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Abstract
We consider the classification problem when the input features are represented as
matrices rather than vectors. To preserve the intrinsic structures for classification, a
successful method is the support matrix machine (SMM) in Luo et al. (in: Proceedings
of the 32nd international conference on machine learning, Lille, France, no 1, pp 938–
947, 2015), which optimizes an objective function with a hinge loss plus a so-called
spectral elastic net penalty. However, the issues of extending SMM to multicategory
classification still remain. Moreover, in practice, it is common to see the training data
contaminated by outlying observations, which can affect the robustness of existing
matrix classification methods. In this paper, we address these issues by introducing a
robust angle-based classifier, which boils down binary and multicategory problems to
a unified framework. Benefitting from the use of truncated hinge loss functions, the
proposed classifier achieves certain robustness to outliers. The underlying optimiza-
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430 C. Qian et al.

tion model becomes nonconvex, but admits a natural DC (difference of two convex
functions) representation. We develop a new and efficient algorithm by incorporating
the DC algorithm and primal–dual first-order methods together. The proposed DC
algorithm adaptively chooses the accuracy of the subproblem at each iteration while
guaranteeing the overall convergence of the algorithm. The use of primal–dual meth-
ods removes a natural complexity of the linear operator in the subproblems and enables
us to use the proximal operator of the objective functions, and matrix–vector opera-
tions. This advantage allows us to solve large-scale problems efficiently. Theoretical
and numerical results indicate that for problems with potential outliers, our method
can be highly competitive among existing methods.

Keywords Angle-based classifiers · DCA (difference of convex function) algorithm ·
Fisher consistency · Nonconvex optimization · Robustness · Spectral elastic net

Mathematics Subject Classification 90C25 · 90-08

1 Introduction

Many popular classification methods are originally developed for data with a vector
of covariates, such as linear discriminant analysis, logistic regression, support vec-
tor machine (SVM), and Adaboost [12]. Recent advances in technology enable the
generation of a wealth of data with complex structures, where the input features are
represented by multi-linear geometric objects such as matrices or tensors, rather than
by the form of vectors or scalars. The matrix-type datasets are often encountered in
a wide range of real applications, e.g., the face recognition [31] and the analysis of
medical images, such as the electroencephalogram data [36].

One common strategy to handle thematrix data classification is to stack amatrix into
a long vector, and then employ some existing vector-basedmethods. This approach has
several drawbacks. First, after vectorization, the dimensionality of the resulting vector
typically becomes exceedingly high, which in turn leads to the curse of dimension-
ality, i.e. the large p and small n phenomenon. Second, vectorization of matrix-type
data can destroy informative structure and correlation of data matrix, such as the
neighbor information and the adjacent relation. Third, under the statistical learning
framework, the regularization of vector andmatrix data should be different due to their
intrinsic structures. To exploit the correlation among the columns or rows of the data
matrix, several methods were developed, for example, [6,14,24,27]. These methods
are essentially built on the low-rank assumption. Another major direction is to extend
regularization techniques commonly used in vector-based classification methods to
the present matrix-type data, under certain sparsity assumptions. The regularization
with the nuclear norm of matrix of parameters is popular in a variety of settings; see
[7] for matrix completion with a low rank constraint, and [36] for matrix regression
problems based on generalized linear models. Specifically, [19] proposed the Support
Matrix Machine (SMM) which employs a so-called spectral elastic net penalty for
binary classification problems. The spectral elastic net penalty is the combination of
the squared Frobenius matrix norm and the nuclear norm, in parallel to the elastic net
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Robust multicategory support matrix machines 431

[37]. They showed that the SMM classifier enjoys the property of grouping effect,
while keeping a low-rank representation.

Our approach and contribution Though the SMM model is simple yet effective, two
major issues still remain. The first one is how to extend it to address the problemofmul-
ticategory classification. One may reduce the multicategory problem via a sequence
of binary problems, for example, using one-versus-rest or one-versus-one techniques.
However, the one-versus-rest method can be inconsistent when there is no dominating
class, and one-versus-one method may suffer a tie-in-vote problem [17,18]. Another
issue is that existing classifiers may not be robust against outliers, and thus they may
have unstable performance in practice [30]. To address these two issues, we propose
a new multicategory angle-based SMM using truncated hinge loss functions, which
not only provides a natural generalization of binary SMM methods, but also achieves
certain robustness to outliers. Our proposed classifier can be viewed as a robust matrix
counterpart of the robust vector-based classifier in [32]. We show that the proposed
classifier enjoys Fisher consistency and other attractive theoretical properties.

Because the truncated hinge loss is nonconvex and the spectral elastic net regu-
larization is not smooth, the optimization problem involved in our classifier is highly
non-trivial.We first show that this problem admits a global optimal solution by exploit-
ing special structures of the model. Next, we show that the optimization problem has
a natural DC (difference of two convex functions) decomposition. Hence, one can
apply a DC algorithm (DCA) [2] to solve this problem. However, the convex subprob-
lem is rather complicated with nonsmooth objective functions and linear operators,
and cannot be solved exactly. This prevents us from solely applying DCA to solve
our nonconvex problem. We instead develop a new variant, namely the inexact prox-
imal DCA, to solve this problem. By using the proximal term, we obtain a strongly
convex subproblem. Then, to approximately solve this subproblem, we propose to use
primal–dual first-order methods proposed in [8,28]. These methods allow us to exploit
the special structures of the problem by utilizing the proximal operator of the objective
terms, and matrix–vector multiplications. One drawback of this approach is to match
the number of inner iterations in the primal–dual scheme and the inexactness of the
proximal DCA scheme. By exploiting the problem structure, we show how to estimate
this number of inner iterations at each step of the DCA scheme to obtain a unified
DCA algorithm for solving the nonconvex optimization problem. We prove that by
adaptively controlling the number of iterations in the primal–dual routine, we can still
achieve a global convergence of our DCA variant, which converges to a stationary
point. Our method can be implemented efficiently and does not require to estimate
any parameter with expensive computational cost. To the best of our knowledge, we
are not aware of any efficient method to solve SMM-type problems in the literature
except the alternating direction method of multipliers (ADMM)-based scheme [5]. In
order to examine the efficiency of our method, we compare it with an ADMM-based
scheme [5]. As shown in Sect. 5, our method outperforms ADMM in terms of compu-
tational time, and our new model has highly competitive performance among existing
methods in different aspects.
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Paper organization The rest of the article is organized as follows. In Sect. 2, we briefly
review some related works, and then introduce our proposed model and methodology.
In Sect. 3, we describe a new inexact proximal DCA algorithm and investigate its
convergence. Some statistical learning results, including Fisher consistency, risk and
robustness analysis, are presented in Sect. 4. Numerical studies are given in Sect. 5
on both synthetic and real data. Sect. 6 concludes our work with some remarks, and
theoretical proofs are delineated in the “Appendix”.

NotationFor amatrixA ∈ R
p×q of rank r (r ≤ min(p, q)),A = UAΣAV�

A represents
the condensed singular value decomposition (SVD) of A, where UA ∈ R

p×r and
VA ∈ R

q×r satisfy U�
AUA = Ir and V�

AVA = Ir , and ΣA = diag{σ1(A), . . . , σr (A)}
with σ1(A) ≥ · · · ≥ σr (A) > 0. For each τ > 0, the singular value thresholding
operator Dτ (·) is defined as follows:

Dτ (A) = UADτ (ΣA)V�
A ,

where Dτ (ΣA) = diag
{[σ1(A) − τ ]+, . . . , [σr (A) − τ ]+

}
with [a]+ = max{0, a}.

For A ∈ R
p×q , ‖A‖F =

√∑
i, j a

2
i j denotes the Frobenius norm of A, ‖A‖∗ =

∑r
i=1 σi (A) denotes the nuclear norm of A, and ‖A‖2 = σ1(A) stands for the spec-

tral norm of A. The inner product between two matrices is defined as 〈A, B〉 =√
tr(A�B) =

√∑
i, j ai, j bi, j . It is well-known that the nuclear norm ‖A‖∗, as a map-

ping fromR
p×q toR, is not differentiable, but convex. Alternatively, one considers the

subdifferential of ‖A‖∗, which is the set of subgradients and denoted by ∂‖A‖∗. For a
matrix A, vec(A) denotes its vectorization. We use 〈·, ·〉 to denote the inner product.

For a proper, closed, and convex function ϕ : Rn → R ∪ {+∞}, dom(ϕ) denotes
the domain of ϕ, proxϕ(x) � argminy

{
ϕ(y) + 1

2

} ‖y − x‖2 denotes its proximal

operator, and ϕ∗(y) � sup
{
x�y− ϕ(x)

}
denotes its Fenchel conjugate. We say that

ϕ has a “friendly” proximal operator if its proximal operator proxϕ can be computed
efficiently by, e.g., closed-form or polynomial time algorithms. We say that ϕ is μϕ-
strongly convex if ϕ(·) − 1

2μϕ‖ · ‖2F is convex, where μϕ ≥ 0. Given a nonnegative
real number x , we denote x� the largest integer that is less than or equal to x .

2 Methodology

Assume that the underlying joint distribution of (X,Y) is Pr(X,Y), where X ∈ R
p×q

is the matrix of predictors and Y is the label. We are given a set of training samples of
matrix-type data TN = {Xi , yi }Ni=1 collected independently and identically distributed
(i.i.d.) from Pr, where Xi ∈ R

p×q is the i th input sample and yi is its corresponding
class label. Here, we assume that Xi ’s are zero-centered; otherwise we can make
transformation byXi−X, whereX = N−1∑N

i=1 Xi .We take the structure information
into consideration and handle all Xi ’s in the matrix form. Based on the given training
set TN , the target of a classification problem is to estimate a classifier ŷ : X �→ Y , by
minimizing the empirical prediction error
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1

N

N∑

i=1

I(ŷ(Xi ) �= yi ),

where I(·) is the indicator function. Because I(·) is discontinuous, in practice, we use
some surrogate loss function to approximate it. As an example, in the case of the SVM,
the hinge loss is adopted.

2.1 Review of the support matrix machine

We take the binary problem as a special example with the encoded class labels set
{+1,−1}. The optimization problem of [19]’s SMM can be expressed as

min
M1,b

{
1

N

N∑

i=1

�(yi (〈M1, Xi 〉 + b)) + λ

(
1

2
‖M1‖2F + τ‖M1‖∗

)}

, (1)

where M1 ∈ Rp×q , and �(u) � [1 − u]+ = max{1 − u, 0} is the hinge loss, τ ≥ 0
controls the balance between the Frobenius norm and nuclear norm, and λ > 0 is a
tuning parameter that balances the loss and regularization terms. The SMM (1) is a
soft margin classifier, and it has a close connection to the ordinary SVM [4,10]. With
τ = 0, by vectorization of the coefficient matrix M1, SMM reduces to the standard
form of the SVM.

The penalty term, J (M1) � 1
2 ‖M1‖2F + τ‖M1‖∗, can be re-expressed as

J (M1) =
min{p,q}∑

i=1

σ 2
i (M1)

2
+ τ

min{p,q}∑

i=1

σi (M1).

Clearly, this term is essentially of the form of the elastic net penalty for all singular
values of the regression matrix M1, and thus is referred to as the spectral elastic
net penalty. Such regularization encourages a low-rank constraint of the coefficient
matrix. This can be better understood by the dual problem of (1), which is presented
as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

min
α

⎧
⎨

⎩
1

2

∥∥∥∥∥
Dτ

(
N∑

i=1

αi yiXi

)∥∥∥∥∥

2

F

−
N∑

i=1

αi

⎫
⎬

⎭

s.t. 0 ≤ αi ≤ C, i = 1, . . . , N ;
N∑

i=1

αi yi = 0,

(2)

whereC = (Nλ)−1, and the optimum satisfiesM1 = Dτ

(∑N
i=1 αi yiXi

)
. The deriva-

tion of (2) is given in the appendix. Under the low-rank assumption, small singular
values of

∑N
i=1 αi yiXi are more likely to be noisy, and hence SMM could be more

efficient than the SVM by thresholding with an appropriate choice of τ . Moreover,

123
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due to the use of the trace norm, [19] also showed that there is a stronger grouping
effect in the estimation of M1 than the ordinary SVM.

2.2 Robust multicategory SMM

For extensions of the binary classification method to the multicategory case, a com-
mon approach is to use K classification functions to stand for the K categories,
and the prediction rule is based on which function has the largest value. Recently,
[32] showed that this approach can be inefficient and suboptimal, and proposed an
angle-based classification framework that needs to train K − 1 classification func-
tions f = ( f1, . . . , fK−1)

�. The angle-based classifiers can enjoy better prediction
performance and faster computation [26,33,34]. Hence, we adopt this strategy here.
For simplicity, we focus on linear learning.

To be more specific, consider a centered simplex with K vertices W =
(w1, . . . ,wK ) in RK−1, where these vertices are given by

wk =
⎧
⎨

⎩

(K − 1)− 1
2 1 if k = 1,

− 1+√K

(K−1)
3
2
1+

√
K

K−1ek−1 if k ≥ 2.

Here, ek is the unit vector of length K −1 with the kth entry 1 and 0 otherwise, and 1 is
the vector of all ones. One can verify that each vectorwk has Euclidean norm 1, and the
matrixW introduces a symmetric simplex in RK−1. Each wk represents the kth class
label. LetM be the linear transformationmatrix whichmaps an inputX into a (K−1)-
variate vector f(X) = M · vec(X), where M = [

vec(M1), . . . , vec(MK−1)
]� ∈

R
(K−1)×pq , and M j ∈ R

p×q for any j ∈ {1, . . . , K − 1}. The angle ∠(f(X), wk)

shows the confidence of the sample X belonging to class k. Thus the prediction rule
is based on which angle is the smallest, i.e.,

ŷ(X) = arg min
k∈{1,...,K }

∠(f(X), wk).

It can also be verified that the least-angle prediction rule is equivalent to the largest
inner product, i.e.,

ŷ(X) = arg max
k∈{1,...,K }

〈f(X), wk〉.

Here, we define Ha(u) � [a − u]+ = max {0, a − u} and Ga(u) � [a + u]+ =
max{0, a + u}. Based on the structure of matrix-type data, our proposed Robust Mul-
ticategory Support Matrix Machine (RMSMM) solves

min
f∈F

⎡

⎣ 1

N

N∑

i=1

⎧
⎨

⎩
γ T(K−1)s(〈f(Xi ), wyi 〉) + (1− γ )

∑

k �=yi

Rs(〈f(Xi ), wk〉)
⎫
⎬

⎭

+ λJ (M)

⎤

⎦ , (3)
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where

– F �
{
f | f(X) = Mvec(X), M ∈ R

(K−1)×pq
}
;

– f(X) � ( f1(X), · · · , fK−1(X)) with f j (X) = 〈M j ,X〉 for j = 1, . . . , K − 1;
– J (M) �

∑K−1
j=1

( 1
2‖M j‖2F + τ‖M j‖∗

)
, where τ ≥ 0 is a balancing parameter;

– Ts(u) � HK−1(u) − Hs(u) and Rs(u) � G1(u) − Gs(u). The notation s ≤ 0
is a parameter that controls the location of truncation, and γ ∈ [0, 1] is a convex
combination parameter.

In (3), the loss term L(X, y,M) =
{
γ T(K−1)s(〈f(X), wy〉) + (1− γ )

∑
k �=y

Rs(〈f(X), wk〉)} can be written as L1(X, y,M) − L2(X, y,M), where

L1(X, y,M) = γ H(K−1)(〈f(X), wy〉) + (1− γ )
∑

k �=y

G1(〈f(X), wk〉), and

L2(X, y,M) = γ H(K−1)s(〈f(X), wy〉) + (1− γ )
∑

k �=y

Gs(〈f(X), wk〉).

The first term L1 of the above representation is a generalization of the reinforced
multicategory loss function in the angle-based framework proposed by [33]. Note that
L1 explicitly encourages 〈f(X), wy〉 to be large, while the second term encourages
〈f(X), wy〉 to be small for k �= yi . In parallel to [33], we will show later that this
convex combination of hinge loss functions enjoys Fisher consistency with γ ∈ [0, 1

2 ]
and s ≤ 0.

The use of the second termL2 is motivated by [30] to alleviate the effect of potential
outliers, resulting in a truncated hinge loss. It can be seen that for any potential outlier
(X, y) with a sizable 〈f(X), wy〉, its loss L is upper bounded by a constant for any
f . Thus, the impact of outliers can be alleviated by using L. Note that when s > 0,
Ts(u) and Rs(u) are constants within [−s, s]. In this case, the loss for some correctly
classified observations is the same as that of those misclassified ones. Hence, it is more
desirable to set s ≤ 0. As recommended by [32], the choice of s = −(K −1)−1 works
well and will be used in our simulation study.

The truncated hinge loss is nonconvex, which makes the optimization problem (3)
more involved than that of SMM.We next present an efficient algorithm to implement
our RMSMM.

3 Optimization algorithm

Since the optimization problem (3) admits a DC decomposition, we propose to apply
DCA [2] to solve this problem. At each iteration of DCA, it requires to solve a convex
subproblem, which does not have a closed form.We instead solve this convex subprob-
lemup to a given accuracy and design an inexact variant ofDCAso that it automatically
adapts the accuracy of the subproblem to guarantee the overall convergence of the full
algorithm.
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3.1 A DC representation of (3)

Problem (3) is nonconvex, but fortunately, it possesses a natural DC representation.
Indeed, due to the relation f (X) � M · vec (X), we can write

〈 f (X),w〉 = w�M · vec (X) = a�vec (M) ,

where a � vec (X) ⊗ w with ⊗ denoting the Kronecker product. Let us define

ai � vec (Xi ) ⊗ wyi , and bik � vec (Xi )⊗ wk, i = 1, . . . , N , k = 1, . . . , K − 1.

(4)

Then, we can rewrite problem (3) as

min
M∈R(K−1)×pq

⎧
⎨

⎩
F(M)� 1

N

N∑

i=1

⎡

⎣γ Ts(K−1)
(
a�i vec (M)

)
+(1−γ )

∑

k �=yi

Rs

(
b�ikvec (M)

)
⎤

⎦

+ λJ (M)

⎫
⎬

⎭
. (5)

Problem (5) has a DC representation as follows:

min
M

{
F(M) � Φ(M) − Ψ (M)

}
, (6)

where

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Φ(M) � 1

N

N∑

i=1

⎡

⎣γ HK−1

(
a�i vec (M)

)
+ (1− γ )

∑

k �=yi

G1

(
b�ikvec (M)

)
⎤

⎦+ λJ (M)

Ψ (M) � 1

N

N∑

i=1

⎡

⎣γ Hs(K−1)

(
a�i vec (M)

)
+ (1− γ )

∑

k �=yi

Gs

(
b�ikvec (M)

)
⎤

⎦ .

(7)

Here, both functionΦ andΨ are convex, but nonsmooth. In addition,Ψ is polyhedral.
Note that we can always add any strongly convex function S to Φ and Ψ to write
F = Φ − Ψ as

F(M) = Φ(M) − Ψ (M) = [Φ(M)+ S(M)] − [Ψ (M)+ S(M)], (8)

to obtain a new DC representation. The latter representation shows that both convex
functions Φ + S and Ψ + S are strongly convex. This representation also leads to a
strongly convex subproblem at each iteration of DCA as we will see in the sequel.
However, the choice of S is crucial, and also affects the performance of the algorithm.
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In our implementation, we simply add a convex quadratic function which leads to a
proximal DCA.

Note that dom(Φ) ∩ dom(Ψ ) �= ∅. Since problem (6) is nonconvex, any point
M∗ ∈ R

(K−1)×pq satisfies

0 ∈ ∂F(M∗) ≡ ∂Φ(M∗) − ∂Ψ (M∗) (9)

is called a stationary point of (6). If M∗ satisfies ∂Φ(M∗) ∩ ∂Ψ (M∗) �= ∅, then we
say thatM∗ is a critical point of (6). We show in the following theorem that (6) has a
global optimal solution.

Theorem 1 If λ > 0, then problem (6) has at least one global optimal solution M∗.

Proof We first write the objective function F of (5) into the sum F(M) = F(M) +
λ
2‖M‖2F , where F is a function combining the sum of Ts(K−1), Rs , and the nuclear

norm
∑K−1

j=1 τ‖M j‖∗ in J .

Next, we show that F is Lipschitz continuous. Indeed, using the fact that [a]+ =
max {0, a} = 1

2 (a + |a|), we can show that

Ts(u) = HK−1(u) − Hs(u) = [K − 1− u]+ − [s − u]+ and

Rs(u) = G1(u) − Gs(u) = [1+ u]+ − [s + u]+

are both Lipschitz continuous. In addition, we have
∥∥M j

∥∥
F ≤ ‖M j‖∗ ≤

[min {p, q}]1/2‖M j‖F for j = 1, . . . , K − 1. Hence,
∑K−1

j=1 τ‖M j‖∗ is also Lip-

schitz continuous. As a consequence, F defined above is Lipschitz continuous. That
is, there exists L ∈ [0,+∞) such that |F(M) − F(M̂)| ≤ L‖M − M̂‖F for all
M, M̂ ∈ R

(K−1)×pq .
Using a fixed point M0 ∈ R

(K−1)×pq , we can bound F as

F(M) ≥ F(M0) − LF‖M−M0‖F + λ

2
‖M‖2F →+∞, as ‖M‖F →+∞.

Hence, F is coercive, i.e., F(M) →+∞ as ‖M‖F →∞. Consequently, its sublevel
setL(β) = {M | F(M) ≤ β} is closed and bounded for anyβ ∈ R. By thewell-known
Weierstrass theorem, (6) has at least one global optimal solution M∗. ��

3.2 Inexact proximal DCA scheme

Let us start with the standard DCA scheme [2] and propose an inexact proximal DCA
scheme to solve (6). The proximal DCA is equivalent to DCA applying to the DC
decomposition (8) mentioned above, but often uses an adaptive strongly convex term
S.
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438 C. Qian et al.

3.2.1 The standard DCA scheme and its proximal variant

The DCA method for solving (6) is very simple. At each iteration t ≥ 0, given Mt ,
we compute a subgradient ∇Ψ (Mt ) ∈ ∂Ψ (Mt ) and form the subproblem:

min
M

{
F̃t (M) � Φ(M) − 〈∇Ψ (Mt ),M〉

}
, (10)

to compute the next iterationMt+1 as an exact solution of (10). The subproblem (10)
is convex. However, it is fully nonsmooth and does not have a closed form solution.

In the proximal DC variant, we instead apply DCA to the DC decomposition (8)
with S(M) � ρ

2 ‖M‖2F , which leads to the following scheme:

Mt+1 � arg min
M

{
F̃t (M) � Φ(M) − 〈∇Ψ (Mt ),M〉 + ρt

2
‖M−Mt‖2F

}
, (11)

where ρt > 0 is a given proximal parameter. Clearly,Mt+1 is well-defined and unique.

3.2.2 Inexact proximal DCA scheme

Clearly the subproblem (11) in the proximal DCA scheme (11) does not have a closed
form solution. We can only obtain an approximate solution of this problem. This
certainly affects the convergence of (11). We instead propose an inexact variant of
(11) by approximately solving

Mt+1 :≈ arg min
M

{
F̃t (M) � Φ(M) − 〈∇Ψ (Mt ),M〉 + ρt

2
‖M−Mt‖2F

}
, (12)

where :≈ stands for the approximation between the approximate solution Mt+1 and

the true solution M
t+1

of the subproblem (12), and is characterized via the objective
residual as

F̃t (Mt+1) − F̃t (M
t+1

) ≤ δ2t

2
. (13)

We note that this condition is implementable if we apply first-order methods in convex
optimization to approximately solving (12).

Clearly, by strong convexity, we have

ρt

2
‖Mt+1 −M

t+1‖2F ≤ F̃t (Mt+1) − F̃t (M
t+1

) ≤ δ2t

2
.

This leads to ‖Mt+1 −M
t+1‖F ≤ δt/

√
ρt , which shows the difference between the

approximate solution Mt+1 and the true one M
t+1

.
Under the inexact criterion (13), we can still prove the following descent property

of the inexact proximal DCA scheme (12).
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Lemma 1 Let Ψ be μΨ -strongly convex with μΨ ≥ 0. Let
{
Mt

}
be the sequence

generated by the inexact proximal DCA scheme (12) under the inexact criterion (13).
Then

F(Mt+1) ≤ F(Mt ) − (ρt + μΨ )

2
‖Mt+1 −Mt‖2F + δ2t

2
. (14)

Proof Using the optimality condition of (12), we have

∇Φ(M
t+1

) − ∇Ψ (Mt ) + ρt (M
t+1 −Mt ) = 0, where ∇Φ(M

t+1
) ∈ ∂Φ(M

t+1
).

From the μΦ - and μΨ -strong convexity of Φ and Ψ , respectively, we have

Φ(M
t+1

) ≤ Φ(Mt ) + 〈∇Φ(M
t+1

),M
t+1 −Mt 〉 − μΦ

2
‖Mt+1 −Mt‖2F ,

−Ψ (Mt+1) ≤ −Ψ (Mt ) − 〈∇Ψ (Mt ),Mt+1 −Mt 〉 − μΨ

2
‖Mt+1 −Mt‖2F

= −Ψ (Mt ) − 〈∇Ψ (Mt ),M
t+1 −Mt 〉 + 〈∇Ψ (Mt ),M

t+1 −Mt+1〉
− μΨ

2
‖Mt+1 −Mt‖2F .

Summing up the last two inequalities and using the above optimality condition, we
obtain

Φ(M
t+1

) − Ψ (Mt+1) ≤ F(Mt ) − ρt‖Mt+1 −Mt‖2F + 〈∇Ψ (Mt ),M
t+1 −Mt+1〉

− μΦ

2
‖Mt+1 −Mt‖2F − μΨ

2
‖Mt+1 −Mt‖2F .

Here, F(M) = Φ(M)− Ψ (M). Next, using (13), we have

Φ(Mt+1) ≤ Φ(M
t+1

) − 〈∇Ψ (Mt ),M
t+1 −Mt+1〉 + δ2t

2

+ ρt

2
‖Mt+1 −Mt‖2F − ρt

2
‖Mt+1 −Mt‖2F .

Summing up the last two inequalities and using F = Φ − Ψ again, we obtain

F(Mt+1) ≤ F(Mt )− 1

2

[
(ρt + μΦ)‖Mt+1 −Mt‖2F + (ρt + μΨ )‖Mt+1 −Mt‖2F

]

+ δ2t

2
.

This implies (14) by neglecting the term − 1
2 (ρt + μΦ)‖Mt+1 −Mt‖2F . ��
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3.3 Solution of the convex subproblem

By rescaling the objective function by a factor of 1
λ
, we can rewrite the strongly convex

subproblem (12) at the iteration t of the inexact proximal DCA scheme as follows:

min
M

{
F̃t (M) � Pt (A(M))+ Qt (M)

}
, (15)

where

Pt (A(M)) � 1

λN

N∑

i=1

⎡

⎣γ HK−1

(
a�i vec (M)

)
+ (1− γ )

∑

k �=yi

G1

(
b�ikvec (M)

)
⎤

⎦

−1

λ
〈∇Ψ (Mt ),M〉,

and

Qt (M) � J (M) + ρt

2

∥∥M−Mt
∥∥2
F =

K−1∑

j=1

[
1

2
‖M j‖2F + τ

∥∥M j
∥∥∗ +

ρt

2

∥∥∥M j −Mt
j

∥∥∥
2

F

]
.

Here, A is a linear operator concatenating all vectors ai and bik , and the subgradient
∇Ψ (Mt ) in Pt , and Pt is a nonsmooth convex function, but has a “friendly” proximal
operator that can be computed in linear time (see Sect. 3.5 for more details). Due to
the strong convexity of J , (15) is strongly convex even for ρt = 0. However, one can
adaptively choose ρt ≥ 0 such that we have a “good” strong convexity parameter. If
we do not add a regularization term 1

2‖M j‖2F , then (15) is strongly convex if ρt > 0.
SinceμΨ = 0 in (6), to get a strictly descent property in Lemma 1, we require ρt > 0.
The following lemma will be used in the sequel, whose proof is given in the appendix.

Lemma 2 The objective function Pt (·) of (15) is Lipschitz continuous, i.e., there exists
L0 ∈ (0,+∞) such that |Pt (u) − Pt (̂u)| ≤ L0‖u − û‖F for all u, û, where L0 is
independent of t . Consequently, the domain dom(P∗

t ) of the conjugate P∗
t is bounded

uniformly in t , i.e., its diameter DP∗ � 2 sup
{‖v‖ | v ∈ dom(P∗

t )
}
is finite and inde-

pendent of t .

Denote by

L(β) �
{
M ∈ R

(K−1)×pq | F(M) ≤ β
}

, (16)

the sublevel set of (5). As we proved in Theorem 1, the sublevel set L(β) is closed
and bounded for any β ∈ R. We define

DL � 2 sup
{
‖M‖F | F(M) ≤ F(M0)

}
(17)

the diameter of this sublevel set, which is finite, i.e., DL ∈ (0,+∞).
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3.3.1 Primal–dual schemes for solving (15)

Problem (15) can be written into a minimax saddle-point problem using the Fenchel
conjugate of Pt . It is natural to apply primal–dual first-order methods to solve this
problem. We propose in this subsection two different primal–dual schemes to solve
(15).

Our first algorithm is the common Chambolle–Pock primal–dual method proposed
in [8]. This method is described as follows. Starting from M̂t

0 = M̃t
0 = Mt , and

Yt
0 = Yt as an initial dual variable with Y0 = 0, set Mt

0 = 0, and at each inner
iteration l ≥ 0, we perform

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Yt
l+1 = proxσ t

l P
∗
t

(
Yt
l + σ t

l A(M̂t
l )
)
,

M̃t
l+1 = proxωt

l Qt

(
M̃t

l − ωt
lA∗(Yt

l+1)
)
,

θ tl = 1√
1+2(1+ρt )ω

t
l

, ωt
l+1 = θ tl ω

t
l , σ t

l+1 = σ t
l

θ tl
,

M̂t
l+1 = M̃l+1

t + θ tl (M̃
t
l+1 − M̃t

l ),

Mt
l+1 = (1− stl )M

t
l + stl M̃

t
l+1, with stl = σ t

l∑l
j=0 σ t

j
.

(18)

Here, we use the index t for the DCA scheme as the outer iteration counter, and the
index l for the inner iteration counter. The initial stepsizes are set to be σ t

0 = ωt
0 =

c‖A‖−1, where ‖A‖ is the operator norm of A, and c = 0.999; A∗ is the adjoint
operator of A (i.e., when A is a matrix, A∗ is the transpose of A), proxσ P∗

t
is the

proximal operator of the Fenchel conjugate P∗
t of Pt , and proxωQt

is the proximal
operator of ω · Qt .

Alternatively, we can also apply [28, Algorithm 2] to solve (15). Originally, [28,
Algorithm 2] works directly on the primal space, and has a convergence guarantee
on the primal sequence

{
Mt

l

}
that is independent of the dual variable Yt

l as we can
see in Lemma 3 below. Let us describe this scheme here to solve (15). Starting from
Mt

0 = Mt , M̃t
0 = Mt , and Yt

0 = Yt , at each inner iteration l ≥ 0, we update

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Yt
l+1 = proxσ t

l P
∗
t
(Yt

0 + σ t
l A(M̂t

l ))

M̃t
l+1 = proxQt/(ω

t
l β

t
l )

(
M̃t

l − 1
ωt
l β

t
l
A∗ (Yt

l+1

))

Mt
l+1 = (1− ωt

l )M
t
l + ωt

l M̃
t
l+1

ωt
l+1 = ωt

l
2

(√
(ωt

l )
2 + 4− ωt

l

)
, σ t

l+1 = σ t
l

1−ωt
l+1

, β t
l+1 = ‖A‖2σ t

l+1,

M̂t
l+1 = Mt

l+1 +
ωt
l+1(1−ωt

l )

ωt
l

(Mt
l+1 −Mt

l ).

(19)

Here, the initial values ωt
0 = 1 and σ t

0 = 1
2‖A‖−2(1+ ρt ) are given.

Note that both schemes (18) and (19) look quite similar at first glance, but they are
fundamentally different. First, the dual stepYt

l in (19) fixesY
t
0 for all iterations l, while

it is recursive with Yt
l in (18). Second, (18) has an extra averaging step at the last line,

while (19) has a linear coupling step at the last line, where it works similarly as the
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accelerated gradient method of Nesterov [23]. Finally, the way of updating parameters
in both schemes are really different.

In terms of complexity, (18) and (19) essentially have the same per-iteration com-
plexity with one proximal operator proxsP∗

t
, one proximal operator proxr Qt

, one
matrix–vector multiplication A(M), and one adjoint operation A∗(Y).

The following lemma provides us conditions to design a stopping criterion for the
inner loop (i.e., the l-iterative loop), whose proof is given in the appendix.

Lemma 3 Let M
t+1

be the unique solution of (15) at the outer iteration t. Then, the
sequence

{
Mt

l

}
l≥0 generated by (18) satisfies

F̃t (Mt
l ) − F̃t (M

t+1
) ≤ (1+ ρt + ‖A‖)‖A‖

(1+ ρt )l2

×
(
‖Mt

0 −M
t+1‖2F + ‖Yt

0 − Y
t+1‖2F

)
, (20)

where Y
t+1

is the corresponding exact dual solution of (15).
Alternatively, the sequence

{
Mt

l

}
l≥0 generated by (19) satisfies

F̃t (Mt
l ) − F̃t (M

t+1
) ≤ 4L0‖A‖

(l + 1)2

[2L0‖A‖
1+ ρt

+√
3‖Mt

0 −M
t+1‖F

]

+ 3(ρt + 1)‖Mt
0 −M

t+1‖2F
(l + 1)2

, (21)

where L0 is given in Lemma 2

One advantage of (19) over (18) is that the right-hand side bound (21) does not depend

on the dual variables Yt
0 and Y

t+1
as in (20).

3.3.2 The upper bound of the inner iterations

Our next step is to specify themaximumnumber of inner iterations lmax(t) to guarantee
the condition (13) at each outer iteration t .

First, from both schemes (18) and (19), one can see that
{
Yt
l

} ⊂ dom(P∗
t ). Hence,

by Lemma 2, we can bound ‖Yt
0−Y

t+1‖F ≤ DP∗ . On the other hand, by Theorem 1,
the sublevel set L(F(M0)) defined by (16) is bounded. We can also bound ‖Mt

0 −
M

t+1‖F ≤ DL, where DL is given by (17). Using these upper bounds and (20), we
can show that

F̃t (Mt
l ) − F̃t (M

t+1
) ≤ (1+ ρt + ‖A‖)‖A‖

(1+ ρt )l2

(
D2
L + D2

P∗
)

.

123



Robust multicategory support matrix machines 443

Let K̄t � (1+ ρt )
−1(1+ ρt +‖A‖)‖A‖ be a constant. In order to guarantee (13), we

require to choose the number of iterations l at most

lmax(t) �
⌊
1

δt

√
K̄t (D2

L + D2
P∗)

⌋
+ 1 with δt = 1

(t + 1)α

√
D2
L + D2

P∗ . (22)

Here, α > 1 is a given constant specified by the user. With such a choice of δt , we

have lmax(t) =
⌊√

K̄t (t + 1)α
⌋
+ 1, which is independent of DL and DP∗ .

If we apply (19) to solve (15), then we have the bound (21). Let K̂t � 8L2
0‖A‖2
1+ρt

+
4
√
3L0 ‖A‖ DL + 3(ρt + 1)D2

L. Since ‖Mt
0 −M

t+1‖F ≤ DL, in order to achieve

F̃t (Mt
l )− F̃t (M

t+1
) ≤ δ2t /2, we require (l + 1)−2 K̂t ≤ δ2t /2, which implies l + 1 ≥√

2K̂t/δt . Hence, we can choose

lmax(t) �

⎢⎢⎢
⎣

√
2K̂t

δt

⎥⎥⎥
⎦+ 1, with δt =

C0

√
2K̂t

(t + 1)α
and C0 ∈ (0, 1), (23)

to terminate the primal–dual scheme (19). With such a choice of δt , we can exactly

evaluate lmax(t) =
⌊
C−1
0 (t + 1)α

⌋
+ 1, which is also independent of DL.

Remark 1 By the choice of δt as in (22) or (23), themaximumnumber of inner iterations
lmax(t) is independent of the two constants DL and DP∗ . These constants only show up
when we prove the convergence of Algorithm 1 in Theorem 2, but they do not need to
be evaluated in Algorithm 1 below. Hence, in the implementation of Algorithm 1, we

simply use lmax(t) =
⌊√

K̄t (t + 1)α
⌋
+ 1 for (18), or lmax(t) =

⌊
C−1
0 (t + 1)α

⌋
+ 1

for (19) to specify the maximum number of inner iterations, where α > 1 is a given
number, e.g., α = 1.1.

3.4 The overall algorithm and its convergence guarantee

We now combine the inexact proximal DCA scheme (12), and the primal–dual scheme
(18) (or (19)) to complete the full algorithm for solving (5) as in Algorithm 1.

In the sequel, we will explicitly specify the evaluation of a subgradient ∇Ψ (Mt )

of Ψ , the choice of ρt , and the evaluation of proxsP∗
t
and proxr Qt

. The number of
maximum iterations T of the outer loop is not necessary to specify. However, we use
T as a safeguard value to prevent the algorithm from an infinite loop. Practically, we
can set T to be a relatively large value, e.g., T = 103. Nevertheless, the stopping
criterion at Step 9 will terminate Algorithm 1 earlier. For large-scale problems, we
can evaluate the operator norm ‖A‖ of A by a power method.

We state the overall convergence of Algorithm 1 in the following theorem.
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Algorithm 1 (Inexact proximal DC algorithm with primal–dual iterations)
1: Initialization:
2: Input an accuracy ε > 0. Choose an initial point M0 ∈ R

(K−1)×pq , and choose
Y0 � 0.

3: Choose two parameters 0 < ρ < ρ̄ < +∞, and σ0 = ω0 = 0.999‖A‖.
4: For t = 0 to T , perform

5: Evaluate a subgradient ∇Ψ (Mt ) ∈ ∂Ψ (Mt ) and choose ρt ∈ [ρ, ρ̄].
6: Initialization of inner loop: Initialize Mt

0, M̂
t
0, M̃

t
0, Y

t
0, σ t

0, and ωt
0. Compute

lmax(t).
7: Inner loop: For l = 0, 1, · · · , lmax(t), perform either (18) or (19).
8: Terminate the inner loop: If l ≥ lmax(t), then set Mt+1 = Mt

lmax(t)
and Yt+1 =

Yt
lmax(t)

.

9: Stopping criterion: If ‖Mt+1−Mt‖F ≤ εmax
{
1, ‖Mt‖F

}
, then terminate and

returnMt+1.
10: End for

Theorem 2 (Overall convergence)Let
{
Mt

}
be the sequence generated by Algorithm 1

using (18) (respectively, (19)) for approximately solving (12) up to lmax(t) inner iter-
ations as in (22) (respectively, (23)). Then, we have

∞∑

t=0

‖Mt+1 −Mt‖2F < +∞ and it implies lim
t→∞‖Mt+1 −Mt‖F = 0.

Moreover, the sequence
{
Mt

}
is bounded. Any cluster pointM∗ of

{
Mt

}
is a stationary

point of (5). Consequently, the whole sequence
{
Mt

}
converges to a stationary point

of (5).

Proof Since we apply (19) to solve the subproblem (12), with the choice of δt as in
(23), we can derive from Lemma 1 that

T∑

t=0

ρt‖Mt+1 −Mt‖2F ≤ 2(F(M0) − F(MT+1)) +
T∑

t=0

δt .

By Theorem 1, we have F(MT+1) ≥ F(M∗) > −∞, the global optimal value of (5).
Hence, using the fact that ρt ≥ ρ > 0, we obtain

ρ

∞∑

t=0

‖Mt+1 −Mt‖2F ≤ 2(F(M0) − F(M∗))+
∞∑

t=0

δt < +∞.

Here,
∑∞

t=0 δt < +∞ due to the choice of δt . This is exactly the first estimate in
Theorem 2. The second limit in Theorem 2 is a direct consequence of the first one.

By Theorem 1 again, the sublevel set L(F(M0)) defined by (16) is bounded, and
F(Mt+1) ≤ F(Mt ) by Lemma 1, we have

{
Mt

} ⊂ L(F(M0)), which is bounded.
For any cluster pointM∗ of

{
Mt

}
, there exists a subsequence

{
Mts

}
that converges to
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M∗. Now, we prove thatM∗ is a stationary point of (5). Using the optimality condition
of (12), we have

0 ∈ ∂Φ(M
t+1

)− ∇Ψ (Mt ) + ρt (M
t+1 −Mt ). (24)

Note that limt→∞ ‖Mt+1−Mt+1‖F = 0 due to the choice of δt . Here, we can pass this
limit to a subsequence if necessary. Using this limit and the fact that limt→∞ ‖Mt+1−
Mt‖F = 0, we can show that limt→∞ ‖Mt+1 − Mt‖F = 0. In summary, we have

limt→∞M
t+1 = limt→∞Mt = M∗. Using the definition of Φ and Ψ , we can see

that the subgradient ∇Ψ (Mt ) of Ψ is uniformly bounded and independent of t . The

subgradient ∇Φ(M
t+1

) can be represented as ∇Φ(M
t+1

) = S
t+1 + λM

t+1
, where

S
t+1

is uniformly bounded and independent of t . By taking subsequence if necessary,

both ∇Φ(M
t+1

) and ∇Ψ (Mt ) converge to ∇Φ(M∗) and ∇Ψ (M∗), respectively. By
[25, Theorem 24.4], we have ∇Φ(M∗) ∈ ∂Φ(M∗) and ∇Ψ (M∗) ∈ ∂Ψ (M∗). Using
this fact, limt→∞M

t+1 = limt→∞Mt = M∗, and the boundedness of ρt , we can
show that 0 ∈ ∂Φ(M∗) − ∂Ψ (M∗). Hence, M∗ is a stationary point of (5). By the
boundedness of

{
Mt

}
and limt→∞ ‖Mt+1 − Mt‖F = 0, one can then use routine

techniques to show that the whole sequence
{
Mt

}
converges toM∗. ��

While the convergence result given in Theorem 2 is rather standard and similar to
those in [2], its analysis for the inexact proximal DCA seems to be new to the best
of our knowledge. Note that the convex subproblem in DCA-type methods is often
general andmay not have closed-form solutions. It is natural to incorporate inexactness
in an adaptive manner to guarantee the convergence of the overall algorithm.

3.5 Implementation details and comparison with ADMM

In Algorithm 1, we need to compute the proximal operator proxσ t
l P

∗
t
of the Fenchel

conjugate P∗
t of Pt , and proxωt

l Qt
of Qt . In addition, in order to compare our method

with other optimization methods, we specify the well-known ADMM to solve (12) as
our comparison candidate.

3.5.1 Evaluation of subgradient∇Ψ (Mt) and the choice of�t

Using the definition of Ψ from (7), we have

∇Ψ (Mt ) = 1

N

N∑

i=1

[
γ∇Hs(K−1)

(
a�i vecMt

)
ai + (1− γ )

∑

k �=yi

∇Gs

(
b�ikvecMt

)
bik

]
,

where∇Hs(K−1)(u) = 1
2 · sign(s(K −1)−u)− 1

2 and∇Gs(v) = 1
2 · sign(s+v)+ 1

2 .
Here, sign(·) is the common sign function.

To chooseρt , we first choose a range [ρ, ρ̄] in (0,+∞). For instance, we can choose

ρ = 10−5 and ρ̄ = 105, and {ρt } is any sequence in [ρ, ρ̄]. We can also fix ρt for all t
as ρt = ρ̄ > 0, e.g., ρt = 10−3. From our experience, we observe that if ρt is small,
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the strong convexity of (15) is 1+ρt , which is also small. Hence, the number of inner
iterations lmax(t) is large. However, the number of outer iterations t may be small. In
the opposite case, if ρt is large, then we need a small number lmax(t). Nevertheless,
due to a short stepMt+1−Mt , the number of outer iterations may increase. Therefore,
trading-off the value of ρt is crucial and affects the performance of Algorithm 1.

3.5.2 Evaluation of proximal operators

To compute the proximal operator of P∗
t in (18), we can use Moreau’s identity [3]:

proxσ P∗
t
(z) =

⎧
⎪⎨

⎪⎩

z j − σprox1/σ Pt

(
z j/σ

) = z j − σ
[
S1/σ

(
z j + μ j

)− μ j
]
,

j = 1, . . . , 2N ,

z j − σprox1/σ Pt

(
z j/σ

) = (1− σ)z2N+1 + 1,

where Sr (v) = sign(u) �max {|v| − r , 0} is the well-known soft-thresholding oper-
ator.

To compute the proximal operator of Qt , we note that (here, τ j = τ )

Qt (M) �
K−1∑

j=1

[
1

2

∥∥M j
∥∥2
F + τ j

∥∥M j
∥∥∗ +

ρt

2
‖M j −Mt

j‖2F
]

.

Hence, we have

proxωQt
(M) = (proxωQt j

(M j ))
K−1
j=1 ,

where Qt j (M j ) � 1
2

∥∥M j
∥∥2
F + τ j

∥∥M j
∥∥∗ + ρt

2 ‖M j −Mt
j‖2F , and

proxωQt j
(M j ) � arg min

M̂ j

⎧
⎨

⎩
ωτ j‖M̂ j‖∗ + 1+ ω(1+ ρt )

2

∥∥∥∥∥
M̂ j −

ωρtMt
j +M j

1+ ω(ρt + 1)

∥∥∥∥∥

2

F

⎫
⎬

⎭
.

This operator can be computed in a closed form using SVD of (ωρtMt
j +M j )/[1+

ω(ρt + 1)] = U jΣ jV�
j as proxωQt j

(M j ) = U jSr (Σ j )V�
j , where Sr is the soft-

thresholding operator defined above with r = ωτ j/[1+ ω(1+ ρt )].

3.5.3 ADMMmethod for solving (15)

In Algorithm 1, we can apply ADMM to solve the subproblem (15) instead of primal–
dual methods. We split the nuclear norm in Qt of (15) by introducing an auxiliary
variable S and rewrite (15) as
⎧
⎪⎪⎨

⎪⎪⎩

min
M,S

⎧
⎨

⎩

⎡

⎣Pt (A(M)) +
K−1∑

j=1

[
1

2
‖M j‖2F + ρt

2

∥∥∥M j −Mt
j

∥∥∥
2

F

]⎤

⎦

Bt (M)

+
K−1∑

j=1

τ j
∥∥S j

∥∥∗

⎫
⎬

⎭

s.t. S−M = 0.

(25)
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We define the corresponding augmented Lagrangian function of (25) as

Lβ(M,S,Λ) � Pt (A(M))+
K−1∑

j=1

[
1

2
‖M j‖2F + ρt

2

∥∥∥M j −Mt
j

∥∥∥
2

F

]
+

K−1∑

j=1

τ j
∥∥S j

∥∥∗

+ trace
(
Λ�(S−M)

)
+ β

2
‖S−M‖2F ,

where β > 0 is a penalty parameter. Starting from an initial pointMt
0 = Mt , St0 = Mt ,

our ADMM scheme for solving (25) updates at the inner iteration l according to the
following steps:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Mt
l+1 � arg min

M

{
Bt (M) + trace

(
(Λt )�l (Stl −M)

)
+ β

2
‖Stl −M‖2F

}

Stl+1 � arg min
S

⎧
⎨

⎩

K−1∑

j=1

τ j
∥∥S j

∥∥∗ + trace
(
(Λt

l )
�(S−Mt

l+1)
)
+ β

2
‖S−Mt

l+1‖2F

⎫
⎬

⎭

Λt
l+1 � Λt

l + β(Stl+1 −Mt
l+1).

(26)

In this scheme, the auxiliary sequence
{
Stl
}
can be computed into a closed form

using SVD as we have done in Sect. 3.5.2. The sequence
{
Mt

l

}
requires to solve a

general convex problem. However, this problem has a special structure so that its dual
formulation becomes a boxed constrained convex quadratic program, which is very
similar to (2). Hence, we solve this problem by coordinate descent methods, see, e.g.,
[29]. In summary, if we apply ADMM to solve (15), then our inexact proximal DCA
has three loops: DCA outer iterations, ADMM inner iterations, and coordinate descent
iterations for computing

{
Mt

l

}
.

Remark 2 (Convergence of the ADMM scheme (26)) Note that (15) is strongly convex,
and both subproblems in Mt

l+1 and Stl+1 of (26) are strongly convex, and therefore,
uniquely solvable. Consequently, this scheme converges theoretically as proved e.g., in
[5, Appendix A]. Together with asymptotic convergence guarantees, the convergence
rates of ADMM, where (26) is a special case, have been studied in e.g., [11,13,21].
We omit the details here.

4 Statistical properties

In this section, we explore some statistical properties of our proposed classifier
RMSMM (3). In the first part, we establish the Fisher consistency result for the
RMSMM, and study the finite sample bound on the misclassification rate. In the
second part, we analyze the robustness property of RMSMM via the breakdown point
theory.
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4.1 Classification consistency

Fisher’s consistency is a fundamental property of classification methods. For an
observed matrix-type data with fixed X, and denote by Pk(X) = Pr(Y = k | X)

the class conditional probability of class k ∈ {1, 2, . . . , K }. One can verify that the
best prediction rule, namely, the Bayes rule, which minimizes the misclassification
error rate, is ŷBayes(X) = argmaxk Pk(X).

For a classifier, denote by φ(f(X), y) its surrogate loss function for classification
using f as the classification function, and ŷ f the corresponding prediction rule.Assume
the conditional loss is L(X) = E[φ(f(X), y) | X], where the expectation is taken with
respect to the marginal distribution of (Y | X). We denote the theoretical minimizer
of the conditional loss as f∗(X) = argminf L(X). When ŷf∗(X) = ŷBayes(X), we say
the classifier is Fisher consistent. Let us denote byL(X, y,M) the loss function in (3).
Then, we have the following result.

Theorem 3 The classifier with the loss L(X, y,M) is Fisher consistent when γ ∈[
0, 1

2

]
and s ≤ 0.

This result can be viewed as a generalization of Theorem 1 in [34] which is devised for
vector-type observations. By this theorem, we know that our classifier RMSMM can
achieve the best classification accuracy, given a sufficiently large matrix-type training
dataset and a rich family F . The following theorem provides an upper bound of the
prediction error using the training dataset. The proof of both Theorems 3 and 4 can be
found in the appendix.

Theorem 4 Suppose that the conditional distribution of X given Y = k is the same
as the distribution of Ck + E, where Ck ∈ R

p×q is a constant matrix and the entries
of E are i.i.d. random variables with mean zero and finite fourth moment. Let M̂ =[
vec(M̂1), · · · , vec(M̂K−1)

]� ∈ R
(K−1)×pq denote the solution of (5). Then, with

probability at least 1− δ, the misclassification rate of the classifier ŷ corresponding
to M̂ can be bounded as

E
[
I
{
Y �= ŷ(X)

}] ≤ 1

N

N∑

i=1

I
{
yi �= ŷ(Xi )

}

+
√
log(δ−1)

N
+ cr(

√
p +√

q)√
N

, (27)

where r = ∑K−1
j=1 ‖M̂ j‖∗, and c is a constant specified in the proof.

Theorem 4 measures the gap between the expectation error and the empirical error,
which allows us to get a better understanding of the utility of the nuclear norm. For
each category, the decision matrix contains p×q parameters, and therefore, if we only
impose the Frobenius constraints [34] we would expect at best to obtain rates of the
order

√
pq . By taking the low rank structure of the decision matrices into account, we

use the nuclear norm penalty to control the singular values of the decisionmatrices. For
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the i-th singular vectors of the k-th decision matrix, there are p+q+1 free parameters
in total [22], one for the singular valueσki and the others for the orthogonal vectorswith
dimensions p and q. Its contribution to the gap will be cσki (

√
p +√

q). Hence, with
the low-rank structure of the decision matrices, the nuclear-norm-penalized estimator
achieves a substantially faster rate.

The rate in Theorem 4 can be further improved if we additionally impose some low-
rank constraint on the noise term of Xi . For example, consider E = UΛV�, where
Λ ∈ R

rx×rx is a low-rank noise with all entries i.i.d. with mean zero and the finite
fourth moment, U and V are orthogonal projection matrices independent of Λ. It can
be verified that the term

√
p+√

q in the rate above can be replaced by 2
√
rx . Finally,

as a side remark, consider a special case with q = 1, i.e., the features are vectors rather
than matrices. In such a situation, the nuclear norm reduces to the quadratic norm,
and the last term of the upper bound in (27) will become cr(

√
p + 1)/

√
N , which is

equivalent to existing results, for example, see [34].

4.2 Breakdown point analysis

Robustness theory has been developed to evaluate instability of statistical procedures
since the 1960s [15]. The breakdown point theory focuses on the smallest fraction
of contaminated data that can cause an estimator totally diverging from the original
model. Here we consider the breakdown point analysis for multicategory classification
models.

Let Tn be the original n observations, and T̃n,m = Tn−m ∪ Vm be the contaminated
sample withm observations of Tn contaminated, and M̃ = M̂(T̃n,m) be the parameters
estimated from the contaminated sample. We extend the sample angular breakdown
point in [35] to the multicategory classification problem as

ε�(M̂, Tn) = min
{m
n

| ∃k, s.t . w�
k M̂M̃�wk ≤ 0

}
,

where M̂ = M̂(Tn) is the estimated decisionmatrix from the original sample. Since the
angle-based classifiersmake the decisionby comparing the angles between the (K−1)-
dimensional classification function f and the K vertices of the simplex {wk}Kk=1, it is
reasonable to quantify the divergence between classifiers via the angles between the

decision vectors w�
k M̃ and the original counterpart, w�

k M̂. When there exists one
category k so that the angle between the two decision vectors is larger than π/2,
the two classifiers would behave totally different at this category. Consequently, the
classifier with contaminated samples would “break down”.

The following theorem compares the sample breakdown points of the proposed
RMSMMand themulticategory SMM (MSMM)which generalizes [19]’s SMMusing
angle-based methods, say γ = 1/2 and s = −∞ in Eq. (3).

Theorem 5 Assume that M̂ �= 0. Then the breakdown point of MSMM is 1/n, while
the breakdown point of RMSMM is not smaller than ε1

2(K−1)(1−s) , where

ε1 = min
M∈Δ− F(M)− min

M∈Δ+ F(M) > 0.
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By this theorem, only one contaminated observation will make the MSMM classifier
break down. In other words, this estimator may not work well in the presence of
few outliers. In contrast, the breakdown point of our proposed RMSMM, benefitting
from the use of truncated hinge loss functions, has a fixed lower bound. Thus, the
RMSMM has high outlier-resistance compared to its counterpart without truncation.
The robustness property will be carefully examined via numerical comparisons in the
next section.

5 Numerical experiments

In this section, we investigate the performance of our proposed robust angle-based
SMM using simulated and real datasets. Our configuration of the algorithm is as fol-
lows. For the primal–dual method described in Algorithm 1, we useM0 = 0 and ρt =
0.01 for every t . We set the stop criterion as ‖Mt+1−Mt‖F ≤ 10−4 max

{
1, ‖Mt‖F

}
.

All the simulation results are obtained based on 100 replications.

5.1 Simulation results

We generate simulated datasets by the following two scenarios. In the first scenario,
the dimensions of input matrices are 50 × 50. For the kth category, to make the
matrices low-rank, we randomly generate two 50× 5 matrices, Uk and Vk , which are
standard orthonormal. More precisely, we first generate two 50× 5 matrices with all
the entries i.i.d. from the standard normal distribution and obtain Uk and Vk by the
Gram-Schmidt process. The center of each class is then specified by Ck = UkV�

k ;
k = 1, . . . , K . The observations in each class are generated byCk+E; k = 1, . . . , K ,
where E is a 50× 50 normal random matrix with all entries i.i.d from N (0, σ 2). For
the contaminated observations, we generate them by 3C1 + E for Y ∈ {1, . . . , K }.

In the second scenario, the dimensions of input matrices are fixed as 80× 100. We
follow the settings in [36] to generate the true array signals by Ck = Ck,1C�

k,2; k =
1, . . . , K , where each entry of Ck is 0 or 1 and Ck,i ∈ R

pi×r , p1 = 80 and p2 =
100. To control the rank and the percentage of nonzero entries, we set r = 10 and
generate Ck,i by setting each row to contain only one entry one and others zero, and
the probabilities of entries being one are equal. All the entries of the noise matrixE are
i.i.d. from σ · t(3), where t(3) denotes the Student’s t-distribution with three degrees
of freedom. The outliers are generated by the same method as in the first scenario.

We use 103 observations for training, 104 observations for tuning and 104 obser-
vations for testing. The contamination ratio in the training sample ρ, is chosen as 0%,
10%, and 20%. For training the truncated model, we use the solutions of the ordinary
SMM as an initial point. Following the suggestion by [33], we choose γ = 1/2 as it
can provide stable classification performance. The truncation parameter, s, is fixed at
−1/(K − 1). The other hyper-parameters, C and τ , are selected via a grid search on
the tuning set.

We first consider the binary classification problem, say K = 2. We compare our
RMSMMwith theSMMin [19].Wealso include a naive benchmark, the standardSVM
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method which is applied to the stacked-up vectors. Figure 1 presents the classification
error rates of RMSMM, SMM, and SVM on the simulated data with Scenario (I)
and K = 2. Three noise magnitudes are considered: σ = 0.5, 0.7 and 0.9. Both two
“support-matrix-based” methods, RMSMM and SMM, perform much better than the
SVM. It has been observed that RMSMM generally outperforms SMM when there
exists outliers, and its advantage becomes more pronounced for larger ρ. All methods
are affected by different values of σ , but the comparison conclusion still holds for
various σ .

Next we consider the multicategory case. Figure 2 depicts the boxplots of the
classification error rates for RMSMM and other competitors under Scenario (I) with
K = 3 and 5. Three benchmarks are considered: the multicategory SMM using angle-
based methods, MSMM; the angle-based multicategory SVM classifier [32] and its
robust version RMSVM classifier [34]. In the case of ρ = 0, the RMSMM and its

σ = 0.5 σ = 0.7 σ = 0.9
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Fig. 1 Classification error rates for RMSMM, SMM, and SVM on the simulated data with Scenario (I)
and K = 2. Here, ρ stands for the percentage of data that are contaminated. SMM: [19]’s support matrix
machine; SVM: the standard SVM applied to the stacked-up vectors
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Fig. 2 Classification error rates for RMSMM, SMM, and SVM on the simulated data with Scenario (I).
The top three panels: the case with K = 3; the bottom three panels: the case with K = 5. MSMM:
multicategory generalization of SMM using angle-based methods; MSVM: the angle-based multicategory
SVM [32]; RMSVM: the robust angle-based multicategory SVM [34]
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Fig. 3 Classification error rates for RMSMM, SMM, and SVM on the simulated data with Scenario (II).
The top three panels: the case of K = 3; the bottom three panels: the case of K = 5

Fig. 4 Comparison between the ADMM and primal–dual algorithms: primal–dual stands for (18), and
proximal–alter stands for (19) for solving the RMSMM optimization problem (5). The top two panels:
classification error rates under Scenario (I) with σ = 0.7 and Scenario (II) with σ = 4 when K = 3; The
bottom two panels: the corresponding computational time (in s)

non-robust counterpart MSMM perform almost identically, which demonstrates that
the truncation parameter, s, can adapt to the data structure and make the efficiency loss
of RMSMM relative to MSMM minimal when there is no outlier. When ρ = 0.1 or
ρ = 0.2, the advantage of RMSMM is clear: the means and standard variations of its
classification error rates are generally smaller. From this figure, we can also observe
that the use of the nuclear norm is prominent: the two SMM-based classifiers perform
much better than the two SVM-based ones. Similar comparison conclusions can be
drawn from Fig. 3, which reports the classification error rates of RMSMM and the
other three methods under Scenario (II) with σ = 3, 4, and 5.
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Fig. 5 The decrease of the RMSMMobjective values with respect to the computational time under Scenario
(II) with K = 3 and σ = 4

Finally, we present some comparison results of the ADMM and primal–dual algo-
rithms for solving the RMSMM optimization problem (5). Figure 4 reports the
classification error rates and the corresponding computational time (in seconds) of
the RMSMM using the two different primal–dual algorithms: (18) and (19) under
Scenario (I) with σ = 0.7 and Scenario (II) with σ = 4 when K = 3. The bottom
two panels record the total run time including the selection of tuning parameters. The
tuning parameters λ and τ in the RMSMM are selected via a grid search. To be more
specific, λ ∈ [0.1, 104] and for each choice of λ, τ is tuned tomake the decisionmatrix
change from full-rank to rank one. One can see that the two algorithms perform very
similarly in terms of classification rates, but the proposed primal–dual algorithm is
significantly faster and the advantage is more remarkable as ρ increases. This is further
confirmed by Fig. 5 which depicts the decay curves of the RMSMM objective func-
tion values versus the computational time until the two algorithms reach the desired
accuracy. We consider the case under Scenario (II) with K = 3 and σ = 4 for a
given combination of tuning parameters. In particular, we fix a combination of (λ, τ )

and record the objective function values for each iteration. Clearly, the primal–dual
algorithm is generally more stable and converges much faster than ADMM.

5.2 A real-data example

We apply the RMSMMmodel (5) to the Daily and Sports Activities Dataset [1] which
can be found on the UCIMachine Learning Repository. The dataset comprises motion
sensor data of 19 daily sport activities, each performed by 8 subjects (4 females, 4
males, between the ages of 20 and 30) in their own style for 5 minutes. The dataset
was collected by several sensors. The input matrices are of dimension 125×45, where
each column contains 125 samples of data acquired by a sensor over a period of 5
seconds at 25 Hz sampling frequency, and each row contains the data acquired from
all of 45 sensor axes at a particular sampling instant.

To show the efficient performance of the proposed RMSMMmodel, we only select
the first 10 categories of the dataset for simplicity. Thus the total number of instances
is N = 10× 8× 60 = 4800. It is a 10-category and balanced classification problem
with 480 instances in each category. We equally and randomly divide the data into
three parts for training, tuning, and testing, and the sample size of each part is 1600.
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Fig. 6 Classification error rates for RMSMM, MSMM, RMSVM, and MSVM on the Daily and Sports
Activities Dataset. The left and right panels present the results when the data are clean or contaminated,
respectively
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Fig. 7 Heatmaps of the first decision matrices of RMSMM (left panel) and RMSVM (right panel)

We choose s = −K + 1, and select the other parameters by a grid search. We
report the classification accuracy of RMSMM, MSMM, RMSVM, and MSVM in
Fig. 6-(left). The two matrix-based methods achieve lower classification rates than
the other two vector-based classifiers, due to the benefit of the nuclear norm. This
improvement can be more clear in Fig. 7, which presents the heatmap of the decision
matrices of RMSMM and RMSVM; the former has a more sparse structure than the
latter.

To demonstrate the effect of potential outliers on classification accuracy, we artifi-
cially contaminate the dataset with outliers by randomly relabeling 10% of the training
set into another class. From Fig. 6-(right), we observe that the performances of all the
methods are deteriorated by this manipulation, while the RMSMM performs the best.
Both two robust classifiers, RMSMM and RMSVM, are less affected by the outliers,
than the other two non-robust methods. All these numerical examples shown above
suggest that the RMSMM is a practical and robust classier for a multicategory classi-
fication problem when the input features are represented as matrices.
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6 Concluding remarks

In this paper, we consider how to devise a robust multicategory classifier when the
input features are represented as matrices. Our method is constructed in the angle-
based classification framework, embedding a truncated hinge loss function into the
support matrix machine. Although the corresponding optimization problem is non-
convex, it admits a natural DC (difference of two convex functions) representation.
Hence, it is natural to apply DCA algorithms to solve this problem. Unfortunately, the
convex subproblem in DCA is rather complex and does not have a closed form solu-
tion. Therefore, we develop an inexact proximal DCA variant to solve the underlying
optimization problem. To approximately solve the convex subproblem, we propose
to use primal–dual first-order methods. We combine both inexact proximal DCA and
primal–dual methods to obtain a new proximal DCA scheme. We prove that our opti-
mization model admits a global optimal solution, and the sequence generated by our
DCA variant globally converges to a stationary point.

In terms of statistical learning perspective, we prove Fisher’s consistency and pre-
diction error bounds. Numerical results demonstrate that our new classifiers are quite
efficient and much more robust than existing methods in the presence of outlying
observations. We conclude the article with two remarks. First, our unified framework
is demonstratedusing the linear classifier. Though it iswell recognized that linear learn-
ing is an effective solution in many real applications, it may be sub-efficient especially
for problems with complex feature structures. Thus it is of interest to thoroughly study
nonlinear learning under the proposed framework. Second, our numerical results show
that the proposedprocedureworkswell under large-dimensional scenarios. Theoretical
investigation of the necessary condition on which the statistical theoretical guarantee
of RMSMM holds is another interesting topic for future study.
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A Appendix: Proofs of technical results

In this appendix, we provide all the remaining proofs of the results presented in the
main text.

A.1 Proof of Lemma 2: Lipschitz continuity and boundedness

Since [a]+ = max {0, a} = (a + |a|)/2, the function Pt defined in (15) can be
rewritten as Pt (A(z)) = ‖Âz + μ‖1 + d�t z for some matrix Â and vectors μ and
dt . Here, dt � d̄− λ−1vec

(∇Ψ (Mt )
)
. However, Ψ is also Lipschitz continuous due

to its definition. This implies that ∇Ψ (Mt ) is uniformly bounded, i.e., there exists
a constant C0 ∈ (0,+∞) such that

∥∥∇Ψ (Mt )
∥∥
F ≤ C0 for all Mt ∈ R

(K−1)×pq .
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As a consequence, Pt is Lipschitz continuous with the uniform constant L0 that is
independent of t , i.e., |Pt (u) − Pt (̂u)| ≤ L0‖u − û‖F for all u, û. The boundedness
of dom(P∗

t ) of the conjugate P∗
t follows from [3, Corollary 17.19]. ��

A.2 The proof of Lemma 3: the convergence of the primal–dual methods

Let G(M,Y) = Qt (M) + 〈A(M),Y〉 − P∗
t (Y), where P∗

t is the Fenchel conjugate
of Pt . Applying [9, Theorem 4] with f = 0, for any M and Y, we have

G(Mt
l ,Y) − G(M,Y

t
l ) ≤

1

Tl

(
‖Mt

0 −M‖2F
2ωt

0
+ ‖Yt

0 − Y‖2F
2σ t

0

)

, (28)

where Tl = ∑l
i=1

σ t
i−1
σ t
0
, and Y

t
l = 1

Tl

∑l
j=1

σ t
j−1

σ t
0
Yt

j .

By the update rule in (18), we have ωt
l+1σ

t
l+1 = ωt

lσ
t
l . Hence, by induction, we

have ωt
lσ

t
l = ωt

0σ
t
0 = ‖A‖−2. On the other hand, by [8, Lemma 2], with the choice

of λ = ‖A‖−1 (1+ ρt ), we have

‖A‖
1+ ρt

+ ‖A‖ l
‖A‖ + (1+ ρt )

≤ 1

(1+ ρt )ω
t
l
≤ ‖A‖

1+ ρt
+ l.

Using this estimate and σ t
l = ‖A‖−2 ω−t

l , we have

Tl =
l∑

i=1

σ t
i−1

σ t
0

= 1

‖A‖
l∑

i=1

1

ωt
i−1

≥
l∑

i=1

(
i − 1

1+ c
+ 1

)
= l(l − 1)

2(1+ c)
+ l ≥ l2

2(1+ c)
,

where c = ‖A‖ (1+ρt )
−1. Hence, we can estimate Tl as Tl ≥ 1

2 (1+ρt+‖A‖)−1(1+
ρt )l2. Using this estimate of Tl , σ t

0 = ωt
0 = ‖A‖, and F̃t (Mt

l ) − F̃t (M
t+1

) ≤
G(Mt

l ,Y
t+1

) − G(M
t+1

,Y
t
l ), we obtain from (28) that

F̃t (Mt
l ) − F̃t (M

t+1
) ≤ (1+ ρt + ‖A‖)‖A‖

(1+ ρt )l2

(
‖Mt

0 −M
t+1‖2F + ‖Yt

0 − Y
t+1‖2F

)
.

This is exactly (20).
Next, we prove (21). By introducing Y = A(M), we can reformulate the strongly

convex subproblem (15) into the following constrained convex problem:

F̃t (M
t+1

) = min
M,Y

{
F̃t (M,Y) = Pt (Y) + Qt (M) | A(M) − Y = 0

}
. (29)

Note that Qt is strongly convex with the strong convexity parameter 1 + ρt . We can
apply [28, Algorithm 2] to solve (29). If we define

Δσ t
l
(Mt

l+1) = Pt (Yt
l+1) + Qt (Mt

l+1) +
σ t
l

2
‖A(Mt

l+1) − Yt
l+1‖2F − F̃t (M

t+1
),
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then, from the proof of [28, Theorem 2], we can show that

Δσ t
l
(Mt

l+1) ≤
2
[
σ t
0‖A‖2 + 1+ ρt

]‖Mt
0 −M

t+1‖2F
(l + 2)2

. (30)

By Lemma 2, Pt is Lipschitz continuous with the Lipschitz constant L0. Then we
have

F̃t (Mt
l+1) − F̃t (M

t+1
)

= Pt (A(Mt
l+1))+ Qt (Mt

l+1) − F̃t (M
t+1

)

≤ Pt (Yt
l+1) + Qt (Mt

l+1) − F̃t (M
t+1

)+ L0‖A(Mt
l+1) − Yt

l+1‖F .

Combining (30) and this estimate, we obtain

0 ≤ F̃t (Mt
l+1)− F̃t (M

t+1
)

≤ 2
[
σ t
0‖A‖2 + 1+ ρt

]‖Mt
0 −M

t+1‖2F
(l + 2)2

+ L0‖A(Mt
l+1)− Yt

l+1‖F − σ t
l

2
‖A(Mt

l+1) − Yt
l+1‖2F .

Similar to the proof of [28, Corollary 1], by using σ t
0 = 1+ρt

2‖A‖2 , the last inequality
leads to

‖A(Mt
l+1) − Yt

l+1‖F ≤ 4‖A‖
(l + 1)2

[2L0‖A‖
1+ ρt

+√
3‖Mt

0 −M
t+1‖F

]
.

Combining the two last estimates, we obtain

F̃t (Mt
l ) − F̃t (M

t+1
) ≤ 4‖A‖L0

(l + 1)2

[2L0‖A‖
1+ ρt

+√
3‖Mt

0 −M
t+1‖F

]

+ 3(ρt + 1)‖Mt
0 −M

t+1‖2F
(l + 1)2

,

which is exactly (21). ��

A.3 Proof of statistical properties

We provide the proof of Theorems 3 and 4 in this section.
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A.3.1 Proof of Theorem 3: Fisher’s consistency

In our RMSMM (3), one can abstract the truncated hinge loss function as

φ(f(X), y) = γ T(K−1)s(〈f(X), wy〉) + (1− γ )
∑

k �=y

Rs(〈f(X), wk〉).

Then, the conditional loss can be rewritten as

L(X) �
K∑

k=1

[
γ PkT(K−1)s(〈f(X), wk〉) + (1− Pk)Rs(〈f(X), wk〉)

]
.

[34, Theorem 1] showed that for a vector data x, the robust classifier based on the loss
function φ(f(x), y) is Fisher consistent with γ ∈ [

0, 1
2

]
and s ≤ 0. By vectorizing

the matrix data X to a new vector x = vec(X), then all settings here are the same as
those of Theorem 1 in [34]. In this case, Fisher consistency results can naturally be
transferred to matrix-type data. ��

A.3.2 Proof of Theorem 4: misclassification rates

First, we introduce the Rademacher complexity. Let G = {g : X × Y → R} be a
class of loss functions. Given the sample T = {(Xi , yi )}Ni=1, we define the empirical
Rademacher complexity of G as

R̂N (G ) = Eσ

{

sup
g∈G

1

N

N∑

i=1

σi g(Xi , yi )

}

,

where σ = {σi }Ni=1 are i.i.d. random variables with Pr(σ1 = 1) = Pr(σ1 = −1) =
1/2. The Rademacher complexity of G is defined as

RN (G ) = Eσ ,T

{

sup
g∈G

1

N

N∑

i=1

σi g(Xi , yi )

}

.

For our model, let

H =
⎧
⎨

⎩
h(X, y) = min

k �=y
(〈f(X), wy − wk〉) | f ∈ F ,

∑

j

‖M j‖∗ ≤ r

⎫
⎬

⎭
,

and

Iκ(x) =

⎧
⎪⎨

⎪⎩

1 x < 0,

1− 1
κ
x 0 ≤ x ≤ κ,

0 otherwise.
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To prove Theorem 4, we first recall the following lemma which provides a bound on
E [Iκ {h(X, y)}] by the empirical error and the Rademacher complexity.

Lemma 4 For any h ∈ H, with probability at least 1− δ, we have

E [Iκ {h(X, y)}] ≤ 1

N

N∑

i=1

Iκ {h(Xi , yi )} + 2RN (Iκ � H) +
{
log(δ−1)

N

}1/2

.

The proof of Lemma 4 can be found in [34].
Now, we need to derive the upper bound of the Rademacher complexity used in

Lemma 4. Since Iκ is 1
κ
-Lipschitz, we have

RN (Iκ � H) ≤ 1

κ
Eσ ,T

⎧
⎨

⎩
sup∑‖M j‖∗≤r

1

N

N∑

i=1

σi

K−1∑

j=1

tr(M�
j X̃i )

⎫
⎬

⎭

= r

κN
Eσ ,T

{∥∥∥∥∥

N∑

i=1

σi X̃i

∥∥∥∥∥
2

}

,

where X̃i denotesXi−X̄ and X̄ = N−1∑N
i=1 Xi . The first inequality is due to Lemma

4.2 in [20], and the absolute values of the entries in wy − wk are all bounded by 1.
Firstly, by the assumption, we can write X = E(X) + E, where E(X) =∑K
k=1 Pr(Y = k)Ck and the variance and the fourth moment of the entries are σ 2

and μ4
4. Accordingly, X̃i = Ei − Ē, where Ē = N−1∑N

i=1 Ei . Since {(Xi , yi )}Ni=1 are
the i.i.d. copies of (X,Y), we have

∥∥∥∥∥

N∑

i=1

σi X̃i

∥∥∥∥∥
2

≤
∣∣∣∣∣

N∑

i=1

σi

∣∣∣∣∣
∥∥Ē

∥∥
2 +

∥∥∥∥∥

N∑

i=1

σiEi

∥∥∥∥∥
2

.

Because E[(∑N
i=1 σiEi )

2] = Nσ 2 and E[(∑N
i=1 σiEi )

4] = Nμ4
4 + 3N (N − 1)σ 4,

by Theorem 2 in [16] we have

Eσ ,T

(∥∥∥∥∥

N∑

i=1

σiEi

∥∥∥∥∥
2

)

≤ cσN 1/2
{
p1/2 + q1/2 + (pq)1/4[Nμ4

4 + 3N (N − 1)σ 4]1/4/(σN 1/2)
}

≤ cσ(1+ 31/4

2
)N 1/2

{
p1/2 + q1/2

}
+ O(N 1/4(p1/2 + q1/2)),
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where c is a constant which does not depend on T . By similar arguments, it is easy to
see that

Eσ ,T

(∣∣∣∣∣

N∑

i=1

σi

∣∣∣∣∣
∥∥Ē

∥∥
2

)

≤

√√√√√Eσ

⎧
⎨

⎩

(
N∑

i=1

σi

)2
⎫
⎬

⎭
ET

(‖Ē‖2
)

= N 1/2ET
(‖Ē‖2

) = O(p1/2 + q1/2).

Accordingly, we obtain the upper bound of the Rademacher complexity as

RN (Iκ � H) ≤ r

κ
√
N

{
cσ

(
1+ 31/4

2

)
(p1/2 + q1/2)

}
.

The proof is completed by using Lemma 4 with this bound and the fact that the
continuous indicator function Iκ is an upper bound of the indicator function for any
κ . ��

A.3.3 Proof of Theorem 5: breakdown point analysis

Let F(M, T ) denote the loss function (3) with the sample T , and

Δ+ �
{
M | ∀k, s.t . w�

k M̂M�wk > 0
}

and Δ− �
{
M | ∃k, s.t . w�

k M̂M�wk ≤ 0
}

.

For theMSMMclassifier, we can choose the contaminated observation as (Xo, k)with
vec(Xo)� = −cw�

k M̂. For any M ∈ Δ+, w�
k M̂M�wk > 0, then w�

k Mvec(Xo) =
−cw�

k M̂M�wk → −∞ as c → ∞. In this situation, the loss term corresponding to
this contaminated observation will tend to infinity. Hence, we have M̃ ∈ Δ− and the
classifier breaks down.

For the RMSMM, since M̂ �= 0, M̂ is an interior point of Δ+, the claim

ε1 = min
M∈Δ− F(M, Tn) − min

M∈Δ+ F(M, Tn) > 0

is true. Note that the loss function

l(X,Y,M) = γ Ts(K−1)(w�
y Mvec(X)) + (1− γ )

∑

k �=Y
Rs(w�

k Mvec(X))

is bounded by (K − 1)(1− s). For anym ≤ nε1/[2(1+ δ)(K − 1)(1− s)]with δ > 0
being any positive constant, any corresponding n − m clean subset Tn−m ⊂ Tn , and
any M ∈ R

p×q , we have
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0 ≤ F(M, Tn) − n − m

n
F(M, Tn−m) = 1

n

∑

i∈Tn\Tn−m

l(Xi , yi ,M)

≤ m(K − 1)(1− s)

n
<

ε1

2+ 2δ
.

Therefore,
∣∣∣∣ min
M∈Δ− F(M, Tn)− min

M∈Δ+ F(M, Tn) − min
M∈Δ− F(M, T̃n,m)

+ min
M∈Δ+ F(M, T̃n,m)

∣∣∣∣ ≤
ε1

1+ δ
,

and

min
M∈Δ− F(M, T̃n,m) − min

M∈Δ+ F(M, T̃n,m) >
ε1δ

1+ δ
> 0.

The last inequality reveals that M̃ ∈ Δ+ and thus the classifier would not break down
when m ≤ nε1/[2(1+ δ)(K − 1)(1− s)] observations are contaminated. Finally, the
proof is complete by setting δ → 0 . ��

A.4 Derivation of Eq. (2): the dual problem

Lemma 5 For a p × q real matrix A, the subdifferential of the nuclear norm ‖ · ‖∗ is
given as

∂‖A‖∗ =
{
UAV�

A + Z | Z ∈ R
p×q ,U�

AZ = 0, ZVA = 0, ‖Z‖2 ≤ 1
}

,

where UAΣAV�
A is the SVD of A, and ∂ stands for the operator of subgradients.

Lemma 6 Suppose that X ∈ R
p×q , ∂G(X) = ρX − P + τ∂‖X‖∗, where P ∈ R

p×q

is a constant matrix w.r.t. X. Let the SVD of P be

P = U0Σ0V�
0 + U1Σ1V�

1 ,

whereΣ0 contains the singular values of P which are greater than τ , andΣ1 contains
the rest. Then, we have 0 ∈ ∂G(X∗), whereX∗ = ρ−1Dτ (P) = ρ−1U0(Σ0− τ I)V�

0 .

Lemma 6 can be verified by using Lemma 5 with Z = τ−1U1Σ1V�
1 .

Now we derive the dual problem (2) of (1). As in the classical SVM, by setting
C = (Nλ)−1, we can rewrite (1) into the following form:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min
M,b,ξ

{
1

2
tr(M�M) + τ‖M‖∗ + C

N∑

i=1

ξi

}

s.t. ξi ≥ 0, yi
[
tr(M�Xi ) + b

]
≥ 1− ξi , i = 1, . . . , N .
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The corresponding Lagrange function of this problem can be written as

LP (M, b, ξ, α, μ) = 1

2
tr(M�M) + τ‖M‖∗ + C

N∑

i=1

ξi

−
N∑

i=1

αi [yi {tr(M�Xi ) + b} − 1+ ξi ] −
N∑

i=1

μiξi ,

(31)

where αi ≥ 0 and μi ≥ 0 are corresponding Lagrange multipliers. By setting the
derivatives w.r.t. b and ξi of this Lagrange function to zero, we get

⎧
⎪⎨

⎪⎩

N∑

i=1

αi yi = 0,

C − αi − μi = 0, i = 1, . . . , N .

Based on Lemma 6 and setting the derivative w.r.t. M to zero, we have M =
Dτ (

∑N
i=1 αi yiXi ). Substituting these conditions into (31), we obtain

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

min
α

{
1

2
‖Dτ

(
N∑

i=1

αi yiXi

)

‖2F −
N∑

i=1

αi

}

s.t. 0 ≤ αi ≤ C; i = 1, . . . , N ,

N∑

i=1

αi yi = 0.

This gives us the dual problem (2) of (1). ��
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