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Abstract
We consider the problem of designing piecewise affine policies for two-stage
adjustable robust linear optimization problems under right-hand side uncertainty. It is
well known that a piecewise affine policy is optimal although the number of pieces can
be exponentially large. A significant challenge in designing a practical piecewise affine
policy is constructing good pieces of the uncertainty set. Here we address this chal-
lenge by introducing a new framework in which the uncertainty set is “approximated”
by a “dominating” simplex. The corresponding policy is then based on amapping from
the uncertainty set to the simplex. Although our piecewise affine policy has exponen-
tially many pieces, it can be computed efficiently by solving a compact linear program
given the dominating simplex. Furthermore, we can find the dominating simplex in
a closed form if the uncertainty set satisfies some symmetries and can be computed
using a MIP in general. We would like to remark that our policy is an approximate
piecewise-affine policy and is not necessarily a generalization of the class of affine
policies. Nevertheless, the performance of our policy is significantly better than the
affine policy for many important uncertainty sets, such as ellipsoids and norm-balls,
both theoretically and numerically. For instance, for hypersphere uncertainty set, our
piecewise affine policy can be computed by an LP and gives a O(m1/4)-approximation
whereas the affine policy requires us to solve a second order cone program and has a
worst-case performance bound of O(

√
m).
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1 Introduction

Addressing uncertainty in problem parameters in an optimization problem is a funda-
mental challenge in most real world problems where decisions often need to be made
in the face of uncertainty. Stochastic and robust optimization are two approaches that
have been studied extensively to handle uncertainty. In a stochastic optimization frame-
work, uncertainty ismodeled using a probability distribution and the goal is to optimize
an expected objective [18]. We refer the reader to Kall andWallace [25], Prekopa [27],
Shapiro [28], Shapiro et al. [29] for a detailed discussion on stochastic optimization.
While it is a reasonable approach in certain settings, it is intractable in general and
suffers from the “curse of dimensionality”. Moreover, in many applications, we may
not have sufficient historical data to estimate a joint probability distribution over the
uncertain parameters.

Robust optimization is another paradigm where we consider an adversarial model
of uncertainty using an uncertainty set and the goal is to optimize over the worst-case
realization from the uncertainty set. This approach was first introduced by Soyster [30]
and has been extensively studied in recent past. We refer the reader to Ben-Tal and
Nemirovski [4–6], El Ghaoui and Lebret [19], Bertsimas and Sim [15,16], Goldfarb
and Iyengar [23], Bertsimas et al. [8] and Ben-Tal et al. [2] for a detailed discussion
of robust optimization. Robust optimization leads to a tractable approach where an
optimal static solution can be computed efficiently for a large class of problems.More-
over, in many cases, designing an uncertainty set is significantly less challenging than
estimating a joint probability distribution for high-dimensional uncertainty. However,
computing an optimal adjustable (or dynamic) solution for a multi-stage problem is
generally hard even in the robust optimization framework.

In this paper, we consider two-stage adjustable robust (AR) linear optimization
problems with covering constraints and uncertain right-hand side. In particular, we
consider the following model:
ΠAR(U):

zAR(U) = min cT x + max
h∈U

min
y(h)

dT y(h)

Ax + B y(h) ≥ h ∀h ∈ U
x ∈ R

n1+
y(h) ∈ R

n2+ ,

(1.1)

where A ∈ R
m×n1+ , c ∈ R

n1+ , d ∈ R
n2+ , B ∈ R

m×n2 , and U ⊆ R
m+ is the uncertainty

set. The goal in this problem is to select the first-stage decision x, and the second-stage
recourse decision, y(h), as a function of the uncertain right hand side realization, h
such that the worst-case cost over all realizations of h ∈ U is minimized. We assume
without loss of generality that n1 = n2 = n and that the uncertainty set U satisfies the
following assumption.

Assumption 1 U ⊆ [0, 1]m is convex, full-dimensional with ei ∈ U for all i =
1, . . . ,m, and down-monotone, i.e., h ∈ U and 0 ≤ h′ ≤ h implies that h′ ∈ U .
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A tractable approach for designing piecewise affine policies 59

Wewould like to emphasize that the above assumption can be made without loss of
generality since we can appropriately scale the uncertainty set, and consider a down-
monotone completion, without affecting the two-stage problem (1.1). Note that in the
model ΠAR(U) the objective coefficients c, d, the first-stage constraint matrix A, and
the decision variables x, y(h) are all non-negative. This is restrictive as compared to
general two-stage linear programs but the above model still captures many important
applications including set cover, facility location and network design problems under
uncertain demand. Here the right-hand side, h models the uncertain demand and the
covering constraints capture the requirement of satisfying the uncertain demand.

The worst case scenario of problem (1.1) occurs on extreme points of U . Therefore,
given an explicit list of the extreme points of the uncertainty set U , the adjustable
robust optimization problem (1.1) can be solved efficiently by including the second-
stage decisions and the covering constraints only for the extreme points of U . Some
approaches have been developed to generate dynamically the required extreme points,
e.g. Zeng and Zhao [31], Ayoub and Poss [1]. However, in general the adjustable robust
optimization problem (1.1) is intractable; for example, when the number of extreme
points is large or due to other structural complexities of U . In fact, Feige et al. [22]
show that problem ΠAR(U) is hard to approximate within any factor that is better than
Ω(logm), even in the case of budget uncertainty set and A, B being 0–1matrices. This
motivates us to consider approximations for the problem. Static robust and affinely
adjustable solution approximations have been studied in the literature for this problem.
In a static robust solution, we compute a single optimal solution (x, y) that is feasible
for all realizations of the uncertain right hand side. Bertsimas et al. [13] relate the
performance of static solution to the symmetry of the uncertainty set and show that it
provides a good approximation to the adjustable problem if the uncertainty is close to
being centrally symmetric. However, the performance bound of static solutions can be
arbitrarily large for a general convex uncertainty set with the worst case performance
being Ω(m). El Housni and Goyal [21] consider piecewise static policies for two-
stage adjustable robust problem with uncertain constraint coefficients. These are a
generalization of static policies where the uncertainty set is divided into several pieces
and a static solution specified for each piece. However, they show that, in general,
there is no piecewise static policy with a polynomial number of pieces that has a
significantly better performance than an optimal static policy.

Ben-Tal et al. [3] introduce an affine adjustable solution (also known as affine
policy) to approximate adjustable robust problems. Affine policy restricts the second-
stage decisions, y(h) to being an affine function of the uncertain right-hand side h, i.e.,
y(h) = Ph+q for some P ∈ R

n×m and q ∈ R
m , which are decision variables on top

of x ∈ R
n+. An optimal affine policy can be computed efficiently for a large class of

problems and has a strong empirical performance. For a class of multistage problems
where there is a single uncertain parameter in each period, Bertsimas et al. [14] and
Iancu et al. [24] show that affine policies are optimal. Bertsimas and Goyal [12] show
that affine policies are optimal if the uncertainty set U is a simplex. They prove a worst
case bound of O(

√
m) on the performance of affine policy for general uncertainty sets.

Moreover, they show that this bound is tight for an uncertainty set quite analogous to
the intersection of the unit �2-norm ball and the non-negative orthant, i.e.,
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60 A. Ben-Tal et al.

U = {h ∈ R
m+ | ||h||2 ≤ 1}. (1.2)

Bertsimas andBidkhori [7] provide improved approximation bounds for affine policies
forΠAR(U) that dependon thegeometric properties of the uncertainty set.More general
decision rules have been considered in the literature and tested numerically; extended
affine decision rules (Chen et al. [17]), binary decision rules (Bertsimas andGeorghiou
[11]) and adjustable solutions via iterative splitting of uncertainty sets, (Postek andDen
Hertog [26]).More recently, Bertsimas andDunning [10] give anMIP-based algorithm
to adaptively partition the uncertainty set. However, no theoretical guarantees on the
performance, or the number of partitions, are known.

Piecewise affine policies (PAP) have been studied earlier. In a PAP, we consider
pieces Ui , i ∈ [k] of U such that Ui ⊆ U and U is covered by the union of all pieces.
For each Ui , we have an affine solution y(h)where h ∈ Ui . PAP are significantly more
general than static and affine policies. For problem ΠAR(U), with U being a polytope,
a PAP is known to be optimal. However, the number of pieces can be exponentially
large. Moreover, finding the optimal pieces is, in general, an intractable task. In fact,
Bertsimas and Caramanis [9] prove that it is NP-hard to construct the optimal pieces,
even for pieceiwse policies with two pieces, for two-stage robust linear programs.

1.1 Our contributions

Our main contributions in this paper are as follows.

New framework for piecewise affine policyWe present a new framework to efficiently
construct a “good” piecewise affine policy for the adjustable robust problem ΠAR(U).
As we mentioned earlier, one of the significant challenges in designing a piecewise
affine policy arises from the need to construct “good pieces” of the uncertainty set.
We suggest a new approach where instead of directly finding an explicit partition of
U , we approximate U with a “simple” set Û satisfying the following two properties:

1. the adjustable robust problem (1.1) over Û can be solved efficiently,
2. Û “dominates” U , i.e., for any h ∈ U , there exists ĥ ∈ Û such that h ≤ ĥ.

Using the uncertainty set Û instead of U , the domination property of Û preserves
the feasibility of the adjustable robust problem. Specifically, we choose Û to be a
simplex dominating U . Therefore, the adjustable robust problem (1.1) over Û can be
solved efficiently since Û only has m + 1 extreme points. We construct a piecewise
affine mapping between the uncertainty set U and the dominating set Û , i.e. we use a
piecewise affine function to map each point h ∈ U to a point ĥ that dominates h. This
mapping leads to our piecewise affine policy which is constructed from an optimal
adjustable solution over Û . We show that the performance of our policy is significantly
better than the affine policy for many important uncertainty sets both theoretically and
numerically.

We elaborate on the two ingredients of designing our piecewise affine policy below,
namely, constructing Û and the corresponding piecewise map below.

(a) Constructing a dominating uncertainty set Our framework is based on choosing
an appropriate dominating simplex Û based on the geometric structure of U .
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A tractable approach for designing piecewise affine policies 61

Specifically, Û is taken to be a simplex of the following form

Û = β · conv (e1, . . . , em, v) ,

where β > 0 and v ∈ U are chosen appropriately so that Û dominates U .
Solving the adjustable robust problem over Û gives a feasible solution for prob-
lem ΠAR(U) due to the domination property. Moreover, the optimal adjustable
solution over Û gives a β-approximation for problem ΠAR(U), since Û =
β · conv (e1, . . . , em, v) ⊆ β · U . The approximation bound β is related to a
geometric scaling factor that represents the Banach–Mazur distance between U
and Û . We note that Û does not necessarily contain U .

(b) The piecewise affine mappingWe employ the following piecewise affine mapping
ĥ(h) = βv + (h − βv)+ that maps any h ∈ U to a dominating point ĥ such that
h ≤ ĥ. For any h ∈ U , ĥ(h) is contained in the down-monotone completion of
2 · Û . The piecewise affine policy is based on the above piecewise affine mapping
and gives a 2β-approximation for problemΠAR(U). In this policy, βv is covered by
the static component and (h − βv)+ is covered by the piecewise linear component
of our policy. This is quite analogous to threshold policies that are widely used in
dynamic optimization.Note that ĥ does not necessarily belong to Û but is contained
in the down-monotone completion of 2 · Û and therefore, we get an approximation
factor of 2β instead of β. We can construct a set-dependent piecewise affine map
between U and Û that allows us to construct a piecewise affine policy with a
performance bound of β. This bound β is not affected by the scaling introduced
in Assumption 1.

Given the dominating set, Û , our piecewise affine policy can be computed effi-
ciently; in fact, it can be computed even more efficiently than an affine solution over U
in many cases because the adjustable problem over Û is a simple LP with only m + 1
constraints while the affine problem over U is a general convex program for general
convex uncertainty sets.

Results for scaled permutation invariant (SPI) sets The uncertainty set U is SPI if
U = diag (λ) · V where λ ∈ Rm+ and V is an invariant set, i.e., if v ∈ V , then any
permutation of the components of v are also in V . SPI sets include ellipsoids, weighted
norm-balls, intersection of norm-balls with budget uncertainty sets and more. SPI sets
are commonly used in Robust Optimization literature and in practice.

We show that for SPI uncertainty setU , it is possible to construct the dominating set
Û and compute the scaling factor β. In particular, we give an efficiently computable
closed-form expression for β and v ∈ U that are needed to construct Û . Consequently,
we can efficiently construct our piecewise affine decision rule, having a performance
bound 2β.

Using this framework, we provide approximation bounds for the piecewise affine
policy that are significantly better than those of the optimal affine policy in [7] for
many SPI uncertainty sets. For instance, we show that our policy gives a O(m1/4)-
approximation for the two-stage adjustable robust problem (1.1) with hypersphere
uncertainty set as in (1.2), compared to the affine policy in [7] that has an approximation
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bound of O(
√
m). More generally, the performance bound for our policy for the p-

norm ball is O(m
p−1
p2 ) as opposed to O(m

1
p ) given by the affine policy in [7].1 Table 1

summarizes the above comparisons. We also present computational experiments and
observe that our policy also outperforms affine policy in computation time on several
examples of uncertainty sets considered in our experiments including hypersphere,
norm-balls and certain polyhedral uncertainty sets. However,wewould like to note that
our piecewise affine policy does not a generalize affine policy and there are instances
where affine policy performs better than our policy. For instance, we observe in our
computational experiments that the performance of affine policy is better than our
policy for budget of uncertainty sets.

Results for general uncertainty setsWhile the dominating set Û is given in an efficiently
computable closed-form expression for SPI sets, the construction of Û for general
uncertainty sets requires solving a sequence of MIPs which is computationally much
harder than for the case of SPI sets. In Sect. 4, we give an algorithm for constructing
the dominating set Û , and a piecewise affine policy for general uncertainty set U . Our
framework is not necessarily computationally more appealing than computing optimal
affine policies.However,wewould like to note that in practice theseMIPs canbe solved
efficiently. Moreover, the construction of the dominating set Û is independent of the
parameters of the adjustable problem and depends only on the uncertainty set, U .
Therefore, Û can be computed offline and then used to construct the piecewise affine
policy efficiently.

We show that our policy gives a O(
√
m)-approximation for general uncertainty sets

which is same as the worst-case performance bound for affine policy. We also show
that the bound of O(

√
m) is tight. In particular, for the budget uncertainty set

U =
{
h ∈ R

m+
∣∣∣∣

m∑
i=1

hi = √
m, 0 ≤ hi ≤ 1 ∀i ∈ [m]

}
,

the performance bound of our piecewise affine policy is Θ(
√
m). Furthermore, the

bound ofΘ(
√
m) holds even if we consider dominating sets with a polynomial number

of extremepoints that are significantlymore general than a simplex.While this example
shows that the worst-case performance of our policy is the same as the worst-case
performance of the affine policy, we would like to emphasize that our policy still gives
a significantly better approximation than affine policies formany important uncertainty
sets, and does so in a fraction of computing time (see Sect. 6.2).

1 Remark We note that in [7], in Tables 1 and 2, there is a typo in the performance bound for affine policies
for p-norm balls. According to Theorem 3 in [7], the bound should be

m
p−1
p + m

m
p−1
p + m

1
p

= O

(
m

1
p

)
,

instead of m
p−1
p +m

m
1
p +m

as mentioned in Table 2 in [7]).

123



A tractable approach for designing piecewise affine policies 63

Table 1 Comparison with performance bounds for affine policies in Bertsimas and Bidkhori [7]. The
ellipsoid in Example 3 is assumed to be a permutation invariant set. There is no specialized bound for this

Ellipsoid in [7]. For intersection of norm-balls (Example 4 in the table), we assume m
1
q − 1

p ≥ r ≥ 1

No. Uncertainty set Bounds in [7] Our bounds

1
{
h ∈ R

m+
∣∣ ‖h‖2 ≤ 1

}
O
(√

m
)

O

(
m

1
4

)

2
{
h ≥ 0

∣∣∣ ∑m
i=1 ri h

2
i ≤ 1

}
O
(√

m
)

O

(
m

1
4

)

3
{
h ∈ R

m+ | hT Σh ≤ 1
}

O

(
m

2
5

)

4
{
h ∈ R

m+
∣∣ ‖h‖p ≤ 1

}
O

(
m

1
p

)
O

(
m

p−1
p2

)

5
{
h ∈ R

m+
∣∣ ‖h‖p ≤ 1, ‖h‖q ≤ r

}
O

(
r−1m

1
q

)
O

(
min

(
r
1−p
p m

p−1
pq , r

1
q m

q−1
q2

))

6
{
h ∈ [0, 1]m ∣∣ ∑m

i=1 hi ≤ k
}

O
(
k2+mk
k2+m

)
O
(
min

(
k, m

k

))

Outline In Sect. 2, we present the new framework for approximating the two-stage
adjustable robust problem (1.1) via dominatinguncertainty sets and constructing piece-
wise affine policies. In Sect. 3, we provide improved approximation bounds for (1.1)
for scaled permutation invariant sets.We present the case of general uncertainty sets in
Sect. 4. In Sect. 5, we present a family of lower-bound instances where our piecewise
affine policy has the worst performance bound and finally in Sect. 6, we present a
computational study to test our policy and compare it to an affine policy over U .

2 A new framework for piecewise affine policies

We present a piecewise affine policy to approximate the two-stage adjustable robust
problem (1.1). Our policy is based on approximating the uncertainty set U with a
simple set Û such that the adjustable problem (1.1) can be efficiently solved over Û .
In particular, we select Û such that it dominates U and it is close to U . We make these
notions precise with the following definitions.

Definition 1 (Domination) Given an uncertainty set U ⊆ R
m+, Û ⊆ R

m+ dominates U
if for all h ∈ U , there exists ĥ ∈ Û such that ĥ ≥ h.

Definition 2 (Scaling factor) Given a full-dimensional uncertainty set U ⊆ R
m+ and

Û ⊆ R
m+ that dominates U . We define the scaling factor β(U , Û) as following

β(U , Û) = min
{
β > 0 | Û ⊆ β · U

}
.
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64 A. Ben-Tal et al.

Fig. 1 The uncertainty set (1.2)

For the sake of simplicity, we denote the scaling factor β(U , Û) by β in the rest of
this paper. The scaling factor always exists since U is full-dimensional. Moreover, it
is greater than one because Û dominates U . Note that the dominating set Û does not
necessarily contain U . We illustrate this in the following example.

Example Consider the uncertainty set U defined in (1.2) which is the intersection
of the unit �2-norm ball and the non-negative orthant. We show later in this paper
(Proposition 1) that the simplex Û dominates U where

Û = m
1
4 · conv

(
e1, . . . , em,

1√
m
e
)

. (2.1)

Figures 1 and 2 illustrate the sets U and Û for m = 3. Note that Û does not contain U
but only dominates U . This is an important property in our framework.

The following theorem shows that solving the adjustable problem over the set Û
gives a β-approximation to the two-stage adjustable robust problem (1.1).

Theorem 1 Consider an uncertainty set U that verifies Assumption 1 and Û ⊆ R
m+

that dominates U . Let β be the scaling factor of (U , Û). Moreover, let zAR(U) and
zAR(Û) be the optimal values for (1.1) corresponding to U and Û , respectively. Then,
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Fig. 2 The dominating set Û (2.1)

zAR(U) ≤ zAR(Û) ≤ β · zAR(U).

The proof of Theorem 1 is presented in “Appendix A”.

2.1 Choice of Û

Theorem 1 provides a new framework for approximating the two-stage adjustable
robust problem ΠAR(U) (1.1). Note that we require Û to be such that it dominates U
and that ΠAR(Û) can be solved efficiently over Û . In fact, the latter is satisfied if the
number of extreme points of Û is small and is explicitly given (typically polynomial of
m). In our framework, we choose the dominating set to be a simplex of the following
form

Û = β · conv (e1, . . . , em, v) , (2.2)

for some v ∈ U . The coefficient β and v ∈ U are chosen such that Û dominates U .
For a given Û (i.e., β and v ∈ U), the adjustable robust problem, ΠAR(Û) (1.1) can be
solved efficiently as it can be reduced to the following LP:

zAR(Û) = min cT x + z

z ≥ dT yi , ∀i ∈ [m + 1]
Ax + B yi ≥ βei , ∀i ∈ [m]
Ax + B ym+1 ≥ βv

x ∈ R
n+, yi ∈ R

n+, ∀i ∈ [m + 1].
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2.2 Mapping points inU to dominating points

Consider the following piecewise affine mapping for any h ∈ U :

∀h ∈ U , ĥ(h) = βv + (h − βv)+. (2.3)

We show that this maps any h ∈ U to a dominating point contained in the down-
monotone completion of 2 · Û . First, the following structural result is needed.

Lemma 1 (Structural result)Consider an uncertainty set U that verifies Assumption 1.

(a) Suppose there exists β and v ∈ U such that Û = β · conv (e1, . . . , em, v)

dominates U . Then,
1

β

m∑
i=1

(hi − βvi )
+ ≤ 1, ∀h ∈ U . (2.4)

(b) Moreover, if there existsβ andv ∈ U satisfying (2.4), then2β · conv (e1, . . . , em, v)

dominates U .

The proof of Lemma 1 is presented in “Appendix B”.
The following lemma shows that the mapping in (2.3) maps any h ∈ U to a

dominating point that belongs to the down-monotone completion of 2 · Û .
Lemma 2 For all h ∈ U , ĥ(h) as defined in (2.3) is a dominating point that belongs
to the down-monotone completion of 2 · Û .

Proof It is clear that ĥ(h) dominates h because ĥ(h) ≥ βv+(h−βv) = h. Moreover,
for all h ∈ U , we have

ĥ(h) = βv + 1

β

m∑
i=1

(hi − βvi )
+βei

≤ βv︸︷︷︸
∈Û

+ 1

β

m∑
i=1

(hi − βvi )
+βei +

(
1 − 1

β

m∑
i=1

(hi − βvi )
+
)

βv

︸ ︷︷ ︸
∈Û

∈ 2 · Û

where the inequality

1 − 1

β

m∑
i=1

(hi − βvi )
+ ≥ 0.

follows from part a) of Lemma 1. Therefore, ĥ(h) belongs to the down-monotone
completion of 2 · Û . 
�
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2.3 Piecewise affine policy

We construct a piecewise affine policy over U from the optimal solution of ΠAR(Û)

based on the piecewise affine mapping in (2.3). Let x̂, ŷ(ĥ) for ĥ ∈ Û be an optimal
solution of ΠAR(Û). Since Û is a simplex, we can compute this efficiently.

The piecewise affine policy (PAP)

x = 2x̂

y(h) = 1

β

m∑
i=1

(hi − βvi )
+ ŷ(βei ) + ŷ(βv), ∀h ∈ U .

(2.5)

The following theorem shows that the above PAP gives a 2β-approximation for
ΠAR(U) (1.1).

Theorem 2 Consider an uncertainty set U that verifies Assumption 1 and Û = β ·
conv (e1, . . . , em, v) be a dominating set where v ∈ U . The piecewise affine solution
in (2.5) is feasible and gives a 2β-approximation for the adjustable robust problem,
ΠAR(U) (1.1).

Proof First, we show that the policy (2.5) is feasible. We have,

Ax + B y(h) = 2Ax̂ + B

(
1

β

m∑
i=1

(hi − βvi )
+ ŷ(βei ) + ŷ(βv)

)

= (Ax̂ + B ŷ(βv)
)+ Ax̂ + 1

β

m∑
i=1

(hi − βvi )
+ B ŷ(βei )

≥ (Ax̂ + B ŷ(βv)
)+ 1

β

m∑
i=1

(hi − βvi )
+ (B ŷ(βei ) + Ax̂

)

≥ βv +
m∑
i=1

(hi − βvi )
+ ei

≥ βv +
m∑
i=1

(hi − βvi ) ei = h,

where the first inequality follows from part a) of Lemma 1 and the non-negativity of
x̂ and A. The second inequality follows from the feasibility of x̂, ŷ(ĥ).

To compute the performance of (2.5), we have for any h ∈ U ,

cT x + dT y(h) = 2

(
cT x̂ + dT

(
1

2β

m∑
i=1

(hi − βvi )
+ ŷ(βei ) + 1

2
ŷ(βv)

))

≤ 2

(
cT x̂ + max

ĥ∈Û
dT ŷ(ĥ)

(
1

2β

m∑
i=1

(hi − βvi )
+ + 1

2

))
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≤ 2

(
cT x̂ + max

ĥ∈Û
dT ŷ(ĥ)

)

= 2 · zAR(Û),

where the second last inequality follows from part a) of Lemma 1. From Theorem 1,
zAR(Û) ≤ β · zAR (U). Therefore, the cost of the piecewise affine policy for any h ∈ U

cT x + dT y(h) ≤ 2β · zAR (U) ,

which implies that the piecewise affine solution (2.5) gives a 2β-approximation for
the adjustable robust problem, ΠAR(U) (1.1). 
�

The above proof shows that it is sufficient to find β and v ∈ U satisfying (2.4)
in Lemma 1 to construct a piecewise affine policy that gives a 2β-approximation for
(1.1). In particular, we summarize the main result in the following theorem.

Theorem 3 Let the uncertainty set U satisfy Assumption 1. Consider any β and v ∈ U
satisfying (2.4). Then, the piecewise affine solution in (2.5) gives a 2β-approximation
for the adjustable robust problem, ΠAR(U) (1.1).

Wewould like to note that our piecewise affine policy in not necessarily an optimal
piecewise policy. However, for a large class of uncertainty sets, we show that our policy
is significantly better than affine policy and can even be computed more efficiently
than an affine policy.

3 Performance bounds for scaled permutation invariant sets

In this section, we present performance bounds of our policy for the class of scaled
permutation invariant sets. This class includes ellipsoids, weighted norm-balls, inter-
section of norm-balls and budget of uncertainty sets. These arewidely used uncertainty
sets in theory and in practice.

Definition 3 (Scaled permutation invariant sets (SPI))

1. U is a permutation invariant set if x ∈ U implies that for any permutation τ of
{1, 2, . . . ,m}, xτ ∈ U where xτ

i = xτ(i).
2. U is a scaled permutation invariant set if there exists λ ∈ R

m+ and V a permutation
invariant set such that U = diag(λ) · V

For a given SPI set U , it is possible to scale the two-stage adjustable problem (1.1) and
get a new problem where the uncertainty set is permutation invariant (PI). Indeed,
suppose U = diag(λ) · V where V is a permutation invariant set; by multiplying the
constraintmatrices A and B bydiag(λ)−1,we get a newproblemwhere the uncertainty
set now is PI. The performance of our policy is not affected by this scaling. Therefore,
without loss of generality,we consider in the rest of this section, the case of permutation
invariant uncertainty sets.
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We first introduce some structural properties of PI sets. Let U be PI satisfying
Assumption 1. For all k = 1, . . . ,m, let

γ (k) = 1

k
· max

{
k∑

i=1

hi
∣∣∣ h ∈ U

}
. (3.1)

The coefficients, γ (k) for all k = 1, . . . ,m affect the geometric structure of U . In
particular, we have the following lemma.

Lemma 3 Le U be a permutation invariant set and γ (·) be as defined in (3.1). Then,

γ (k) ·
k∑

i=1

ei ∈ U , ∀k = 1, . . . ,m

We present the proof of Lemma 3 in “Appendix C”. For the sake of simplicity, we
denote γ (m) by γ in the rest of the paper. From the above lemma, we know that
γ · e ∈ U .

3.1 Piecewise affine policy for permutation invariant sets

For any PI set U , we consider the following dominating uncertainty set, Û of the
form (2.2) with v = γ e, i.e.,

Û = β · conv (e1, e2, . . . , em, γ e) (3.2)

where β is the scaling factor guaranteeing that Û dominates U . This dominating set Û
is motivated by the symmetry of the permutation invariant set U . In this section, we
show that one can efficiently compute the minimum β such that Û in (3.2) dominates
U . In particular, we derive an efficiently computable closed-form expression for β, for
any PI set U .

From Theorem 3 we know that to construct a piecewise affine policy with an
approximation bound of 2β, it is sufficient to find β such that

1

β
max
h∈U

m∑
i=1

(hi − βγ )+ ≤ 1 (3.3)

and any β implies that 2β · conv (e1, e2, . . . , em, γ e) dominates U (see Lemma 1b).
Finding the minimum β that satisfies (3.3) requires solving:

min

{
β ≥ 1

∣∣∣ 1
β
max
h∈U

m∑
i=1

(hi − βγ )+ ≤ 1

}
. (3.4)

The following lemma characterizes the structure of the optimal solution for the max-
imization problem in (3.3) for a fixed β.
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Lemma 4 Consider the maximization problem in (3.3) for a fixed β. There exists an
optimal solution h∗ such that

h∗ = γ (k) ·
k∑

i=1

ei ,

for some k = 1, . . . ,m.

Wepresent the proof of Lemma4 in “AppendixD”. The following lemma characterizes
the optimal β for (3.4).

Lemma 5 Let U be a permutation invariant uncertainty set satisfying Assumption 1.
Then the optimal solution for (3.4) is given by

β = max
k=1,...,m

γ (k)

γ + 1
k

. (3.5)

Proof Using Lemma 4, we can reformulate (3.4) as follows.

min

{
β ≥ 1

∣∣∣ 1
β

max
k=1,...,m

k∑
i=1

(γ (k) − βγ ) ≤ 1

}
,

i.e.,

min

{
β ≥ 1

∣∣∣ β ≥ γ (k)

γ + 1
k

, ∀k = 1, . . . ,m

}
.

Therefore,

β = max
k=1,...,m

γ (k)

γ + 1
k

.


�
The above lemma computes the minimum β that satisfies (3.3). Therefore, from

Theorem 3, we have the following theorem.

Theorem 4 Let U be a permutation invariant set satisfying Assumption 1. Let γ =
γ (m) be as defined in (3.1) and β be as defined in (3.5), and

Û = β · conv (e1, . . . , em, γ e) .

Let x̂, ŷ(ĥ) for ĥ ∈ Û be an optimal solution for ΠAR(Û) (1.1). Then the following
piecewise affine solution
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x = 2x̂

y(h) = 1

β

m∑
i=1

(hi − βγ )+ ŷ(βei ) + ŷ(βγ e) ∀h ∈ U ,
(3.6)

gives a 2β-approximation for ΠAR(U) (1.1). Moreover, the set 2 · Û dominates U .
The last claim that 2 · Û dominates U is a straightforward consequence of part(b) of
Lemma 1.

As a consequence of Theorem 4, for any permutation invariant uncertainty set, U ,
we can compute the piecewise-affine policy for ΠAR(U)(1.1) efficiently. In fact, for
many cases, even more efficiently than an affine policy.

3.2 Examples

We present the approximation bounds for several permutation invariant uncertainty
sets that are commonly used in the literature and in practice, including norm balls,
intersection of norm balls and budget of uncertainty sets. In particular, it follows that
for these sets, the performance bounds of our piecewise affine policy are significantly
better than the best known performance bounds for affine policy.

Proposition 1 (Hypersphere)Consider the uncertainty setU = {h ∈ R
m+ | ||h||2 ≤ 1}

which is the intersection of the unit hypersphere and the nonnegative orthant. Then,

Û = m
1
4 · conv

(
e1, e2, . . . , em,

1√
m
e
)

,

dominates U and our piecewise affine solution (3.6) gives O(m
1
4 ) approximation to

(1.1).

Proof We have for k = 1, . . . ,m,

γ (k) = 1

k
· max

{
k∑

i=1

hi | h ∈ U
}

= 1√
k
.

In particular, γ = 1√
m
. From Lemma 5 we get,

β = max
k=1,...,m

γ (k)

γ (m) + 1
k

= max
k=1,...,m

1√
k

1√
m

+ 1
k

.
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The maximum of this problem occurs for k = √
m. Then, β = m

1
4

2 . We conclude

from Theorem 4 that Û dominates U and our piecewise affine policy gives O(m
1
4 )

approximation to the adjustable problem (1.1). 
�
Remark Consider the following ellipsoid uncertainty set

{
h ≥ 0

∣∣∣∣∣
m∑
i=1

ri h
2
i ≤ 1

}
. (3.7)

This is widely used tomodel uncertainty in practice and is just a diagonal scaling of the
hypersphere uncertainty set. For instance, scaled ellipsoid sets has been considered by
Ben-Tal and Nemirovski in [3–5]. In particular, Ben-Tal and Nemirovski [5] consider
ellipsoids of the form (3.7) to model uncertainty in a portfolio optimizaiton problem.
As wemention before, the performance of our policy is not affected by scaling. Hence,

our piecewise affine policy gives an O(m
1
4 )-approximation to the adjustable problem

(1.1) for ellipsoid uncertainty sets (3.7) similar to hypersphere. We analyze the case
of more general ellipsoids in Proposition 4.

Proposition 2 (p-norm ball) Consider the p-norm ball uncertainty set U ={
h ∈ R

m+
∣∣ ‖h‖p ≤ 1

}
where p ≥ 1. Then

Û = 2β · conv
(
e1, e2, . . . , em,m− 1

p e
)

dominates U with

β = 1

p
(p − 1)

p−1
p · m

p−1
p2 = O

(
m

p−1
p2

)
.

Our piecewise affine solution (3.6) gives O(m
p−1
p2 ) approximation to (1.1).

Proof We have for k = 1, . . . ,m,

γ (k) = 1

k
· max

{
k∑

i=1

hi | h ∈ U
}

= k
−1
p .

In particular, γ = m
−1
p . From Lemma 5 we get,

β = max
k=1,...,m

γ (k)

γ (m) + 1
k

= max
k=1,...,m

k
−1
p

m
−1
p + 1

k

= 1

p
(p − 1)

p−1
p · m

p−1
p2 = O

(
m

p−1
p2

)
.
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We conclude from Theorem 4 that Û dominates U and our piecewise affine policy

gives O(m
p−1
p2 ) approximation to the adjustable problem (1.1). 
�

Proposition 3 (Intersection of two norm balls)ConsiderU the intersection of the norm
balls U1 = {h ∈ R

m+
∣∣ ‖h‖p ≤ 1

}
and U2 = {h ∈ R

m+
∣∣ ‖h‖q ≤ r

}
where p > q ≥ 1

and m
1
q − 1

p ≥ r ≥ 1. Then,

Û = β · conv
(
e1, e2, . . . , em,

(
rm− 1

q

)
e
)

,

where

β = min(β1, β2), β1 = r
1−p
p m

p−1
pq , and β2 = r

1
q m

q−1
q2 .

Our piecewise affine solution (3.6) gives a 2β approximation to (1.1).

Proof To prove that Û dominates U1 ∩U2, it is sufficient to consider h in the boundary
of U1 or U2 and find α1, α2, . . . , αm+1 ≥ 0 with α1 + . . . + αm+1 = 1 such that for
all i ∈ [m],

hi ≤ β
(
αi + rm− 1

q αm+1

)
.

Case 1 β = β1.

Let h ∈ U1 such that ‖h‖p = 1, we take αi = h p
i
p for i ∈ [m] and αm+1 = p−1

p . First,

we have
∑m+1

i=1 αi = 1 and for all i ∈ [m],

β
(
αi + rm− 1

q αm+1

)
= β1

(
h p
i

p
+ p − 1

p
rm− 1

q

)

≥ β1
(
h p
i

) 1
p
(
rm− 1

q

) p−1
p = hi ,

where the inequality follows from the weighted inequality of arithmetic and geometric
means (known as Weighted AM-GM inequality). Therefore Û dominates U1 ∩ U2.
Case 2 β = β2.

Let h ∈ U2 such that ‖h‖q = r , we take αi = hqi
rqq for i ∈ [m] and αm+1 = q−1

q . First,

we have
∑m+1

i=1 αi = 1 and for all i ∈ [m],

β
(
αi + rm− 1

q αm+1

)
= β2

(
hqi
rqq

+ q − 1

q
rm− 1

q

)

≥ β2

(
hqi
rq

) 1
q (

rm− 1
q

) q−1
q = hi ,
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where the inequality followed from the weighted AM-GM inequality. Therefore, Û
dominates U1 ∩ U2. 
�

We also consider a permutation invariant uncertainty set that is the intersection of
an ellipsoid and the non-negative orthant , i.e.,

U =
{
h ∈ R

m+ | hTΣh ≤ 1
}

(3.8)

where Σ � 0. For U to be a permutation invariant set satisfying Assumption 1, Σ

must be of the following form

Σ =

⎛
⎜⎜⎜⎝
1 a . . . a
a 1 . . . a
...

...
. . .

...

a a . . . 1

⎞
⎟⎟⎟⎠ (3.9)

where 0 ≤ a ≤ 1.

Proposition 4 (Permutation invariant ellipsoid)Consider the uncertainty setU defined
in (3.8) where Σ is defined in (3.9). Then

Û = β · conv (e1, e2, . . . , em, γ e) ,

dominates U with

β =
⎛
⎝a

2
+ (1 − a)

1
2(

am2 + (1 − a)m
) 1
4

⎞
⎠

−1

= O
(
m

2
5

)

and

γ = 1√(
am2 + (1 − a)m

) .

Our piecewise affine policy (3.6) gives O
(
m

2
5

)
approximation to the adjustable robust

problem (1.1).

The proof of Proposition 4 is presented in “Appendix E”.

Proposition 5 (Budget of uncertainty set) Consider the budget of uncertainty set

U =
{
h ∈ [0, 1]m ∣∣ m∑

i=1

hi ≤ k

}
. (3.10)
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Then,

Û = β · conv
(
e1, e2, . . . , em,

k

m
e
)

whereβ = min
(
k, m

k

)
. In particular, our piecewise affine policy (3.6) gives 2β approx-

imation to the adjustable problem (1.1).

The proof of Proposition 5 is presented in “Appendix F”.

3.3 Comparison to affine policy

Table 1 summarizes the performance bounds for our piecewise affine policy and
the best known performance bounds in the literature for affine policies [7]. As can
be seen, our piecewise affine policy performs significantly better than the known
bounds for affine policy formany interesting sets, including hypersphere, ellipsoid and

norm-balls. For instance, our policy gives O(m
1
4 )-approximation for the hypersphere

and O(m
p−1
p2 )-approximation for the p-norm ball, while affine policy gives O(m

1
2 )-

approximation for hypersphere and O(m
1
p )-approximation for the p-norm ball [7],

respectively. However, as we mentioned before, our policy is not a generalization of
affine policies and, in fact, affine policies may perform better for certain uncertainty
sets. However, we present a family of examples where an optimal affine policy gives
an Ω(

√
m)-approximation, while our policy is near-optimal for the adjustable robust

problem (1.1). In particular, we consider the following instance motivated from the
worst-case examples of affine policy in [12,20].

n = m, r = �m − √
m�, N =

(
m

r

)

Bi j =
{
1 if i = j
1√
m

if i �= j

A = B, c = 1

15
e, d = e

U = conv (0, e1, . . . , em, ν1, . . . , νN )

where ν1 = 1√
m

· [1, . . . , 1︸ ︷︷ ︸
r

, 0 . . . , 0];

(3.11)

ν1 has exactly r non-zero coordinates, each equal to 1√
m
. The extreme points νi of ν1,

are permutations of the non-zero coordinates of ν1. Therefore,U has exactly
(m
r

)+m+1
extreme points.

Lemma 6 Our piecewise affine policy (2.5) gives an O(1 + 1√
m

)-approximation for

the adjustable robust problem (1.1) for instance (3.11).
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We can prove Lemma 6 by constructing a dominating set within a scaling factor
O(1 + 1√

m
) from U . We present the complete proof of Lemma 6 in “Appendix G”.

Lemma 7 Affine policy gives an Ω(
√
m)-approximation for the adjustable robust

problem (1.1) for instance (3.11). Moreover, for any optimal affine solution, the cost
of the first-stage solution x∗

Aff is Ω(
√
m) away from the optimal adjustable problem

(1.1), i.e. cT x∗
Aff = Ω(m1/2) · zAR(U).

Wepresent the proof of Lemma 7 in “AppendixH”. FromLemma 7 and 6, we conclude
that our policy is near-optimal whereas affine policy isΩ(

√
m) away from the optimal

adjustable solution for the instance (3.11). Hence our policy provides a significant
improvement. We would like to note that since Û is a simplex, an affine policy is
optimal for ΠAR(Û). In particular, we have the following

zAR(U) ≤ zAR(Û) = zAff(Û) ≤ O

(
1 + 1√

m

)
· zAR(U),

where the first inequality follows as Û dominates U and the last inequality follows
from Lemma 6. Moreover, from Lemma 7, we know that for instance (3.11),

zAff(U) = Ω(
√
m) · zAR(U).

Therefore,

zAff(U) = Ω(
√
m) · zAff(Û),

which is quite surprising since Û dominatesU .Wewould like to emphasize that Û only
dominatesU and does not contain it and this is crucial to get a significant improvement
for our piecewise affine policy constructed through the dominating set.

Comparison to re-solving policy In many applications, a practical implementation of
affine policy only implements the first stage solution x∗

Aff and re-solve (or recompute)
the second-stage solution once the uncertainty is realized. The performance of such a
re-solving policy is at least as good as affine policy and in many cases significantly
better. Lemma 7 shows that for instance (3.11), such a re-solving policy is Ω(

√
m)

away from the optimal adjustable policy whereas we show in Lemma 6 that our
piecewise affine policy is near-optimal. Hence, our piecewise affine policy for instance
(3.11) is performing significantly better not only than affine policy but also the re-
solving policy.

4 General uncertainty set

In this section, we consider the case of general uncertainty sets. The main challenge
in our framework of constructing the piecewise affine policy is the choice of the
dominating simplex, Û . More specifically, the choice of β and v ∈ U such that β ·
conv (e1, . . . , em, v) dominates U . For a permutation invariant set, U , we choose
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Algorithm 1 Computing β and v for general uncertainty sets

1: Initialize t = 0, u0 = 0

2: while
{
max
h∈U

∑m
i=1

(
hi − uti

)+
> t

}
do

3: ht ∈ argmax
h∈U

∑m
i=1

(
hi − uti

)+
4: for i = 1, . . . ,m do
5: if uti = 1 then hti = 0
6: end if
7: ut+1

i = min(1, uti + hti )
8: end for
9: t = t + 1
10: end while
11: return β = t, v = ut

β .

v = γ e and we can efficiently find β using Lemma 5 to construct the dominating set.
However, this does not extend to general sets and we need a new procedure to find
those parameters.

Theorem 3 shows that to construct a good piecewise affine policy over U , it is
sufficient to find β and v ∈ U such that for all h ∈ U

1

β

m∑
i=1

(hi − βvi )
+ ≤ 1. (4.1)

In this section, we present an iterative algorithm to find such β and v ∈ U satisfy-
ing (4.1). In each iteration t , the algorithm maintains a candidate solution, β t and
vt ∈ U . Let ut = β t · vt . The algorithm solves the following maximization problem:

max
h∈U

m∑
i=1

(
hi − uti

)+ (4.2)

The algorithm stops if the optimal value is at most β t in which case, Condition (4.1)
is verified for all h ∈ U . Otherwise, let ht be an optimal solution of problem (4.2).
The current solutions are updated as follows:

β t+1 = β t + 1

ut+1
i = min

(
1, uti + hti

)
.

This corresponds to updating vt+1 = 1
β t+1 · ut+1. Algorithm 1 presents the steps in

detail.
The number of β-iterations is finite since U is compact. The following theorem

shows that v returned by the algorithm belongs to U and the corresponding piecewise
affine policy is a O(

√
m)-approximation for the adjustable problem (1.1).
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Theorem 5 SupposeAlgorithm1 returnsβ, v. Then v ∈ U . Furthermore, the piecewise
affine policy (2.5) with parameters β and v gives a O(

√
m)-approximation for the

adjustable problem (1.1).

Proof Suppose Algorithm 1 returns β, v. Note that β is the number of iterations in
Algorithm 1. First, we have

uβ ≤
β−1∑
t=0

ht .

Moreover 1
β

· ∑β−1
t=0 ht ∈ U since U is convex. Therefore v = uβ

β
∈ U by down-

monotonicity of U .
Let us prove that β = O(

√
m). First, note that, when we set hti = 0 for uti = 1, the

objective of the maximization problem in the algorithm does not change and ht still
belongs to U by down-monotonicity. Then, for any t = 0, . . . , β − 1

m∑
i=1

(
hti − uti

)+
> t .

Moreover, hti ≥ 0 and uti ≥ 0, hence hti ≥ (hti − uti )
+ and therefore for all t =

0, . . . , β − 1

m∑
i=1

hti > t .

Then,
β−1∑
t=0

m∑
i=1

hti >

β−1∑
t=0

t = 1

2
β(β − 1). (4.3)

Note that, if uti = 1 at some iteration t , then ht
′
i = 0 for any t ′ ≥ t . Hence, for any

i ∈ [m],
β−1∑
t=0

hti ≤ uβ
i + 1 ≤ 2. (4.4)

Hence, from (4.3) and from (4.4) we get, 2m > 1
2β(β − 1), i.e., β · (β − 1) ≤ 4m,

which implies, β = O(
√
m). 
�

We note that the maximization problem (4.2) that Algorithm 1 solves in each itera-
tion t is not a convex optimization problem. However, (4.2) can be formulated as the
following MIP:
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max
m∑
i=1

zi

zi ≤ (hi − uti ) + (1 − xi ) ∀i ∈ [m],
zi ≤ xi ∀i ∈ [m]
zi ≥ 0, ∀i ∈ [m]
xi ∈ {0, 1} ∀i ∈ [m]
h ∈ U .

(4.5)

Therefore, for general uncertainty set U , the procedure to find β and v ∈ U is compu-
tationally more challenging than for the case of permutation invariant sets.

Remark Since the computation of β and v depends only on U , and not on the problem
parameters (i.e., the parameters A, B, c and d), one can compute them offline and
then use them to efficiently construct a good piecewise affine policy.

Connection to Bertsimas and Goyal [12] We would like to note that Algorithm 1 is
quite analogous to the explicit construction of good affine policies in [12]. The analysis
of the O(

√
m)-approximation bound for affine policies is based on the following

projection result (which is a restatement of Lemma 8 and Lemma 9 in [12]).

Theorem 6 (Bertsimas et al. [13]) Consider any uncertainty set U satisfying Assump-
tion 1. There exists β ≤ √

m, v ∈ U such that

∑
j :βv j<1

h j ≤ β, ∀h ∈ U .

Suppose J = { j | βv j < 1}. The affine solution in [12] covers βv using the static
component and the components J using a linear solution. The linear solution does
not exploit the coverage of βvi for i ∈ J from the static solution. The approximation
factor is O(β) since for all h ∈ U ,∑ j∈J h j ≤ β.

Our piecewise affine solution given by Algorithm 1 finds analogous β, v ∈ U such
that

m∑
i=1

(hi − βvi )+ ≤ β, ∀h ∈ U .

In the piecewise affine solution, the static component covers βv and the remaining
part (h − βv)+ is covered by a piecewise-linear function that exploits the coverage
of βv. This allows us to improve significantly as compared to the affine policy for a
large family of uncertainty sets. We would like to note again that our policy is not
necessarily an optimal one and there can be examples where affine policy is better
than our policy.
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5 Aworst case example for the domination policy

From Theorem 5, we know that our piecewise affine policy gives an O(
√
m)-

approximation for the adjustable robust problem (1.1). In this section, we show that
this bound is tight for the following budget of uncertainty set:

U =
{
h ∈ R

m+
∣∣∣∣

m∑
i=1

hi = √
m, 0 ≤ hi ≤ 1 ∀i ∈ [m]

}
. (5.1)

We show that our dominating simplex based piecewise affine policy gives anΩ(
√
m)-

approximation to the adjustable robust problem (1.1). The lower bound of Ω(
√
m)

holds even when we consider more general dominating sets than simplex. We show
that for any ε > 0, there is no polynomial number of points in U such that the convex

hull of those points scaled bym
1
2−ε dominates U . In particular, we have the following

theorem.

Theorem 7 Given any 0 < ε < 1/2, and k ∈ N, consider the budget of uncertainty set,
U (5.1) with m sufficiently large. Let P(m) ≤ mk. Then for any z1, z2, . . . zP(m) ∈ U ,
the set

Û = m
1
2−ε · conv (z1, z2, . . . zP(m))

)
,

does not dominate U .
Proof Suppose for a sake of contradiction that there exists z1, z2, . . . , zP(m) ∈ U such

that Û = m
1
2−ε · conv (z1, z2, . . . zP(m)

)
dominates U .

By Caratheodory’s theorem, we know that any point in U can be expressed as a
convex combination of at most m + 1 extreme points of U . Therefore

Û ⊆ m
1
2−ε · conv ( y1, y2, . . . , yQ(m))

)
,

where y1, y2, . . . , yQ(m) are extreme points of U and

Q(m) ≤ (m + 1) · P(m) = O(mk+1).

Consider any I ⊆ {1, 2, . . . ,m} such that |I | = √
m. Let h be an extreme point of U

corresponding to I , i.e., hi = 1 if i ∈ I and hi = 0 otherwise. Since we assume that
Û dominates U , there exists ĥ ∈ Û such that h ≤ ĥ. Let

ĥ = m
1
2−ε

Q(m)∑
j=1

α j y j ,

where
∑Q(m)

j=1 α j = 1 and α j ≥ 0 for all j = 1, 2, . . . , Q(m). We have

1 = hi ≤ ĥi ∀i ∈ I
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i.e.

1 ≤ m
1
2−ε

Q(m)∑
j=1

α j y ji , ∀i ∈ I .

Summing over i ∈ I , we have,

√
m = |I | ≤ m

1
2−ε

∑
i∈I

Q(m)∑
j=1

α j y ji .

Therefore,

mε ≤
Q(m)∑
j=1

α j

∑
i∈I

y ji ,

≤
⎛
⎝Q(m)∑

j=1

α j

⎞
⎠ · max

j=1,2,...,Q(m)

∑
i∈I

y ji

= max
j=1,2,...,Q(m)

∑
i∈I

y ji =
∑
i∈I

y j∗i ,

where the second inequality follows from taking the max of the inner sum over indices
j and j∗ is the index corresponding to the maximum sum.
Therefore, for any I ⊆ {1, 2, . . . ,m} with cardinality |I | = √

m, there exists
j = 1, 2, . . . , Q(m) such that

∑
i∈I

y ji ≥ mε .

Denote F = {
I ⊆ {1, 2, . . . ,m} ∣∣ |I | = √

m
}
which represents the set of all subsets

of {1, 2, . . . ,m} with cardinality √
m. Note that the cardinality of F is

|F | =
(

m√
m

)
.

We know that for any I ∈ F there exists y j ∈ { y1, y2, . . . yQ(m)} such that

∑
i∈I

y ji ≥ mε .

Wehave
( m√

m

)
possibilities for I andQ(m)possibilities for y j , henceby thepigeonhole

principle, there exists a fixed y ∈ { y1, y2, . . . yQ(m)} and F̃ ⊆ F such that
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|F̃ | ≥ 1

Q(m)

(
m√
m

)
, and∑

i∈I
yi ≥ mε, ∀I ∈ F̃ . (5.2)

Note that y is an extreme point of U . Hence, y has exactly√
m ones and the remaining

components are zeros. The maximum cardinality of subsets I ⊆ [m] that can be
constructed to satisfy

∑
i∈I yi ≥ mε is

k=√
m∑

k=mε

(√
m

k

)
·
(
m − √

m√
m − k

)
.

By over counting, the above sum can be upper-bounded by

(√
m

mε

)
·
(

m − mε

√
m − mε

)
.

Therefore, cardinality of F̃ should be less that the above upper bound, i.e.

(√
m

mε

)
·
(

m − mε

√
m − mε

)
≥ |F̃ | ≥ 1

Q(m)

(
m√
m

)

Then, (√m
mε

) · ( m−mε√
m−mε

)
( m√

m

) ≥ 1

Q(m)
. (5.3)

which is a contradiction. The contradiction is derived by analyzing the order of the
fractions in (5.3) (see “Appendix I”). 
�

6 Computational study

In this section, we present a computational study to compare the performance of our
policywith affine policies both in terms of objective function value of problemΠAR(U)

(1.1) and computation times. We explore both cases of permutation invariant sets and
non-permutation invariant sets.

6.1 Experimental setup

Uncertainty setsWe consider the following classes of uncertainty sets for our compu-
tational experiments.

1. Hypersphere We consider the following unit hypersphere defined in (1.2),

U = {h ∈ R
m+ | ||h||2 ≤ 1}.
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2. p-norm balls We consider the following sets defined in Proposition 2.

U = {h ∈ R
m+
∣∣ ‖h‖p ≤ 1

}
.

For our numerical experiments, we consider the cases of p = 3 and p = 3/2.
3. Budget of uncertainty setWe consider the following set defined in (3.10),

U =
{
h ∈ [0, 1]m

∣∣∣∣
m∑
i=1

hi ≤ k

}
.

Here, k denotes the budget. For our numerical experiments, we choose k = c
√
m

where c is a random uniform constant between 1 and 2.
4. Intersection of budget of uncertainty sets We consider the following intersection

of L budget of uncertainty sets:

U =
⎧⎨
⎩h ∈ [0, 1]m

∣∣∣∣
m∑
j=1

αi j h j ≤ 1, ∀i = 1, . . . , L

⎫⎬
⎭ . (6.1)

Here, αi j are non-negative scalars. Note that the intersection of budget of uncer-
tainty sets are not permutation invariant. For our numerical experiments, we
generate αi j i.i.d. according to absolute value of standard Gaussians and we nor-
malize ||αi ||2 to 1 for all i (i.e. αi = |Gi |/||Gi ||2 where Gi are i.i.d. according to
N (0, Im)). We consider L = 2 and L = 5 for our experiments.

5. Generalized budget of uncertainty setWe consider the following set

U =
{
h ∈ [0, 1]m

∣∣∣∣
m∑

�=1

h� ≤ 1 + θ(hi + h j ) ∀i �= j

}
. (6.2)

This is a generalized version of the budget of uncertainty set (3.10) where the
budget is not a constant but depends on the uncertain parameter h. In particular,
the budget in the set (6.2) depends on the sum of the two lowest components of h.
For our numerical experiments, we choose θ = O(m).

InstancesWe construct test instances of the adjustable robust problem (1.1) as follows.
We choose n = m, c = d = e and A = B where B is randomly generated as

B = Im + G,

where Im is the identity matrix and G is a random normalized gaussian. In particular,
for the hypersphere uncertainty set, the budget of uncertainty set, the intersection of
budget of uncertainty sets and the generalized budget, we conisder Gi j = |Yi j |/√m.

For the 3-norm ball, Gi j = |Yi j |/m 1
3 and for the 3

2 -norm ball, Gi j = |Yi j |/m 2
3 ,where
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Yi j are i.i.d. standard gaussian. We consider values of m from m = 10 to m = 100 in
increments of 10 and consider 50 instances for each value of m.

Our piecewise affine policy We construct the piecewise affine policy based on the
dominating simplex Û as follows. For permutation invariant sets, we use the dominat-
ing simplex that can be computed in closed form. In particular, for the hypersphere
uncertainty set, we use the dominating set Û in Proposition 1. For the p-norm balls, we
use the dominating set Û in Proposition 2. For the budget of uncertainty set, we use
the dominating set Û in Proposition 5 and for the generalized budget of uncertainty
set (6.2), we use the dominating set Û in Proposition 7 (see “Appendix K”).

For non-permutation invariant sets, we use Algorithm 1 to compute the dominating
simplex. In particular, we get β and v that satisfies (2.4) and 2β · conv (e1, . . . , em, v)

is a dominating set (see Lemma 1b). We can also show that the following set (6.3) is
a dominating set (see Proposition 6 in “Appendix J”),

Û = β · conv (v, e1 + v, . . . , em + v) . (6.3)

While the worst case scaling factor for the above dominating set can be 2β and there-
fore the theoretical bounds do not change, computationally (6.3) can provide a better
policy and we use this in our numerical experiments for the intersection of budget of
uncertainty sets (6.1).

6.2 Results

Let zp-aff(U) denote the worst-case objective value of our piecewise affine policy.
Note that the piecewise affine policy over U is computed by solving the adjustable
robust problem over Û and zp-aff(U) = zAR(Û). For each uncertainty set we report the

ratio r = zAff(U)
zp-aff(U)

for m = 10 to 100. In particular, for each value of m, we report the

average ratio (Avg), the maximum ratio (Max), the minimum ratio (Min), the quantiles
95%, 90%, 75%, 50% for the ratio r , the running time of our policy (Tp-aff(s)) and the
running time of affine policy (Taff(s)). In addition, for the intersection of budget of
uncertainty sets, we also report the computation time to construct Û via Algorithm 1
(TAlg1(s)). The numerical results are obtained using Gurobi 7.0.2 on a 16-core server
with 2.93GHz processor and 56GB RAM.

Hypersphere andNorm-balls.Wepresent the results of our computational experiments
in Tables 2, 3 and 4 for the hypersphere and norm-ball uncertainty sets. We observe
that the piecewise affine policy performs significantly better than affine policy for
our family of test instances. In Tables 2, 3 and 4, we observe that the ratio r =
zAff(U)
zp-aff(U)

increases significantly as m increases which implies that our policy provides

a significant improvement over affine policy for large values of m. We also observe
that the ratio for the hypersphere is larger than the ratio for norm-balls. This matches
the theoretical bounds presented in Table 1 which suggests that the improvement over
affine policy is the highest for p = 2 for p-norm balls.

We note that for the smallest values of m (m = 10), the performance of affine
policy is better than our policy. However, for m > 10, the performance of our policy
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Table 2 Comparison on the performance and computation time of affine policy and our piecewise affine

policy for the hypersphere uncertainty set. For 50 instances, we compute zAff(U)

zp-aff(U)
and present the average,

min, max ratios and the quantiles 95%, 90%, 75%, 50%. Here, Tp-aff(s) denotes the running time for our
piecewise affine policy and Taff(s) denotes the running time for affine policy in seconds

m Avg Max Min 95% 90% 75% 50% Tp-aff(s) Taff(s)

10 0.955 1.006 0.875 1.003 0.988 0.971 0.960 0.001 0.221

20 1.120 1.168 1.076 1.152 1.141 1.132 1.122 0.002 0.948

30 1.218 1.251 1.180 1.243 1.238 1.225 1.221 0.003 2.753

40 1.288 1.328 1.238 1.318 1.312 1.299 1.291 0.006 6.479

50 1.349 1.382 1.319 1.375 1.370 1.357 1.349 0.009 14.678

60 1.399 1.429 1.366 1.418 1.415 1.408 1.398 0.013 32.323

70 1.443 1.472 1.454 1.460 1.457 1.451 1.440 0.019 58.605

80 1.485 1.509 1.485 1.505 1.499 1.491 1.482 0.033 107.898

90 1.523 1.549 1.527 1.539 1.532 1.530 1.525 0.040 200.134

100 1.557 1.578 1.560 1.574 1.570 1.564 1.557 0.081 564.772

Table 3 Comparison on the performance and computation time of affine policy and our piecewise affine
policy for the 3-norm ball uncertainty set

m Avg Max Min 95% 90% 75% 50% Tp-aff(s) Taff(s)

10 0.975 1.049 0.907 1.023 1.017 0.991 0.971 0.001 0.743

20 1.082 1.141 1.042 1.128 1.119 1.097 1.080 0.002 3.714

30 1.157 1.195 1.094 1.190 1.177 1.167 1.158 0.003 12.386

40 1.218 1.247 1.184 1.236 1.233 1.226 1.219 0.006 31.687

50 1.270 1.294 1.245 1.293 1.284 1.275 1.271 0.009 69.302

60 1.312 1.346 1.274 1.335 1.325 1.319 1.312 0.013 117.949

70 1.345 1.363 1.323 1.361 1.358 1.351 1.347 0.020 258.862

80 1.378 1.402 1.356 1.396 1.393 1.384 1.378 0.031 435.629

90 1.408 1.429 1.389 1.421 1.418 1.413 1.409 0.043 728.436

100 1.434 1.457 1.419 1.447 1.443 1.438 1.433 0.050 1033.174

is significantly better for all these three uncertainty sets: hypersphere, 3-norm ball and
3/2-norm ball.

Furthermore, our policy scales well and the average running time is less than 0.1 s
even for large values of m. On the other hand, computing the optimal affine policy
overU becomes computationally challenging asm increases. For instance, the average
running time for computing an optimal affine policy for m = 100 is around 9 min for
the hypersphere uncertainty set, around 17 min for the 3-norm ball and around 16 min
for the 3/2-norm ball.

Budget of uncertainty setsWe present the results of our computational experiments in
Tables 5, 6, 7 and 8 for the single budget of uncertainty set, the intersection of budget
sets and the generalized budget.
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Table 4 Comparison on the performance and computation time of affine policy and our piecewise affine
policy for the 3/2-norm ball uncertainty set

m Avg Max Min 95% 90% 75% 50% Tp-aff(s) Taff(s)

10 0.904 0.952 0.817 0.939 0.932 0.918 0.905 0.001 0.728

20 1.028 1.058 0.992 1.051 1.044 1.036 1.031 0.002 3.462

30 1.115 1.144 1.095 1.132 1.128 1.122 1.115 0.003 10.896

40 1.174 1.190 1.161 1.184 1.183 1.177 1.174 0.005 29.209

50 1.226 1.244 1.204 1.240 1.235 1.232 1.227 0.009 70.099

60 1.266 1.278 1.255 1.275 1.274 1.269 1.267 0.013 123.518

70 1.303 1.311 1.292 1.310 1.309 1.305 1.303 0.019 267.450

80 1.335 1.345 1.328 1.341 1.339 1.337 1.335 0.034 458.791

90 1.363 1.372 1.353 1.370 1.369 1.366 1.363 0.044 701.262

100 1.387 1.395 1.381 1.392 1.391 1.389 1.387 0.056 967.773

Table 5 Comparison on the performance and computation time of affine policy and our piecewise affine
policy for the budget of uncertainty set with a budget k = c

√
m where for each instance we generate c

uniformly from [1, 2]
m Avg Max Min 95% 90% 75% 50% Tp-aff(s) Taff(s)

10 0.906 0.989 0.766 0.986 0.974 0.957 0.915 0.001 0.014

20 0.897 0.963 0.780 0.957 0.951 0.939 0.916 0.002 0.207

30 0.891 0.961 0.765 0.957 0.945 0.923 0.906 0.004 0.803

40 0.882 0.954 0.753 0.950 0.946 0.928 0.900 0.006 2.997

50 0.899 0.954 0.763 0.950 0.947 0.937 0.914 0.011 11.687

60 0.879 0.956 0.772 0.953 0.948 0.932 0.896 0.015 26.760

70 0.887 0.958 0.911 0.951 0.950 0.936 0.909 0.020 71.167

80 0.882 0.954 0.768 0.951 0.946 0.937 0.902 0.047 147.376

90 0.890 0.953 0.765 0.950 0.949 0.936 0.917 0.039 220.809

100 0.886 0.955 0.750 0.946 0.943 0.931 0.900 0.066 397.981

For the budget of uncertainty set (3.10), we observe that affine policy performs
better than our piecewise affine policy for our family of test instances. Note that as we
mention earlier, our policy is not a generalization of affine policies and therefore is
not always better. For our experiments, we use k = c

√
m which gives the worst case

theoretical bound for our policy (see Theorem 7), but the performance of our policy
is still reasonable and the average ratio r = zAff(U)

zp-aff(U)
over all instances is around 0.88

as we can observe in Table 5. On the other hand, as in the case of conic uncertainty
sets, our policy scales well with an average running time less than 0.1 s even for large
values of m, whereas affine policy takes for example more than 6 min on average for
m = 100.

Tables 6 and 7 present the results for intersection of budget of uncertainty sets. We
observe that affine policy outperforms our policy as in the case of a single budget. This
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Table 6 Comparison on the performance and computation time of affine policy and our piecewise affine
policy for the intersection of 2 budget of uncertainty sets (6.1)

m Avg Max Min 95% 90% 75% 50% Tp-aff(s) TAlg1(s) Taff(s)

10 0.814 0.881 0.700 0.861 0.851 0.833 0.821 0.002 0.191 0.013

20 0.805 0.866 0.716 0.850 0.838 0.825 0.807 0.016 0.723 0.227

30 0.770 0.847 0.701 0.827 0.808 0.787 0.773 0.091 0.386 0.931

40 0.801 0.839 0.702 0.832 0.828 0.814 0.810 0.270 1.399 3.731

50 0.781 0.825 0.726 0.818 0.814 0.803 0.784 0.656 2.081 12.056

60 0.805 0.841 0.752 0.829 0.824 0.817 0.811 1.406 4.093 32.695

70 0.789 0.839 0.706 0.820 0.809 0.802 0.795 2.595 1.798 80.342

80 0.774 0.844 0.725 0.825 0.816 0.789 0.770 4.484 5.096 163.257

90 0.807 0.838 0.756 0.832 0.828 0.818 0.807 7.628 8.734 354.598

100 0.790 0.821 0.750 0.817 0.812 0.801 0.791 5.235 6.391 646.136

Table 7 Comparison on the performance and computation time of affine policy and our piecewise affine
policy for the intersection of 5 budget of uncertainty sets (6.1)

m Avg Max Min 95% 90% 75% 50% Tp-aff(s) TAlg1(s) Taff(s)

10 0.869 0.932 0.824 0.920 0.910 0.884 0.871 0.002 0.043 0.015

20 0.852 0.924 0.795 0.909 0.893 0.870 0.852 0.021 0.058 0.309

30 0.864 0.898 0.820 0.888 0.880 0.872 0.865 0.100 0.343 1.024

40 0.856 0.896 0.802 0.883 0.882 0.874 0.861 0.290 0.464 4.010

50 0.857 0.891 0.794 0.891 0.886 0.876 0.861 0.706 3.546 12.535

60 0.880 0.900 0.860 0.894 0.892 0.885 0.881 1.471 18.474 33.693

70 0.873 0.896 0.809 0.894 0.890 0.882 0.878 2.800 13.125 82.961

80 0.858 0.889 0.825 0.886 0.881 0.872 0.858 4.809 21.780 167.753

90 0.859 0.890 0.818 0.885 0.881 0.877 0.866 8.004 144.808 344.924

100 0.885 0.902 0.865 0.900 0.896 0.893 0.888 5.821 459.436 632.483

confirms that affine policy performs very well empirically for this class of uncertainty
sets.We also observe that the performance of our policy improveswhenwe increase the
number of budget constraints. For example, form = 100, the average ratio r = zAff(U)

zp-aff(U)

increases from 0.79 in the case of L = 2 to 0.88 for L = 5. This suggests that the
performance of our policy gets closer to the one of affine policy as long as we addmore
budgets constraints. While affine policy performs better than our policy for budget of
uncertainty sets,wewould like to note that this is not necessarily true for anypolyhedral
uncertainty set. In particular, we also test our policy with the generalized budget (6.2)
and observe that our policy is significantly better than affine even when the set is
polyhedral.

Table 8 presents the results for the generalized budget set (6.2). We observe that
our piecewise affine policy outperforms affine policy both in terms of objective value
and computation time. The gap increases as m increases which implies a significant
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Table 8 Comparison on the performance and computation time of affine policy and our piecewise affine
policy for the generalized budget of uncertainty set (6.2)

m Avg Max Min 95% 90% 75% 50% Tp-aff(s) Taff(s)

10 1.015 1.067 0.983 1.053 1.045 1.025 1.006 0.001 0.046

20 1.107 1.159 1.100 1.147 1.142 1.127 1.106 0.003 0.840

30 1.148 1.214 1.092 1.189 1.179 1.163 1.155 0.004 3.933

40 1.173 1.220 1.105 1.206 1.198 1.188 1.175 0.009 18.097

50 1.191 1.227 1.154 1.216 1.213 1.201 1.189 0.016 62.668

60 1.209 1.259 1.193 1.238 1.225 1.215 1.210 0.021 145.552

70 1.225 1.254 1.190 1.247 1.239 1.228 1.224 0.019 237.448

80 1.237 1.275 1.213 1.264 1.260 1.245 1.235 0.044 573.342

90 1.248 1.284 1.223 1.268 1.260 1.254 1.249 0.050 1168.928

100 1.257 1.274 1.240 1.271 1.268 1.261 1.257 0.053 1817.940

improvement over affine policy for large values of m. Furthermore, unlike the piece-
wise affine policy, computing an affine solution becomes challenging for large values
of m.

For the intersection of budget of uncertainty sets (6.1) that are not permutation
invariant, we compute the dominating set (in particularβ and v) usingAlgorithm 1.We
report the average running time, TAlg1 of Algorithm 1which solves a sequence ofMIPs
in Tables 6 and 7.We note that there is no need to solveMIPs optimally in Algorithm 1;
one can stop when a feasible solution with an objective value greater than t is found.
We observe that the running time of Algorithm 1 is reasonable as compared to that of
affine policy. For example, the average running time of Algorithm 1 for m = 100 and
L = 5 is 7minwhereas affine policy takes 10min in average. For large values ofm and
a large number of budget constraints, the running time of Algorithm 1 might increase
significantly and exceed the computation time of affine policy. However, we would
like to emphasize that β and v given by Algorithm 1 do not depend on the parameters
(A, B, c, d) and only depend on the uncertainty set. Therefore, they can be computed
offline and can be used to solve many instances of the problem parameters for the
same uncertainty set.

7 Conclusion

This paper introduces a new framework for designing piecewise affine policies (PAP)
for two-stage adjustable robust optimization with right-hand side uncertainty. The
framework is based on approximating the uncertainty set U by a dominating simplex
and constructing a PAP using the map from U to the dominating simplex. For the
class of conic uncertainty sets including ellipsoids and norm-balls, our PAP performs
significantly better, theoretically and computationally than affine policy. For general
uncertainty sets (particularly a “budgeted” U or intersection of a small number of
“budget of uncertainty sets”), our PAP does not necessarily outperform affine policies,
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but while the latter may fail for large dimensional U , the PAP scales well given the
dominating set.

It is an interesting open question whether a PAP can be designed that significantly
improves over affine policy for budgeted uncertainty sets.

Acknowledgements O. El Housni and V. Goyal are supported by NSF Grants CMMI 1201116 and CMMI
1351838.

A Proof of Theorem 1

Proof Let (x̂, ŷ(ĥ), ĥ ∈ Û) be an optimal solution for zAR(Û). For each h ∈ U , let
ỹ(h) = ŷ(ĥ) where ĥ ∈ Û dominates h. Therefore, for any h ∈ U ,

Ax̂ + B ỹ(h) = Ax̂ + B ŷ(ĥ) ≥ ĥ ≥ h,

i.e., (x̂, ỹ(h), h ∈ U) is a feasible solution for zAR(U). Therefore,

zAR(U) ≤ cT x̂ + max
h∈U

dT ỹ(h) ≤ cT x̂ + max
ĥ∈Û

dT ŷ(ĥ) = zAR(Û).

Conversely, let (x∗, y∗(h), h ∈ U) be an optimal solution of zAR(U). Then, for any

ĥ ∈ Û , since ĥ
β

∈ U , we have,

Ax∗ + B y∗
(
ĥ
β

)
≥ ĥ

β
,

Therefore, (βx∗, β y∗
(
ĥ
β

)
, ĥ ∈ U) is feasible for ΠAR(Û). Therefore,

zAR(Û) ≤ cTβx∗ + max
ĥ∈Û

dTβ y∗
(
ĥ
β

)
≤ β ·

(
cT x∗ + max

h∈U
dT y∗(h)

)
= β · zAR(U).


�

B Proof of Lemma 1

Proof (a) Suppose there exists β and v ∈ U such that Û = β · conv (e1, . . . , em, v)

dominates U . Consider h ∈ U . Since Û dominates U , there exists α1, α2, . . . , αm+1 ≥
0 with α1 + · · · + αm+1 = 1 such that

hi ≤ β (αi + αm+1vi ) , ∀i = 1, . . . ,m. (B.1)
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Let

I (h) =
{
i ∈ [m]

∣∣∣∣ hi − βvi ≥ 0

}
.

Then,

m∑
i=1

(hi − βvi )
+ =

∑
i∈I (h)

hi − β
∑

i∈I (h)

vi

≤
∑

i∈I (h)

β (αi + αm+1vi ) − β
∑

i∈I (h)

vi

= β
∑

i∈I (h)

αi + (αm+1 − 1) β
∑

i∈I (h)

vi

≤ β,

where the first inequality follows from (B.1) and the last inequality holds because
αm+1 − 1 ≤ 0, vi ≥ 0 , β ≥ 0 and

∑
i∈I (h) αi ≤ 1. We conclude that

1

β

m∑
i=1

(hi − βvi )
+ ≤ 1.

(b) Now, suppose there exists β and v ∈ U such that Û = β · conv (e1, . . . , em, v)

dominates U . For any h ∈ U , let

ĥ =
m∑
i=1

(hi − βvi )
+ ei + βv.

Then for all i = 1, . . . ,m,

ĥi = (hi − βvi )
+ + βvi

≥ (hi − βvi ) + βvi ≥ hi .

Therefore, ĥ dominates h. Moreover,

ĥ = 2β

(
m∑
i=1

(hi − βvi )
+

2β
ei + 1

2
v

)
∈ 2β · conv (0, e1, . . . , em, v) ,

because

1

β

m∑
i=1

(hi − βvi )
+ ≤ 1.
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Therefore, 2β · conv (0, e1, . . . , em, v) dominates U and consequently 2β · conv
(e1, . . . , em, v) dominates U as well. 
�

C Proof of Lemma 3

Proof Suppose k ∈ [m]. Let us consider

h ∈ argmax
h∈U

k∑
i=1

hi .

Without loss of generality, we can suppose that hi = 0 for i = k + 1, . . . ,m. Denote,
Sk the set of permutations of {1, 2, . . . , k}. We define hσ ∈ R

m+ such that hσ
i = hσ(i)

for i = 1, . . . , k and hσ
i = 0 otherwise. Since U is a permutation invariant set, we

have hσ ∈ U for any σ ∈ Sk . The convexity of U implies that

1

k!
∑
σ∈Sk

hσ ∈ U .

We have,

∑
σ∈Sk

hσ
i =

{
(k − 1)! ·∑k

j=1 h j if i = 1, . . . , k
0 otherwise,

and
∑k

j=1 h j = k · γ (k) by definition. Therefore,

1

k!
∑
σ∈Sk

hσ = γ (k) ·
k∑

i=1

ei ∈ U .


�

D Proof of Lemma 4

Proof Consider, h̃ ∈ U an optimal solution for the maximization problem in (3.3) for
fixed β. We will construct h∗ ∈ U another optimal solution of (3.3) that verifies the
properties in the lemma. First, denote I = {i | h̃i > βγ } and |I | = k. Since, U is per-
mutation invariant, we can suppose without loss of generality that I = {1, 2, . . . , k}.
We define,

h∗
i =

{
γ (k) if i = 1, . . . , k
0 otherwise.
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From Lemma 3, we have h∗ ∈ U . Moreover,

m∑
i=1

(h̃i − βγ )+ =
k∑

i=1

h̃i − βγ k ≤ k · γ (k) − βγ k

=
k∑

i=1

(γ (k) − βγ ) =
k∑

i=1

(h∗
i − βγ )

≤
k∑

i=1

(h∗
i − βγ )+ =

m∑
i=1

(h∗
i − βγ )+

where the first inequality follows from the definition of the coefficients γ (.). Therefore,
h∗ and h̃ have the same objective value in (3.3) and consequently h∗ is also optimal
for the maximization problem (3.3). Moreover, from the first inequality, we have
γ (k) − βγ > 0, i.e.,

∣∣{i | h∗
i > βγ }∣∣ = k. Therefore, h∗ verifies the properties of the

lemma. 
�

E Proof of Proposition 4

Proof To prove that Û dominates U , it is sufficient to take h in the boundaries of U ,
i.e.,

a
m∑
i=1

hi

m∑
j=1

h j + (1 − a)

m∑
i=1

h2i = 1, (E.1)

and find α1, α2, . . . , αm+1 nonnegative reals with
∑m+1

i=1 αi = 1 such that for all
i ∈ [m],

hi ≤ β (αi + γαm+1) .

By taking all hi equal in (E.1), we get

γ = 1√(
am2 + (1 − a)m

) .

We choose for i ∈ [m],

αi = 1

2

⎛
⎝(1 − a)h2i + ahi

m∑
j=1

h j

⎞
⎠
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and αm+1 = 1
2 . First, we have

∑m+1
i=1 αi = 1 and for all i ∈ [m],

β (αi + γαm+1) = β

2

⎛
⎝(1 − a)h2i + ahi

m∑
j=1

h j + 1√
am2 + (1 − a)m

⎞
⎠

≥ β

2

(
(1 − a)h2i + 1√

am2 + (1 − a)m
+ ahi

)

≥ β

2

⎛
⎝2
(

(1 − a)√
am2 + (1 − a)m

) 1
2

hi + ahi

⎞
⎠ = hi

where the first inequality holds because
∑m

j=1 h j ≥ 1 which is a direct consequence

of hTΣh = 1 and a ≤ 1. The second one follows from the inequality of arithmetic
and geometric means (AM-GM inequality). Finally, we can verify by case analysis on
the values of a that

⎛
⎝a

2
+ (1 − a)

1
2(

am2 + (1 − a)m
) 1
4

⎞
⎠

−1

= O
(
m

2
5

)
.

In fact, denote H(m) =
(

a
2 + (1−a)

1
2

(am2+(1−a)m)
1
4

)−1

= O

(
a + 1

(am2+m)
1
4

)−1

Case 1 a = O( 1
m ). We have

(
am2 + m

) 1
4 = O(m

1
4 ). Then H(m) = O(m

1
4 ) =

O(m
2
5 ).

Case 2 a = Ω(m
−2
5 ). We have H(m) = O(a−1) = O(m

2
5 ).

Case 3 a = O(m
−2
5 ) and a = Ω( 1

m ). We have
(
am2 + m

) 1
4 = O(m

2
5 ). Then,

a + 1(
am2 + m

) 1
4

= Ω

(
1

m

)
+ Ω

(
m

−2
5

)
= Ω

(
m

−2
5

)
.

Therefore, H(m) = O(m
2
5 ). 
�

F Proof of Proposition 5

Proof To prove that Û dominates U , it is sufficient to take h in the boundaries of U ,
i.e.,

∑m
i=1 hi = k and find α1, α2, . . . , αm+1 non-negative reals with

∑m+1
i=1 αi = 1

such that for all i ∈ [m],

hi ≤ β

(
αi + k

m
αm+1

)
.
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First case If β = k, we choose αi = hi
k for i ∈ [m] and αm+1 = 0. We have∑m+1

i=1 αi = 1 and for all i ∈ [m],

β

(
αi + k

m
αm+1

)
= k

hi
k

≥ hi .

Second case If β = m
k , we choose αi = 0 for i ∈ [m] and αm+1 = 1. We have∑m+1

i=1 αi = 1 and for all i ∈ [m],

β

(
αi + k

m
αm+1

)
= 1 ≥ hi .


�

G Proof of Lemma 6

Proof Consider the following simplex

Û = conv
(
e1, . . . , em,

1√
m
e
)

It is clear that Û dominates U since 1√
m
e dominates all the extreme points ν j for j ∈

[N ]. Moreover, by the convexity of U , we have 1
N

∑N
j=1 ν j = (m−1

r−1)√
m(mr )

e = r
m

√
m
e ∈ U .

Denote β = m
r . Hence, for all i ∈ [m]

ei = β

(
1

β
· ei +

(
1 − 1

β

)
· 0
)

︸ ︷︷ ︸
∈U

and
1√
m
e = β · r

m
√
m
e︸ ︷︷ ︸

∈U

.

Therefore, Û ⊆ β · U and from Theorem 1, we conclude that our policy gives a β-
approximation to the adjustable problem (1.1) where β = m

�m−√
m� = O(1 + 1√

m
).

�

H Proof of Lemma 7

Proof First, let us prove that zAR(U) ≤ 1. It is sufficient to define an adjustable
solution only for the extreme points of U because the constraints are linear. We define
the following solution for all i = 1, . . . ,m and for all j = 1, . . . , N

x = 0, y(0) = 0, y(ei ) = ei , y(ν j ) = 1

m
e.
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We have B y(0) = 0. For i ∈ [m]

B y(ei ) = ei + 1√
m

(e − ei ) ≥ ei

and for j ∈ [N ]

B y(ν j ) = 1

m
Be =

(
1

m
+ m − 1

m
√
m

)
e ≥ 1√

m
e ≥ ν j .

Therefore, the solution defined above is feasible. Moreover, the cost of our feasible
solution is 1 because for all i ∈ [m] and j ∈ [N ], we have

dT y(ei ) = dT y(ν j ) = 1.

Hence, zAR(U) ≤ 1. Now, it is sufficient to prove that zAff(U) = Ω(
√
m). First,

x̃ = 1√
m
e and y(h) = 0 for any h ∈ U is a feasible static solution (which is a special

case of an affine solution). In fact,

Ax̃ = 1√
m

Ae =
(

1√
m

+ m − 1

m

)
e ≥ e ≥ h ∀h ∈ U

where the last inequality holds because U ⊆ [0, 1]m . Moreover, the cost of this static
solution is

cT x̃ =
√
m

15
.

Hence,

zAff(U) ≤
√
m

15
. (H.1)

Our instance is “a permuted instance”, i.e. U is permutation invariant, A and B are
symmetric and c and d are proportional to e. Hence, from Lemma 8 and Lemma 7 in
Bertsimas and Goyal [12], for any optimal solution x∗

Aff, y
∗
Aff(h) of the affine problem,

we can construct another optimal affine solution that is “symmetric” and have the same
stage cost. In particular, there exists an optimal solution for the affine problem of the
following form x = αe, y(h) = Ph + q for h ∈ U where

P =

⎛
⎜⎜⎜⎝

θ μ . . . μ

μ θ . . . μ
...

...
. . .

...

μ μ . . . θ

⎞
⎟⎟⎟⎠ (H.2)

q = λe, cT x = cT x∗
Aff and maxh∈U dT y(h) = maxh∈U dT y∗

Aff(h). We have x ≥ 0
and y(0) = λe ≥ 0 hence

λ ≥ 0 and α ≥ 0. (H.3)
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Claim α ≥ 1
24

√
m
For a sake of contradiction, suppose that α > 1

24
√
m
. We know that

zAff(U) ≥ cT x + dT y(0) = α

15
m + λm. (H.4)

Case 1 Ifλ ≥ 1
12

√
m
, then from (H.4) andα ≥ 0,we have zAff(U) ≥

√
m

12 . Contradiction
with (H.1).
Case 2 If λ ≤ 1

12
√
m
. We have

y(e1) = (θ + λ)e1 + (μ + λ)(e − e1).

By feasibility of the solution, we have Ax + B y(e1) ≥ e1, hence

θ + λ + α

(
m − 1√

m
+ 1

)
+ 1√

m
(m − 1)(μ + λ) ≥ 1

Therefore θ + λ + α
(
m−1√

m
+ 1
)

≥ 1
2 or 1√

m
(m − 1)(μ + λ) ≥ 1

2 .

Case 2.1 Suppose 1√
m

(m − 1)(μ + λ) ≥ 1
2 . Therefore,

zAff(U) ≥ dT y(e1) = θ + λ + (m − 1)(μ + λ) ≥
√
m

2
. [Contradiction with (H.1)]

where the last inequality holds because θ + λ ≥ 0 as y(e1) ≥ 0.

Case 2.2 Now suppose we have the other inequality i.e. θ + λ + α
(
m−1√

m
+ 1
)

≥ 1
2 .

Recall that we have λ ≤ 1
12

√
m
and we know that α < 1

24
√
m
. Therefore,

θ ≥ 1

2
− 1

12
√
m

− 1

24
√
m

(
m − 1√

m
+ 1

)
= 11

24
− 3

24
√
m

+ 1

24m
≥ 11

24
− 3

24
= 1

3
.

We have,

y(ν1) = 1√
m

((θ + (r − 1)μ)(e1 + · · · er ) + rμ(e − (e1 + · · · er ))) + λe.

In particular we have ,

zAff(U) ≥ dT y(ν1) = r√
m

(θ + (m − 1)μ) + λm

≥ r√
m

(
1

3
+ (m − 1)μ

)
. (H.5)

where the last inequality follows from λ ≥ 0 and θ ≥ 1
3 .
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Case 2.2.1 If μ ≥ 0 then from (H.5)

zAff(U) ≥ r

3
√
m

≥ m − √
m

3
√
m

≥
√
m

6
for m ≥ 4 [Contradiction with (H.1)]

Case 2.2.2 Now suppose that μ < 0, by non-negativity of y(ν1) we have

r√
m

μ + λ ≥ 0

i.e.

μ ≥ −λ
√
m

r

and from (H.5)

zAff(U) ≥ r√
m

(
1

3
+ (m − 1)μ

)

≥ r√
m

(
1

3
− λ

√
m
m − 1

r

)

≥ r√
m

(
1

3
− 1

12

m − 1

r

)
≥ r√

m

(
1

3
− 1

6

)
for m ≥ 4.

≥
√
m

12
[Contradiction with (H.1)]

We conclude that α ≥ 1
24

√
m
and consequently

zAff(U) ≥ cT x = αm

15
≥

√
m

360
= Ω(

√
m).

Hence,

zAff(U) = Ω(
√
m) · zAR(U).

cT x = cT x∗
Aff Moreover, for any optimal affine solution, the cost of the first-stage

affine solution x∗
Aff is Ω(

√
m) away from the optimal adjustable problem (1.1), i.e.

cT x∗
Aff = cT x = Ω(

√
m) · zAR(U). 
�
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I Proof of Theorem 7

Proof Let us find the order of the left hand side ratio in inequality (5.3). We have,

(√m
mε

) · ( m−mε√
m−mε

)
( m√

m

) = (
√
m)! × (m − mε)! × (m − √

m)! × (
√
m)!

(
√
m − mε)! × (mε)! × m! × (

√
m − mε)! × (m − √

m)!

=
(

(
√
m)!

(
√
m − mε)!

)2

· (m − mε)!
(mε)! × m! .

By Stirling’s approximation, we have

(√
m
)! = Θ

(
m

1
4

(√
m

e

)√
m
)

.

(√
m − mε

)! = Θ

(
(
√
m − mε)

1
2

(√
m − mε

e

)√
m−mε)

.

(
m − mε

)! = Θ

(
(m − mε)

1
2

(
m − mε

e

)m−mε
)

.

(m)! = Θ
(
m

1
2

(m
e

)m)
.

(
mε
)! = Θ

(
m

1
2 ε

(
mε

e

)mε
)

.

All together,

(√m
mε

) · ( m−mε√
m−mε

)
( m√

m

) = Θ

⎛
⎝ (√

m
)2√m · (m − mε)(m−mε )

m
1
2 ε · (√m − mε

)2(√m−mε) · mm · mεmε

⎞
⎠ .

We have

(
m − mε

)(m−mε ) = Θ

(
m(m−mε ) · e−mε+m2ε

m

)
,

and

(√
m − mε

)2(√m−mε) = Θ

((√
m
)2(√m−mε) · e−2mε+2m2ε√

m

)
,
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WLOG, we can suppose that ε < 1
4 , therefore

(√m
mε

) · ( m−mε√
m−mε

)
( m√

m

) = Θ

⎛
⎝e

mε−2m2ε√
m

+m2ε
m

mεmε+ 1
2 ε

⎞
⎠

= Θ

(
em

ε

mεmε+ 1
2 ε

)
.

We have,

Θ

(
Q(m)em

ε

mεmε+ 1
2 ε

)
≥ 1,

but the later inequality contradicts

lim
m→∞

Q(m)em
ε

mεmε+ 1
2 ε

= 0.


�

J Domination for non-permutation invariant sets

Proposition 6 Suppose Algorithm 1 returns β and v for some uncertainty set U . Then
the set (6.3) is a dominating set for U .
Proof Suppose Algorithm 1 returns β and v,then the inequality (2.4) is verified,
namely,

1

β

m∑
i=1

(hi − βvi )
+ ≤ 1, ∀h ∈ U .

Recall the dominating point (2.3)

ĥ(h) = βv + (h − βv)+.

We have

ĥ(h) = β

⎛
⎜⎜⎜⎜⎝

m∑
i=1

(hi − βvi )
+

β
(ei + v) +

(
1 −

m∑
i=1

(hi − βvi )
+

β

)
︸ ︷︷ ︸

≥0

v

⎞
⎟⎟⎟⎟⎠ ∈ Û
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where

Û = β · conv (v, e1 + v, . . . , em + v)

Hence Û is a dominating set. 
�

K Domination for the generalized budget set

Proposition 7 Let consider

Û = conv

(
e1, . . . , em,

1

m − 1 − 2θ
e
)

(K.1)

The set (K.1) dominates the uncertainty set (6.2).

Proof Consider the uncertainty set (6.2) given by

U =
{
h ∈ [0, 1]m

∣∣∣∣
m∑
i=1

hi ≤ 1 + θ(hi + h j ) ∀i �= j

}

and

Û = conv
(
e1, . . . , em,

1

m − 1 − 2θ
e
)

.

Note that in our setting we choose θ > m−1
2 . Take any h ∈ U . Suppose WLOG that

h1 ≤ h2 ≤ · · · ≤ hm

Hence, by definition of U

eT h ≤ 1 + θ(h1 + h2)

To prove that Û dominates U , it is sufficient to find α1, α2, . . . , αm+1 non-negative
reals with

∑m+1
i=1 αi ≤ 1 such that for all i ∈ [m],

hi ≤ αi + 1

m − 1 − 2θ
αm+1.

We choose αm+1 = (m − 1 − 2θ) · h1+h2
2 , α1 = h1 and for i ≥ 2, αi = hi − h1+h2

2 .
We can verify that

α1 + 1

m − 1 − 2θ
αm+1 ≥ α1 = h1
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and for i ≥ 2,

αi + 1

m − 1 − 2θ
αm+1 = hi

Moreover, αm+1 ≥ 0, α1 ≥ 0 and for i ≥ 2, αi ≥ 0 since h1+h2 = mini �= j (hi +h j ).
Finally,

m+1∑
i=1

αi =
m∑
i=1

hi − (m − 1) · h1 + h2
2

+ (m − 1 − 2θ) · h1 + h2
2

≤ 1 + θ(h1 + h2) − (m − 1) · h1 + h2
2

+ (m − 1 − 2θ) · h1 + h2
2

= 1.

Note that the construction of this dominating set is slightly different from the general
approach in Sect. 3 since we do not scale the unit vectors ei in Û . 
�
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