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Abstract
Many fundamental NP-hard problems can be formulated as integer linear programs
(ILPs). A famous algorithm by Lenstra solves ILPs in time that is exponential only in
the dimension of the program, and polynomial in the size of the ILP. That algorithm
became a ubiquitous tool in the design of fixed-parameter algorithms for NP-hard
problems, where one wishes to isolate the hardness of a problem by some parameter.
However, in many cases using Lenstra’s algorithm has two drawbacks: First, the run
time of the resulting algorithms is often double-exponential in the parameter, and sec-
ond, an ILP formulation in small dimension cannot easily express problems involving
many different costs. Inspired by the work of Hemmecke et al. (Math Program 137(1–
2, Ser. A):325–341, 2013), we develop a single-exponential algorithm for so-called
combinatorial n-fold integer programs, which are remarkably similar to prior ILP for-
mulations for various problems, but unlike them, also allow variable dimension. We
then apply our algorithm to many relevant problems problems like Closest String,
Swap Bribery,Weighted Set Multicover, and several others, and obtain expo-
nential speedups in the dependence on the respective parameters, the input size, or
both. Unlike Lenstra’s algorithm, which is essentially a bounded search tree algorithm,
our result uses the technique of augmenting steps. At its heart is a deep result stating
that in combinatorial n-fold IPs, existence of an augmenting step implies existence
of a “local” augmenting step, which can be found using dynamic programming. Our
results provide an important insight into many problems by showing that they exhibit
this phenomenon, and highlights the importance of augmentation techniques.

Keywords Integer programming · Augmentation algorithm · Closest string ·
Fixed-parameter algorithms
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1 Introduction

The Integer Linear Programming (ILP) problem is fundamental as it models
many combinatorial optimization problems. Since it is NP-complete, we naturally ask
about the complexity of special cases. A fundamental algorithm by Lenstra from 1983
shows that ILPs can be solved in polynomial time when their number of variables
(the dimension) d is fixed [52]; that algorithm is thus a natural tool to prove that the
complexity of some special cases of other NP-hard problems is also polynomial.

A systematic way to study the complexity of “special cases” of NP-hard problems
was developed in the past 25 years in the field of parameterized complexity. There,
the problem input is augmented by some integer parameter k, and one then measures
the problem complexity in terms of both the instance size n as well as k. Of central
importance are algorithms with run times of the form f (k)nO(1) for some computable
function f , which are called fixed-parameter algorithms. The key idea is that the
degree of the polynomial does not grow with k. For background on parameterized
complexity, we refer to the monograph [13].

Kannan’s improvement [42] of Lenstra’s algorithm runs in time dO(d)〈I 〉O(1),
where 〈I 〉 is the binary encoding length of the instance, which is thus a fixed-parameter
algorithm for parameter d. Gramm et al. [33] pioneered the application of Lenstra’s
andKannan’s algorithm in parameterized complexity: theymodeledClosest String
with k input strings as an ILP of dimension kO(k), and thereby concluded with the first
fixed-parameter algorithm for Closest String. This success led Niedermeier [59]
to propose in his book:

[...] It remains to investigate further examples besides Closest String where
the described ILP approach turns out to be applicable. More generally, it would
be interesting to discover more connections between fixed-parameter algorithms
and (integer) linear programming.

Since then, many more applications of Lenstra’s and Kannan’s algorithm for param-
eterized problems have been proposed. However, essentially all of them, e.g.
[8,16,23,37,49,58], share a common trait with the algorithm for Closest String:
they have a double-exponential run time dependence on the parameter. This is because
solving an ILP takes time exponential in the number of variables, and these algorithms
amount to solving ILP formulations with exponentially many variables. Moreover, it
is difficult to find ILP formulations with small dimension for problems whose input
contains many objects with varying cost functions, such as in Swap Bribery [6,
Challenge #2].

1.1 Our contributions

We show that a certain form of ILP, which is closely related to the previously used for-
mulations forClosest String and Swap Bribery and other problems, can be solved
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Combinatorial n-fold integer programming and applications 3

in single-exponential time, even if the dimension is allowed to bevariable. For example,
Gramm et al.’s [33] algorithm for Closest String runs in time 22

O(k log k)O(log L)

for k strings of length L and has not been improved since 2003, while our algorithm
runs in time kO(k2)O(log L). Moreover, our algorithm has a strong combinatorial fla-
vor and is based on different notions than are typically encountered in parameterized
complexity, most importantly so-called augmenting steps (cf. Sect. 1.3). We note that
all formal definitions are postponed until or repeated in Sect. 2.

As an example of our form of ILP, its motivation and connections to earlier formu-
lations, consider the Closest String problem. We are given k strings s1, . . . , sk of
length L that come (after some preprocessing) from the alphabet [k]:={1, . . . , k}, and
an integer d. The goal is to find a string y ∈ [k]L such that, for each si , the Hamming
distance dH (y, si ) between y and si , i.e., the number of positions on which y and si
differ, is at most d, if such y exists.

Arranging the input strings in an k × L matrix whose i th row is si , we have that,
for j ∈ [L], (s1[ j], . . . , sk[ j]) is the j th column of this input representation. Clearly,
there are at most kk different column types in the input, and we can represent the input
succinctly with multiplicities bf of each column type f ∈ [k]k . Moreover, there are k
choices for the output string y in each column. Thus, we can encode the solution by
describing, for each column type f ∈ [k]k and each output character e ∈ [k], how
many solution columns are of type (f, e) with a variable xf,e. This is the basic idea
behind the formulation of Gramm et al. [33], as depicted on the left:

∑

e∈[k]

∑

f∈[k]k
dH (e, f j )xf,e ≤ d

∑

f∈[k]k

∑

(f′,e)∈[k]k+1

dH (e, f j )x
f
f′,e ≤ d ∀ j ∈ [k]

∑

e∈[k]
xf,e = bf

∑

(f′,e)∈[k]k+1

x ff′,e = bf ∀f ∈ [k]k

xf,e ≥ 0 ∀(f, e) ∈ [k]k+1

x f
′
f,e = 0 ∀f′ 	= f,∀e ∈ [k]

0 ≤ x ff,e ≤ bf ∀f ∈ [k]k

The formulation on the right is obtained from the one on the left by copying each
variable once for each f ∈ [k]k , and “turning off” all variables x f′f,e with f′ 	= f. In other
words, the columns of the formulation on the left are a subset of the columns on the
right, and variables corresponding to columns which only exist in the formulation on
the right are set to zero.

Let (1 . . . 1) = 1ᵀ be a row vector of all ones. Alternatively, we can view the
above as

⎛

⎜⎜⎜⎜⎜⎝

D1 D2 · · · Dkk

1ᵀ 0 · · · 0
0 1ᵀ · · · 0
...

...
. . .

...

0 0 · · · 1ᵀ

⎞

⎟⎟⎟⎟⎟⎠
x

≤
=
=
...

=

d
b1

b2

...

bk
k

⎛

⎜⎜⎜⎜⎜⎝

D D · · · D
1ᵀ 0 · · · 0
0 1ᵀ · · · 0
...

...
. . .

...

0 0 · · · 1ᵀ

⎞

⎟⎟⎟⎟⎟⎠
x

≤
=
=
...

=

d
b1

b2

...

bk
k
,
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4 D. Knop et al.

where D = (D1 D2 . . . Dkk ) and d = (d . . . d)ᵀ ∈ Z
k . Our motivation for the

formulation on the right is that it has the nicely uniform structure

E (n) =

⎛

⎜⎜⎜⎜⎜⎝

D D · · · D
A 0 · · · 0
0 A · · · 0
...

...
. . .

...

0 0 · · · A

⎞

⎟⎟⎟⎟⎟⎠
. (1)

with D ∈ Z
r×t , A ∈ Z

s×t , and containing n = kk blocks D and A. Integer
programming (IP) with constraint matrix of the form (1) is known as n-fold inte-
ger programming. An algorithm of Hemmecke et al. [36] solves n-fold IP in time
Δ(rst+t2s)n3〈I 〉, where Δ = 1 + ∥∥E (n)

∥∥∞. However, since the ILP on the right for
Closest String has t = kk , applying this algorithm gives no advantage over apply-
ing Lenstra’s algorithm to solve the Closest String problem.

We overcome this impediment by harnessing the special structure of the ILP for
Closest String. Observe that its constraint matrix A has the form

A = (1 . . . 1) = 1ᵀ ∈ Z
1×t . (2)

We call any n-fold IP with this matrix A a combinatorial n-fold IP. Our main result is
a fast algorithm for combinatorial n-fold IPs, which is exponentially faster in t than
previous works for general n-fold IPs.

Theorem 1 (simplified) Any combinatorial n-fold IP of size L can be solved in time
tO(r)(Δr)O(r2)O(n3〈I 〉) + poly(n, 〈I 〉), where Δ = 1 + ‖D‖∞.

Observe that, when applicable, our algorithm is not only asymptotically faster than
Lenstra’s, but provides a fixed-parameter algorithm even if the dimension is variable
and not a parameter. Moreover, note that n-fold IP is allowed to have not only a linear
objective function, but also a separable convex objective function. Therefore, while
Theorem 1 does indeed show that certain ILPs can be solved in single-exponential
time, it also shows that certain IPs with more general objective functions can also be
solved efficiently.

1.2 Applications

We apply Theorem 1 to several fundamental combinatorial optimization problems,
for which we obtain exponential improvements in the parameter dependence, the
input length, or both. For a summary of results, see Table 1; this list is not meant to
be exhaustive. In fact, we believe that for any Lenstra-based result in the literature
which only achieves double-exponential run times, there is a good chance that it can
be sped up using our algorithm. The only significant obstacles seem to be either
large coefficients in the constraint matrix or an exponential number of rows of the
matrix D.
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Combinatorial n-fold integer programming and applications 5

Table 1 Run time improvements resulting from this work for a few representative problems

Problem Previous best run time Our result

Closest String 22
O(k log k)O(log L) [33] kO(k2)O(log L)

Optimal Consensus FPT for k ≤ 3, open for k ≥ 4 [2] kO(k2)O(log L)

Score-Swap Bribery 22
O(|C | log |C |)O(log |V |) [16] |C |O(|C |2)O(T 3 log |V |),

|C |O(|C |6)O(|V |3) [46] with T ≤ |V |
C1-Swap Bribery 22

O(|C | log |C |)O(log |V |) [16] |C |O(|C |4)O(T 3 log |V |),
|C |O(|C |6)O(|V |3) [46] with T ≤ |V |

Weighted Set Multicover 22
O(k log k)O(n) [8] kO(k2)O(log n)

Huge n- fold IP FPT with D = I and FPT with parameter-sized

A totally unimodular domains

We introduce and discuss the parameters (e.g. C) later in Sect. 4

We discuss applications in detail in Sect. 4, which is structured as follows. We
first show (Sect. 4.1) it is possible to use inequalities (and not only equations) and
discuss the representation of the input (Sect. 4.2). In Sect. 4.3 we use the Weighted
Set Multicover problem (which has applications for example in graph algorithms
and computational social choice) as a detailed example of modeling a problem as a
combinatorial n-fold IP. Then, in Sects. 4.4 and 4.5 we discuss many variations on
the Closest String and Bribery problems, respectively, and give combinatorial n-
fold IP formulations for them. In Sect. 4.6 we discuss the Huge n-fold IP problem.
Finally, in Sect. 4.7, we show that many other ILP formulations in the literature have
a format very close to combinatorial n-fold IP and can in fact be modeled as one.
Together, we obtain exponential speed-ups for all of the discussed problems.

1.3 Comparison with Lenstra’s algorithm

The basic idea behind Lenstra’s algorithm is the following. Given a system Ax ≤ b
it is possible to compute the volume of the polyhedron it defines and determine that
it is either too large not to contain an integer point, or too small not to be flat in
some direction. In the first case we are done. In the second case we can take d slices
of dimension d − 1 and recurse into them, achieving a dO(d)〈I 〉O(1) runtime. Note
that we only decide feasibility and optimization can be then done by binary search.
On the other hand, the basic idea behind our algorithm is the following. We only
focus on optimizing and later show that testing feasibility reduces to it. Starting from
some feasible solution, the crucial observation is that if there is a step improving the
objective, there is onewhich does notmodifymany variables, and can be found quickly
by dynamic programming. Moreover, if the current solution is far from the optimum,
then it is possible to make a long step, and polynomially many long steps will reach
the optimum.

More concretely, consider the run of these two algorithms on an instance of Clos-
est String consisting of k strings, each of length L . Lenstra’s algorithm essentially
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6 D. Knop et al.

either determines that the bounds are loose enough that there must exist a solution,
or (oversimplifying) determines that there is a column type f ∈ [k]k and a character
e ∈ [k] such that there are at most kk consecutive choices for how many times the
solution contains character e at a column of type f. Then, we recurse, obtaining a
22

O(k log k)O(log L)-time algorithm. On the other hand, our algorithm views the prob-
lem as an optimization problem, so we think of starting with a string of all blanks
which is trivially at distance 0 from any string, and the goal is to fill in all blanks such
that the result is still at distance at most d from the input strings. An augmenting step is
a set of character swaps that decreases the number of blanks. The crucial observation is
that if an augmenting step exists, then there is also one only changing few characters,
and it can be found in time kO(k2)O(log L). Thus (omitting details), we can iteratively
find augmenting steps until we reach the optimum.

Related work.Our main inspiration are augmentation methods based on Graver bases,
especially afixed-parameter algorithm forn-fold IP ofHemmecke et al. [36].Our result
improves the runtime of their algorithm for a special case. More generally, our work
follows in the vein of Papadimitriou [64], whose algorithm was recently improved by
Eisenbrand and Weismantel [19] and Jansen and Rohwedder [41]. Subsequent to the
publication of the extended abstract version of this work, the main technical result
(Theorem 1) was improved by Koutecký et al. [47] and Eisenbrand et al. [17]. All
the following related work is orthogonal to ours in either the achieved result, or the
parameters used for it.

In fixed dimension, Lenstra’s algorithm [52] was generalized for arbitrary convex
sets and quasiconvex objectives byGrötschel et al. [34, Theorem6.7.10]. The currently
fastest algorithm of this kind is due to Dadush et al. [14]. The first notable fixed-
parameter algorithm for a non-convex objective is due toLokshtanov [54],who showed
that optimizing a quadratic function over the integers of a polytope is fixed-parameter
tractable if all coefficients are small. Ganian and Ordyniak [30] and Ganian et al. [31]
studied the complexity of ILP with respect to structural parameters such as treewidth
and treedepth, and introduced a new parameter called torso-width.

Besides fixed-parameter tractability, there is interest in the (non-)existence of
polynomial kernels of ILPs, which formalize the (im)possibility of various prepro-
cessing procedures. Jansen and Kratsch [39] showed that ILPs containing parts with
simultaneously bounded treewidth and bounded domains are amenable to polynomial
kernelization, unlike ILPs containing totally unimodular parts. Kratsch [48] studied
the kernelizability of sparse ILPs with small coefficients.

Outline. The paper is structured as follows. In Sect. 2 we provide the definitions and
notions necessary for the proof of Theorem 1. Section 3 is dedicated to the proof of
Theorem 1. Finally, in Sect. 4 we turn to applications of Theorem 1.

2 Preliminaries

For positive integers m, n we set [m : n] = {m, . . . , n} and [n] = [1 : n]. For a
graph G we denote by V (G) its set of vertices. We write vectors in boldface (e.g.,
x, y) and their entries in normal font (e.g., the i th entry of x is xi ).
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Combinatorial n-fold integer programming and applications 7

For a matrix A ∈ Z
m×n , vectors b ∈ Z

m , l,u ∈ Z
n , and a function f : Zn → Z,

let (I P)A,b,l,u, f be the problem

min
{
f (x) | Ax = b , l ≤ x ≤ u , x ∈ Z

n} . (IP)

We say that a vector x is a feasible solution to (I P)A,b,l,u, f if Ax = b and l ≤ x ≤ u.

n-fold IP. Let r , s, t, n ∈ N be integers, u, l ∈ Z
nt and b ∈ Z

r+ns be vectors, and
f : Znt → Z be a separable convex function (i.e., f (x) = ∑n

i=1
∑t

j=1 f ij (x
i
j ) with

every f ij : Z → Z univariate convex). Let D ∈ Z
r×t be an r × t-matrix and A ∈ Z

s×t

be an s × t-matrix. We define a matrix E (n) as

E (n):=

⎛

⎜⎜⎜⎜⎜⎝

D D · · · D
A 0 · · · 0
0 A · · · 0
...

...
. . .

...

0 0 · · · A

⎞

⎟⎟⎟⎟⎟⎠
, (3)

and we call E (n) the n-fold product of E = (
D
A

)
. The problem (IP) with the constraint

matrix E (n) is calledn-fold integer programming (I P)E (n),b,l,u, f . By 〈I 〉 = 〈b, l,u, f 〉
we denote the length of the binary encoding of the (IP) instance, which is given by
vectors b, l,u and the objective function f . Here, 〈 f 〉 = 〈maxx:l≤x≤u | f (x)|〉 is the
encoding length of the maximum absolute value attained by f over the feasible region.

Building on a dynamic program of Hemmecke, Onn, and Romanchuk [36] and a
so-called proximity technique of Hemmecke, Köppe and Weismantel [35], Knop and
Koutecký [43] proved that:

Proposition 1 ([43, Thm. 5]) There is an algorithm that solves1 (I P)E (n),b,l,u, f

encoded with 〈I 〉 = 〈b, l,u, f 〉 bits in time ΔO(trs+t2s) · n3〈I 〉, where Δ =
1 + max{‖D‖∞, ‖A‖∞}.

The structure of E (n) (in equation (3)) allows us to divide any nt-dimensional object,
such as the vector of variables x, the bounds l and u, or the objective function f , into
n bricks of size t . We use subscripts to index within a brick and superscripts to denote
the index of the brick, i.e., we write x = (

x1, . . . , xn
)
with xi being the i th brick of x,

and xij denotes the j th variable of the i th brick with j ∈ [t] and i ∈ [n]. We refer to
the constraints (D · · · D) · x ≤ d as globally uniform constraints and we call the other
constraints locally uniform.

Our focus here is on the following special form of n-fold IP which we call combi-
natorial n-fold IP.

Definition 1 (Combinatorial n-fold IP) Let A = (1 · · · 1) ∈ Z
1×t , let D ∈ Z

r×t

be a matrix, and let E = (
D
A

)
. Let f : Znt → Z be a separable convex function

represented by an evaluation oracle. A combinatorial n-fold IP is

min
{
f (x) | E (n)x = b, l ≤ x ≤ u, x ∈ Z

nt
}

.

1 Given an IP, we say that to solve it is to either (i) declare it infeasible or unbounded or (ii) find a minimizer
of it.
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8 D. Knop et al.

An approximate continuous relaxation oracle is an algorithm which, queried on
an instance of (IP), returns a solution xε of the continuous relaxation of (IP)2 such
that there exists an optimum x̃ of the relaxation satisfying ‖xε − x̃‖∞ ≤ ε. For any
separable convex function such an oracle can be implemented in polynomial time by
Chubanov’s algorithm [11, Corollary 14]. We denote byR the time needed to realize
one call to this oracle when the instance is clear from the context. For more details cf.
De Loera et al. [15, Problem 4.3.1].

Graver bases and augmentation. Let us now introduce Graver bases and discuss how
they can be used for optimization. For background, we refer to the books of Onn [61]
and De Loera et al. [15].

Let x, y be n-dimensional integer vectors. We call x, y sign-compatible if they lie
in the same orthant, that is, for each i ∈ [n] the sign of xi and yi is the same. We
call

∑
i g

i a sign-compatible sum if all gi are pairwise sign-compatible. Moreover, we
write y 
 x if x and y are sign-compatible and |yi | ≤ |xi | for each i ∈ [n], and write
y � x if at least one of the inequalities is strict. Clearly, 
 imposes a partial order
called “conformal order” on n-dimensional vectors. For an integer matrix A ∈ Z

m×n ,
its Graver basis G(A) is the set of 
-minimal non-zero elements of the lattice of A,
kerZ(A) = {z ∈ Z

n | Az = 0}. An important property of G(A) is the following.

Proposition 2 ([61, Lemma 3.2]) Every integer vector x 	= 0 with Ax = 0 is a
sign-compatible sum x = ∑

i g
i of Graver basis elements gi ∈ G(A), with some

elements possibly appearing with repetitions.

Let x be a feasible solution to (I P)A,b,l,u, f . We call a vector g a feasible step
if x + g is feasible for (I P)A,b,l,u, f . Further, call a feasible step g augmenting if
f (x + g) < f (x). An augmenting step g and a step length α ∈ Z form an x-feasible
step pair with respect to a feasible solution x if l ≤ x+αg ≤ u. An augmenting step g
and a step length α ∈ Z form a Graver-best step if f (x + αg) ≤ f (x + α′g̃) for all
x-feasible step pairs (g̃, α′) ∈ G(A) × Z.

TheGraver-best augmentation procedure for (I P)A,b,l,u, f with given feasible solu-
tion x0 works as follows:

1. If there is no Graver-best step for x0, return it as optimal.
2. If a Graver-best step (α, g) for x0 exists, set x0: = x0 + αg and go to 1.

Proposition 3 ([15, implicit in Theorem 3.4.1]) Given a feasible solution x0 for
(I P)A,b,l,u, f where f is separable convex, the Graver-best augmentation proce-
dure finds an optimum of (I P)A,b,l,u, f in at most (2n − 2) logM steps, where
M = f (x0) − f (x∗) and x∗ ∈ Z

n is an optimum of (I P)A,b,l,u, f .

Graver complexity. The key property of the n-fold product E (n) is that, for any n ∈ N,
the number of nonzero bricks of any g ∈ G

(
E (n)

)
is bounded by some constant g(E)

called the Graver complexity of E . A proof is given for example by Onn [61, Lemma
4.3]. To emphasize the differences with our approach, we give a rough outline of the
proof, omitting several details.

2 The continuous relaxation of (IP) is the problem min{ f (x) | Ax = b, l ≤ x ≤ u, x ∈ R
n}.
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Combinatorial n-fold integer programming and applications 9

Consider any g ∈ G
(
E (n)

)
and take its restriction to its nonzero bricks ḡ. Since each

brick ḡi of ḡ satisfies Aḡi = 0, by Proposition 2 it can be decomposed into elements
from G(A). Let h be a concatenation of all members of G(A) from the decompositions
obtained above. Since g ∈ G

(
E (n)

)
and h is obtained from decompositions of its

nonzero bricks, we have that
∑

j Dh j = 0. Then, consider a compact representation v
of h by counting how many times each element from G(A) appears. Let G be a matrix
with the elements of G(A) as columns. It is then not difficult to show that v ∈ G(DG).
Since ‖v‖1 is an upper bound on the number of bricks of h and thus of nonzero bricks
of g and clearly does not depend on n, g(E) = maxv∈G(DG) ‖v‖1 is finite.

Let us make precise two observations from this proof, which we will use later.

Lemma 1 ([36, Lemma 3.1], [61, implicit in the proof of Lemma 4.3]) Let D ∈ Z
r×t ,

A ∈ Z
s×t and E = (D

A

)
.

Let (g1, . . . , gn) ∈ G
(
E (n)

)
. Then for i = 1, . . . , n there exist vectors

hi,1, . . . ,hi,mi ∈ G(A) such that gi = ∑mi
k=1 h

i,k , and
∑n

i=1 mi ≤ g(E).

Lemma 2 ([36, Lemma 6.1], [61, implicit in the proof of Lemma 4.3]) Let D ∈ Z
r×t ,

A ∈ Z
s×t and let G ∈ Z

t×p be the matrix whose columns are the elements of G(A).
Then |G(A)| ≤ ‖A‖st∞, and for E = (

D
A

)
it holds

g(E) ≤ max
v∈G(DG)

‖v‖1 ≤ |G(A)| · (r‖DG‖∞)r .

3 Combinatorial n-fold IPs

This section is dedicated to proving Theorem 1:

Theorem 1 (repeated) Let D ∈ Z
r×t , l,u ∈ Z

nt , b ∈ Z
r+n, and a separable convex

function f : Znt → R be given. There is an algorithm that solves the combinatorial n-
fold IP (I P)E (n),b,l,u, f of size 〈I 〉 = 〈b, l,u, f 〉 in time tO(r)(Δr)O(r2)O(n3〈I 〉)+R,
where Δ = 1 + ‖D‖∞, E = (

D
1ᵀ

)
, and R is the time required for one call to an

optimization oracle for the continuous relaxation of (I P)E (n),b,l,u, f .

We fix an instance of combinatorial n-fold IP, that is, a tuple (n, D,b, l,u, f ) that we
use throughout this whole section.

3.1 Graver complexity of combinatorial n-fold IP

Recall that g(E) denotes the maximum number of non-zero bricks of any augmenting
step g ∈ G

(
E (n)

)
. The bound on g(E) we get from Lemma 2 is exponential in t . Our

goal now is to improve the bound on g(E) in terms of t , exploiting the simplicity of
the matrix A in combinatorial n-fold IPs.

To see this, we will need to understand the structure of G(1ᵀ):

Lemma 3 For any i 	= j ∈ [t], let ζ (i, j) ∈ {−1, 0, 1}t satisfy ζi = 1, ζ j = −1, and
ζ� = 0 for all � ∈ [t]\{i, j}. It holds that
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10 D. Knop et al.

– G(1ᵀ) = {ζ (i, j) | i, j ∈ [t], i 	= j},
– p = |G(1ᵀ)| = t(t − 1), and
– ‖g‖1 = 2 for all g ∈ G(1ᵀ).

Proof Observe that the claimed set of vectors is clearly 
-minimal in kerZ(1ᵀ). We
are left with proving there is no other non-zero 
-minimal vector in kerZ(1ᵀ). For
contradiction assume there is such a vector h. Since it is non-zero, it must have a
positive entry hi . On the other hand, since 1ᵀh = 0, it must also have a negative
entry h j . But then for a vector g with gi = 1, g j = −1 and gk = 0 for all k /∈ {i, j}
it holds that g � h, a contradiction. The rest follows. ��

With this lemma at hand, we can prove the following.

Lemma 4 Let D ∈ Z
r×t and Δ = 1 + ‖D‖∞. Then, g(

(
D
1ᵀ

)
) ≤ t2(2rΔ)r .

Proof We simply plug the correct values into the bound of Lemma 2. By Lemma 3,
p = t(t − 1) ≤ t2. Also, ‖DG‖∞ ≤ maxg∈G(1ᵀ) {‖D‖∞ · ‖g‖1} ≤ 2Δ, where the
last inequality follows from ‖g‖1 = 2 for all g ∈ G(1ᵀ), again by Lemma 3. ��

3.2 Dynamic programming

Hemmecke et al. [36] devised a clever dynamic programming algorithm to find aug-
menting steps for a feasible solution of an n-fold IP. Lemma 1 is crucial in their
approach, as they continue by building a set Z(E) of all sums of at most g(E) elements
of G(A) and then use it to construct the dynamic program. However, such a set Z(E)

would clearly be of size exponential in t—too large to achieve our single-exponential
run times. In their dynamic program, a directed acyclic graph is constructed whose
layers correspond to partial sums of elements of G(A).

Our insight is to build a different dynamic program. In our dynamic program, we
will exploit the simplicity of G(A) = G(1ᵀ) so that the constructed directed acyclic
graphwill have layerswhich correspond to individual coordinates hij of an augmenting
vector h. Additionally, we also differ in how we enforce feasibility with respect to the
globally uniform constraints (D D · · · D)x = b0.

We now give the details of our approach. The signature set of E is Σ(E) =∏r
j=1 [−2Δ · g(E) : 2Δ · g(E)]; its elements are called signatures. Essentially, we

will use the signature set to keep track of partial sums of prefixes of the augmenting
vector h to ensure that it satisfies Dh = 0. Crucially, we notice that to ensure Dh = 0,
it suffices to remember the partial sum of the prefixes of h multiplied by D, thus
shrinking them from dimension t to dimension r . This is another insight which allows
us to avoid the exponential dependence on t . Note that |Σ(E)| = (1 + Δ4g(E))r .

Definition 2 (Augmentation graph) Let x be a feasible solution for (I P)E (n),b,l,u, f and
let α ∈ N. The augmentation graph DP(x, α) is a vertex-weighted directed layered
graph with two distinguished vertices S and T called the source and the sink, and nt
layersL(1, 1), . . . ,L(n, t) structured according to the bricks, such that for all i ∈ [n],
j ∈ [t],

L(i, j) = (i, j) × [−g(E) : g(E)] × [−g(E) : g(E)] × Σ(E).
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Thus, each vertex is a tuple
(
i, j, hij , β

i
j , σ

i
j

)
, with the following meaning:

– i ∈ [n] is the index of the brick,
– j ∈ [t] is the position within the brick,
– hij ∈ [−g(E) : g(E)] is the value of the corresponding coordinate of a proposed
augmenting vector h,

– β i
j ∈ [−g(E) : g(E)] is a brick prefix sum

∑ j
�=1 h

i
� of the proposed augmenting

vector h, and,
– σ i

j ∈ Σ(E) is the signature that represents the prefix sum
∑i

k=1 Dhk +
∑ j

�=1 D�hi�, where D� is the �th column of the matrix D.

A vertex
(
i, j, hij , β

i
j , σ

i
j

)
has weight f ij (αh

i
j + xij ) − f ij (x

i
j ).

Let S = (
0, t, 0, 0, 0

)
and T = (

n + 1, 1, 0, 0, 0
)
, where the last coordinate is an

r -dimensional all-zero vector.
Edges to the first layer of a brick. Every vertex

(
i, t, hit , 0, σ

i
t

)
has edges to each

vertex
(
i + 1, 1, hi+1

1 , hi+1
1 , σ i+1

1

)
for which li+1

1 ≤ xi+1
1 + αhi+1

1 ≤ ui+1
1 and

σ i+1
1 = σ i

t + D1h
i+1
1 . We emphasize that there are no other outgoing edges from

layer L(i, t) to layer L(i + 1, 1).

Edges within a brick. Every vertex
(
i, j, hij , β

i
j , σ

i
j ) with j < t has edges to each

vertex
(
i, j + 1, hij+1, β

i
j+1, σ

i
j+1

)
for which

– lij+1 ≤ xij+1 + αhij+1 ≤ uij+1,

– β i
j+1 = β i

j + hij+1, with β i
j+1 ∈ [−g(E) : g(E)], and,

– σ i
j+1 = σ i

j + Dj+1hij+1.

See Fig. 1 for a scheme of the augmentation graph.
Note that by the bounds on g(E) by Lemma 4 the number of vertices in each layer

(recall that there is a layer for each i ∈ [n] and j ∈ [t]) of DP(x, α) is bounded by

Lmax ≤ g(E)2 · |Σ(E)| ≤
(
t2(2rΔ)r

)2 ·
(
1 + 4Δ ·

(
t2(2rΔ)r

))r

=
(
t2(2rΔ)r

)O(r) = t O(r) · (rΔ)O(r2) . (4)

Let P be an S–T path in DP(x, α). We define the P-augmentation vector h ∈ Z
nt

by the hij -coordinates of the vertices of P .
Let x be a feasible solution of the combinatorial n-fold IP instance fixed at the

beginning of Sect. 3. We say that h is a solution of DP(x, α) if there exists an S–T
path P such that h is the P-augmentation vector. The weight w(h) is then defined as
the weight of the path P (i.e., the sum of weights of vertices of the path P). Note that
w(h) = f (x + αh) − f (x).

The following lemma relates solutions of DP(x, α) to potential feasible steps in
G
(
E (n)

)
.

Lemma 5 Let x ∈ Z
nt be a feasible solution, α ∈ N, and let h be a solution of

DP(x, α). Then l ≤ x + αh ≤ u and E (n)h = 0.
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12 D. Knop et al.

( i , j )

h, β, σ
...

(i, j + 1)

ĥ, β̂, σ̂

h̄, β̄, σ̄

β̂ = β + ĥ

σ̂ = σ + Dj+1̂h

Edges within a brick

( i , t )

h, 0, σ
...

(i + 1, 1)

ĥ, ĥ, σ̂

h̄, h̄, σ̄

σ̂ = σ + D1̂h

Edges to the first layer of a brick

· · ·

Fig. 1 Transitions in the augmentation graph DP(x, α)

Proof To see that l ≤ x + αh ≤ u, recall that there is no incoming edge to a vertex
(i, j, hij , β

i
j , σ

i
j ) which would violate the bound lij ≤ xij + αhij ≤ uij .

To see that E (n)h = 0, first observe that by the definition of β i
j , and the condition

that only if β i
t = 0 for all i = 1, . . . , n there is an outgoing edge, we have that every

brick hi satisfies 1ᵀhi = 0. Second, by the definition of σ i
j and the edges incoming

to T , we have that Dh = 0. Together, this implies E (n)h = 0. ��
Lemma 6 Let x ∈ Z

nt be a feasible solution. Then every g ∈ G
(
E (n)

)
with l ≤

x + αg ≤ u is a solution of DP(x, α).

Proof Let g ∈ G
(
E (n)

)
satisfy l ≤ x + αg ≤ u. We shall construct an S–T path P in

DP(x, α) such that g is the P-augmentation vector. We will describe which vertex is
selected from each layer, and argue that this is well defined. Then, by the definition of
DP(x, α), it will be clear that the selected vertices are indeed connected by edges.

In layer L(1, 1), we select vertex
(
1, 1, g11, g

1
1, D1g11

)
. In layer L(i, j), we select

vertex
(
i, j, gij , β

i
j , σ

i
j

)
with β i

j = β i
j−1 + gij and σ i

j = σ i
j−1 + Dj gij if j > 1, and

β i
j = β i−1

t + gij and σ i
j = σ i−1

t + D1g
i−1
t otherwise.

We shall argue that this is well defined, i.e., that all of the specified vertices actually
exist. From Lemma 1 it follows that g can be decomposed into M ≤ g(E) vectors
g̃1, . . . g̃M ∈ G(1ᵀ). Moreover, since M ≤ g(E) and each g̃�, � ∈ [M], has one 1
and one −1 (again by Lemma 1), we have that for every i ∈ [n] and every j ∈ [t],∣∣∣
∑ j

�=1 g
i
�

∣∣∣ ≤ g(E) (i.e., the brick prefix sum is also bounded by g(E) in absolute

value). Thus, vertices with the appropriate gij - and β i
j - coordinates exist. Regarding

the σ i
j coordinate, we make a similar observation: for every i ∈ [n] and j ∈ [t],(∑i−1

�̂=1
Dg�̂

)
+

(∑ j
�=1 D�gi�

)
∈ Σ(E).

From the definition of the edges in DP(x, α), and the fact that l ≤ x+αg ≤ u, the
selected vertices create a path. ��
Lemma 7 (optimality certification)There is analgorithm that, givena feasible solution
x ∈ Z

nt for (I P)E (n),b,l,u, f and α ∈ N, in time tO(r)(Δr)O(r2)n either finds a vector h
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Combinatorial n-fold integer programming and applications 13

such that (i) E (n)h = 0, (ii) l ≤ x + αh ≤ u, and (iii) f (x + αh) < f (x), or decides
that no such h exists.

Proof It follows from Lemma 5 that all solutions of DP(x) fulfil (i) and (ii). Observe
that if we take h to be a solution of DP(x, α) with minimum weight, then either
f (x) = f (x + αh) or f (x) > f (x + αh). Due to Lemma 6 the set of solutions of
DP(x, α) contains all h ∈ G

(
E (n)

)
with l ≤ x + αh ≤ u. Thus, by Proposition 3, if

f (x) = f (x + αh), no h satisfying all three conditions (i), (ii), (iii) exists.
Our goal is then to find the lightest S–T path in the graph DP(x, α). However, since

edges of negative weight will be present, we cannot use, e.g., Dijkstra’s algorithm.
Still, it can be observed that DP(x, α) is a directed acyclic graph, and moreover,
finding the lightest path can be done in a layer-by-layer manner (by the standard
algorithm of relaxing edges in a directed acyclic graph [12, Theorem 24.5]) in time
O(|V (DP(x, α))| · Lmax) = O(nt L2

max), also cf. [36, Lemma 3.4]. The claimed run
time follows from the bound on the maximum size of a layer (4). ��

3.3 Step lengths

We have shown how to find a feasible step h for any given step length α ∈ N such that
f (x+ αh)≤ f (x+ αg) for any feasible step g ∈ G

(
E (n)

)
. Now,wewill show that there

are not too many step lengths that need to be considered in order to find a Graver-best
step, which, by Proposition 3, leads to a good bound on the total required number of
steps. Observe that since all feasible solutions are contained in a box l ≤ x ≤ u, no
steps of length α > ‖u − l‖∞ are feasible. Thus, if the quantity ‖u − l‖∞ can be
controlled, we may control the number of step-lengths which need to be checked.

In the following, we use the proximity technique pioneered by Hochbaum and
Shantikumar [38] in the case of totally unimodular matrices and extended to the setting
of Graver bases by Hemmecke et al. [35]. This technique allows to show that, provided
some structure of the constraints (e.g., total unimodularity or bounded �∞-norm of its
Graver elements), any continuous optimum is not too far from an integer optimum of
the instance.

Proposition 4 ( [35,Theorem3.14])Consider a combinatorial n-fold IP (I P)E (n),b,l,u, f .
Then for any optimal solution x̂ of its continuous relaxation there is an optimal solu-
tion x∗ of (I P)E (n),b,l,u, f with

∥∥x̂ − x∗∥∥∞ ≤ nt · max
{
‖g‖∞ | g ∈ G

(
E (n)

)}
.

This allows us then to reduce the original instance to an “equivalent” instance
contained in a small box, as hinted at above.

Lemma 8 (equivalent bounded instance) Let (I P)E (n),b,l,u, f be a combinatorial n-
fold IP. With one call to an optimization oracle of its continuous relaxation, one can
construct l̂, û ∈ Z

nt such that
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14 D. Knop et al.

min
{
f (x) | E (n)x = b, l ≤ x ≤ u

}
= min

{
f (x) | E (n)x = b, l̂ ≤ x ≤ û

}
,

and
∥∥∥û − l̂

∥∥∥∞ ≤ nt · g(E).

Proof Returning toProposition4, observe that the quantitymax
{‖g‖∞ | g ∈ G

(
E (n)

)}

is bounded by g(E) (Lemma 3 and Lemma 1). Hence, we can set new lower

and upper bounds l̂ and û defined by l̂ ij :=max
{
�x̂ ij� − ntg(E), lij

}
and

ûij :=min
{
�x̂ ij� + ntg(E), uij

}
, and Proposition 4 assures that the integer optimum

also lies within the new bounds. ��

3.4 Finishing the proof

We are now going to prove Theorem 1 by combining the results we have established
in the previous sections.

Proof of Theorem 1 We proceed in three steps.
Step 1: Bounding the feasible region. First, we use Lemma 8 to construct new lower
and upper bounds l̂, û satisfying ‖û − l̂‖∞ ≤ nt · g(E) and preserving the optimal
value of (I P)E (n),b,l,u, f . Thus, we shall replace l and u by l̂ and û from now on and
assume that ‖u − l‖∞ ≤ nt · g(E).

Step 2: Optimization. Let us assume that we have an initial feasible solution x0 of
(I P)E (n),b,l,u, f . Given a step length α ∈ N, it takes time tO(r)(Δr)O(r2)n by Lemma 7

to find a feasible step h satisfying f (x+αh) ≤ f (x+αg) for all g ∈ G
(
E (n)

)
. Recall

that no g ∈ G
(
E (n)

)
can be feasible for α > ntg(E) by our bound on ‖u− l‖∞. Thus,

applying Lemma 7 for all α ∈ [nt · g(E)] and choosing a pair (α,h) which minimizes
f (x + αh) surely finds a Graver-best step in time tO(r)(Δr)O(r2)n2 (or reports that
no such h exists). In order to reach the optimum, by Proposition 3 we need to make
at most (2nt − 2) · O(〈I 〉) Graver-best steps, where 〈I 〉 = 〈b, 0,u, f 〉. This follows
fromO(〈I 〉) being an upper bound on f (x0) − f (x∗) for some optimal solution x∗ of
(I P)E (n),b,l,u, f . In total, we need time tO(r)(Δr)O(r2)n3〈I 〉.
Step3:Feasibility.Nowweare leftwith the task offinding a starting feasible solutionx0
in the case whenwe do not have it.We follow the lines of Hemmecke et al. [36, Lemma

3.8] and solve an auxiliary combinatorial n-fold IP given by thematrix Ē =
(

D̄
Ā

)
with

D̄:=(D Ir − Ir 0) and Ā:=(A 1ᵀ
2r+1) = 1ᵀ ∈ Z

t+2r+1, where Ir is the identity matrix
of dimension r , 0 is the zero vector of length r and 12r+1 is the vector of all 1s of
length 2r +1. The variables x̄ of this auxiliary problem have a natural partition into nt
variables x corresponding to the original problem fixed at the beginning of Sect. 3, and
n(2r + 1) new auxiliary variables x̃. Keep the original lower and upper bounds on x
and introduce a lower bound 0 and upper bound ntg(E)Δ on each auxiliary variable.
Finally, let the new objective be the linear function f (x) = w̄ᵀx̄ which expresses the
sum of the auxiliary variables, i.e., w̄ = (

w̄1, . . . , w̄n
)
and w̄i = (0, . . . , 0, 1, . . . , 1)

with t zeroes and 2r + 1 ones for all i = 1, . . . , n. Observe that it is easy to construct
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Combinatorial n-fold integer programming and applications 15

an initial feasible solution by setting x = l and computing x̃ accordingly: x̃ serve the
role of slack variables, and the slack in any constraint is at most nt2g(E)Δ by the fact
that ‖u − l‖∞ ≤ nt · g(E) and Δ = 1 + ‖D‖∞.

Then, applying Step 1 and Step 2 either finds a solution to the auxiliary problem
with objective value 0, implying x̃ = 0, and thus x is feasible for the original problem,
or no such solution exists, meaning that the original problem is infeasible. ��

4 Applications

Our aim in this section is to spell out the implications ofTheorem1 for several problems
from the literature. In preparation for this, first we show how to deal with inequali-
ties (Sect. 4.1), and second, we discuss some common encoding aspects (Sect. 4.2).
Then, we give combinatorial n-fold IP formulations for several specific problems
(Sects. 4.3–4.6), which constitute the bulk of this section. Finally, we show that many
ILP formulations in the literature can be turned into a combinatorial n-fold IP formu-
lations, implying speed-ups for the corresponding problems (Sect. 4.7).

All the formulations in this section use integer variables. We implicitly assume it
throughout and specifically highlight it in the first formulation for the sake of com-
pleteness.

4.1 Inequalities in constraints

In applications, it is common for problems to exhibit a structure similar to that of
combinatorial n-fold IP with the only difference being that some of the equations
E (n)x = b are actually inequalities. Given an n-fold IP (in particular a combinatorial
n-fold IP), we call the upper rows (D D · · · D)x = b0 globally uniform constraints,
and the lower rows Axi = bi , for all i ∈ [n], locally uniform constraints. So we first
show that introducing inequalities into a combinatorial n-fold IP is possible. However,
in the case of globally uniform constraints, we need a slightly different approach than
in a standard n-fold IP to keep the rigid format of a combinatorial n-fold IP.

Lemma 9 For an integer programming problem with equations and inequalities

min{ f (x) | E (n) � b, l ≤ x ≤ u, x ∈ Z
nt },

where E (n) is a combinatorial n-fold IP matrix, there exists an equivalent3 combi-
natorial n-fold IP instance (I P)Ē (n),b,l̄,ū, f̄ of dimension nt̄ with t̄ ≤ t + r + 1 and

〈l̄, ū, f̄ 〉 ≤ O(〈l,u, f 〉).
Remark For both types of constraints, a strict inequality “<” can be enforced by
enforcing a “≤” inequality and increasing the corresponding right hand side of the
inequality by one, and similarly for “>”.

3 An instance I ′ is equivalent to I if there is an linear mapping ϕ from the feasible solutions of I ′ to the
feasible solutions of I preserving objective values, such that ϕ is an injection. Specifically here I ′ uses
auxiliary variables and ϕ is a mapping dropping these variables.
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16 D. Knop et al.

Proof of Lemma 9 Inequalities in locally uniform constraints.We add n variables xit+1
for all i ∈ [n] and we replace D with (D 0). For each row i where we wish to enforce
1ᵀxi ≤ bi , we set the upper bound on uit+1 = ‖ui − li‖1 and lower bound lit+1 = 0.
Similarly, for each row i where we wish to enforce 1ᵀxi ≥ bi , we set a lower bound
lit+1 = −‖ui − li‖1 and an upper bound uit+1 = 0. For all remaining rows we set
lit+1 = uit+1 = 0, enforcing 1ᵀxi = bi .

Inequalities in globally uniform constraints. We replace the (already augmented)
matrix D with (D Ir ), where Ir is the r×r identity matrix. Thus, we have introduced r
new variables xit+ j with i ∈ [n] and j ∈ [r ]; however, we enforce them all to be 0 by

setting lit+ j = uit+ j = 0 for all i ∈ [n] and j ∈ [r ]. Next, we introduce an (n + 1)-st

brick, set ln+1
j = un+1

j = 0 for all j ∈ [t] and set bn+1 = ‖D‖∞ · ‖(b1, . . . , bn)‖1.
Then, for each row i ∈ [r ]where we wish to enforce a “≤” inequality, we set ln+1

t+i = 0

and un+1
t+i = bn+1, and for each row i ∈ [r ]with a “≥” inequality, we set ln+1

t+i = −bn+1

and un+1
t+i = 0. We let ln+1

t+i = un+1
t+i = 0 for equality.

It remains to argue how for i ∈ [n], j ∈ [t] obtain the value of the original vari-
able xij . Note that we have only added new (slack) variables to the original IP and thus
for this we only have to project out the newly added variables. An injection ϕ certifying
the equivalence of I and I ′ is the mapping which projects out the new variables (xit+1

for all i , xit+1+ j for all j ∈ [r ], and xn+1
j for all j ∈ [t + r + 1]). ��

4.2 Succinctness

Before approaching specific applications we first discuss our particular choice of
encoding.

A common aspect shared by all of our applications is that bounding some parameter
of the instance makes it preferable to view the instance in a succinct way (following
the terminology of Faliszewski et al. [21], Onn [62,63] calls these problems huge
whereas Goemans and Rothvoß [32] call them high multiplicity). The standard way
of viewing an instance is that the input is a collection of individual objects (bricks,
matrix columns, voters, covering sets etc.). The succinct way of viewing an instance is
by saying that identical objects are of the same type, giving a bound T on the number
of distinct types, and then presenting the input as numbers n1, . . . , nT such that ni
is the number of objects of type i . Clearly, any standard instance can be converted
to a succinct instance of roughly the same size (the number of objects is an upper
bound on T ), but the converse is not true as the numbers ni might be large. Also,
it is sometimes non-trivial to see (see Sect. 4.6) that the output can be represented
succinctly, but we show that in all relevant cases it can.

In our applicationswe always state what are the types andwhat is the upper bound T
on the number of types. We assume some arbitrary enumeration of the types. We also
assume that the input is presented succinctly and thus we do not include the time
needed to read and convert a standard instance into a succinct instance in the runtime
of our algorithms.
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4.3 Weighted set multicover

Bredereck et al. [8] defined theWeighted Set Multicover (WSM) problem,which
is a significant generalization of the classical Set Cover problem:

Weighted Set Multicover
Input: A universe U of size k, a set system represented by a multiset

F = {F1, . . . , Fn} ⊆ 2U , weights w1, . . . , wn ∈ N, and demands
d1, . . . , dk ∈ N.

Find: A multisubset F ′ ⊆ F minimizing
∑

Fi∈F ′ wi and satisfying
∣∣{i | Fi ∈

F ′, j ∈ Fi }
∣∣ ≥ d j for all j ∈ [k].

The motivation of Bredereck et al. to study WSM was that it captures several
problems from computational social choice and optimization problems on graphs
implicit to previous works [24,28,49]. Bredereck et al. [8] designed an algorithm for
WSM that runs in time 22

O(k log k)O(n), using Lenstra’s algorithm.
Our result yields an exponential improvement over the algorithm by Bredereck et

al. [6], both in the dependence on the parameter and instance size:

Theorem 2 There is an algorithm that solves Weighted Set Multicover in time
kO(k2)O(log n+logwmax) for succinctly represented instances of n sets over auniverse
of size k, where wmax is the maximum weight of any set.

Proof Observe that there are at most 2k different sets F ∈ 2U ; let T be the number
of these sets. We classify each pair (F, w) in the input into one of T ≤ 2k different
types, where (F, w) and (F ′, w′) are of the same type if F = F ′. Let ni , i ∈ [T ],
be the number of sets of type i . Further, for any two pairs (F, w) and (F, w′) with
w ≤ w′, for any solution containing (F ′, w′) and not containing (F, w) there is
another solution which is at least as good and contains (F, w). We thus order the
pairs (F, w), (F, w′), · · · by non-decreasing weight, so that lighter elements are used
before heavier ones in any optimal solution.

This allows us to represent the input instance in a succinct way by T functions
gi , . . . , gT : [n] → N such that, for any i ∈ [T ], gi (�) is defined as the sum of the �

lightest elements of type i or +∞ in case that there are less than � elements of type i .
Observe that since each gi is a partial sum of a non-decreasing sequence of weights,
it is a convex function.

We construct a combinatorial n-fold IP to solve the problem. Let xτ
f for each f ∈ 2U

and each τ ∈ [T ] be a variable. Let lτf = uτ
f = 0 for each f ∈ 2U such that f 	= Fτ ,

and let lτf = 0 and uτ
f = nτ for f = Fτ . The variable xτ

f with f = Fτ represents the
number of sets of type τ in the solution. The IP formulation then reads

min
T∑

τ=1

gτ (xτ
f ) s.t.

T∑

τ=1

∑

f∈2U
f j x

τ
f ≥ d j for all j ∈ [k]

∑

f∈2U
xτ
f ≤ nτ for all τ ∈ [T ]

xτ
f ∈ N for all τ ∈ [T ], f ∈ 2U ;

note that fi is 1 if i ∈ f and 0 otherwise.
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18 D. Knop et al.

This formulation is a combinatorial n-fold IP for the following reason. First, its
objective function is separable convex. Second, its constrains are divided into two sets
as follows. The first k constraints are described by a sum whose indices run from 1
to T and whose coefficients are identical for each τ ∈ [T ] – these are the globally
uniform constraints. The second T constraints are described by a sum whose indices
run over f ∈ 2U and each constraint only applies to a subset of variables determined
by τ ∈ [T ] – these are the locally uniform constraints.

Let us determine the parameters Δ̂, r̂ , t̂, n̂ and 〈 Î 〉 of this combinatorial n-fold IP
instance Î . Clearly, the largest coefficient ||D̂||∞ is 1, the number of globally uniform
constraints r̂ is k, the number of variables per brick t̂ is 2k , the number of bricks n̂
is T , and the length of the input 〈 Î 〉 is at most log n + logwmax. Thus, instance Î can
be solved using Theorem 1 in the claimed time kO(k2)O(log n + logwmax). ��

4.4 Stringology

A typical problem from stringology is to find a string y satisfying certain distance prop-
erties with respect to k strings s1, . . . , sk . All previous fixed-parameter algorithms for
such problems we are aware of for parameter k rely on Lenstra’s algorithm, or their
complexity status was open (e.g., the complexity of Optimal Consensus [2] was
unknown for all k ≥ 4). Interestingly, Boucher and Wilkie [5] showed the counter-
intuitive fact that Closest String is easier to solve when k is large, which makes
the parameterization by k even more significant. Finding an algorithm with run time
only single-exponential in k was a repeatedly posed problem, e.g. by Bulteau et al. [9,
Challenge #1] and Avila et al. [3, Problem 7.1]. By applying our result, we close this
gap for a wide range of problems.

In order to do so, we show a single-exponential algorithm for an artificial “meta-
problem” called δ-Multi Strings which generalizes many previously studied
problems in stringology.

δ-Multi Strings
Input: A set of strings S = {s1, . . . , sk}, each of length L over alphabetΣ ∪{�},

distance lower and upper bounds d1, . . . , dk ∈ N and D1, . . . , Dk ∈ N,
distance function4 δ : (Σ ∪ {�})∗ × Σ∗ → N and a binary parameter
b ∈ {0, 1}.

Find: An output string y ∈ Σ L with di ≤ δ(si , y) ≤ Di for each si ∈ S, which
minimizes b · ( ∑k

i=1 δ(si , y)
)
.

We call a distance function δ : Σ∗ × Σ∗ → N character-wise wildcard-compatible
if δ(x, y) = ∑L

i=1 δ(x[i], y[i]) for any two strings x, y ∈ Σ L , and δ(e, �) = 0 for
all e ∈ Σ . Note that a character-wise wildcard-compatible can be described by a
|Σ | × |Σ | sized table of the character distances.
Theorem 3 There is an algorithm that solves instances of δ-Multi Strings in time
KO(k2)O(log L), where K = max

{|Σ |, k,maxe, f ∈Σ δ(e, f )
}
and δ is a character-

wise wildcard-compatible function.

4 We stress that here δ is part of the input.
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Combinatorial n-fold integer programming and applications 19

Proof Let us fix an instance of δ-Multi Strings. We create an instance of combina-
torial n-fold IP and show how solving it corresponds to solving the original δ-Multi
Strings problem.

As is standard, we represent the input as an L×k matrixC with entries fromΣ∪{�}
whose rows are the input strings s1, . . . , sk . There are at most T = (|Σ |+1)k different
input column types. Let ne be the number of columns of type e ∈ (Σ∪{�})k and denote
Tc ⊆ (Σ ∪ {�})k the set of input column types. A solution can be represented as an
L × (k + 1) matrix with entries from Σ ∪ {�} whose last row does not contain any �

symbol. Thus, there are atmost (|Σ |+1)k ·|Σ | solution column types α = (e, f ) ∈ Ts ,
where Ts = Tc×Σ is the set of all solution column types.We say that an input column
type e ∈ Tc is compatible with a solution column type α ∈ Ts if α = (e, f ) for some
f ∈ Σ .
Let us describe the combinatorial n-fold IP formulation. It consists of variables xeα

for each α ∈ Ts and each e ∈ Tc. Intuitively, the variable xeα encodes the number of
columns α in the solution. However, to obey the format of combinatorial n-fold IP, we
need a copy of this variable for each brick, hence the upper index e. We set an upper
bound ueα = ne for each two compatible e and α, and we set ueα = 0 for each pair
which is not compatible; all lower bounds are set to 0. The locally uniform constraints
are simply

∑
α∈Ts x

e
α = ne for all e ∈ Tc. The globally uniform constraints are

∑

e∈Tc

∑

α=(e′, f )∈Ts
δ( f , e′

i )x
e
α ≥ di for all si ∈ S

∑

e∈Tc

∑

α=(e′, f )∈Ts
δ( f , e′

i )x
e
α ≤ Di for all si ∈ S

and the objective is

min b ·
⎛

⎝
k∑

i=1

∑

e∈Tc

∑

α=(e′, f )∈Ts
δ( f , e′

i )x
e
α

⎞

⎠ .

We then apply Theorem 1 with the following set of parameters:

– Δ̂ is one plus the largest coefficient in D, which is 1 + maxe, f ∈Σ δ(e, f ) ≤ 1 + K ,
– r̂ is the number of globally uniform constraints, which is 2k,
– t̂ is the number of variables per brick, which is |Ts | ≤ (|Σ | + 1)k |Σ | ≤ K 2k ,
– n̂ is the number of bricks, which is |Tc| ≤ (|Σ | + 1)k ≤ (K + 1)k , and,
– 〈 Î 〉 is the size of the input 〈b, 0,u,w〉 ≤ log L .

Now, applying Theorem 1 yields the running time

t̂ r̂ · (Δ̂r̂)O(r̂2) · (n̂3〈 Î 〉)+R ≤
(
K 2k

)2k ·((1 + K )2k)O(2k) ·(K + 1)k log L+R

≤ K 4k2 ·KO(k) ·KO(k) ·log L+R≤KO(k2) log L+R,

where we have used k ≤ K and R is the time required to solve the continuous
relaxation of the above IP. Note that R is polynomial in r̂ , t̂, n̂, 〈 Î 〉. ��
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20 D. Knop et al.

When δ is the Hamming distance dH , it is standard to first “normalize” the input
to an equivalent instance over the alphabet [k] [37, Lemma 1]. With a slight abuse
of notation we also define the Hamming distance for the wildcard character � to be
dH (e, �) = 0 for all e ∈ Σ . Note that the “normalization” procedure still works in
that case, cf. [37, Lemma 1]. Thus, for δ = dH we get rid of the dependence on |Σ |:
Corollary 1 dH -Multi Strings can be solved in time kO(k2)O(log L).

That is, dH -Multi Strings is fixed-parameter tractable for parameter k. Now
we will show that many other string problems are single-exponential fixed-parameter
tractable parameterized by k as well because they either can be seen as special cases
of dH -Multi Strings or (Turing) reduce to it. Foremost, this is the case for Closest
String.

Closest String [53]
Input: Strings s1, . . . , sk ∈ Σ L , d ∈ N.
Find: A string y ∈ Σ L such that dH (y, si ) ≤ d for all si ∈ S.

It is easy to see that Closest String is a special case of dH - Multi Strings with
b = 0, and Di = d and di = 0 for all i ∈ [k].

Similar reasoning applies to many other problems. We first give their definitions
and either explain how they reduce to Closest String, or in Table 2 explain how
they reduce to dH -Multi Strings.

Farthest String [51]
Input: Strings s1, . . . , sk ∈ Σ L , d ∈ N.
Find: A string y ∈ Σ L such that dH (y, si ) ≥ d for all si ∈ S.

d-Mismatch [33,65]
Input: Strings s1, . . . , sk ∈ Σ L , d ∈ N.
Find: A string y ∈ Σ L ′

with L ′ ≤ L and a position p ∈ [L − L ′] such that
dH (y, si,p,L ′) ≥ d for all si ∈ S, where si,p,L ′ is the substring of si of
length L ′ starting at position p.

Note.Grammet al. [33] observed that d-Mismatch has a Turing reduction toClosest
String which outputs L2 instances.

Distinguishing String Selection (DSS) [50]
Input: Bad strings S = {s1, . . . , sk1}, good strings S′ = {s′

1, . . . , s
′
k2

}, k =
k1 + k2, d1, d2 ∈ N, all strings of length L over alphabet Σ .

Find: A string y ∈ Σ L such that dH (y, si ) ≤ d1 for each bad string si and
dH (y, s′

i ) ≥ L − d2 for each good string s′
i .

Neighbor String [55]
Input: Strings s1, . . . , sk ∈ Σ L , D1, . . . , Dk ∈ N.
Find: A string y ∈ Σ L such that dH (y, si ) ≤ Di for all i ∈ [k].

Note. Neighbor String was introduced by Ma and Sun [55] and further studied by
Nishimura and Simjour [60]. Neither explicitly state a fixed-parameter algorithm for
parameter k.
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Combinatorial n-fold integer programming and applications 21

Closest String with Wildcards [37]
Input: Strings s1, . . . , sk ∈ (Σ ∪ {�})L , d ∈ N.
Find: Astring y ∈ Σ L such thatdH (y, si ) ≤ d for all i ∈ [k], wheredH (e, �) =

0 for any e ∈ Σ .

Closest to Most Strings [4]
Input: Strings s1, . . . , sk ∈ Σ L , o ∈ [k], d ∈ N.
Find: A string y ∈ Σ L and a set of outliers O ⊆ {s1, . . . , sk} such that

dH (y, si ) ≤ d for all si /∈ O and |O| ≤ o.

Note. Closest to Most Strings (also known as Closest String with Out-
liers) has a Turing reduction (with 2k instances) to Closest String [4].

c-Hamming Radius Clustering5 (c-HRC) [1]
Input: Strings s1, . . . , sk ∈ Σ L , d ∈ N.
Find: Apartition of {s1, . . . , sk} into S1, . . . , Sc and output strings y1, . . . , yc ∈

Σ L such that d(yi , s j ) ≤ d for all i ∈ [c] and s j ∈ Si .

Note. c-HRC has a Turing reduction (with kk instances) to Closest String [1].

Optimal Consensus [27]
Input: Strings s1, . . . , sk ∈ Σ L , d ∈ N.
Find: A string y ∈ Σ L such that dH (y, si ) ≤ d for all i ∈ [k] and∑

i∈[k] dH (y, si ) is minimal.

See Table 2 for a summary of our improvements for the above-mentioned problems.
Now, the following theorem is a simple corollary of Corollary 1 and the fact that
dH -Multi Strings generalizes all of the problems defined above.

Theorem 4 The problems

– Closest String, Farthest String, Distinguishing String Selection,
Neighbor String, Closest String with Wildcards, Closest to Most
Strings, c-HRC and Optimal Consensus are solvable in time kO(k2)O(log L),
and,

– d-Mismatch is solvable in time kO(k2)O(L2 log L),

for inputs consisting of k strings of length L succinctly encoded by multiplicities of
identical columns.

4.5 Computational social choice

A typical problem in computational social choice takes as input an election consisting
of a set V of voters and a set C of candidates which are ranked by the voters, and the
objective is to manipulate the election in certain ways to let a desired candidate win
the election under some voting ruleR. This setup leads to a class of bribery problems,
a prominent example of which isR-Swap Bribery where manipulation is by swaps

5 We stress here c is a fixed constant.
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of candidates which are consecutive in voters’ preference orders. For a long time, the
only known algorithms minimizing the number of swaps required run times which
were double-exponential in |C |. Improving those run times was posed as a challenge
[6, Challenge #1]. Recently, Knop et al. [46] solved the challenge using Proposition 1.
However, Knop et al.’s result has a cubic dependenceO(|V |3) on the number of voters,
and the dependence on the number of candidates is still quite large, namely |C |O(|C|6).

We improve their result to logarithmic dependence on |V |, and smaller dependence
on |C | – as we shall see. However, before we do so, we first introduce the necessary
definitions and terminology.

Elections. An election (C, V ) consists of a set C of candidates and a set V of voters,
who indicate their preferences over the candidates in C , represented via a preference
order �v for every v ∈ V which is a total order overC . For a candidate cwe denote by
rank(c, v) their rank in�v (that is, rank(c, v) = ∣∣{c′ ∈ C | c �v c′}∣∣). Then, v’s most
preferred candidate has rank 1 and their least preferred candidate has rank |C |. For
distinct candidates c, c′ ∈ C , we write c �v c′ if voter v prefers c over c′. To simplify
notation, we sometimes identify the candidate set C with {1, · · · , |C |}, in particular
when expressing permutations over C . We sometimes identify a voter v with their
preference order �v , as long as no confusion arises.

Swaps. Let (C, V ) be an election and let �v∈ V be a voter. For candidates c, c′ ∈ C ,
a swap s = (c, c′)v means to exchange the positions of c and c′ in �v . We denote
the perturbed order by �s

v . A swap (c, c′)v is admissible in �v if rank(c, v) =
rank(c′, v)−1. A set S of swaps is admissible in�v if they can be applied sequentially
in �v , one after the other, in some order, such that each one of them is admissible.
Note that the perturbed vote, denoted by �S

v , is independent from the order in which
the swaps of S are applied (if each swap is admissible when applied). We also extend
this notation for applying swaps in several votes and denote it V S . We specify v’s cost
of swaps by a function σv : C × C → Z, where σv(c, c′) is the cost of swapping c
and c′.

Voting rules. A voting rule R is a function that maps an election (C, V ) to a subset
W ⊆ C of winners. Let us define two significant classes of voting rules:

Scoring protocols. A scoring protocol is defined through a vector s = (s1, . . . , s|C|)
of integers with s1 ≥ · · · ≥ s|C| ≥ 0. For each position p ∈ {1, . . . , |C |}, value sp
specifies the number of points that each candidate c receives from each voter that
ranks c as pth best. Any candidate with the maximum number of points is a winner.
Examples of scoring protocols include the Plurality rule with s = (1, 0, . . . , 0), the d-
Approval rule with s = (1, . . . , 1, 0, . . . , 0) with d ones, and the Borda rule with s =
(|C | − 1, |C | − 2, . . . , 1, 0). Throughout, we consider only natural scoring protocols
for which s1 ≤ |C |, as is the case for the aforementioned popular rules.

C1 rules.A candidate c ∈ C is aCondorcet winner if any other c′ ∈ C \{c} satisfies
|{�v∈ V | c �v c′}| > |{v ∈ V | c′ �v c}|. Fishburn [26] classified voting rules as
C1, C2 or C3, depending on the kind of information needed to determine the winner.
For candidates c, c′ ∈ C let v(c, c′) be the number of voters who prefer c over c′, that
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24 D. Knop et al.

is, v(c, c′) = |{�v∈ V | c �v c′}|; we write c <M c′ if c beats c′ in a head-to-head
contest, that is, if v(c, c′) > v(c′, c).

A rule R is C1 if knowing <M suffices to determine the winner, that is, for each
pair of candidates c, c′ we know whether v(c, c′) > v(c′, c), v(c, c′) < v(c′, c) or
v(c, c′) = v(c′, c). An example is the Copelandα rule for α ∈ [0, 1], which specifies
that for each head-to-head contest between two distinct candidates, if some candidate
is preferred by a majority of voters then they obtain one point and the other candidate
obtains zero points, and if a tie occurs then both candidates obtain α points; the
candidate with the largest sum of points wins.

R-Swap Bribery
Input: An election (C, V ), a designated candidate c� ∈ C and swap costs σv

for v ∈ V .
Find: A set S of admissible swaps of minimum cost so that c� wins the election

(C, V S) under the rule R.

We say that two voters v, v′ are of the same type if �v=�v′ and σv = σv′
; clearly

T ≤ |V |.
Theorem 5 R-Swap Bribery can be solved in time

– |C |O(|C|2)O(T 3(log |V | + log σmax)) forR any natural scoring protocol, and,
– |C |O(|C|4)O(T 3(log |V | + log σmax)) forR any C1 rule,

where T is the number of voter types and σmax is the maximum cost of a swap.

Remark For simplicity, we only show how Theorem 1 can be applied to speed up the
R-Swap Bribery for two representative voting rulesR.

Proof of Theorem 5 Let n1, . . . , nT be the numbers of voters of given types. We enu-
merate all total orders on C by numbers in [|C |!]; that is, a j ∈ [|C |!] uniquely
determines a total order on C . Let xij for j ∈ [|C |!] and i ∈ [T ] be a variable encoding
the number of voters of type i that are bribed to be of order j in the solution. With
slight abuse of notation, we denote by σ i (i, j) the cost of bribery for a voter of type i
to change order to j (as by [20, Proposition 3.2] this cost is fixed). Regardless of the
voting ruleR, the objective and the locally uniform constraints are identical:

min
T∑

i=1

|C|!∑

j=1

σ i (i, j)xij subject to
|C|!∑

j=1

xij = ni for all i ∈ [T ] .

The number of variables per brick t̂ is |C |!, the number of bricks n̂ is T , and the size
of the instance 〈 Î 〉 is log n + log(|C |2σmax), because at most |C |2 swaps suffice to
permute any order i ∈ [|C |!] to any other order j ∈ [|C |!] [20, Proposition 3.2]. Let us
now describe the globally uniform constraints separately for the two classes of voting
rules which we study here.

Natural scoring protocol. Let s = (s1, . . . , s|C|) be a natural scoring protocol, i.e.,
s1 ≥ · · · ≥ s|C| and ‖s‖∞ ≤ |C |. With slight abuse of notation, we denote s j (c), for
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Combinatorial n-fold integer programming and applications 25

j ∈ [|C |!] and c ∈ C , the number of points obtained by candidate c from a voter of
order j . The globally uniform constraints then enforce that c� gets at least as many
points as any other candidate c:

T∑

i=1

|C|!∑

j=1

s j (c)x
i
j ≤

T∑

i=1

|C|!∑

j=1

s j (c
�)xij for all c ∈ C, c 	= c� .

The number r̂ of these constraints is |C | − 1, and the largest coefficient in them is
‖s‖∞ ≤ |C | (since s is a natural scoring protocol). Therefore, Δ̂ = 1+‖s‖ ≤ 1+|C |.
Any C1 rule. Let α j (c, c′) be 1 if a voter with order j ∈ [|C |!] prefers c to c′ and 0
otherwise. Recall that a voting rule is C1 if, to determine the winner, it is sufficient
to know, for each pair of candidates c, c′, whether v(c, c′) > v(c′, c), v(c, c′) <

v(c′, c) or v(c, c′) = v(c′, c), where v(c, c′) = |{v | c �v c′}|. We call a tuple <M∈
{<,=,>}|C|2 a scenario. Thus, a C1 rule can be viewed as partitioning the set of all
scenarios into those that select c� as a winner and those that do not. Then, it suffices
to enumerate all the at most 3|C|2 scenarios <M where c� wins, and for each of them
to solve a combinatorial n-fold IP with the following globally uniform constraints
enforcing the scenario <M .

T∑

i=1

|C|!∑

j=1

α j (c, c
′)xij >

T∑

i=1

|C|!∑

j=1

α j (c
′, c)xij for all c, c′ ∈ C s.t. c <M c′

T∑

i=1

|C|!∑

j=1

α j (c, c
′)xij =

T∑

i=1

|C|!∑

j=1

α j (c
′, c)xij for all c, c′ ∈ C which are incomparable.

The number r̂ of these constraints is
(|C|
2

) ≤ |C |2, and the largest coefficient in

them is 1, so Δ̂ = 2. The proof is finished by plugging in the values Δ̂, r̂ , t̂, n̂ and 〈 Î 〉
into Theorem 1. ��

Connections between stringology and computational social choice. Challenge #3 of
Bulteau et al. [9] asks for connections between problems in stringology and compu-
tational social choice. We demonstrate that in both fields combinatorial n-fold IP is
an important tool. An important feature of both Bribery-like problems and Closest
String-like problems is that permuting voters or characters does not have any effect.
This fitswell the n-fold IP format,which does not allow any interaction between bricks.
It seems that this feature is important, as when it is taken away, such as in Closest
Substring, the problem becomes W[1]-hard [56], even for parameter d + k.

Another common feature is that both types of problems naturally admit ILP formu-
lations for succinct variants of the problems, as mentioned above. Moreover, it was
precisely this fact that made all previous algorithms double-exponential—the natural
succinct formulation has exponentially many (in the parameter) variables and thus
applying Lenstra’s algorithm leads to a double-exponential runtime.
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4.6 Huge n-fold integer programming with small domains

Onn [62] introduced a high-multiplicity version of the standard n-fold IP problem,
where the number of bricks is now given in binary. It thus closely relates to the
Cutting Stock problem, the high-multiplicity version of Bin Packing, where the
number of items of each size is given in binary. The complexity of Cutting Stock
for constantly many item sizes was a long-standing open problem that was recently
shown to be polynomial-time solvable by Goemans and Rothvoß [32] and by Jansen
andKlein [40]. Previously,Hugen-fold IPwas shown to befixed-parameter tractable
when D = I and A is totally unimodular. Using our result, we show that it is also
fixed-parameter tractable when D and A are arbitrary, but the size of variable domains
is bounded by a parameter.

Huge n-fold IP concerns problems that can be formulated as an n-fold IP with
the number of bricks n given in binary. Bricks are thus represented not explicitly,
but succinctly by their multiplicity. It is at first unclear if this problem admits an
optimal solution which can be encoded in polynomial space, but this is possible by
a theorem of Eisenbrand and Shmonin [18, Theorem 2], as pointed out by Onn [62,
Theorem 1.3 (1)].

Let E = (
D
A

) ∈ Z
(r+s)×t . Let T be a positive integer representing the number of

types of bricks. We are given T positive integers n1, . . . , nT with n = ∑T
i=1 ni and

vectors b0 ∈ Z
r and li ,ui ∈ Z

t and bi ∈ Z
s , and for every i ∈ [T ] a separable convex

function f i : Zt → Z. For i ∈ [T ] and � ∈ [ni ] we define the index function ι as

ι(i, �):=
(∑i−1

j=1 n j

)
+ �.

We call an n-fold IP instance given by the constraint matrix E (n) with the right

hand side b̂ defined by b̂
ι(i,�) :=bi and b̂

0 :=b0, lower and upper bounds defined by

l̂
ι(i,�) := li and ûι(i,�) := ui with theobjective function f (x) := ∑T

i=1
∑ni

�=1 f i
(
xι(i,�)

)

the huge instance.
For i ∈ [T ] and � ∈ [ni ], and a feasible solution x of the huge instance, we say

that the brick xι(i,�) is of type i , and we say that xι(i,�) has configuration c ∈ Z
t

with l̂
i ≤ c ≤ ûi if xι(i,�) = c. The succinct representation of x is the set of tuples{(

ci, j ,mi, j
) | x has mi, j bricks of type i with configuration ci, j

}
.

Huge n-fold Integer Programming
Input: Matrix E = (

D
A

) ∈ Z
(r+s)×t , positive integers n1, . . . , nT , b0 ∈ Z

r , for
every i ∈ [T ] vectors li ,ui ∈ Z

t and bi ∈ Z
s and a separable convex

function f i : Zt → Z.
Find: The succinct representation of an optimal solution, if such exists.

In the special case of small domains we obtain the following:

Theorem 6 Let d1, . . . , dt ∈ N be such that d j = maxi∈[n] uij−lij , dmax = max j∈[t] d j

and let δ = ∏t
j=1 d j . Then the huge n-fold IP problem can be solved in time

δO(r)(tdmax‖D‖∞r)O(r2)O(T 3 log n).6

6 In fact, our result holds even in the case when f is an arbitrary (i.e. non-convex) function, but this does
not imply any more power because of bounded domains.
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This result is useful for the following reason. Knop et al. [46] obtained n-fold IP
formulations with small domains for the very general R-Multi Bribery problem.
The purpose ofR-Multi Bribery is similar to that of the δ-Multi Strings problem:
it is an artificial meta-problem designed to capture many problems from the literature.
In particular, it captures many additional problems not dealt with by Theorem 5.
Together with Theorem 6, this immediatelly implies an exponential speedup in the
number of bricks, without having to reformulate these problems as combinatorial n-
fold IPs. However, there are still benefits in using Theorem 1 directly (as shown in
previous sections) as it leads to better dependence on the respective parameters.

Proof of Theorem 6 Let E, n1, . . . , nT ,b, l,u, f be an instance I of Huge n- fold
IP. First, we shall prove that we can restrict our attention to the case where l = 0 and
ui ≤ (d1, . . . , dt )ᵀ = d for all i ∈ [T ]. Consider a variable xij with lij 	= 0 and any

row ex = b of of the system E (n)x = b. Because the contribution of xij to the right

hand side is eij x
i
j , we have that

ex = b ⇔ ex − eij l
i
j = b − eij l

i
j .

Let I ′ be an instance of Huge n- fold IP obtained from I by, for every row exi = b,
changing the right hand side from b to b − ∑t

j=1 e
i
j l
i
j , and setting u

i
j := uij − lij and

lij := 0. Clearly there is a bijection between the feasible solutions of I and I ′ such that
if x − l is a feasible solution of I ′, x is a feasible solution of I , and thus minimizing
f (x + l) over I ′ is equivalent to minimizing f (x) over I . Thus, from now on assume
that I satisfies l = 0 and ui ≤ d for all i ∈ [T ].

Let Ci for i ∈ [T ] be the set of all possible configurations of a brick of type i ,
defined as Ci = {

c ∈ Z
t | Ac = bi , 0 ≤ c ≤ ui

}
and let C = ∏t

j=1[0 : d j ] be the set
of all configurations. Clearly, Ci ⊆ C for all i ∈ [T ], and |C| = δ. Let C ∈ Z

t×δ be a
matrix whose columns are all configurations from C.

We shall give a combinatorial n-fold IP formulation solving the huge n-fold IP
instance I . The formulation contains variables yic for each c ∈ C and each i ∈ [T ]
encoding how many bricks of type i have configuration c in the solution of I . The
formulation then is

min f̂ (y) =
T∑

i=1

∑

c∈C
f i (c)yic (5)

s.t. DCy = b0 (6)

1ᵀyi = ni for all i ∈ [T ] (7)

yic = 0 for all c /∈ Ci , i ∈ [T ] (8)

0 ≤ yic ≤ ni for all c ∈ Ci , i ∈ [T ] . (9)

It remains to verify that the formulation above corresponds to the huge n-fold IP
instance I . The objective (5) clearly has the same value. Consider the globally uniform
constraints (6). In the huge n-fold IP instance, a configuration c ∈ Ci of a brick of type
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i ∈ [T ] contributes Dc to the right hand side in the first r rows. This corresponds in
our program to the column Dc of the matrix DC . The locally uniform constraints (7)
simply state that the solution needs to contain exactly ni bricks of type i . Finally, since
a brick of type i can never have a configuration c /∈ Ci we set all variables yic with
c /∈ Ci to zero with the upper bound (8), and place no restrictions on yic with c ∈ Ci (9).

The parameters Δ̂, r̂ , t̂, n̂, 〈 Î 〉 of the resulting combinatorial n-fold IP are:

– Δ̂ is one plus the largest coefficient in the upper matrix D̂ = DC , which is
‖DC‖∞ ≤ tdmax‖D‖∞,

– the number of globally uniform constraints r̂ = r ,
– the number of variables in a brick t̂ = δ,
– the number of bricks n̂ = T , and,
– the input length 〈 Î 〉 = 〈b̂, 0, û, f̂ 〉 ≤ log n · (

maxi∈[T ] maxc∈Ci f i (c)
)
.

Thus, the proof is completed by applying Theorem 1. ��
4.7 Combinatorial pre-n-fold IPs

Recall from Sect. 1 our comparison of the Gramm et al. [33] ILP for Closest String
to a similar combinatorial n-fold IP:

⎛

⎜⎜⎜⎜⎜⎝

D1 D2 · · · Dkk

1ᵀ 0 · · · 0
0 1ᵀ · · · 0
...

...
. . .

...

0 0 · · · 1ᵀ

⎞

⎟⎟⎟⎟⎟⎠
x

≤
=
=
...

=

d
b1

b2

...

bk
k

⎛

⎜⎜⎜⎜⎜⎝

D D · · · D
1ᵀ 0 · · · 0
0 1ᵀ · · · 0
...

...
. . .

...

0 0 · · · 1ᵀ

⎞

⎟⎟⎟⎟⎟⎠
x

≤
=
=
...

=

d
b1

b2

...

bk
k
,

where D = (D1 D2 . . . Dkk ).
This similarity strongly suggests a general way how to construct the formulation on

the right given the formulation on the left. Since formulations like the one on the left
are ubiquitous in the literature, this would immediately imply exponential speed-ups
for all such problems.

Definition 3 (Combinatorial pre-n-fold IP) Let T , r , t1, . . . , tT ∈ N and Di ∈ Z
r×tτ

for each τ ∈ [T ]. Let t = t1 + · · · + tT and D = (D1 . . . DT ). Let

F =

⎡

⎢⎢⎢⎢⎢⎣

D1 D2 · · · DT

1ᵀ 0 · · · 0
0 1ᵀ · · · 0
...

...
. . .

...

0 0 · · · 1ᵀ

⎤

⎥⎥⎥⎥⎥⎦
.

Moreover, let b = (b0, b1, . . . , bT ) with b0 ∈ Z
r and bτ ∈ Z for each τ ∈ [T ],

l,u ∈ Z
t , and let f : Zt → Z be a separable convex function. Then for♦ ∈ {<,≤,=,

≥,>}r+T , a combinatorial pre-n-fold IP is the problem

min
{
f (x) | Fx♦b, l ≤ x ≤ u, x ∈ Z

t} .
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Corollary 2 Any combinatorial pre-n-fold IP with 〈I 〉 = 〈b, l,u, f 〉 and Δ = 1 +
‖D‖∞ can be solved in time tO(r)(Δr)O(r2)O(n3〈I 〉) + R, where R is the time
required by one call to an optimization oracle of the continuous relaxation of the
given IP.

Proof We shall create a combinatorial n-fold IP instance based on the input combina-
torial pre-n-fold IP. Let

E (n) =

⎡

⎢⎢⎢⎢⎢⎣

D D · · · D
1ᵀ 0 · · · 0
0 1ᵀ · · · 0
...

...
. . .

...

0 0 · · · 1ᵀ

⎤

⎥⎥⎥⎥⎥⎦
.

Recall D = (D1 . . . DT ) in an r × t matrix. Let T̄τ = ∑τ
j=1 t j for each τ ∈ [T ].

Let ϕ : ⋃T
τ=1

({τ } × [tτ ]
) → [T ] × [t] be an injective mapping from the original

variables to the new ones, defined as follows: for each τ ∈ [T ] and j ∈ [tτ ], ϕ(τ, j) =(
τ, T̄τ−1 + j

)
. Note that the first argument is fixed by ϕ, that is ϕ(τ, ·) = (τ, ·). We

call any pair (τ, j) ∈ [T ] × [t] without a preimage in ϕ a dummy pair.
Then, for any τ ∈ [T ] and j ∈ [tτ ], let (τ, j ′) = ϕ(τ, j), and set l̂τj ′ = lτj , û

τ
j ′ = uτ

j ,

and f̂ τ
j ′ = f τ

j . For any τ ∈ [T ] and j ∈ [t]which form a dummy pair, set ûτ
j = l̂τj = 0

and let f̂ τ
j be the zero function.

Now we see that

min
{
f̂ (x̂) | E (n)x̂ ♦ b, l̂ ≤ x̂ ≤ û, x ∈ Z

T ·t}

is a combinatorial n-fold IP (with inequalities) and thus can be solved in the claimed
time by Theorem 1. ��
Remark We remark that theO(·) constants of the construction above are not optimal,
but do not harm the asymptotic complexity of the algorithm. Moreover, embedding a
combinatorial pre-n-fold in the strict format of a combinatorial n-fold IP is essentially
unnecessary since it is already in the much more permissive generalized n-fold IP
format, and has bounded dual treedepth, and thus is solvable by subsequent faster
algorithms [17,47].

Parameterizing by the number of numbers. Fellows et al. [22] argued that many prob-
lems’ NP-hardness construction is based on having many distinct objects, when it
would be quite natural that the number of distinct objects, and thus the numbers rep-
resenting them, is bounded by a parameter. For example, Chrobak et al. [10] consider
the Heat-sensitive Scheduling problem and prove its NP-hardness; however, the
construction uses many jobs with distinct but increasingly close “heat levels”. Fellows
et al. [22, Theorem 5] gave a fixed-parameter algorithm for a certain Mealy automa-
ton problem which models, for example, the Heat- sensitive Scheduling problem
parameterized by the number of distinct heat levels. Their algorithm relies on Lenstra’s
algorithm and has a double-exponential dependence on the parameter. In the conclu-
sions of their paper, the authors state that “[o]ur main FPT result, Theorem 5, has a
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poor worst-case running-time guarantee. Can this be improved–at least in important
special cases?”

It is easy to observe that their ILP only has σ constraints, and that the coefficients
are bounded by |S||S|2 . Thus, applying our algorithm with t = Δ = O(|S||S|2) and
r = σ yields an algorithm with runtime |S|O(σ |S|2), which is single-exponential in
their (combined) parameter.

Scheduling meets fixed-parameter tractability. Parameterized complexity of schedul-
ing problems is topic of increasing interest; see the survey by Mnich and van
Bevern [57]. Mnich and Wiese [58] studied the parameterized complexity of fun-
damental scheduling problems, starting withMakespan Minimization on identical
machines. They gave an algorithm with double-exponential dependence for parame-
ter maximum job length pmax, and polylogarithmic dependence on the number m of
machines. Knop and Koutecký [43] used standard n-fold IP to reduce the dependence
on pmax to single-exponential, however their algorithm depends polynomially on m.

We observe that in Mnich and Wiese’s proof [58, Theorem 2] there is an ILP
related to a set of configurations which is of size ppmax

max . The coefficients of this ILP
are unbounded, but they give a reduction [58, Lemma 1] which lets us assume that
all coefficients differ by at most ppmax

max . Moreover, because the number of machines
m is fixed before the construction of the ILP, we can appropriately subtract from the
right-hand sides and decrease all coefficients such that Δ ≤ ppmax

max . Then, take the
constraints (2) as globally uniform and notice that there are r = pmax of them. In
conclusion, we have t = Δ ≤ ppmax

max and r = pmax, which yields an algorithm with

run time p
p2max
max · (log n + logm). This improves both the algorithm by Mnich and

Wiese [58] as well as the algorithm by Knop and Koutecký [43].

Lobbying in multiple referenda. Bredereck et al. [7] studied the computational social
choice problem of lobbying in multiple referenda, and showed a Lenstra-based fixed-
parameter algorithm for the parameter m = “number of choices”. The number of
choices induces the parameter �= “number of ballots”, which is clearly bounded by
� ≤ 2m . This leads to an ILP formulation with 2O(m) variables, and thus to a run time
double-exponential in m.

We point out that Bredereck et al.’s proof [7, Theorem 9] contains a combinatorial
pre-n-fold IP, with one set of constraints indexed over i , and another set of constraints
indexed by j , which are simply sums of variables over all i . Since i ∈ [m] and j ∈ [�],
we have the parametersΔ = 1, t = 2m , r = m. Therefore, we improve their algorithm
to only single-exponential in m, namely mO(m2) log n.

Weighted set multicover (WSM) in graph algorithms. In Sect. 4.3, we gave a com-
binatorial n-fold IP formulation for WSM. While WSM was studied in the context
of computational social choice by Bredereck et al. [8], it appeared implicitly several
times in algorithms for restricted classes of graphs, namely graphs of bounded vertex
cover number and neighborhood diversity. We briefly mention some of these results
which we improve here.

Fiala et al. [25] showed that Equitable Coloring and L(p, 1)-Coloring param-
eterized by vertex cover are fixed-parameter tractable. Fiala et al. give two proofs [25,
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Theorem 4, Theorem 9] where they construct a combinatorial pre-n-fold IP. Lampis
[49] introduced the neighborhood diversity parameter and used combinatorial pre-n-
folds to show that Graph Coloring and Hamiltonian Cycle are fixed-parameter
tractable with this parameterization. Ganian [29] later showed in a similar fashion that
Vertex- Disjoint Paths and Precoloring Extension are also fixed-parameter
tractable parameterized by neighborhood diversity. Similarly, Fiala et al. [24] showed
that the Uniform Channel Assignment problem is (triple-exponential) fixed-
parameter tractable parameterized by neighborhood diversity and the largest edge
weight. Ganian and Obdržálek [30] and later Knop et al. [44] studied extensions of
the MSO logic, and provided fixed-parameter algorithms for their model checking on
graphs of bounded neighborhood diversity. These algorithms again use combinatorial
pre-n-folds under the hood.

We can speed up all aforementioned algorithms by applying Corollary 2.

5 Discussion

Weestablished new and fast fixed-parameter algorithms for a class of n-fold IPs, which
led to the first single-exponential time algorithms for several well-studied problems.
Many intriguing questions arise, for example, is Huge n-fold IP fixed-parameter
tractable for parameter (r , s, t,Δ)? One sees that optimality certification is fixed-
parameter tractable using ideas similar to those of Onn’s [62]; yet, one possibly needs
exponentially (in the input size) many augmenting steps.

For most of our applications, complexity lower bounds are not known to us. Our
algorithms yield complexity upper bounds of kO(k2) on the dependence on parame-
ter k for various problems, such as Closest String,Weighted Set Multicover,
Score-Swap Bribery or evenMakespan Minimization [43]. Is this just a common
feature of our algorithm, or are there hidden connections between some of these prob-
lems?Andwhat are their actual complexities?Allweknowso far is a trivial ETH-based
2o(k) lower bound for Closest String based on its reduction from Satisfiability
[27].
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