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Abstract

Consider the problem of minimizing a quadratic objective subject to quadratic
equations. We study the semialgebraic region of objective functions for which this
problem is solved by its semidefinite relaxation. For the Euclidean distance problem,
this is a bundle of spectrahedral shadows surrounding the given variety. We charac-
terize the algebraic boundary of this region and we derive a formula for its degree.
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1 Introduction

We study a family of quadratic optimization problems with varying cost function:

min g(x) subjectto f1(x) = f2(x) = - = fu(x) =0, (1)
X

where f = (f1,..., fin) is a fixed tuple of elements in the space R[x]<2 =~ R(ngz)
of polynomials of degree two in x = (x1, ..., x,). Even though problem (1) is hard,
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there is a hierarchy of tractable semidefinite programming (SDP) relaxations, known
as the Lasserre hierarchy [1,13,14]. In this paper we focus on the Shor relaxation [19],
which is the first level of the hierarchy. We are interested in the set defined by the Shor
relaxation:

Rt = { g € Rlx]<2 : problem (1) is solved exactly by its (Shor) SDP relaxation }.

We call R¢ the SDP-exact region of the tuple f = (f1,..., fin). We will slightly
change this definition in Sect. 3 by further imposing strict complementarity. This will

lead to an explicit description of R¢ as a semialgebraic set in R[x]<; =~ R("erz). We
refer to Definition 3.2.

The quadratic cost function that motivated this article is the squared distance to a
given pointu € R”.Insymbols, g,(x) = ||x —u| |2. Here (1) is the Euclidean Distance
(ED) problem (cf. [6]) for the variety Vy = {x € R" : fi(x) =--- = fiu(x) = 0}.
By restricting Ry to the space of cost functions g,, we obtain a semialgebraic set
in R". This is the SDP-exact region for the ED problem, denoted Rgd , which was
investigated in [3].

Example 1.1 (ED problem for m = n = 2) The variety V¢ consists of four points
in R2. We seek the point in V¢ that is closest to a given point u = (uy, up). The
Voronoi decomposition of R? characterizes the solution. The SDP-exact region Rf‘l
consists of four disjoint convex sets, one for each point in V. The convex sets are
bounded by conics, and are contained in the Voronoi cells of the points. Figure 1
illustrates Rﬁd for two configuration of points in R?: the cells on the left are bounded
by ellipses, and on the right by hyperbolas. Note that in both cases the conics touch
pairwise at the bisector lines (cf. Theorem 4.5).

Our second example is the Max-Cut Problem from discrete optimization. The SDP
relaxation of this problem has been the subject of several papers; see, e.g., [8,11,12].

Example 1.2 (Max-Cut Problem) Let m = n and f;(x) = xl.2 —1,s0 Vg = {—1, +1}"
is the vertex set of the n-cube. We seek a maximal cut in the complete graph K,, where

Fig. 1 The variety of two quadratic equations in RR2 consists of four points. The SDP-exact region for the
ED problem consists of conics that are inscribed in the Voronoi cells. The conics can be ellipses (left) or
hyperbolas (right) depending on the point configuration
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the edge {7, j} has weight ¢;;. In (1) we take g(x) = Zi,j cijxixj where C = (¢;j)
is a symmetric n X n matrix with c;; = -+ = ¢, = 0. Note that these objective
functions live in a subspace of dimension (g) in R[x]<2. The dual solution in the SDP
relaxation is the Laplacian

=2 j£1C1j 1 c13 Cln

c12 =202 €23 Con

L(C) = 13 €23 =232 C3n
Cln Con C3p R Zj;én Cjn

The SDP-exact region Rt consists of on—l spectrahedral cones in R(;), each isomor-
phic to the set of matrices C = (c;;) such that £(C) is positive semidefinite. The
boundary of this spectrahedron is given by a polynomial of degree n — 1, namely the
determinant of any (n — 1) x (n — 1) principal minor of £(C). By the Matrix Tree
Theorem, the expansion of this determinant is the sum of n"~2 monomials in the Cij»
one for each spanning tree of K,,. Hence the algebraic boundary of Ry is a (reducible)
hypersurface of degree (n — 1)2"~1.

The Max-Cut Problem for n = 3 asks to minimize the inner product with
C = (cia,c13,03) over 7 = {(1, 1, 1), (1, —1,=1), (=1, 1,=1), (=1, -1, D}.
The feasible region of the SDP relaxation is the elliptope on the left in Fig. 2. It strictly
contains the tetrahedron conv(7). The region Ry¢ is the set of directions C whose
minimum over the elliptope is attained in 7 . It consists of the four circular cones over
the facets of the dual of the elliptope. That dual body is shown in green in Fig. 2, next
to the yellow elliptope. Thus R¢ corresponds to the union of the four circular facets
of the dual elliptope. These four circles touch pairwise, just like the four ellipses in
Fig. 1. The algebraic boundary of Ry has degree 8 = (3 — 1)23~1.

The present paper is a sequel to [3], where the SDP-exact region for the ED problem
was shown to be full-dimensional in R”. We undertake a detailed study of R¢ and its
topological boundary dR¢. We define the algebraic boundary d,5R to be the Zariski
closure of 9R¢. Our aim is to find the polynomial defining this hypersurface, or at least

Fig. 2 The elliptope (left) has four vertices, corresponding to the rank-one matrices. The rank-one region
consists of the linear forms for which the minimum is attained at a vertex. It is given by the cones over the
four circular facets of the dual convex body (right)

@ Springer



402 D. Cifuentes et al.

to find its degree. This degree is an intrinsic measure for the geometric complexity of
the SDP-exact region.

The material that follows is organized into five sections. In Sect. 2 we introduce
the rank-one region of a general semidefinite programming problem. Building on the
theory developed in [17], we compute the degree of the algebraic boundary of this
semialgebraic set.

In Sect. 3 we turn to the quadratic program (1). We introduce its SDP relaxation,
and show that R¢ coincides with the rank-one region of that relaxation. In Theorem 3.5
we determine the degree of 0,1, R¢ under the assumption that f1, ..., f,, are generic.
That degree is strictly smaller than the corresponding degree for SDP, which appears
in Theorem 2.6.

Section 4 concerns the Euclidean distance problem and the case when the cost
function g is linear. Theorem 4.1 represents their SDP-exact regions in R” as bundles
of spectrahedral shadows. Each shadow lies in the normal space at a point on V¢, and
is the linear image of a master spectrahedron that depends only on f. For linear g, the
region Ré"n is determined by the theta body of Gouveia et al. [9]; see Proposition 4.7.
For the ED problem, R;’d is a tubular neighborhood of the variety V. Figure 1 showed
this when V¢ consists of four points in R?. Analogs in R3 are depicted in Figs. 4, 8, 9
(for points) and Figs. 5, 6 (for curves).

In Sect. 5 we study the algebraic geometry of the SPD-exact region of the ED prob-
lem. Theorem 5.6 gives the degree of the algebraic boundary 8alng‘1 when V¢ is a
generic complete intersection. It rests on representing our bundle as a Segre product
and projecting it into the ambient space of V¢. The abelian surface in Example 5.2
serves as a nice illustration.

Section 6 addresses the ED problem when f is not a complete intersection. Algo-
rithm 1 shows how to compute the SDP-exact region. Several examples demonstrate
what can happen. The dual elliptope on the right of Fig. 2 reappears in five copies in
Fig. 9.

2 The rank-one region in semidefinite programming

Consider a family of semidefinite programming problems with varying cost function:

min C ¢ X subjectto 4; ¢ X =b; fori =1,2,...,1, and X > 0. )

Xe&4
. . d+1
Here C @ X = trace(CX) is the usual inner product on the space S ~ R(2) of
symmetric d x d matrices. The numbers b1, ..., b; € Randthe matrices Ay, ..., A; €

S84 are fixed in (2), whereas the cost matrix C varies freely over 89, The rank-one
region R 4 p is a semialgebraic subset of S? that depends on A = (Ay, ..., A;) and
b = (by, ..., Dby). It consists of all matrices C such that (2) has a rank-one solution
and strict complementarity holds. See Definition 2.2 below. In this section we study
the rank-one region R 4 5 and its boundary. The methods introduced here will be later
used in Sect. 3 to study the SDP-exact region Ry.
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The geometry of SDP-exactness in quadratic optimization 403

The feasible set of (2) is the spectrahedron ¥ 4, = {X eS? : X0, AjeX =
biforl <i <l } We assume that X 4 ; is non-empty and does not contain the zero
matrix. Then the region R 4 5, is the union of all normal cones at extreme points of
rank one in the boundary of X 4 .

Example 2.1 (d = [ = 3) The convex bodies in Fig. 2 arise for Max-Cut with n = 3
in Example 1.2. The spectrahedron X 4 ;, on the left is the elliptope. It is bounded by
Cayley’s cubic surface. The four nodes are the rank-one points in 9% 4 ;. The dual
convex body, shown on the right, is bounded by the quartic Steiner surface and it has
four circular facets. The rank-one region R 4 j is given by the interiors of these four
circles, viewed as cones in S3.

The semidefinite program that is dual to (2) has the form:

I
max b subjectto Y = C — Zki.Al- and Y > 0. 3)
YeS9, reR! P

The following critical equations express the complementary slackness condition that
links the optimal solution X > 0 of the primal (2) and the optimal solution ¥ > 0 of
the dual (3):

l
A;eX =b; forl <i <[ and Y:C—ZMA,' and X-Y =0. 4)
i=1

Recall that strict complementarity holds if rank (X)+rank (Y) =d. The rank-one region
is the semialgebraic set given by the critical equations and strict complementarity, as
follows:

Definition 2.2 The rank-one region R 4 p is the setof all C € S? for which there exist
»eRand X, Y € 8% such that X, Y > 0, rank(X) = 1, rank(Y) = d — 1 and (4)
holds.

Remark 2.3 The above construction can be extended to define the rank-r region for
other values of r. It is an interesting open problem to investigate the geometry of these
regions.

The results that follow hold for generic instances of the matrices .4; and the vector
b. This implies that the results hold for “almost all” instances of (A4, b), i.e., outside a
set of Lebesgue measure zero. More precisely, a property holds generically if there is
a polynomial f in the entries of A and b such that it holds whenever this polynomial
does not vanish.

Genericity was also a standing assumption in the derivation of the algebraic degree
of semidefinite programming by Nie et al. [17, §2]. That degree, denoted (I, d, r), is
the number of complex solutions (X, Y) of the critical equations (4) for the SDP (2),
with / constraints for d x d matrices, assuming that rank(X) = d —r and rank(Y) = r.
A formula for general r was given in [7]. The easier case r = d — 1 appeared in [17,
Theorem 11]:
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404 D. Cifuentes et al.

Proposition 2.4 The algebraic degree of rank-one solutions X to the SDP in (2) equals

d
sil,d,d—1) = 211(1)'

The following geometric formulation of SDP was proposed in [17, Eqn. (4.1)]. Let
V be the (I — 1)-dimensional subspace of s spanned by {Ay, ..., A}, and let U be
the (I 4+ 1)-dimensional subspace of S¢ spanned by {C, A1} and V. This specifies a
dual pair of flags

Vcucs ad utcvtcs )
See [17, Eqn. (3.3)]. The critical equations (4) can now be written as
XeVh and Y el and X-Y =0. (6)

The SDP problem (2) is equivalent to solving (6) subject to X, Y > 0. The algebraic
degree 6(, d, r) is the number of complex solutions to (6) with rank(X) = d — r and
rank(Y) = r. The dual pair of flags in (5) will also play a critical role in our derivation
of the degree of the boundary of the rank-one region.

Remark 2.5 1f the matrices .4; and the scalars b; are generic then strict complementarity
always holds [17, Corollary 8], and hence the following conditions are equivalent:

e The primal SDP problem (2) has a unique optimal matrix X of rank 1.
e The dual SDP problem (3) has an optimal matrix ¥ of rank d — 1.
e The system (6) has a solution (X, Y) withrank(X) = 1l and X, Y > 0.

These conditions characterize the set of cost matrices C that lie in the
rank-one region R 4 .

Suppose that the rank-one region R 4 is non-empty. The topological boundary
R 4, is a closed semialgebraic set of pure codimension one in 89 Tts Zariski closure
daigR 4,1 is an algebraic hypersurface, called the rank-one boundary. We view this
hypersurface either in the complex affine space (C(dgl), or in the corresponding pro-

d+1
jective space P(S?) ~ p(3)-1, By construction, the polynomial defining d,1eR 4,
has coefficients in the field generated by the entries of A and b over Q. The rank-one
boundary degree is the degree of this polynomial:

B, d) = deg(dugRAp)-

Our main result in this section furnishes a formula for the degree of the rank-one
boundary.

Theorem 2.6 Let 3 <1 < d and consider the SDP with generic A and b, as given in
(2). The degree of the hypersurface d,gR A, that bounds the rank-one region R 4,
equals
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Table 1 Algebraic degrees and N 3

4 5 6 7
boundary degrees of SDP

Algebraic degrees (I, d,d — 1)

2 6 12 20 30 42
3 4 16 40 80 140
4 8 40 120 280
5 16 96 336
6 32 224
7 64
Rank-one boundary degrees (I, d)
2 4 10 20 35 66
3 8 40 120 280 560
4 24 144 504 1344
5 64 448 1792
6 160 1280
7 384
B, d) = 27— 1)(d> —2’< d ) @)
[ I+1

Table 1 illustrates Proposition 2.4 and Theorem 2.6. It shows the algebraic degrees
of rank-one SDP on the top, and corresponding rank-one boundary degrees on the
bottom. The entry for/ = d = 3 equals 8 =2+ 2 + 2 + 2, as argued in Example 2.1
and seen in Fig. 2. The first row (/ = 2) is not covered by Theorem 2.6. This case
requires special consideration.

Proposition 2.7 If | = 2 then the rank-one region R 4 is dense in the matrix space
S4.If A, b are generic then ORAp = s \R 4.p is a hypersurface of degree B(2, d) =
().

Proof The semialgebraic set R 4 5 is dense in the classical topology on 5S4 because
the Pataki range [17, §3] consists of a single rank for / = 2. This means that, for
almost all cost matrices C, there is an optimal pair (X, Y) that satisfies rank(X) = 1
and rank(Y) = d — 1. The boundary dR 4 p is the set of C such that the optimal matrix
Y =C — XA — A A; has rank < d — 2. The polynomial in A4, A, C that defines
this hypersurface is the Chow form of the determinantal variety {rank(Y) < d — 2}.
This variety has codimension three in P(S?) and degree (dil) (see [10, Prop. 12(b)]).
This is the degree of the Chow form in the entries of C, and hence it is the degree of
our hypersurface 0a.R 4,5 O

The proof of Theorem 2.6 requires additional concepts from algebraic geometry.
We work with the Veronese variety P41 — P(S?). By [17, Proposition 12], its
conormal variety is

CV = {(X,Y) e P(S) x P(S?) : XY =0 and rank(X) = 1 and rank(¥) <d — 1}. (8)
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406 D. Cifuentes et al.

Asin[17, Theorem 10], we consider the corresponding class [C V] in the cohomology
ring

H*(P(SY) x P(SY), Z) = ZLs, 11/(s(T), (D)), ©)
Its coefficients are the polar degrees of the Veronese variety. By Proposition 2.4,
d d d+1
cvl = Y 2 (7). s 10
[cvy = > < l) s (10)
=1
We represent C'V by its pullback under the Veronese map x > X = xx” on the first
factor. Thus the conormal variety equals CV = { x,Y) : Yx =0, det(Y) = 0}
in P41 x P(S9).
We note that the following boundary variety is irreducible of codimension one

inCV:

BV = {(X,Y) e P(8)) x P(§%) : XY =0, rank(X) = I and rank(Y) < d —2}
~{(x, V) eP! ' xPS?) : Yx =0 and rank(¥Y) <d -2} (11)

By the last item in Remark 2.5, the algebraic boundary of R 4 p is contained in BV

Let ¥ = (y;;) be a symmetric d x d matrix and x = (x; x3 ... x)T
a column vector. Their entries are the variables of the polynomial ring 7 =
CIX1, ... Xds Yi1s Y12+ - - - » Yaal. Subvarieties of PY~! x P(S?) are defined by biho-

mogeneous ideals in 7. The ideal of the conormal variety equals Icy = (Y x, det(Y)).
The ideal of the boundary variety equals Igpy = Icy + Ming_(Y). The latter is the
ideal generated by the (d — 1) x (d — 1) minors of Y.

Proof of Theorem 2.6 Let C = (c;;) denote the adjugate of Y. The entry ¢;; of this
d x d matrix is the (d — 1) x (d — 1) minor of ¥ complementary to y;;. We are interested
in the divisor in the smooth variety CV that is defined by the equation c1; = 0. We
claim that this divisor is the sum of the boundary divisor BV and the divisor defined
by x12 =0.

To prove this claim, we consider the ideals I := Icy + (c11) and J := Icy +
Ming_1(Y) - (xlz) in T. It suffices to show I = sat(J), the saturation with respect to
(x1,...,xq4). Consider the d x (d + 1) matrix (x | C). The ideal M := Minp(x | C)
is contained in /cy. Combining two of its generators, we find cijxlz —crixixj € M.
Therefore the generator c,-jxl2 of Jliesin M 4+ (c11) C I.So J C I, and since [ is
saturated, sat(J) C I.Forthereverse inclusion we need to show thatcy; € sat(J). This
followsbynotingthatq1x,%—ckkx12 € M, andthus cnx,f € M+Mind,1(Y)~(x12) c J.
Therefore, I = sat(J) and the claim follows.

We now compute the class of BV in the cohomology ring (9). The minor ¢ defines
a hypersurface of degree d — 1 in P(S8%), so its class is (d — 1)¢. The class of {x% =0}
is twice the hyperplane class in P41 1t is the pullback of [{x1; = 0}] = s under the
Veronese map into P(S?). Here x1; is the upper left entry in the matrix X = xx”. We
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The geometry of SDP-exactness in quadratic optimization 407

multiply these classes with [CV] as in (10), and thereafter we subtract. By the claim
we proved, this gives

[BV] = [CV N {e11 =0} — [CV N {x] =0}]

d
= (@=Dt —s)-[CV] = Y pa.d)-s(2)1H,

=2

where the coefficients of the resulting binary form are the expressions on the right
of (7).

The following argument shows that the class [ BV ] encodes the rank-one boundary
degrees. Suppose the cost matrix C travels on a generic line in S¢ from the inside
to the outside of the rank-one region R 4 5. For almost all points C on that line, the
optimal pair (X, Y) is unique. Before C crosses the boundary 9R 4 5, the optimal pair
satisfies rank(X) = 1 and rank(Y) = d — 1. Immediately after C crosses R 4 5, we
have rank(X) = 2 and rank(Y) = d — 2. At the transition point, the optimal pair
(X, Y) lies in the variety BV .

Consider the intersection of BV with the product of the codimension-(/ — 1) plane
P(V') and the subspace P(U’) ~ P!*! spanned by Ay, . .., A; and the line on which C
travels. The points in that intersection are the pairs (X, Y) € BV thatarise as C travels
along the line. The number of such complex intersection points is the coefficient of
s(ED=1+ in [BV].

We need to argue that the inclusion (5) poses no restriction on the products of
subspaces we intersect with, i.e., for generic flags V C U’ with dim@/’/V) = 3, all
intersections with BV are transverse and reduced. To this end, let X be the rank-one
d x d matrix with a single one in the first entry, and let Y be the diagonal d x d matrix
with two zeros followed by d — 2 ones. Then an affine neighborhood of (X, Yp) in
P(S9) x P(S?) can be given as the direct sum of the spaces parametrized by

1 X12 - Xid
X12 X2 -+ X24d
. and
X, d X2.d ' Xdd
yi1 Y12 Y13 s Y1,d-1 Yi.d
Y12 Y22 23 e Y2,d—1 Ya2.d
Y13 23 I+y33 - ¥3,d—1 ¥3,d
Vid—1 Y2.d—1  Y3d—1 -+ L+Ya—1a-1 Yi-1.4
Yid Y2.d Y3d e Vd—1,d 1

The linear terms in the coordinates of the matrix equation XY = 0 are

Vi1, Y125 X13 + Y13, -+, X1,d + V1,0 and x23, ..., Xq,4, (12)
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408 D. Cifuentes et al.

foratotal of (d;rl) —1 forms. To show that the intersection described above is transverse

for generic flags V C U/, it suffices to find one instance for which BV N (PV1) x
PU")) = {(Xo, Yo)} in the neighborhood of (X, Yo) € P(S?) x P(S?) defined above.

Let P(V1) be determined by the vanishing of the [ — 1 forms x12, . .., X1/_1, X2 —
x23 and P(U") by the (d}q) —Iforms y1 4, ..., ¥1,d, Y22+ ¥23, ¥23, - - -, Yd—1,4- Com-
d+1

bining these forms with those in (12), we get 2(( N ) — 1) independent linear forms.
This (highly non-generic) choice yields a transverse intersection. We conclude that
the intersection BV N (IP’(VL) x P(U")) is transverse and reduced at (X, Yp) also for
generic choices of V C U'. O

3 From semidefinite to quadratic optimization

We now model the quadratic optimization problem (1) as a special case of the semidef-
inite program (2). To this end, we set! = m+1,d = n+1, and we use indices that start
at 0 and run to m and n respectively. Let A( be the rank-one matrix Eqy whose entries
are 0 except for the entry 1 in the upper left corner. The following two conditions are
equivalent:

AoeX =1, rank(X) =1 and X >0 < X:(l,xl,...,x,,)T(l,x1,...,xn).
(13)

Setting b = (1,0, ..., 0) and imposing the rank constraint in (13), our SDP in (2) is
equivalent to minimizing a quadratic function in x subject to the constraints .A; ¢ X =
o= An,e X =0.

To apply SDP to the problem (1), with m quadratic constraints in n variables, we
set

gx) = x'Cx +clx and filx) = xTA,-x—i—ZaiTx—i-ai forl <i <m.

The matrices C, A; € S", the vectors ¢, a; € R”", and the scalars «; € R, give the
entries in

__OcT 110 o aiT d
C:= |:C Cil’ Ap = [0 Oi|, A = |:ai Ai] e S¢. (14)

If we now also set X = (1)(1 x7) then (1) is precisely the SDP (2). In other words,
(1) is equivalent to (2) with the additional constraint rank(X) = 1. The SDP (2) is
called the Shor relaxation of the quadratic program (1). We say that the relaxation is
exact if the primal optimal solution X* of the SDP is unique and has rank one.

The SDP arising as a relaxation of a quadratic program has two distinctive features:
the matrix Ay is the rank-one matrix Eq, and we fix the values bg = 1, co9 = b1 =
-+ = by, = 0. The last m + 1 equations pose no restriction: they can be achieved by
adding multiples of Ag to C, Ay, ..., Ay. The only truly special feature of this SDP
is that Ag has rank one.
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The geometry of SDP-exactness in quadratic optimization 409

Remark 3.1 The Shor relaxation of a quadratic optimization problem in R” is a
semidefinite program in S"*! in which one constraint matrix Ay is rank-one.

We fix the identifications in (14) throughout this section. In particular, we will
define the SDP-exact region as the restriction of the rank-one region to SDP’s coming
from quadratic programs. Consider the Lagrangian function

LOux) = gx) — Y A filx). (15)
i=1

This polynomial is quadratic in x. Its Hessian with respect to x is the symmetric
n X n matrix

82£ m
H() = ( ) = c-Y nA. (16)
0xi 9 /1< j<n ; o

The entries of the matrix H(X) are affine-linear in A = (A, ..., Ay).
The SDP-exact region is obtained by specializing Definition 2.2 to the matrices
in (14):

Definition 3.2 The SDP-exact region Ry is the set of all matrices C € S"*! such that

m
H) = 0 and ¢ — inai +HM)x = 0  for some x € Vg and A € R™.
i=1

a7)

The condition (17) has a natural interpretation in the setting of constrained opti-
mization. It says that the Hessian of the Lagrangian is positive definite at the optimal
solution.

Remark 3.3 Definition 3.2 expresses Ry as a union of spectrahedral shadows [18,20].
To see this, fix a point x in V¢. The constraints (17) define a spectrahedron Sy in
the space with coordinates (A, C, c¢). The SDP-exact region for x is the image of Sy
under the projection onto the coordinates (C, ¢). This image is a spectrahedral shadow.
Definition 3.2 says that R is the union of these shadows. We shall return to this point
in Theorem 4.1.

The main result in this section is the extension of Proposition 2.4 and Theorem 2.6

to quadratic optimization. Let N = (";2) — 1 and consider the map 7w : PV x PV --»

PN x PN~! that deletes the upper left entry ygo of the matrix Y. Let CV' = 7(CV)
denote the closed image of the conormal variety CV in (8) under the map 7, and
similarly let BV’ = 7 (BV) denote the closed image of the boundary variety in (11).
Algebraically, we compute these projected varieties by eliminating the unknown ygg
from the defining ideals of (8) and (11).
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410 D. Cifuentes et al.

Proposition 3.4 The algebraic degree of (1) is given by [CV'] in H*(PN x PN~
We have

[CV'] = Zz”(i) s (3=t pm. (18)
m=0

Similarly, the degree of 0,9R¢ is given by the class of the projected boundary vari-
ety BV'.

Proof The map 7 is the projection from the special point Ay = Ego in PV. In the
proof of Theorem 2.6, we intersect CV and BV with products of complementary
linear spaces. The situation is the same here, except that we now require the linear
space in the second factor to contain the point .4g. Thus, our counting problem is
equivalent to intersecting the projections via r by products of generic linear spaces of
complementary dimension. The formula in (18) is the algebraic degree of quadratic
programming, which is found in [16, Eqn. (3.1)]. O

Theorem 3.5 Let m < n and suppose that fi, ..., [ are generic polynomials in
R[x]<2. The algebraic boundary of the SDP-exact region Ry is a hypersurface whose

degree equals
m ny n
Bopm,n) = 2 ("<m> <m+1>)' (19)

Table 2 illustrates (18) and Theorem 3.5. It shows the algebraic degrees of quadratic
programming and corresponding degrees of rank-one boundaries. Compare with

boundary degrees for e P MV 23 ’ °

problem (1) Algebraic degrees of QP
1 4 6 8 10 12
2 4 12 24 40 60
3 8 32 80 160
4 16 80 240
5 32 192
6 64

Boundary degrees B p (m, n)

1 6 12 20 30 42
2 8 32 80 160 280
3 24 120 360 840
4 64 384 1344
5 160 1120
6 384
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Table 1. The diagonal entries (m = n) in Table 2 are similar to those in the Max-
Cut Problem (Example 1.2), but there is an index shift because the general objective
function g(x) is not homogeneous. We have g p(n, n) = 2" - n, since the n quadrics
{fi(x) = 0} intersect in 2" points, and each of these contributes a spectrahedron of
degree n to the SDP-exact region.

For the proof we shall use polynomial ideals as in Sect. 2, but now the ambient
ring is T = Cly00, Y01, - - - » Yuns X05 - - - » Xn]. Using this variable ordering, we fix
the lexicographic monomial order on 7'. In particular, ygq is the highest variable. Let
Igpy = Min, (Y ) + (Y x) be the ideal generated by the (";2) minors of Y of size n and
the n + 1 entries of vector Y x.

Lemma 3.6 The initial ideal in(Ipy) is radical. It is minimally generated by ("+2) +

2
::02 ('Z_t]l) squarefree monomials, namely the leading terms of the n X n minors
of Y, and the monomials Xx; - YokyYik; - - - Yik, Where t € {0,1,...,n — 2} and

O0<ko<ki<---<k <n.

Proof 1t is well-known in commutative algebra that the n x n minors of Y form a
reduced Grobner basis. We augment these to a reduced Grobner basis for /gy by
adding the entries of the row vector x” ¥ where Y is a certain matrix with n 4 1 rows
and many more columns. To construct this, we consider the 7-module spanned by any
subset of columns of 7. The circuits in such a submodule of 7! are the nonzero
vectors with minimal support. We consider all circuits whose support is a terminal
segment {t,7 + 1,...,n,n + 1}. The columns of Y are all such circuits. These are
formed by applying Cramer’s rule to submatrices of ¥ with row indices O, ..., — 1
and 7 + 1 arbitrary columns. The resulting entries of x” ¥ lie in Igy. They are linear
in x, of degree ¢ 4+ 1 in Y, and have the desired initial monomials. One checks that
their S-pairs reduce to zero, and that this Grobner basis is reduced. O

Corollary 3.7 The ideal Iy, obtained from Ipy by eliminating the highest variable
Yoo is generated by those n entries of Y x and n + 1 minors of Y of size n that do not
use yop.

Proof Theeliminationideal I}, is generated by elements of the lexicographic Grobner
basis that do not contain ygg. These are elements whose leading monomials do not
contain ygp. Each of these is a polynomial linear combination of the above 2n + 1
generators of Ipy. O

Proof of Theorem 3.5 Let N = (”erz) — 1. As in the proof of Theorem 2.6, we identify
CV with its preimage in P" x PN thatis, CV = {(x,Y) | Yx =0, rank(Y) < n}.Its
image CV' under 7 lives in P" x PN~!. The boundary BV’ is the projection of BV
into P" x PN,

In Theorem 2.6, the boundary was found by intersecting CV with the divisor given
by the minor cqg of Y, and by removing the non-reduced excess component {xg = 0}.
In the present case, we still have that excess component, but it is reduced, given by
xo = 0. The class [{xg = 0}] is half of the pullback of the hyperplane class s of P".
Using (18), this implies
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[BV'] = (—%s + nt) [CV'] = ZﬂQP(m,n) g —m+1) mt1

m=1

The coefficients Bpp(m, n) of this binary form are the combinatorial expressions
in (19).

To see that the excess component is now {xo = 0}, we argue as follows. Let
C' = (co ;) be the leftmost column of the adjugate matrix of Y. Consider the ideals
I' =1/, + (coo) and J' := I/.,, + (C’) - (x0). We claim that /" = sat(J'). Observe
that the (n 4+ 1) x 2 matrix (x | C’) satisfies Minz(x | C’) C I.,. This implies
cojxo € J' forall j > 1. Then J' € I’ and since I’ is saturated, sat(J') € I'.
The reverse inclusion is implied by cpo € sat(J’), which follows from the fact that
cooX;j € Minz(x | C/) + (C’) - (x0). By Corollary 3.7, the elimination ideal is If,,, =
I, + (C’). So we may conclude that CV' N {coo} = BV U (CV' N{xg=0}). O

Remark 3.8 (Lasserre hierarchy) It is natural to try to extend the SDP-exact region to
higher levels of the Lasserre hierarchy [1,13,14]. Consider equations f = (f1, ..., fin)
of degree < 2d. We may define the d-th SDP-exact region R;’ as the setof all g €
R[x]<24 such that (1) is solved exactly by the d-th level of the hierarchy. By further
imposing strict complementarity, we may derive a semialgebraic representation similar
to (17). Some illustrations of R? were obtained in [4]. It is an open problem to
investigate the geometry of this region and, in particular, to compute the degree of its
algebraic boundary. This analysis might be significantly more complicated, since the
special structure of the moment matrix must be taken into account (so the dual pair of
flags is not generic).

4 Bundles of spectrahedral shadows

We fix f = (f1, ..., fm) as before. For any u € R” we consider the following two
problems:

e Linear Objective (Lin): Minimize ulx subject to x € Vt.

e Euclidean Distance (ED): Minimize ||x — u||> subject to x € V.

These problems are special instances of the quadratic program (1), with the cost
matrices

0wy uy - wuy 0 —uy —up - —up
g 0 0 - 0 w10
i 0 o --- 0 — 0 1 0
C,lj” = | and C,‘jd = "2
u, 0 0 0 —Up 0 0 1

(20)
We write Réi" and ’Rfd for the SDP-exactregions in R” of these two problems. They are
the intersections of R¢ with the affine subspaces of S"*! given in (20). The punchline
of this section is that both regions are normal bundles of spectrahedral shadows over
V. Namely, we shall write R?" and Rﬁd as a union of spectrahedral shadows, one for
each point x € V.
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The lower right block of C and C¢“ is independent of u, and thus the Hessian matrix
H(}) is independent of u. The spectrahedron defined by the constraint H(A) > 0 is as
follows:

m m

St =1AeR™ Y NA < 0} and  S§¢ = {AGR’“ DY MiA < It (1)
i=1 i=1

The sets in (21) are called master spectrahedra. Observe that Séi" is a cone in R™,
Also note that Sf‘l is full-dimensional because . = (0, ..., 0) is an interior point.
Let Jacy denote the Jacobian matrix of f. This matrix has format n x m, and its entry
in row i and column j is the linear polynomial d f;/dx;. At any point x € V¢, the
specialized Jacobian matrix Jacg(x) defines a linear map R” — R”, whose range is
the normal space of the variety V¢ at x. We consider all the images of the respective
master spectrahedra under these linear maps.

Theorem 4.1 The SDP-exact regions for (Lin) and (ED) are comprised of the images
of the corresponding master spectrahedra in the normal spaces of the variety V¢. To
be precise,

Réi” = U (% Jace(x) - Séi") and Rf‘l = U (x — %Ja(:f(x) . Sfd).

xeVp xeVr
Moreover, the above unions are disjoint because our spectrahedra are relatively open.

Proof The result follows by substituting (20) into Definition 3.2. Disjointness holds
because any u in one of the parenthesized sets has the associated x as its unique optimal
solution. O

One consequence of Theorem 4.1 is that the SDP-exact region for an ED problem
is always full-dimensional. This fact was observed in [3], where it was shown to
have interesting applications in computer vision, tensor approximation and rotation
synchronization.

Corollary 4.2 If x is a regular point of Vy, then Rfd contains an open neighborhood

of x.

Proof The regularity hypothesis means that rank(Jacg(x)) = codim,(V¢). This
ensures that Jacg(z) - S?d is full-dimensional in the normal space of V¢ at any point z
close to x. O

For finite complete intersections, the SDP-exact regions are finite unions of spec-
trahedra:

Corollary 4.3 Letf = (f1, ..., fn) be a complete intersection withk < 2" real points.
Then

(a) ’Ré’” consists of k spectrahedral cones, each of them isomorphic to the master Séi”.
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(b) Rfd consists of k full-dimensional spectrahedra, each isomorphic to the mas-
ter S§4.
f

Proof The linear map Jace (x) is injective and hence invertible on its image. Therefore,
the spectrahedral shadow Jacy (x) - St is actually a spectrahedron, linearly isomorphic
to St. O

The spectrahedral cones in Réi" are tightly connected to the first theta body of (f),
denoted TH; (f), introduced by Gouveia et al. [9]. The theta bodies of f are tractable
approximations to the convex hull of V¢, given by projecting the feasible set of the
Lasserre relaxation [13] onto the first order moments. Later in this section we will
show that R?” consists of the normal cones of TH (f).

Example 4.4 (m = n = 2) Consider two quadrics in two variables such that V¢ consists
of four points in convex position in R?. The region R;’d was illustrated in Fig. 1. The
region R?" consists of four cones that sit inside the normal cones at the quadrilateral
conv(Vr). We explain this for the specific instance examined in [9, Example 5.6]:

f = (x1x2 — 2x3 +2x2, xf —x3 —x1 +x2), Ve =1{(0,0), (0,1), (1,0), (2,2)}.

The first theta body TH 14(f ) is seen in [9, Figure 3]. Our rendition in Fig. 3 show also
the SDP-exact region Ré‘". It consists of the normal cones of TH; (f) at the four points
in V¢. For more details see Proposition 4.7.

It is interesting to examine Corollary 4.3 (b) when m = n and V¢ consists of 2" real
points. We know that Rfd consists of 2" full-dimensional spectrahedra of degree n.
We show that these hypersurfaces are pairwise tangent, and also tangent to the walls
of the Voronoi diagram. The case n = 2 was seen in Fig. 1, whereas the case n = 3 is
shown in Fig. 4.

For x € V¢, weset Sy = x — %JaCf(x) . Sfd and we write 0ag Sy for its algebraic
boundary.

Fig.3 We consider two quadrics in R? that meet in four points. The SDP-exact region for minimizing linear
functions over this intersection consists of four cones, shown in the left. These are the normal cones at the
first theta body TH (f), as illustrated in the right
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Fig.4 We consider three /""
quadrics in R3 that meet in eight y
points. The SDP-exact region for y
the ED problem on this variety A
consists of eight spectrahedra, /
each around one of these points. |
The algebraic boundaries of the |
spectahedra are pairwise tangent |

Theorem 4.5 Letm = n andf generic, so Vy is finite. Let x, x’ € Vg, and Sy, S)’( be the
corresponding spectrahedra, and let bsc C R" be the bisector hyperplane of x and x’.
There is a point u € R" at which the three hypersurfaces bsc, 04145y and aalgs; meet
tangentially.

Proof Let p(A) := det(I, — Zi XiA;) be the defining polynomial of BalgS§d. Then
px(u) = p(2Jacg(x)~'u—x) isthe defining polynomial of Oalg Sy . We shall construct
a point u, in the hypersurface 0,,S: whose normal vector V,, p, (u,) is parallel to
x — x’. Notice that

Vups = 2(Vap)acg(x)™ = —2(A1 e M, ..., Ay e M) - Jacp(x) ™!,

where M denotes the adjugate of I, — ) _; A; A;. Since this matrix is supposed to be
singular,

(Q—E:M&)M:O,(m-AL””AmoMyxhﬂ—xﬂhquLrmMM):L

(22)

We claim that M = (x' — x)(x’ — x)T satisfies the constraint in the middle. This is
seen by showing that the i-th coordinate of the vector %(x’ — x) T Jacg (x) equals

' =0 @+ Ax) =xTAix +al (¢ —x) —xT Aix

=xTAix = LT A —xTAix) —xTAjx = Aj o (—H (X' —0) (" =) (23)
The desired vector A is then determined by the equation (1, — Y, A; A;)(x" —x) = 0.
Now, (22) holds, and the point uy, = x — %J acg(x)(A) has its normal at 9,15, parallel

tox’ — x.
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We similarly construct u/, € 9a5S;. By (23), we have (x — ) Tace(x') = (x/ —
x)T Jacg (x). Hence the value of M that satisfies (22) is the same for both x and x’, and
thus uy = u',.

Finally, let us show that u lies on bsc. Since (I, — ) _; A;A;)(x" —x) = 0, we have

T
ul (x' —x) = (x — Zki(ai + Aix)) x'—x)

_ (ZM(:?) (x' —x)+xT (I,, — ZA,»A,») (x" —x)

— ZkiaiT(x/ —X).
i

The difference [Juy — x'||% — |luyx — x||? equals

1P = fxl? = 2u] (& =) = xTx" = xTx 42 " hia] (¢ = x)
i
=xTx —xTx — Zki(x/TAix/ —xTAix)

= +x)7 (1n - Zk,-A,-) (x' —x) = 0.

We see that u, is equidistant from x and x/, i.e., u, belongs to the hyperplane bsc.
We have shown that our three hypersurfaces all pass through u, and have the same
normal vector. O

We next illustrate how the normal bundle from Theorem 4.1 looks for a curve.

Example 4.6 Let f = (xp — xlz, X3 — x1X2), so Vg is the mwisted cubic curve in R3.
This specific instance was examined in [3, Example 1.1]. The spectrahedron Sfd is
the interior of a parabola, namely {)\% < 2A1 + 1}. The image x — %JaCf(x) . Sfd
is a parabola in the normal plane at x. The boundary BRfd is the union of all these
parabolas, as shown in Fig. 5.

We will elaborate more on the ED problem in Sect. 5. To conclqde this section, we
briefly develop the connection between our SDP-exact region Ré’" and the theory of
theta bodies [9]. By [9, Lemma 5.2], the first theta body of our instance f is

TH () = () {xeR":F@x <0}

Fe(f)
F convex quadric

By [9, §2], the set TH; (f) is a spectrahedral shadow that contains the convex hull
of V¢.
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Fig. 5 The boundary of the SDP-exact region for the ED problem on the twisted cubic curve is ruled by
parabolas. This surface has degree eight. It is computed in Example 6.1

Proposition 4.7 Let B = TH\(f) be the first theta body for the problem (Lin). Then
the SDP-exact region Ré’” is the union of the normal cones to B at all points in Vt. In
symbols,

R = | JNs(x).

xeVr

Proof Note that u € Np(x) if and only if x = argmax,p u”'y. On the other hand,
the problem maxycp u’l y is equivalent to the SDP relaxation of our QP (1). Then,

U Np(x) = :u eR": (argmaxu’y) € Vf}

xeVp yeB

= {u € R" : the solution of the SDP relaxation lies in V¢}.

By definition, this set is the SDP-exact region for (Lin). For an illustration see Fig. 3.
]

5 Boundary hypersurfaces in R"

We now examine our degrees of the ED problem. Following [6], the Euclidean distance
degree of V¢, denoted EDdegree(Vt), counts the number of complex critical points for
the squared distance function g, (x) = ||x —u % on the variety V¢, where u € R" is a
generic point.

Proposition 5.1 The algebraic degree of the quadratic program (1) that solves the
ED problem for Vt is EDdegree(Vy). This is bounded above by 2™ (r':l) Equality holds
for generic f.

Proof The first statement is immediate from the definition of the ED degree. The last
two statements follow from [6, Proposition 2.6]. O
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We next assume that f is generic. Hence V¢ is a generic complete intersection. We
are interested in the degree B p (m, n) of the hypersurface aalngd C R” that bounds
the SDP-exact region for the ED problem. Table 3 shows Bgp(m, n) for some small
cases.

Example5.2 (n = 2,n = 3) Figure 6 shows the SDP-exact region for a generic
instance. Its boundary is an irreducible surface of degree 24. The master spectrahedron
is the convex region of a planar cubic (lower right in Fig. 6). The variety V¢ is a space
curve of degree 4, obtained by intersecting two hyperboloids (upper right in Fig. 6).
We regard both curves as elliptic curves, the first in P? and the second in P3. The
product of these two elliptic curves is an abelian surface, which has degree 24 under

boundar degessorthe M2 % 4 s
ED problem ED degrees for V¢
2 4 12 24 40 60
3 8 32 80 160
4 16 80 240
5 32 192
6 64
Boundary degrees Sg p (m, n)
’ 3 24 48 80 120
3 24 96 240 480
4 64 320 960
5 160 960
6 384

Fig. 6 Upper right: space curve cut out by two quadrics. Left: The SDP-exact region for its ED problem.
Lower right: the elliptic curve that defines the master spectrahedron
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its Segre embedding into P2 x P3  P'!. Our boundary surface Balngd is a projection
of this surface into P3. This explains Sz p (2, 3) = 24. The picture on the left in Fig. 6
shows 8R§d in real affine space R3. Each of the three connected components of the
curve Vt is surrounded by one color-coded component of that surface. These three
pieces of 872;"1 are pairwise tangent along curves.

For the subsequent degree computations we record the following standard fact
from algebraic geometry. Example 5.2 used this formula for deriving the number
3.4-("Th =24,

Lemma 5.3 Fix two projective varieties V. C P" and W C P™. The projective variety
V x W has degree deg(V) deg(W) (dlmc}/i;%{,m W) in the Segre embedding of P" x P™
in Pa+Dm+H-1

We consider the product of our feasible set V¢ with the algebraic boundary of its
master spectrahedron Sfd. This is the real algebraic variety V¢ x BalgS§d in R" x R™.
We identify this variety with its Zariski closure in the product of complex projective

spaces P" x P, Under the Segre map, we embed V¢ X E)algS§d as a projective variety
in Pem+D@n+D—-1

Corollary 5.4 The variety V¢ x 8a1gSfd has dimension n — 1 and degree m 2”’( )

n
m
Proof The variety V¢ has dimension n — m and degree 2. The variety BalgS§d has

dimension m — 1 and degree n. By Lemma 5.3, their product has degree 2" -n- (;’;11) =

m.zm.(”). O

m

By Theorem 4.1, the boundary of the SDP-exact region is the image of V¢ x BalgS§d
under

m
YR R™ > R, (r.A) o x— dlacg()h = x = Ai(a; + Aix). (24)
i=1
The map 1 is bilinear. We consider its homogenization

WP x P - P, ((x0:x), (Ao:d))

m
— (ono D hox — ) hi(xoa; + A,-x)) . (25)

i=1
This map factors as the Segre embedding o followed by a linear projection 7:

e

P x P L> P(n+])(m+l)71 AN (26)

Lemma 5.5 The restriction of m to (the image under o of) V¢ X BalgS;’d is base-point
free.
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Proof We show that L N o (Vg x 355¢9) = ¥, where L € P FDm+D=1 5 the base
locus of 7. By (25), we know that L is contained in {Agx¢ = 0}. First, assume Ao = 0
and xo = 1. The equations from (25) simplify to Z;’Ll Xi(a;i +A;x) = 0, which means
Jacg(x)1 = 0. But this is impossible because Jacg (x) has full rank, by genericity of f.
Consider now the case xo = 0. We may assume that m < n, as otherwise V¢ does not
intersect {xo = 0}. Setting the image in (25) to zero, we get Aox — » ;- ; A (Ajx) = 0.
Viewed as a system of linear equations in Ag, Aq, ..., A;, this is overconstrained, so
by genericity it has no nonzero solution. O

We now write 7 for the restriction to Vg X BalgSfd. Lemma 5.5 and the dimension
part in Corollary 5.4 show that  is a dimension-preserving morphism onto 8alg7€§d.
The degree of this morphism, denoted deg(r), is the cardinality of the fiber of & over
a generic point in the image. By [15, Proposition 5.5], the degree of the source equals
the degree of the image times the degree of the map. Hence, Lemma 5.3 implies the
following result:

Theorem 5.6 The degree of the algebraic boundary 8alg7€§d of the SPD-exact region is

_ 1 om n
Beomm) = foom (m)

We conjecture that deg(w) = 1 whenever our variety V¢ is not a hypersurface,
i.e., whenever m > 2. This was verified computationally in all cases that are reported
in Table 3.

Conjecture 5.7 If m > 2 then the degree in Theorem 5.6 is Bpp(m,n) =m 2’"( )

n
m
Analogously to Proposition 2.7, the above formula fails in the case m = 1.

Proposition 5.8 [fm = 1 then the SDP-exact region Rfd is dense in R". Iff is generic,
then deg(mw) = 2 and the algebraic boundary Balngd consists of n hyperplanes.
The topological boundary BRE‘I = R" \Rfd is contained in at most two of these n
hyperplanes:

e [fVyisanellipsoid then 8R§’d is the relative interior of an ellipsoid in a hyperplane.

e Otherwise, 8R§d spans two hyperplanes Hy, Hp, and BR‘Ed N H; is bounded by a
quadric.

e The boundary 872?"1 coincides with the cut locus of the quadratic hypersurface Vi.

The cut locus of a variety V in R” is defined as the set of all points in R” that have
two nearest points on V. If V is the boundary of a full-dimensional region in R” then
the part of the cut locus that lies inside the region is referred to as the medial axis. In
Fig. 7, the blue region is the medial axis. The red region is in the cut locus but not in
the medial axis.

For the varieties V¢ in this paper, the cut locus is always disjoint from the SDP-
exact region Rfd .If m = 1 and f is generic then these two disjoint sets cover R”, by
Proposition 5.8.
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Fig.7 The cut locus of a
hyperboloid (yellow) lies in two
planes. It is the set shown in red
and blue. The complement of the
cut locus is the SDP-exact
region for the ED problem
(colour figure online)

Proof Proposition 2.7 implies that that Rﬁd is dense in R”. We drop indices and set
fx) = xTAx +2a7x + a. Letw; < --- < w, be the eigenvalues of A, and let v;
be the corresponding eigenvectors. We shall assume that w; < 0 < w,. The master
spectrahedron is the interval

S¢ = eR : I, —AA > 0) = (1/w1, 1/wn),

and thus 8S§d = {l/w1, 1/w,}. Let A = 1/w; and ¥;(x) = Y (x, Aj) = (I, —
AiA)x — Aja. The image of ; is the hyperplane H; = {u € R" : viTu + AiviTa =
0}. The fiber of i; over a point u € H; is a line. That line has a parametrization
¢; : R — R", t — tv; + b,, where b, depends linearly on u. Then f(¢;(¢)) =0isa
quadratic equation in ¢ with two solutions. This proves that the morphism 7 restricts
to a 2-to-1 map from V¢ onto H;, and thus deg(w) = 2. The boundary aRfd N H; is
given by requiring that both solutions of f(¢; (¢)) = 0 are real. This is the solution set
to a quadratic discriminantal inequality for u € H;. Thus BRfd N H; is bounded by a
quadric for i € {1, n}. Since the Galois group for the n eigenvalues acts transitively,
the algebraic boundary is 8algR§d = U;’:l H;. O

Remark 5.9 The derivation above leads to a formula for the cut locus of an arbitrary
quadratic hypersurface in R”. For the special case of ellipsoids, this was found by
Degen [5].

We close this section with the analog to Theorem 5.6 for the problem (Lin) where
(1) has linear objective function g. Now the cone Sé"” on the left of (21) is the master
spectrahedron. The linear map (24) gets replaced by ¥ : R” x R™ — R”", (x, 1) —
Z;”Zl Ai(a; + A;x). In contrast to (24), this map is now homogeneous in 1. Hence its
homogenization equals

m
v Pt x Pl el ((xo:x), 1) = Z)\i(xoai + A;x).

i=1

The map W factors as the Segre embedding o followed by a linear projection 7:
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P x Pl 2, phthm—1 N Pl

The following result transfers both Proposition 5.1 and Theorem 5.6 to the linear
problem.

Theorem 5.10 Let f be generic and m > 2. The algebraic degree of (Lin) equals
2m (:1:11) The degree of the algebraic boundary E)algRé’” of the SPD-exact region
equals

. _ 1 om n—2 7
Biin(m,n) = deg(n). n(m_2> 27

Proof The first statement is [16, Theorem 2.2] fordy = l andd| = --- = d,,, = 2.
The proof of (27) mirrors the proof of Theorem 5.6, but with m replaced by m — 1.
The analogue to Corollary 5.4 says that V¢ x aalgSé’” has dimension (n —m) + (m —2)

and degree 2"n (,'7’;22) |

Justlike in (5.7), we believe that deg(;r) = 1, so that By, (m, n) = 2"'n (:;22) There
are notable differences between (Lin) and (ED). First, it is preferable to assume that
Vt is compact, so that (1) is always bounded. Second, the SDP-exact region Réi” isa
cone in1 R”, so its algebraic boundary BalgRéi” should be thought of as a hypersurface
in P"70.

Example 5.11 (m = 2, n = 3) Consider the curve shown in the upper right of Fig. 6.
After a projective transformation, Vy C R? is bounded with two connected com-
ponents. Its theta body TH| (f) is an intersection of two solid ellipsoids that strictly
contains conv(Vt). The region Ré"” consists of linear functionals whose minimum is
the same for the two convex bodies. Its algebraic boundary 8a1gRéi” is an irreducible
curve in P2 of degree B, (2, 3) = 12. This is analogous to Fig. 3, where n = 2 and
aalgRéi" consists of 8 points on the line Pl

6 Computing spectrahedral shadows

The previous section focused on the case when f is generic. We here consider the
ED problem for overconstrained systems of quadratic equations. These are important
in many applications (e.g., tensor approximation, computer vision). For a concrete
example see [6, Example 3.7]. These cases do not exhibit the generic behavior. The
degree computed for generic f in Theorem 5.6 serves as an upper bound for the
corresponding degree when f is special.

In this section we discuss the SDP-exact region for the ED problem when the
constraints can be arbitrary equations of degree two. We change notation by setting
m = ¢ + p and by considering a variety V¢ of codimension ¢ in R” that is cut out by
¢ + p quadratic polynomials f = (fi,..., fexp)inx = (x1,...,x,). If p > 1 then
Vt is not a complete intersection.

Recall from Theorem 4.1 that R;d is a union of spectrahedral shadows, one for
each point x € Vi. Each shadow lies in the c-dimensional affine space through x
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that is normal to V. Thus Rt is the union over an (n — c)-dimensional family of
c-dimensional spectrahedral shadows. The algebraic boundary 8algR§d can be written
in a similar way.

By [20, Theorem 1.1], the expected degree of the boundary of each individual
shadow is

S(p+1nx) =Y 8(p+1,n7),
r

where r runs over the Pataki range of possible matrix ranks. A key observation in
[20] is that this only depends on the codimension p of the projection and not on the
dimension of the spectrahedral shadow. Note that the latter dimension is ¢ for regular
points x on Vt.

We define the expected degree of our SDP-exact boundary 0g1¢ Rfd to be the product

(” - 1) Cdeg(Vp) - 8(p + 1, m, ). (28)
n—=c¢

This quantity should be an upper bound for the actual degree of the hypersurface
Oalg (R;’d), and we think that this bound should be attained in situations that are generic
enough.

In what follows we present several explicit examples of SDP-exact regions where
p>1.Weusex = (x1, ..., x,) to denote points on V¢ and we use u = (u1, ..., u,)
for points on 8a1gR§d. Our discussion elucidates formula (28) and connects it to sce-
narios seen earlier.

Example 6.1 (n = 3, c = 2, p = 0) The equations f; = xp — x]2 and fo = x3 — x1x2
from Example 4.6 cut out the twisted cubic curve V¢ in R3. The master spectrahedron
Sf‘l is the parabola {A € R? : A% < 2A1 + 1}. The normal plane at the point x =
(t, 2, t3) in V¢ equals

{ @i, uz,uz) € R ¢ uy + 2tup + 3t%uz =367 + 267 41 ). (29)

Since ¢ = 0, the image x — %JaCf (x) - S?d is a parabola in that plane, defined by the
equation u3 + 2us — 2(t> — tyuz + 1° — 2¢* — 21> — 1 = 0. Together with (29) we
now have two equations in four unknowns ¢, u1, ua, u3. By eliminating ¢ from these
two polynomials, we obtain

64uSu3 + 1613 u3uz 4+ 408utusul — 64uyudus — 96u usu + 128ul — 256u3u3
—56usus + u$ — 30ujuz — 80utu3 + 294utul — 416uiusu;
—880u3u3 + 880utus — 876uusu3 — 588ulus + 32uujus + 256u u3u]
—120u1u3 — 576u8 + 304u5u3 + 148udus — 8ul 4 1140ufu,
—1092u3usus — 2544uud — 558utusud + 192uu3uz — 408u uzus + 1088u3
—138usuy — 2670ut — 600u3us + 2832utu3 + 207utu3 + 39u}
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—96u u3us + 120u1u3 — 11205 — 228u3u3 — 1332uuy — 108ujusu3
+680u3 + 144uou3 4 189u7 + S4ujuz — 244u3 — 27u3 + 48usy — 4.

This irreducible polynomial of degree 8 defines the SDP-exact boundary aalngd
around V;. This surface and the curve V¢ are shown in the left of Fig. 5. The surface
is ruled by the parabolas in the normal bundle of the curve. This ruling is shown on
the right in Fig. 5.

Our next example shows that the SDP-exact region is not an invariant of the variety
V. It depends on the choice of defining equations. We can have V¢ = Vp but Rfd #
R

Example 6.2 (n = 3, c = 2, p = 1) We continue Example 6.1 and set f3 = xx3 —x%.
Then £ = (f1, f>, f3) defines the same twisted cubic curve as before. The master
spectrahedron Sffi lives in R? and has degree 3, like the left body in Fig. 2. Planar
projections of such an elliptope have expected degree (2, 3, %) = 6. Here, the degree
drops to 4 because S?,d is degenerate: it is singular at only two points (in P?). The
spectrahedral shadow x — %Jacf/ (x) - S;,d around x = (¢, 12, 13) is defined by a quartic
curve in the normal plane. The SDP-exact boundary aalng,d is an irreducible surface
of degree 9, with defining polynomial

5832u2u3 + 27648142143 62208u1u2u3 — 2916u1u2u3 + 15552u2u3 5832u1u3
+8748uu’ — 5832usu’ — 4374uuf + 729u — 4147203
+86400u3u3u3 + 27648u usuz + 60750uusu3 — 41472utuzu’ — 62208u5u3
—106920u3usu3 + 85536u u3u3 + 71442uturu’ — 19656u3u3
—19440u 1upu3 + 3888uzus — 84375u8 — 54000utu3 4+ 72576u3u3
42025003 u3 — 19440u3usuz — 48384u uius — 220725uu3 + 6912utu3u3
~|—58032u2u3 + 140454u]u3 — 35424141142143 54027u1u3 + 8424142143
+11178uyuy — 1161u§ + 40050utus — 50760uiu3 — 21132uiusus
+33840u1u2u3 + 11880u1u2u3 28744u2u3 + 3708u1u2u3 — 1314u2u3
—7431u} 4 17736u3u3 4 6112u3u3 — 11824u usus — 3246u7u3
+7976u3u3 4 312u1u3 + 37u§ — 3096u3us + 2064u urus
—1176uu3 + 216u% — 144uyus + 72u3.

The above polynomial is also the defining equation of the cut locus of the twisted cubic
curve. In fact, the SDP-exact region Rf,d is dense in R? and only misses the cut locus.
This is similar to the behavior we saw in Proposition 5.8 for quadratic hypersurfaces.

Remark 6.3 Quadratic hypersurfaces and the twisted cubic curve share an important
geometric property. They are varieties of minimal degree. Blekherman et al. [2] showed
that every non-negative quadratic form on a variety of minimal degree admits a sum-
of-squares representation. The converse holds as well. This property implies that Rfd
is dense in R” whenever f spans the full system of all quadrics vanishing on such a
variety V¢ in R”.
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Our bundle of spectrahedral shadows is interesting even for finite varieties (c = n).
We demonstrate this for point configurations in R?. As we remove points from the eight
points in Fig. 4, the algebraic degree increases for the region around each remaining
point.

Example6.4 (n = 3,c = 3, p = 1) Six general points in R3 are cut out by four
quadrics, e.g.,

f

(9x1x3 — Sxpx3 — x% + x3, 6x§ — 13xpx3 +x32 — 6xy — x3,
2x1xy — 6x1X3 + X3 +x§ — X3, 6)c12 — Sxpx3 — x32 — 6x1 + x3),
Vf == { (09 07 0) ’ (0’ 07 1) ) (07 1, 0) ] (17 07 O) ) (_2’ _37 _2) ’ (_%7 _%7 _1) } .

The master spectrahedron Sfd has degree n = 3 anditlives in R*. Itis the convex hull of
its rank-one points, which form a rational curve of degree four. By [20, Example 1.3],
the projections of Sfd into R3 are spectrahedral shadows of degree 6 = §(2, 3, ), and
each shadow is the convex hull of a curve of degree four. Figure 8 illustrates the six
shadows. As predicted in (28), the SDP-exact boundary has degree 1 - 6 - 6 = 36.

Example6.5 (n = 3,c¢ = 3, p = 2) Five general points in R> are cut out by five
quadrics, e.g.,

f = (x2x3 — X1, X1x3 — X2x3 + X1 — X2, X3 — X3, X1X2 — X3, X] — X3),
Vf = {(01 07 O)’ (17 11 1)7 (1a _17 _1)’ (_11 19 _1)7 (_11 _17 1)}'

The master spectrahedron Sfd lives in R, It is an affine hyperplane section of the
cone of positive semidefinite 3 x 3 matrices. Its projections into R? look like the dual
elliptope in Fig. 2. Such a spectrahedral shadow has degree 6 (3, 3, *) = 444, as seen

Fig.8 The SDP-exact region for
the ED problem on six points in
R3 consists of six spectrahedral
shadows. Each shadow is the
convex hull of a highlighted
curve of degree four
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Fig.9 The SDP-exact region
Rfd for five points in R3
consists of five dual elliptopes

in the left box of the p = 2 row in [20, Table 1]. Its boundary is given by four planes
and a quartic surface.

Thus the SDP-exact region ’Rfd consists of five dual elliptopes, as seen in Fig. 9.
They touch pairwise along their circular facets. For instance, the region around (0, 0, 0)
is bounded by the planes {2u; + 2up; — 2u3 = =3}, {2u; — 2uy + 2u3 = -3},
{2u1 — 2ur — 2uz = 3}, {2uy + 2uy + 2uz = 3}, and the quartic Steiner surface
{u%u% + u%u% + u%u% + 3ujuauz = 0}. Again, the prediction in (28) is correct, since
the boundary of Rfd has degree 1 - 5 - (4 +4) = 40.

The algebraic computation of projections of spectrahedra is very hard (cf. [20,
Remark 2.3]). In our situation, it is even harder, since we are dealing with a family
of varying projections, one for each point x in the variety V. We demonstrate this in
Algorithm 1.

Examples 6.2 and 6.4 were computed with Algorithm 1 as is. This works because V¢
is smooth in both of these cases. If V¢ is singular then we must saturate the ideal given
in step 5 with respect to the ideal of ¢ x ¢ minors of Jacg(x) prior to the elimination
in step 6.

Algorithm 1 Computing SDP-exact boundaries for the ED problem (case p = 1)
Input: Quadratic polynomials fi, ..., fc+ defining V¢ of codimension ¢ in R".

Output: Polynomial ¥ () = ¥ (uq, ..., u,) that defines the algebraic boundary Balngd.

1: Compute the Jacobian matrix Jace(x) of formatn x (¢ + 1).

2: Compute the Lagrangian £(X, x) in (15) and its Hessian H(}) in (16).

3: Let (%) = det(H(A)) and compute the gradient V, (), a row vector of length ¢ + 1.

V. (h) ]
Jace(x) |~

4: Let g(X, x) be the vector of all maximal minors of the (n + 1) x (¢ 4+ 1) matrix [

5: Construct the system of equations in (¢ 4+ 1) 4+ 2n unknowns (%, x, u):
f(x)=0, g, x)=0, A(A)=0 and u = x — %JaCf(X))\,.

> This is expected to cut out a variety of dimension n — 1 in R+l
6: Eliminate A and x from the above system to get the desired polynomial v ().
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Algorithm 1 can be modified to also work when p > 2 but the details are subtle.
The polynomial /() gets replaced by the ideal of (¢ +2 — p) x (¢ +2 — p) minors
of the matrix H(A), and the first row V, (%) in the augmented Jacobian in step 4 gets
replaced by the Jacobian matrix of that determinantal ideal. This requires great care
since these matrices are large.

Remark 6.6 1t would be interesting to study the tangency behavior of the spectrahedral
shadows in our bundles. For instance, pairs of convex bodies meet in a point in Fig. 4,
they meet in a line segment in Fig. 8, and they meet in a common circular facet in
Fig. 9.
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