practice it
is easy to ensure it by using a suitable on-line rule.

Let us now particularize Theorem 2.6 to the case αk = 0 for every k ≥ 1, corre-
sponding to the absence of inertia in algorithm (RIPA). In this framework, assumptions
(K0) and (K1) are automatically satisfied, and moreover ti = 1 for every i ≥ 1. We
then derive from Theorem 2.6 the following result, which is a particular case of [18,
Theorem 3]. Note that the latter also takes into account the presence of errors in the
computation of the resolvents.

Corollary 2.8 (Bertsekas–Eckstein [18]).Under (H), assume that zerA �= ∅, and that
ρk ∈]0, 2] for every k ≥ 1. Then, for any sequence (xk) generated by (RPA)

xk+1 = (1 − ρk)xk + ρk Jμk A(xk), (RPA)

we have

(i)
∑+∞

i=1

2 − ρi−1

ρi−1
‖xi − xi−1‖2 < +∞.

(ii) For any z ∈ zerA, limk→+∞ ‖xk − z‖ exists, and hence (xk) is bounded.

Assume moreover that lim supk→+∞ ρk < 2 and lim infk→+∞ ρk > 0. Then the
following holds

(iii) limk→+∞ μk Aμk (xk) = 0.
(iv) If lim infk→+∞ μk > 0, then there exists x∞ ∈ zerA such that xk⇀x∞ weakly

inH as k → +∞.

Let us now assume that ρk = 1 for every k ≥ 1. In such a case, the algorithm
(RIPA) boils down to the inertial proximal iteration. We obtain directly the following
corollary of Theorem 2.6.

Corollary 2.9 Under (H), assume that zerA �= ∅, and that αk ∈ [0, 1] for every k ≥ 1.
Suppose (K0) and let (ti ) be the sequence defined by (15). Assume that there exists
ε ∈]0, 1[ such that for k large enough,

(1 − ε)(1 − αk−1) ≥ αk tk+1

(
1 + αk + [

αk−1 − αk
]
+
)

. (K1)

Then for any sequence (xk) generated by (IPA)

(IPA)

{
yk = xk + αk(xk − xk−1)

xk+1 = Jμk A(yk),

we have
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(i)
∑+∞

i=1
(1−αi−1)‖xi−xi−1‖2 < +∞, and as a consequence

∑+∞
i=1

αi ti+1‖xi−
xi−1‖2 < +∞.

(ii)
∑+∞

i=1
ti+1‖μi Aμi (yi )‖2 < +∞, and

∑+∞
i=1

ti+1‖μi Aμi (xi )‖2 < +∞.

(iii) For any z ∈ zerA, limk→+∞ ‖xk − z‖ exists, and hence (xk) is bounded.
(iv) limk→+∞ μk Aμk (yk) = 0, and limk→+∞ μk Aμk (xk) = 0.
(v) If lim infk→+∞ μk > 0, then there exists x∞ ∈ zerA such that xk⇀x∞ weakly

inH as k → +∞.

Remark 2.10 Following Remark 2.7, items (ii) to (v) of Corollary 2.9 hold true if we
suppose that

+∞∑
i=1

αi ti+1‖xi − xi−1‖2 < +∞.

Assume moreover that there exists α ∈ [0, 1[ such that αk ∈ [0, α] for every k ≥ 1.
Then it is easy to show that tk ≤ 1/(1 − α) for every k ≥ 1. Hence the above
summability condition is ensured by the following

+∞∑
i=1

αi‖xi − xi−1‖2 < +∞. (21)

To summarize, if αk ∈ [0, α] for every k ≥ 1, and if condition (21) is satisfied, then
we obtain conclusions (ii) to (v) of Corollary 2.9. This is precisely the result stated in
[3, Theorem 2.1].

As a consequence of Corollary 2.9, we also find the result of [3, Proposition 2.1],
when αk ≤ α < 1

3 .

Corollary 2.11 (Alvarez–Attouch [3]). Under (H), assume that zerA �= ∅. Suppose
that there exists α ∈ [0, 1/3[ such that αk ∈ [0, α] for every k ≥ 1. Then for any
sequence (xk) generated by (IPA), we have

(i)
∑+∞

i=1
‖xi − xi−1‖2 < +∞.

(ii)
∑+∞

i=1
‖μi Aμi (xi )‖2 < +∞.

(iii) For any z ∈ zerA, limk→+∞ ‖xk − z‖ exists, and hence (xk) is bounded.
(iv) limk→+∞ μk Aμk (xk) = 0.
(v) If lim infk→+∞ μk > 0, there exists x∞ ∈ zerA such that xk⇀x∞ weakly inH

as k → +∞.

Proof Since αk ≤ α < 1 for every k ≥ 1, it is immediate to check that (K0) is satisfied
and that tk ≤ 1

1−α
for every k ≥ 1. On the one hand, observe that for every k ≥ 1,

αk tk+1

(
1 + αk + [

αk−1 − αk
]
+
)

= αk tk+1(1 + max(αk, αk−1))
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≤ α

1 − α
(1 + α).

On the other hand 1 − αk−1 ≥ 1 − α. It ensues that (K1) is satisfied if there exists
ε ∈]0, 1[ such that

(1 − ε)(1 − α) ≥ α

1 − α
(1 + α).

The latter condition is equivalent to (1−α)2 > α(1+α), which in turn is equivalent to
α < 1/3. Therefore assumption (K1) is satisfied, and it suffices to apply Corollary 2.9.

��
By taking constant parameters αk and ρk , we obtain the following consequence of

Theorem 2.6.

Corollary 2.12 Under (H), assume that zerA �= ∅. Suppose that αk ≡ α ∈ [0, 1[,
ρk ≡ ρ ∈]0, 2[ for every k ≥ 1, and that

2 − ρ

ρ
(1 − α)2 > α(1 + α). (22)

Then for any sequence (xk) generated by (RIPA), we have

(i)
∑+∞

i=1
‖xi − xi−1‖2 < +∞.

(ii)
∑+∞

i=1
‖μi Aμi (xi )‖2 < +∞.

(iii) For any z ∈ zerA, limk→+∞ ‖xk − z‖ exists, and hence (xk) is bounded.
(iv) limk→+∞ μk Aμk (xk) = 0.
(v) If lim infk→+∞ μk > 0, there exists x∞ ∈ zerA such that xk⇀x∞ weakly inH

as k → +∞.

Proof Since αk ≡ α ∈ [0, 1[, we have for every i ≥ 1, ti = ∑+∞
l=i−1 αl−i+1 = 1

1−α
<

+∞. Hence condition (K0) holds true. Using that αk and ρk are constant, condition
(K1) then amounts to

(1 − ε)
2 − ρ

ρ
(1 − α) ≥ α

1 − α
(1 + α),

which is equivalent to (22). Therefore, all the assumptions of Theorem 2.6 are met,
giving the result. ��
Remark 2.13 The above result gives some indication of the balance between the iner-

tial effect and the relaxation effect. The inequation (22) is equivalent to ρ <
2(1−α)2

2α2−α+1
.

Therefore, for given 0 < α < 1, the maximum value of the relaxation parameter is

given by ρm(α) = 2(1−α)2

2α2−α+1
. Elementary differential calculus shows that the func-

tion α �→ ρm(α) is decreasing on [0, 1]. Thus, as expected, when the inertial effect
increases (α ↗), then the relaxation effect decreases (ρm ↘), and vice versa, see also
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[20]. When α → 0, the limiting value ρm(α) is 2, which is in accordance with Corol-
lary 2.8. When α → 1, the limiting value of ρm(α) is zero, which is in accordance
with the existing results concerning the case αk → 1.

2.5 Case of a possibly vanishing parameter�k

When αk → 1, which is the case of the Nesterov accelerated method, we must take
ρk → 0 to satisfy the condition (K1). Consequently, Theorem 2.6 does not make
it possible to obtain the convergence of the iterates of (RIPA) in the case αk → 1.
The following result completes Theorem 2.6 by considering the case of a possibly
vanishing parameter ρk . In the upcoming statement, assumption (K3) is removed and
replaced with an alternative set of assumptions, namely (K4)–(K5).

Theorem 2.14 Under (H), assume that zerA �= ∅. Suppose that the sequences (αk)

and (ρk) satisfy αk ∈ [0, 1] and ρk ∈]0, 2] for every k ≥ 1, together with (K0)–(K1).
Then for any sequence (xk) generated by (RIPA),

(i) There exists a constant C ≥ 0 such that for every k ≥ 1,

‖xk+1 − xk‖ ≤ C
k∑

i=1

⎡
⎣
⎛
⎝ k∏

j=i+1

α j

⎞
⎠ ρi

⎤
⎦ .

Assume additionally (K2), together with

k∑
i=1

⎡
⎣
⎛
⎝ k∏

j=i+1

α j

⎞
⎠ ρi

⎤
⎦ = O(ρk tk+1), (K4)

|μk+1 − μk |
μk+1

= O(ρk tk+1), ρk−1tk = O(ρk tk+1) as k → +∞
+∞∑
i=1

ρi ti+1 = +∞. (K5)

Then the following holds

(ii) limk→+∞ μk Aμk (xk) = 0. If lim infk→+∞ μk > 0, then there exists x∞ ∈ zerA
such that xk⇀x∞ weakly inH as k → +∞.

Finally assume that condition (K5) is not satisfied, i.e.
∑+∞

i=1
ρi ti+1 < +∞. Then

we obtain

(iii)
∑+∞

i=1
‖xi − xi−1‖ < +∞, and hence the sequence (xk) converges strongly

toward some x∞ ∈ H.

Proof (i) Iteration (RIPA) can be rewritten as

xk+1 − xk = αk(xk − xk−1) − ρkμk Aμk (yk),
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see (7). Taking the norm of each member, we find

‖xk+1 − xk‖ ≤ αk‖xk − xk−1‖ + ρkμk‖Aμk (yk)‖. (23)

On the other hand, for z ∈ zerA = zerAμk , the
1
μk
-Lipschitz continuity of Aμk yields

‖Aμk (yk)‖ ≤ 1

μk
‖yk − z‖.

Recall that the sequence (xk) is bounded by Theorem 2.6 (iii). Since αk ∈ [0, 1], the
sequence (yk) is also bounded. From the above inequality, we deduce the existence of
C3 ≥ 0 such that ‖Aμk (yk)‖ ≤ C3

μk
for every k ≥ 1. In view of (23), we infer that

‖xk+1 − xk‖ ≤ αk‖xk − xk−1‖ + C3ρk . (24)

An immediate recurrence shows that for every k ≥ 1,

‖xk+1 − xk‖ ≤
⎛
⎝ k∏

j=1

α j

⎞
⎠ ‖x1 − x0‖ + C3

k∑
i=1

⎡
⎣
⎛
⎝ k∏

j=i+1

α j

⎞
⎠ ρi

⎤
⎦ ,

with the convention
∏k

j=k+1 α j = 1. Since αk ∈ [0, 1], we have
∏k

j=i+1 α j ≥∏k
j=1 α j and hence

k∑
i=1

⎡
⎣
⎛
⎝ k∏

j=i+1

α j

⎞
⎠ ρi

⎤
⎦ ≥

⎛
⎝ k∏

j=1

α j

⎞
⎠ k∑

i=1

ρi ≥
⎛
⎝ k∏

j=1

α j

⎞
⎠ ρ1.

Setting C4 := ‖x1 − x0‖/ρ1 + C3, we deduce that for every k ≥ 1,

‖xk+1 − xk‖ ≤ C4

k∑
i=1

⎡
⎣
⎛
⎝ k∏

j=i+1

α j

⎞
⎠ ρi

⎤
⎦ . (25)

(ii) Recall the estimate of Theorem 2.6 (ii)

+∞∑
i=1

ρi (2 − ρi ) ti+1‖μi Aμi (xi )‖2 < +∞. (26)

According to (K2), there exists r̄ ∈]0, 2[ such that ρk ≤ r̄ for k large enough. We
deduce from (26) that

+∞∑
i=1

ρi ti+1‖μi Aμi (xi )‖2 < +∞. (27)
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Since the operator μk Aμk is 1-Lipschitz continuous, we have

‖μk Aμk (xk)‖ ≤ ‖xk − z‖ ≤ C5,

with C5 := supk≥1 ‖xk − z‖ < +∞. It ensues that

|‖μk+1Aμk+1(xk+1)‖2 − ‖μk Aμk (xk)‖2|
≤ 2C5‖μk+1Aμk+1(xk+1) − μk Aμk (xk)‖. (28)

By applying [7, Lemma A.4] with γ = μk+1, δ = μk , x = xk+1 and y = xk , we find

‖μk+1Aμk+1(xk+1) − μk Aμk (xk)‖ ≤ 2‖xk+1 − xk‖ + 2‖xk+1 − z‖ |μk+1 − μk |
μk+1

≤ 2‖xk+1 − xk‖ + 2C5
|μk+1 − μk |

μk+1
.

In view of (25), we deduce that for every k ≥ 1,

‖μk+1Aμk+1(xk+1) − μk Aμk (xk)‖

≤ 2C4

k∑
i=1

⎡
⎣
⎛
⎝ k∏

j=i+1

α j

⎞
⎠ ρi

⎤
⎦+ 2C5

|μk+1 − μk |
μk+1

.

Recalling the assumption (K4), we obtain the existence ofC6 ≥ 0 such that for k large
enough,

‖μk+1Aμk+1(xk+1) − μk Aμk (xk)‖ ≤ C6ρk tk+1.

Using (28), we infer that∣∣∣‖μk+1Aμk+1(xk+1)‖2 − ‖μk Aμk (xk)‖2
∣∣∣ ≤ 2C5C6ρk tk+1.

It follows that for every k ≥ 1,

k∑
i=1

∣∣∣‖μi+1Aμi+1(xi+1)‖4 − ‖μi Aμi (xi )‖4
∣∣∣

≤ 2C5C6

k∑
i=1

ρi ti+1

(
‖μi+1Aμi+1(xi+1)‖2 + ‖μi Aμi (xi )‖2

)
.

Given the estimate (27), together with the assumption ρi ti+1 = O(ρi+1ti+2) as i →
+∞, we deduce that

+∞∑
i=1

∣∣∣‖μi+1Aμi+1(xi+1)‖4 − ‖μi Aμi (xi )‖4
∣∣∣ < +∞.
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From a classical result, this implies that limk→+∞ ‖μk Aμk (xk)‖4 exists, which entails
in turn that limk→+∞ ‖μk Aμk (xk)‖ exists. Using again the estimate (27), togetherwith
the assumption (K5), we immediately conclude that limk→+∞ ‖μk Aμk (xk)‖ = 0.
The proof of the weak convergence of the sequence (xk) follows the same lines as in
Theorem 2.6 (v).

(iii) Let us now assume that
∑+∞

i=1 ρi ti+1 < +∞. Recall from inequality (24) that

‖xk+1 − xk‖ ≤ αk‖xk − xk−1‖ + C3ρk .

By applying Lemma B.1 (ii) with ak = ‖xk − xk−1‖ and wk = C3ρk , we obtain that∑+∞
i=1 ‖xi − xi−1‖ < + ∞. The last assertion is immediate. ��

3 Application to particular classes of parameters ˛k , �k and �k

3.1 Some criteria for (K0) and (K1)

The following proposition provides a criterion for simply obtaining an asymptotic
equivalent of tk .

Proposition 3.1 Let (αk) be a sequence such that αk ∈ [0, 1[ for every k ≥ 1. Assume
that1

lim
k→+∞

(
1

1 − αk+1
− 1

1 − αk

)
= c, (29)

for some c ∈ [0, 1[. Then we have

(i) The property (K0) is satisfied, and

tk+1 ∼ 1

(1 − c)(1 − αk)
as k → +∞.

(ii) The equivalence 1− αk ∼ 1− αk+1 holds true as k → +∞, hence tk+1 ∼ tk+2
as k → +∞.

(iii)
∑+∞

k=1
(1 − αk) = +∞.

Proof (i) This result was proved by the authors in [4, Proposition 15].
(ii) First assume that c ∈]0, 1[. By a standard summation procedure, we infer from
(29) that

1

1 − αk
∼ ck as k → +∞.

1 Note that in [4, Proposition 14], a closely related but different condition has been considered: the difference
of the quotients is assumed to be less than or equal to c (and this guarantees (K0)).
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It ensues that 1 − αk ∼ 1
ck as k → +∞, and hence clearly 1 − αk ∼ 1 − αk+1 as

k → +∞. Now assume that c = 0. Multiplying (29) by 1 − αk , we find

1 − αk

1 − αk+1
= 1 + o(1 − αk) → 1 as k → +∞,

because αk ∈ [0, 1[. This completes the proof of the equivalence 1 − αk ∼ 1 − αk+1
as k → +∞. The last assertion then follows immediately from (i).
(iii) Fix ε > 0. In view of (29), there exists k0 ≥ 1 such that for every k ≥ k0,

1

1 − αk+1
− 1

1 − αk
≤ c + ε.

By summing the above inequality, we obtain 1
1−αk

≤ 1
1−αk0

+ (c + ε)(k − k0) for

every k ≥ k0. Setting d = 1/(1 − αk0), we deduce immediately that 1 − αk ≥
1/(d + (c + ε)(k − k0)), thus implying that

∑+∞
k=1(1 − αk) = +∞. ��

Let us now analyze the condition (K1)

(1 − ε)
2 − ρk−1

ρk−1
(1 − αk−1)

≥ αk tk+1

(
1 + αk +

[
2 − ρk

ρk
(1 − αk) − 2 − ρk−1

ρk−1
(1 − αk−1)

]
+

)
. (K1)

Following an argument parallel to the continuous case, see [5, Proposition 3.2], let us
introduce the following condition:

There exists c′ ∈] − 1,+1[ such that

lim
k→+∞

2−ρk
ρk

(1 − αk) − 2−ρk−1
ρk−1

(1 − αk−1)

2−ρk−1
ρk−1

(1 − αk−1)2
= c′. (30)

Proposition 3.2 Let’s make assumptions (29) and (30), with |c′| < 1 − c. Then (K1)

is satisfied if

lim inf
k→+∞

2 − ρk

ρk
(1 − αk)

2 > lim sup
k→+∞

αk(1 + αk)

1 − c − |c′| . (31)

Proof Setting θk = 2−ρk
ρk

(1−αk), let us rewrite (K1) as a discrete differential inequal-
ity, as follows

(1 − ε)θk−1 ≥ αk tk+1

(
1 + αk + [

θk − θk−1
]
+
)

. (32)

According to Proposition 3.1 we have tk+1 ∼ tk ∼ 1
(1−c)(1−αk−1)

as k → +∞.

Consequently, (32) can be equivalently formulated as
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(1 − ε)(1 − c)
2 − ρk−1

ρk−1
(1 − αk−1)

2 ≥ (1 + o(1)) αk

(
1 + αk + [

θk − θk−1
]
+
)

.

On the other hand, condition (30) gives

|θk − θk−1| = |c′|2 − ρk−1

ρk−1
(1 − αk−1)

2 + o

(
2 − ρk−1

ρk−1
(1 − αk−1)

2
)

.

Setting Rk := 2−ρk
ρk

(1 − αk)
2, we deduce that (K1) is implied by the following

condition

(1 − ε)(1 − c)Rk−1 ≥ (1 + o(1))αk
(
1 + αk + |c′|Rk−1 + o(Rk−1)

)
.

Rearranging the terms we obtain

[
(1 − ε)(1 − c) − αk(|c′| + o(1))

]
Rk−1 ≥ (1 + o(1))αk (1 + αk) .

Since αk ≤ 1, the above inequality will be satisfied if

[
(1 − ε)(1 − c) − (|c′| + o(1))

]
Rk−1 ≥ (1 + o(1))αk (1 + αk) .

This will be fulfilled if

lim inf
k→+∞

2 − ρk−1

ρk−1
(1 − αk−1)

2 > lim sup
k→+∞

αk(1 + αk)

(1 − ε)(1 − c) − |c′| . (33)

The right member of (33) is a continuous increasing function of ε. Consequently, it is
equivalent to assume that the above strict inequality is satisfied for ε = 0, which gives
the claim. ��

The next proposition brings to light a set of conditions which guarantee that con-
dition (K1) is satisfied.

Proposition 3.3 Suppose thatαk ∈ [0, 1[andρk ∈]0, 2[ for every k ≥ 1. Let us assume
that there existρ ∈ [0, 2[, c ∈ [0, 1[ and c′′ ∈ R, with−(1−ρ/2) < c′′ ≤ −(1−ρ/2)c
such that

lim
k→+∞ ρk = ρ; (34)

lim
k→+∞

(
1

1 − αk+1
− 1

1 − αk

)
= c; (35)

lim
k→+∞

ρk+1 − ρk

ρk+1(1 − αk)
= c′′; (36)

lim inf
k→+∞

(1 − αk)
2

ρk
> lim sup

k→+∞
αk(1 + αk)

2 − ρ + 2c′′ . (37)

Then condition (K1) is satisfied.
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Proof Let us check that the conditions (30) and (31) of Proposition 3.2 are satisfied.
First observe that

2 − ρk

ρk
(1 − αk) − 2 − ρk−1

ρk−1
(1 − αk−1)

= 2 − ρk−1

ρk−1
((1 − αk) − (1 − αk−1))

+
(
2 − ρk

ρk
− 2 − ρk−1

ρk−1

)
(1 − αk)

= 2 − ρk−1

ρk−1
((1 − αk) − (1 − αk−1)) − 2

ρk − ρk−1

ρkρk−1
(1 − αk). (38)

In view of assumption (35), we have

(1 − αk) − (1 − αk−1) = −c(1 − αk−1)(1 − αk) + o((1 − αk−1)(1 − αk))

= −c(1 − αk−1)
2 + o(1 − αk−1)

2,

since 1 − αk−1 ∼ 1 − αk as k → +∞, see Proposition 3.1 (ii). Setting Rk :=
2−ρk
ρk

(1 − αk)
2, this leads to

2 − ρk−1

ρk−1
((1 − αk) − (1 − αk−1)) = −cRk−1 + o(Rk−1) as k → +∞. (39)

On the other hand, assumption (36) yields

ρk − ρk−1

ρkρk−1
(1 − αk) = c′′

ρk−1
(1 − αk−1)(1 − αk) + o

(
1

ρk−1
(1 − αk−1)(1 − αk)

)

= c′′

ρk−1
(1 − αk−1)

2 + o

(
1

ρk−1
(1 − αk−1)

2
)

= c′′

2 − ρ
Rk−1 + o(Rk−1), (40)

where we used assumption (34) in the last equality. By combining (38), (39) and (40),
we obtain

2 − ρk

ρk
(1 − αk) − 2 − ρk−1

ρk−1
(1 − αk−1)

= −
(
c + 2c′′

2 − ρ

)
Rk−1 + o(Rk−1) as k → +∞.

It ensues that condition (30) is satisfied with c′ = −
(
c + c′′

1−ρ/2

)
. Since c′′ ≤ −(1−

ρ/2)c by assumption, we have c′ ≥ 0. This implies that

1 − c − |c′| = 1 − c − c′ = 1 + c′′

1 − ρ/2
. (41)
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Using that −(1 − ρ/2) < c′′ by assumption, we deduce that the above quantity is
positive, hence |c′| < 1 − c.
Let us finally check condition (31). Recalling that limk→+∞ ρk = ρ, condition (31)
is equivalent to

(2 − ρ) lim inf
k→+∞

(1 − αk)
2

ρk
> lim sup

k→+∞
αk(1 + αk)

1 − c − |c′| .

In view of (41), the latter condition is in turn equivalent to

lim inf
k→+∞

(1 − αk)
2

ρk
> lim sup

k→+∞
αk(1 + αk)

2 − ρ + 2c′′ ,

which holds true by (37). Then just use Proposition 3.2. ��

3.2 Application of themain results

Combining Theorem 2.6 with Proposition 3.3, we obtain the following result.

Theorem 3.4 Under (H), assume that zerA �= ∅. Suppose that αk ∈ [0, 1[ and ρk ∈
]0, 2[ for every k ≥ 1. Let us assume that there exist ρ ∈ [0, 2[, c ∈ [0, 1[ and c′′ ∈ R,
with −(1 − ρ/2) < c′′ ≤ −(1 − ρ/2)c such that

lim
k→+∞ ρk = ρ;

lim
k→+∞

(
1

1 − αk+1
− 1

1 − αk

)
= c;

lim
k→+∞

ρk+1 − ρk

ρk+1(1 − αk)
= c′′;

lim inf
k→+∞

(1 − αk)
2

ρk
> lim sup

k→+∞
αk(1 + αk)

2 − ρ + 2c′′ .

Then for any sequence (xk) generated by (RIPA), we have

(i)
∑+∞

i=1

1 − αi−1

ρi−1
‖xi − xi−1‖2 < +∞.

(ii)
∑+∞

i=1

ρi

1 − αi
‖μi Aμi (yi )‖2 < +∞, and

∑+∞
i=1

ρi

1 − αi
‖μi Aμi (xi )‖2 <

+∞.
(iii) For any z ∈ zerA, limk→+∞ ‖xk − z‖ exists, and hence (xk) is bounded.

Assume moreover that ρ > 0. Then the following holds

(iv) limk→+∞ μk Aμk (yk) = 0, and limk→+∞ μk Aμk (xk) = 0.
(v) If lim infk→+∞ μk > 0, then there exists x∞ ∈ zerA such that xk⇀x∞ weakly

inH as k → +∞.
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Proof Proposition 3.1 shows that (K0) is satisfied and that tk+1 ∼ 1
(1−c)(1−αk)

as k →
+∞. On the other hand, condition (K1) is fulfilled in view of Proposition 3.3. Items
(i) to (v) then follow immediately from Theorem 2.6. ��

To apply Theorem 2.14, we must find suitable conditions that ensure that condition
(K4) is satisfied. The following result gives an equivalent, when k → +∞, of the first
expression appearing in condition (K4).

Proposition 3.5 Let (αk) and (ρk) be sequences such that αk ∈ [0, 1[ and ρk ∈]0, 2]
for every k ≥ 1. Let us assume that there exist α ∈ [0, 1], c ∈ [0, 1[ and c′′ ∈ R, with
1 + c + c′′α > 0 such that

lim
k→+∞ αk = α; (42)

lim
k→+∞

(
1

1 − αk+1
− 1

1 − αk

)
= c; (43)

lim
k→+∞

ρk+1 − ρk

ρk+1(1 − αk)
= c′′. (44)

Then the following equivalence holds true

k∑
i=1

⎡
⎣
⎛
⎝ k∏

j=i+1

α j

⎞
⎠ ρi

⎤
⎦ ∼ 1

(1 + c + c′′α)

ρk

1 − αk
as k → +∞.

Proof Observe that for every i ≤ k,

ρi

1 − αi

k∏
j=i+1

α j − ρi−1

1 − αi−1

k∏
j=i

α j

=
⎛
⎝ k∏

j=i+1

α j

⎞
⎠[ ρi

1 − αi
− ρi−1αi

1 − αi−1

]

=
⎛
⎝ k∏

j=i+1

α j

⎞
⎠[ ρi

1 − αi
− ρiαi

1 − αi−1
+ (ρi − ρi−1)αi

1 − αi−1

]

=
⎛
⎝ k∏

j=i+1

α j

⎞
⎠ ρi

[
1

1 − αi
− 1

1 − αi−1
+ 1 − αi

1 − αi−1
+ (ρi − ρi−1)αi

ρi (1 − αi−1)

]
(45)

In view of assumption (43), we have limi→+∞(1 − αi )/(1 − αi−1) = 1, see
Proposition 3.1 (ii). By using assumptions (42), (43) and (44), we then obtain that

lim
i→+∞

[
1

1 − αi
− 1

1 − αi−1
+ 1 − αi

1 − αi−1
+ (ρi − ρi−1)αi

ρi (1 − αi−1)

]
= 1 + c + c′′α. (46)
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Recalling that 1 + c + c′′α > 0 by assumption, let us fix ε ∈ ]0, 1 + c + c′′α
[
. We

infer from (46) that there exists i0 ≥ 1 such that for every i ≥ i0,

1 + c + c′′α − ε ≤
[

1

1 − αi
− 1

1 − αi−1
+ 1 − αi

1 − αi−1
+ (ρi − ρi−1)αi

ρi (1 − αi−1)

]
≤ 1 + c + c′′α + ε.

In view of (45), this implies that for every i ≥ i0 and k ≥ i ,

(1 + c + c′′α − ε)

⎛
⎝ k∏

j=i+1

α j

⎞
⎠ ρi ≤ ρi

1 − αi

k∏
j=i+1

α j − ρi−1

1 − αi−1

k∏
j=i

α j

≤ (1 + c + c′′α + ε)

⎛
⎝ k∏

j=i+1

α j

⎞
⎠ ρi . (47)

Let us sum the above inequalities from i = i0 to k. We find

(1 + c + c′′α − ε)

k∑
i=i0

⎡
⎣
⎛
⎝ k∏

j=i+1

α j

⎞
⎠ ρi

⎤
⎦ ≤ ρk

1 − αk
− ρi0−1

1 − αi0−1

k∏
j=i0

α j

≤ (1 + c + c′′α + ε)

k∑
i=i0

⎡
⎣
⎛
⎝ k∏

j=i+1

α j

⎞
⎠ ρi

⎤
⎦ .

It ensues that

(1 + c + c′′α)

k∑
i=i0

⎡
⎣
⎛
⎝ k∏

j=i+1

α j

⎞
⎠ ρi

⎤
⎦ ∼ ρk

1 − αk

− ρi0−1

1 − αi0−1

k∏
j=i0

α j as k → +∞.

It remains now to prove that
∏k

j=i0 α j = o
(

ρk
1−αk

)
as k → +∞. If there exists

k0 ≥ i0 such that αk0 = 0, then the sequence
(∏k

j=i0 α j

)
is stationary and equal to 0

for k ≥ k0. Without loss of generality, we can assume that αk > 0 for every k ≥ i0.
Let us come back to the left inequality of (47), and divide each member by

∏k
j=i0 α j .

We find

(1 + c + c′′α − ε)
ρi∏i

j=i0 α j
≤ ρi

1 − αi

1∏i
j=i0 α j

− ρi−1

1 − αi−1

1∏i−1
j=i0 α j

. (48)

Since 1+ c+ c′′α > ε, we infer that the sequence

(
ρi

1−αi

1∏i
j=i0

α j

)
is increasing. This

implies that for every i ≥ i0,
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ρi

1 − αi

1∏i
j=i0 α j

≥ ρi0−1

1 − αi0−1
.

In view of (48), we deduce that

(1 + c + c′′α − ε)
ρi0−1

1 − αi0−1
(1 − αi ) ≤ ρi

1 − αi

1∏i
j=i0 α j

− ρi−1

1 − αi−1

1∏i−1
j=i0 α j

.

By summing the above inequality from i = i0 to k, we obtain

(1 + c + c′′α − ε)
ρi0−1

1 − αi0−1

k∑
i=i0

(1 − αi ) ≤ ρk

1 − αk

1∏k
j=i0 α j

− ρi0−1

1 − αi0−1
.

Using that
∑+∞

i=1 (1 − αi ) = +∞ by Proposition 3.1 (iii), this entails that

lim
k→+∞

ρk

1 − αk

1∏k
j=i0 α j

= +∞.

This shows that
∏k

j=i0 α j = o
(

ρk
1−αk

)
as k → +∞, which completes the proof. ��

Combining Theorem 2.14 with Proposition 3.5, we obtain the following result.

Theorem 3.6 Under (H), assume that zerA �= ∅. Suppose that the sequences (αk) and
(ρk) satisfy αk ∈ [0, 1[ and ρk ∈]0, 2[ for every k ≥ 1. Let us assume that there exist
α ∈ [0, 1], ρ ∈ [0, 2[, c ∈ [0, 1[ and c′′ ∈ R, with −(1 − ρ/2) < c′′ ≤ −(1 − ρ/2)c
such that

lim
k→+∞ αk = α; (49)

lim
k→+∞ ρk = ρ; (50)

lim
k→+∞

(
1

1 − αk+1
− 1

1 − αk

)
= c; (51)

lim
k→+∞

ρk+1 − ρk

ρk+1(1 − αk)
= c′′; (52)

lim inf
k→+∞

(1 − αk)
2

ρk
>

α(1 + α)

2 − ρ + 2c′′ . (53)

Then for any sequence (xk) generated by (RIPA), we have

(i) ‖xk+1 − xk‖ = O
(

ρk
1−αk

)
as k → +∞.

Assume additionally that |μk+1−μk |
μk+1

= O
(

ρk
1−αk

)
as k → +∞, together with∑+∞

i=1

ρi

1 − αi
= +∞.

Then the following holds
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(ii) limk→+∞ μk Aμk (xk) = 0. If lim infk→+∞ μk > 0, then there exists x∞ ∈ zerA
such that xk⇀x∞ weakly inH as k → +∞.

Finally assume that
∑+∞

i=1

ρi

1 − αi
< +∞. Then we obtain

(iii)
∑+∞

i=1
‖xi − xi−1‖ < +∞, and hence the sequence (xk) converges strongly

toward some x∞ ∈ H.

Proof Let us check that the assumptions of Theorem 2.14 are satisfied. Condition
(K0) is fulfilled owing to assumption (51) and Proposition 3.1 (i). Assumptions (49)–
(50)–(51)–(52)–(53) ensure that condition (K1) is satisfied, see Proposition 3.3. Since
ρ ∈ [0, 2[, condition (K2) holds true in view of assumption (50).
(i) Observe that

1 + c + c′′α ≥ 1 + c + c′′ since α ≤ 1 and c′′ ≤ 0,

> c + ρ/2 because c′′ > −(1 − ρ/2),

hence 1 + c + c′′α > 0. Proposition 3.5 then shows that

k∑
i=1

⎡
⎣
⎛
⎝ k∏

j=i+1

α j

⎞
⎠ ρi

⎤
⎦ ∼ 1

(1 + c + c′′α)

ρk

1 − αk
as k → +∞. (54)

By combining this equivalence with Theorem 2.14 (i), we obtain that ‖xk+1 − xk‖ =
O
(

ρk
1−αk

)
as k → + ∞.

(ii)–(iii) In view of (54) and the equivalence tk+1 ∼ 1
1−c

1
1−αk

as k → +∞, we
immediately see that the first condition of (K4) is satisfied. The second condition of

(K4) is guaranteed by the assumption |μk+1−μk |
μk+1

= O
(

ρk
1−αk

)
as k → +∞. From

assumption (52) and αk ∈ [0, 1[, we get

ρk+1 − ρk = O(ρk+1) as k → +∞.

It ensues that ρk = O(ρk+1) as k → +∞. Recalling from Proposition 3.1 (ii) that
tk+1 ∼ tk+2 as k → + ∞, we deduce immediately that the third condition of (K4)

is satisfied. Finally, condition (K5) is fulfilled owing to the assumption
∑+∞

i=1
ρi

1−αi
=

+∞. Points (ii) and (iii) then follow from the corresponding points of Theorem 2.14.
��

3.3 Some particular cases

Let us now particularize our results to the case αk = 1 − α/kq and ρk = β/kr , for
some α, β > 0, q ∈]0, 1[ and r > 0.

Corollary 3.7 Under (H), assume that zerA �= ∅. Suppose that (q, r) ∈]0, 1[×R
∗+

is such that r ≥ 2q, and that (α, β) ∈ R
∗+ × R

∗+ satisfies α2/β > 1 if r = 2q (no
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condition if r > 2q). Assume that αk = 1 − α/kq and ρk = β/kr for every k ≥ 1.
Then for any sequence (xk) generated by (RIPA), we have

(i)
∑+∞

i=1
ir−q‖xi − xi−1‖2 < +∞.

(ii)
∑+∞

i=1

1

ir−q
‖μi Aμi (yi )‖2 < +∞, and

∑+∞
i=1

1

ir−q
‖μi Aμi (xi )‖2 < +∞.

(iii) For any z ∈ zerA, limk→+∞ ‖xk − z‖ exists, and hence (xk) is bounded.
(iv) ‖xk+1 − xk‖ = O ( 1

kr−q

)
as k → +∞.

Assume additionally that r ≤ q + 1 and that |μk+1−μk |
μk+1

= O ( 1
kr−q

)
as k → +∞.

Then the following holds

(v) limk→+∞ μk Aμk (xk) = 0.
(vi) If lim infk→+∞ μk > 0, then there exists x∞ ∈ zerA such that xk⇀x∞ weakly

inH as k → +∞.

Finally assume that r > q + 1. Then we obtain

(vii)
∑+∞

i=1
‖xi − xi−1‖ < +∞, and hence the sequence (xk) converges strongly

toward some x∞ ∈ H.

Proof We first check that the assumptions (49), (50), (51), (52) and (53) are fulfilled.
Assumptions (49)–(50) are clearly satisfied, with α = 1 and ρ = 0 respectively. Now
observe that

1

1 − αk+1
− 1

1 − αk
= 1

α
((k + 1)q − kq) ∼ q

α
kq−1 → 0 as k → +∞,

where we have used q ∈]0, 1[. Hence assumption (51) is verified with c = 0. On the
other hand, we have

ρk+1 − ρk

ρk+1(1 − αk)
=
(

1

(k + 1)r
− 1

kr

)
(k + 1)r

kq

α
∼ − r

α
kq−1 → 0 as k → +∞.

This shows that assumption (52) is fulfilled with c′′ = 0. Finally, hypothesis (53)
amounts to

lim inf
k→+∞

(1 − αk)
2

ρk
> 1.

We have (1 − αk)
2/ρk = (α2/k2q)(kr/β) = α2

β
kr−2q , hence

lim
k→+∞

(1 − αk)
2

ρk
=
{+∞ if r > 2q

α2/β if r = 2q.

It ensues that assumption (53) is automatically satisfied if r > 2q, while it is equivalent
to α2/β > 1 if r = 2q. Therefore the assumptions of Theorem 3.6 are satisfied, which
implies that the hypotheses of Theorem 3.4 are also fulfilled. Points (i), (ii) and (iii)
follow immediately from Theorem 3.4. Item (iv) is a consequence of Theorem 3.6 (i).
Condition

∑+∞
i=1

ρi
1−αi

= +∞ amounts to r ≤ q + 1. Points (v), (vi) and (vii) can be
immediately derived from the corresponding points of Theorem 3.6. ��
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Consider finally the case q = 1, thus leading to a sequence (αk) of the form αk =
1−α/k. This case was recently studied by Attouch and Peypouquet [7] in connection
with Nesterov’s accelerated methods.

Corollary 3.8 Under (H), assume that zerA �= ∅. Let r ≥ 2, α > r and β > 0 be such
that β < α(α − 2) if r = 2 (no condition on β if r > 2). Assume that αk = 1 − α/k
and ρk = β/kr for every k ≥ 1. Then for any sequence (xk) generated by (RIPA), we
have

(i)
∑+∞

i=1
ir−1‖xi − xi−1‖2 < +∞.

(ii)
∑+∞

i=1

1

ir−1 ‖μi Aμi (yi )‖2 < +∞, and
∑+∞

i=1

1

ir−1 ‖μi Aμi (xi )‖2 < +∞.

(iii) For any z ∈ zerA, limk→+∞ ‖xk − z‖ exists, and hence (xk) is bounded.

(iv) ‖xk+1 − xk‖ = O
(

1
kr−1

)
as k → +∞.

Assume additionally that r = 2 and that |μk+1−μk |
μk+1

= O ( 1k ) as k → +∞. Then the
following holds

(v) limk→+∞ μk Aμk (xk) = 0.
(vi) If lim infk→+∞ μk > 0, then there exists x∞ ∈ zerA such that xk⇀x∞ weakly

inH as k → +∞.

Finally assume that r > 2. Then we obtain

(vii)
∑+∞

i=1
‖xi − xi−1‖ < +∞, and hence the sequence (xk) converges strongly

toward some x∞ ∈ H.

Proof Assumptions (49)–(50) are clearly satisfied, with α = 1 and ρ = 0 respectively.
Now observe that

1

1 − αk+1
− 1

1 − αk
= 1

α
(k + 1) − 1

α
k = 1

α
,

hence assumption (51) is verified with c = 1
α
. On the other hand, we have

ρk+1 − ρk

ρk+1(1 − αk)
=
(

1

(k + 1)r
− 1

kr

)
(k + 1)r

k

α
→ − r

α
as k → +∞.

This shows that assumption (52) is fulfilled with c′′ = − r
α
. The hypothesis −(1 −

ρ/2) < c′′ ≤ −(1 − ρ/2)c amounts to −1 < − r
α

≤ − 1
α
, which is in turn equivalent

to 1 ≤ r < α. This holds true in view of the assumptions of Corollary 3.8. Finally,
hypothesis (53) can be rewritten as

lim inf
k→+∞

(1 − αk)
2

ρk
>

1

1 − r/α
= α

α − r
.

We have (1 − αk)
2/ρk = (α2/k2)(kr/β) = α2

β
kr−2, hence

lim
k→+∞

(1 − αk)
2

ρk
=
{+∞ if r > 2

α2/β if r = 2.
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It ensues that assumption (53) is automatically satisfied if r > 2, while it is equivalent
toα(α−2) > β if r = 2. Points (i), (ii) and (iii) follow immediately fromTheorem 3.4.
Item (iv) is a consequence of Theorem 3.6 (i). Condition

∑+∞
i=1

ρi
1−αi

= +∞ amounts
to r ≤ 2, which boils down to r = 2. Points (v), (vi) and (vii) can be immediately
derived from the corresponding points of Theorem 3.6. ��

The case r = 2 corresponds to the situation studied by Attouch and Peypouquet
[7]. More precisely, they considered the case

αk = 1 − α

k
, ρk = s

λk + s
and μk = λk + s,

where α, s > 0 and λk = (1 + ε) s
α2 k

2, for some ε > 0. Let us recall their result, that
can be obtained as a direct consequence of Theorems3.4 and3.6. The details are left
to the reader.

Theorem 3.9 (Attouch–Peypouquet [7]) Let A : H → 2H be a maximally monotone
operator such that zerA �= ∅. Let (xk) be a sequence generated by the Regularized
Inertial Proximal Algorithm

(RIPA)α,s

⎧⎪⎨
⎪⎩

yk = xk +
(
1 − α

k

)
(xk − xk−1)

xk+1 = λk

λk + s
yk + s

λk + s
J(λk+s)A (yk).

Suppose that α > 2, s > 0, ε > 2
α−2 , and λk = (1 + ε) s

α2 k
2 for all k ≥ 1. Then,

(i) ‖xk+1 − xk‖ = O( 1k ) as k → +∞, and
∑+∞

k=1 k‖xk − xk−1‖2 < +∞.
(ii) There exists x∞ ∈ zerA such that xk⇀x∞ weakly in H as k → +∞.
(iii) The sequence (yk) converges weakly inH to x∞, as k → +∞.

The following table gives a synthetic view of some of the situations studied pre-
viously (the large number of cases does not allow to enter all of them). Each column
gives the joint tuning of the parametersαk , ρk , andμk , which provides the convergence
of the iterates generated by (RIPA). For ease of reading, we recall the definition of
(RIPA)

(RIPA)

{
yk = xk + αk(xk − xk−1)

xk+1 = (1 − ρk)yk + ρk Jμk A(yk).

From left to right, the table is ordered according to the decreasing values of αk .
As noticed before, we can observe the balance between the inertial effect and the
relaxation effect. As αk gets closer to one, the relaxation parameter ρk gets closer to
zero.
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αk αk = 1 − α
k αk = 1 − α

kq αk = 1 − α
kq αk ≡ α ∈ [0, 1[

α > 2 q ∈]0, 1[, α > 0 q ∈]0, 1[, α > 0

ρk ρk = β

k2
, ρk = β

k2q
, β < α2 ρk = β

kr , ρk ≡ ρ <
2(1−α)2

2α2−α+1

β < α(α − 2) 2q < r ≤ q + 1, β > 0

μk
|μk+1−μk |

μk+1
= O

(
1
k

) |μk+1−μk |
μk+1

= O
(

1
kq

) |μk+1−μk |
μk+1

= O
(

1
kr−q

)
lim inf μk > 0 lim inf μk > 0 lim inf μk > 0 lim inf μk > 0

4 Ergodic convergence results

4.1 Ergodic variant of the Opial lemma

An ergodic version of the Opial lemma was derived by Passty [26] in the case of the
averaging process defined by

x̂k = 1∑k
i=1 si

k∑
i=1

si xi ,

where (sk) is a sequence of positive steps. In order to deal with a more general aver-
aging process, let us consider a double sequence (τi,k)i,k≥1 of nonnegative numbers
satisfying the following assumptions

+∞∑
i=1

τi,k = 1 for every k ≥ 1 (55)

lim
k→+∞ τi,k = 0 for every i ≥ 1. (56)

To each bounded sequence (xk) of H, we associate the averaged sequence (̂xk) by

x̂k =
+∞∑
i=1

τi,k xi . (57)

LemmaB.2 in the appendix shows that the sequence (̂xk) is well-defined, bounded and
that convergence of (xk) implies convergence of (̂xk) as k → +∞ toward the same
limit (Cesaro property). The extension of Opial lemma to a general averaging process
satisfying (55) and (56) is given hereafter. This result can be obtained as a consequence
of the generalized Opial lemma established by Brézis–Browder, see [14, Lemma 1].
For the sake of the reader, we give an independent and self-contained proof.

Proposition 4.1 Let S be a nonempty subset ofH and let (xk) be a bounded sequence
of (H). Let (τi,k) be a double sequence of nonnegative numbers satisfying (55) and
(56), and let (̂xk) be the averaged sequence defined by (57). Assume that

(i) For every z ∈ S, limk→+∞ ‖xk − z‖ exists;
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(ii) every weak limit point of the sequence (̂xk) belongs to S.

Then the sequence (̂xk) converges weakly as k → +∞ toward some x∞ ∈ S.

Proof From Lemma B.2 (i), the sequence (̂xk) is bounded, therefore it is enough to
establish the uniqueness of weak limit points. Let (̂xkn ) and (̂xkm ) be two weakly
converging subsequences satisfying respectively x̂kn⇀x 1 as n → +∞ and x̂km⇀x 2
as m → +∞. From (ii), the weak limit points x 1 and x 2 belong to S. From (i), we
deduce that limk→+∞ ‖xk − x 1‖2 and limk→+∞ ‖xk − x 2‖2 exist. Writing that

‖xk − x 1‖2 − ‖xk − x 2‖2 = 2

〈
xk − x 1 + x 2

2
, x 2 − x 1

〉
,

we infer that limk→+∞〈xk, x 2 − x 1〉 exists. Observe that

〈̂xk, x 2 − x 1〉 =
〈+∞∑
i=1

τi,k xi , x 2 − x 1

〉

=
+∞∑
i=1

τi,k 〈xi , x 2 − x 1〉 .

By applying Lemma B.2 (ii) to the real sequence
(〈
xk, x 2 − x 1

〉)
, we deduce that

limk→+∞〈̂xk, x 2 − x 1〉 exists. This implies that

lim
n→+∞〈̂xkn , x 2 − x 1〉 = lim

m→+∞〈̂xkm , x 2 − x 1〉,

which entails that 〈x 1, x 2 − x 1〉 = 〈x 2, x 2 − x 1〉. Therefore ‖x 2 − x 1‖2 = 0, which
ends the proof. ��
Remark 4.2 By taking (τi,k) defined by

τi,k =
{
1 if i = k
0 if i �= k,

conditions (55) and (56) are trivially satisfied and we find x̂k = xk for every k ≥ 1. It
ensues that the Opial lemma appears as a particular case of Proposition 4.1.

4.2 Ergodic convergence of the iterates

To each sequence (xk) generated by (RIPA), we associate a suitable averaged sequence
as in (57). The weight coefficients are judiciously chosen and depend on αk , μk and
ρk . Under conditions (K0)–(K1)–(K2)–(K3), we show that the averaged sequence
converges weakly toward some zero of the operator A.

Theorem 4.3 Under (H), assume that zerA �= ∅. Suppose that αk ∈ [0, 1] and ρk ∈
]0, 2] for every k ≥ 1. Under (K0), let (ti,k) and (ti ) be the sequences respectively
defined by (13) and (15). Assume that conditions (K1)–(K2)–(K3) hold, together
with
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+∞∑
i=1

tiρi−1μi−1 = +∞. (58)

Let us define the sequence (τi,k) by

τi,k = ti,kρi−1μi−1∑k
i=1 ti,kρi−1μi−1

. (59)

Then for any sequence (xk) generated by (RIPA), there exists x∞ ∈ zerA such that

x̂k =
k∑

i=1

τi,k xi⇀x∞ weakly inH as k → +∞.

Proof The proof relies on Proposition 4.1 applied with S = zerA. Let us first check
that conditions (55) and (56) are satisfied for the sequence (τi,k) given by (59). Property
(55) follows immediately from the definition of (τi,k) (recall that ti,k = 0 for i > k).
On the other hand, observe that for every i , k ≥ 1,

τi,k ≤ tiρi−1μi−1∑k
i=1 ti,kρi−1μi−1

. (60)

The quantity tiρi−1μi−1 is finite and independent of k. Since ti,k tends increasingly
toward ti as k → +∞, the monotone convergence theorem implies that

lim
k→+∞

k∑
i=1

ti,kρi−1μi−1 = lim
k→+∞

+∞∑
i=1

ti,kρi−1μi−1 =
+∞∑
i=1

tiρi−1μi−1 = +∞, (61)

where we have used the assumption (58). We then deduce from the inequality (60)
that limk→+∞ τi,k = 0, which establishes (56).

We now have to prove that the conditions (i) and (ii) of Proposition 4.1 are fulfilled.
Condition (i) is realized in view of Theorem 2.6 (iii). Let us now assume that there
exist x∞ ∈ H and a sequence (kn) such that kn → +∞ and x̂kn⇀x∞ weakly inH as
n → +∞. Let us fix (z, q) ∈ gphA and define the sequence (hk) by hk = 1

2‖xk −z‖2.
From inequality (10) of Lemma 2.2, we have

hk+1 − hk − αk(hk − hk−1) + ρkμk

〈
xk+1 +

(
1

ρk
− 1

)
(xk+1 − yk) − z, q

〉
≤ αk‖xk − xk−1‖2,

because the assumptions αk ∈ [0, 1] and ρk ∈]0, 2] imply respectively 1
2 (αk + α2

k ) ≤
αk and 2−ρk

2ρk
≥ 0. Since xk+1 = yk − ρkμk Aμk (yk), the above inequality can be

rewritten as
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hk+1 − hk − αk(hk − hk−1) + ρkμk
〈
xk+1 − z − (1 − ρk)μk Aμk (yk), q

〉
≤ αk‖xk − xk−1‖2. (62)

Setting ak = hk − hk−1 and

wk = αk‖xk − xk−1‖2 − ρkμk
〈
xk+1 − z − (1 − ρk)μk Aμk (yk), q

〉
,

inequality (62) amounts to ak+1 ≤ αkak +wk . By applying Lemma B.1 (i), we obtain
for every k ≥ 1,

hk − h0 =
k∑

i=1

ai ≤ t1,k(h1 − h0) +
k−1∑
i=1

ti+1,kwi

= t1,k(h1 − h0) +
k−1∑
i=1

ti+1,k

[
αi‖xi − xi−1‖2

−ρiμi

〈
xi+1 − z − (1 − ρi )μi Aμi (yi ), q

〉]
.

Since hk ≥ 0 and ti+1,k ≤ ti+1, we deduce that

k−1∑
i=1

ti+1,kρiμi 〈xi+1 − z, q〉 ≤ h0 + t1,k(h1 − h0) +
k−1∑
i=1

ti+1αi‖xi − xi−1‖2

+
k−1∑
i=1

ti+1,kρiμi
〈
(1 − ρi )μi Aμi (yi ), q

〉
.

Recalling from Theorem 2.6 (i) that
∑+∞

i=1 ti+1αi‖xi − xi−1‖2 < +∞, we infer that
for every k ≥ 1,

k−1∑
i=1

ti+1,kρiμi 〈xi+1 − z, q〉 ≤ C +
k−1∑
i=1

ti+1,kρiμi
〈
(1 − ρi )μi Aμi (yi ), q

〉
,

where we have set C := h0 + t1|h1 − h0| +∑+∞
i=1 ti+1αi‖xi − xi−1‖2 < +∞. Since

ρk ∈]0, 2], according to the Cauchy–Schwarz inequality we have that

| 〈(1 − ρi )μi Aμi (yi ), q
〉 | ≤ ‖μi Aμi (yi )‖‖q‖.

It ensues that

k−1∑
i=1

ti+1,kρiμi 〈xi+1 − z, q〉 ≤ C + ‖q‖
k−1∑
i=1

ti+1,kρiμi‖μi Aμi (yi )‖.
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By shifting the index of summation, we deduce from the above inequality that

k∑
i=1

ti,kρi−1μi−1〈xi − z, q〉 ≤ C + ‖q‖
k∑

i=1

ti,kρi−1μi−1‖μi−1Aμi−1(yi−1)‖

+ t1,kρ0μ0〈x1 − z, q〉 − ‖q‖ t1,kρ0μ0‖μ0Aμ0(y0)‖

≤ C ′ + ‖q‖
k∑

i=1

ti,kρi−1μi−1‖μi−1Aμi−1(yi−1)‖,

where we have set C ′ := C + t1ρ0μ0|〈x1 − z, q〉|. This can be rewritten as

〈
k∑

i=1

ti,kρi−1μi−1(xi − z), q

〉
≤ C ′ + ‖q‖

k∑
i=1

ti,kρi−1μi−1‖μi−1Aμi−1(yi−1)‖.

Dividing by
∑k

i=1 ti,kρi−1μi−1, we find

〈̂xk − z, q〉 ≤ C ′∑k
i=1 ti,kρi−1μi−1

+ ‖q‖∑k
i=1 ti,kρi−1μi−1

k∑
i=1

ti,kρi−1μi−1‖μi−1Aμi−1(yi−1)‖. (63)

By Theorem 2.6 (iv)we have limk→+∞ ‖μk Aμk (yk)‖ = 0. From the Cesaro property,
we infer that

1∑k
i=1 ti,kρi−1μi−1

k∑
i=1

ti,kρi−1μi−1‖μi−1Aμi−1(yi−1)‖ −→ 0 as k → +∞,

see Lemma B.2. Using (61) and taking the upper limit as k → +∞ in inequality (63),
we then obtain

lim sup
k→+∞

〈̂xk − z, q〉 ≤ 0.

Since x̂kn⇀x∞ weakly in H as n → +∞, we have 〈̂xkn − z, q〉 → 〈x∞ − z, q〉 as
n → +∞. From what precedes, we deduce that 〈x∞ − z, q〉 ≤ 0. Since this is true
for every (z, q) ∈ gphA, and since the operator A is maximally monotone, we infer
that 0 ∈ A(x∞). We have proved that x∞ ∈ zerA, which shows that condition (ii) of
Proposition 4.1 is satisfied. The proof is complete. ��

Let us now apply Theorem 4.3 to the case αk = 0 for every k ≥ 1. In this case,
assumptions (K0) and (K1) are trivially satisfied, andmoreover ti = ti,k = 1 for every
i ≥ 1 and k ≥ i . We then obtain the following corollary of Theorem 4.3.

123



282 H. Attouch, A. Cabot

Corollary 4.4 Under (H), assume that zerA �= ∅. Suppose moreover that
lim supk→+∞ ρk < 2 and lim infk→+∞ ρk > 0, together with

∑+∞
i=0 ρiμi = +∞.

Then for any sequence (xk) generated by (RPA)

xk+1 = (1 − ρk)xk + ρk Jμk A(xk), (RPA)

there exists x∞ ∈ zerA such that

1∑k
i=0 ρiμi

k∑
i=0

ρiμi xi⇀x∞ weakly inH as k → +∞. (64)

Proof From Theorem 4.3, we obtain that

x̂k = 1∑k
i=1 ρi−1μi−1

k∑
i=1

ρi−1μi−1xi⇀x∞ weakly inH as k → +∞.

We deduce immediately that

1∑k
i=0 ρiμi

k∑
i=0

ρiμi xi+1⇀x∞ weakly inH as k → +∞. (65)

Recall from Corollary 2.8 (i) that
∑+∞

i=1
2−ρi
ρi

‖xi+1 − xi‖2 < +∞. Since

lim supk→+∞ ρk < 2, this implies that
∑+∞

i=1 ‖xi+1 − xi‖2 < +∞, which entails
in turn that limk→+∞ ‖xk+1 − xk‖ = 0. From the Cesaro property, we infer that

1∑k
i=0 ρiμi

k∑
i=0

ρiμi (xi+1 − xi ) −→ 0 strongly inH as k → +∞. (66)

By putting together (65) and (66), we immediately obtain (64). ��
If we assume moreover that ρk = 1 for every k ≥ 1, we recover a classical result of

ergodic convergence for the proximal point algorithm, see the seminal paper of Brezis
and Lions, see [15, Remarque 10].

Corollary 4.5 Under (H), assume that zerA �= ∅ and that
∑+∞

i=0 μi = +∞. Then for
any sequence (xk) generated by the algorithm

xk+1 = Jμk A(xk), (PA)

there exists x∞ ∈ zerA such that
1∑k

i=0 μi

k∑
i=0

μi xi⇀x∞ weakly in H as k →
+∞.
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5 Conclusion, perspective

The introduction of inertial features into proximal-based algorithms to solve general
monotone inclusions is a long-standing difficult problem. (RIPA) algorithm, which
addresses these issues, involves three basic parameters, αk , μk , ρk , which depend on
the iteration index k, and which take into account respectively the inertia, the proximal
step size, and the relaxation. (RIPA) provides a general framework for understanding
the subtle tuning of these different parameters to achieve the weak convergence of the
iterates. In particular, we obtained convergence results based on the Nesterov accelera-
tion method, in the context of maximally monotone operators, which extend the recent
result of Attouch–Peypouquet [7]. Several basic splitting algorithms in optimization,
naturally rely on the maximally monotone approach, such as ADMM, primal-dual
methods, Douglas-Rachford. Our results provide a general way to understand the
acceleration of these algorithms via inertia. Several important questions remain to be
studied, such as obtaining splitting methods in this context, and studying the conver-
gence rate of these methods. In this respect, it would be important to study the case
A = ∂� where� is a closed convex function, thus recovering the rate of convergence
of the values for Nesterov methods.

Appendix A. Yosida regularization

A set-valued mapping A fromH toH assigns to each x ∈ H a set A(x) ⊂ H, hence it
is a mapping fromH to 2H. Every set-valued mapping A : H → 2H can be identified
with its graph defined by

gphA = {(x, u) ∈ H × H : u ∈ A(x)}.

The set {x ∈ H : 0 ∈ A(x)} of the zeros of A is denoted by zerA. An operator
A : H → 2H is said to be monotone if for any (x, u), (y, v) ∈ gphA, one has
〈y − x, v − u〉 ≥ 0. It is maximally monotone if there exists no monotone operator
whose graph strictly contains gphA. If a single-valued operator A : H → H is
continuous and monotone, then it is maximally monotone, cf. [13, Proposition 2.4].

Given a maximally monotone operator A and λ > 0, the resolvent of A with index
λ and the Yosida regularization of A with parameter λ are defined by

JλA = (I + λA)−1 and Aλ = 1

λ
(I − JλA) ,

respectively. The operator JλA : H → H is nonexpansive and everywhere defined
(indeed it is firmly non-expansive). Moreover, Aλ is λ-cocoercive: for all x, y ∈ H
we have

〈Aλy − Aλx, y − x〉 ≥ λ‖Aλy − Aλx‖2.
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This property immediately implies that Aλ : H → H is 1
λ
-Lipschitz continuous.

Another property that proves useful is the resolvent equation (see, for example, [13,
Proposition 2.6] or [8, Proposition 23.6])

(Aλ)μ = A(λ+μ),

which is valid for any λ,μ > 0. This property allows to compute simply the resolvent
of Aλ by

JμAλ = λ

λ + μ
I + μ

λ + μ
J(λ+μ)A,

for any λ,μ > 0. Also note that for any x ∈ H, and any λ > 0 Aλ(x) ∈ A(JλAx) =
A(x−λAλ(x)). Finally, for any λ > 0, Aλ and A have the same solution set, zerAλ =
zerA. For a detailed presentation of the maximally monotone operators and the Yosida
approximation, the reader can consult [8] or [13].

Appendix B. Some auxiliary results

In this section, we present some auxiliary lemmas that are used throughout the paper.

Lemma B.1 Let (ak), (αk) and (wk) be sequences of real numbers satisfying

ai+1 ≤ αi ai + wi for every i ≥ 1. (67)

Assume that αi ≥ 0 for every i ≥ 1.

(i) For every k ≥ 1, we have

k∑
i=1

ai ≤ t1,ka1 +
k−1∑
i=1

ti+1,kwi , (68)

where the double sequence (ti,k) is defined by (13).
(ii) Under (K0), assume that the sequence (ti )definedby (15) satisfies

∑+∞
i=1 ti+1(wi )+

< + ∞. Then the series
∑

i≥1(ai )+ is convergent, and

+∞∑
i=1

(ai )+ ≤ t1(a1)+ +
+∞∑
i=1

ti+1(wi )+.

Proof (i) Recall from Lemma 2.4 (i) that αi ti+1,k = ti,k − 1 for every i ≥ 1 and
k ≥ i + 1. Multiplying inequality (67) by ti+1,k gives

ti+1,kai+1 ≤ (ti,k − 1)ai + ti+1,kwi ,
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or equivalently

ai ≤ (ti,kai − ti+1,kai+1) + ti+1,kwi .

By summing from i = 1 to k − 1, we deduce that

k−1∑
i=1

ai ≤ t1,ka1 − tk,kak +
k−1∑
i=1

ti+1,kwi .

Since tk,k = 1, inequality (68) follows immediately.
(ii) Taking the positive part of each member of (67), we find

(ai+1)+ ≤ αi (ai )+ + (wi )+.

By applying (i) with (ai )+ (resp. (wi )+) in place of ai (resp. wi ), we obtain for every
k ≥ 1

k∑
i=1

(ai )+ ≤ t1,k(a1)+ +
k−1∑
i=1

ti+1,k(wi )+ ≤ t1(a1)+ +
+∞∑
i=1

ti+1(wi )+ < +∞,

because ti+1,k ≤ ti+1, and
∑+∞

i=1 ti+1(wi )+ < +∞ by assumption. Then just let k
tend to +∞. ��

Given a bounded sequence (xk) of a Banach space (X , ‖.‖), the next lemma gives
basic properties of the averaged sequence (̂xk) defined by (57).

Lemma B.2 Let (X , ‖.‖) be a Banach space and let (xk) be a bounded sequence of
X . Given a sequence (τi,k)i,k≥1 of nonnegative numbers satisfying (55)–(56), let (̂xk)
be the averaged sequence defined by x̂k = ∑+∞

i=1 τi,k xi . Then we have

(i) The sequence (̂xk) is well-defined, bounded and supk≥1 ‖x̂k‖ ≤ supk≥1 ‖xk‖.
(ii) If (xk) converges toward x ∈ X , then the sequence (̂xk) is also convergent and

limk→+∞ x̂k = x .

Proof (i) Set M = supk≥1 ‖xk‖ < +∞. In view of (55), observe that for every k ≥ 1,

+∞∑
i=1

τi,k‖xi‖ ≤ M
+∞∑
i=1

τi,k = M . (69)

Since the space X is complete, we classically deduce that the series
∑

i≥1 τi,k xi is
convergent. From the definition of x̂k , we then have ‖x̂k‖ ≤ ∑+∞

i=1 τi,k‖xi‖, and hence
‖x̂k‖ ≤ M in view of (69).
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(ii) Assume that (xk) converges toward x ∈ X . By using (55), we have for every
k ≥ 1,

‖x̂k − x‖ =
∥∥∥∥∥

+∞∑
i=1

τi,k(xi − x )

∥∥∥∥∥ ≤
+∞∑
i=1

τi,k‖xi − x‖.

Fix ε > 0, and let K ≥ 1 such that ‖xi − x‖ ≤ ε for every i ≥ K . From the above
inequality, we obtain

‖x̂k − x‖ ≤
(

sup
i∈{1,...,K }

‖xi − x‖
)(

K∑
i=1

τi,k

)
+ ε

+∞∑
i=K+1

τi,k ≤ M
K∑
i=1

τi,k + ε,

with M = supi≥1 ‖xi − x‖ < +∞. Taking the upper limit as k → +∞, we deduce
from (56) that

lim sup
k→+∞

‖x̂k − x‖ ≤ ε.

Since this is true for every ε > 0, we conclude that limk→+∞ ‖x̂k − x‖ = 0. ��
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