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Abstract
In optimal control, switching structures demanding at most one control to be active
at any time instance appear frequently. Discretizing such problems, a so-called math-
ematical program with switching constraints is obtained. Although these problems
are related to other types of disjunctive programs like optimization problems with
complementarity or vanishing constraints, their inherent structure makes a separate
consideration necessary. Since standard constraint qualifications are likely to fail at the
feasible points of switching-constrained optimization problems, stationarity notions
which are weaker than the associated Karush–Kuhn–Tucker conditions need to be
investigated in order to find applicable necessary optimality conditions. Furthermore,
appropriately tailored constraint qualifications need to be formulated. In this paper, we
introduce suitable notions of weak, Mordukhovich-, and strong stationarity for math-
ematical programs with switching constraints and present some associated constraint
qualifications. Our findings are exploited to state necessary optimality conditions for
(discretized) optimal control problems with switching constraints. Furthermore, we
apply our results to optimization problems with either-or-constraints. First, a novel
reformulation of such problems using switching constraints is presented. Second, the
derived surrogate problem is exploited to obtain necessary optimality conditions for
the original program.
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150 P. Mehlitz

1 Introduction

This paper is devoted to the study of optimization problems of the form

f (x) → min

gi (x) ≤ 0 i = 1, . . . , m

h j (x) = 0 j = 1, . . . , p

Gk(x)Hk(x) = 0 k = 1, . . . , l,

(MPSC)

where all functions f , g1, . . . , gm, h1, . . . , h p, G1, . . . , Gl , H1, . . . , Hl : R
n → R

are assumed to be continuously differentiable. For brevity of notation, g : R
n → R

m ,
h : R

n → R
p, G : R

n → R
l , and H : R

n → R
l are the mappings which possess the

component functions gi (i = 1, . . . , m), h j ( j = 1, . . . , p), Gk (k = 1, . . . , l), and
Hk (k = 1, . . . , l), respectively. Due to the appearence of the last l constraints which
force Gk(x) or Hk(x) to be zero for all k = 1, . . . , l at any feasible point x ∈ R

n of
(MPSC), we call it a mathematical program with switching constraints.

Recently, in the context of optimal control, the concept of control switching became
very popular, see [7,8,19,22,28,32,36,38,40] and the references therein as well as
Sect. 2. In the presence of multiple control functions, it demands that at most one of
them is nonzero at any instance of the underlying domain. This way, control cost might
be reduced while the practical realization of the optimal control strategy becomes
easier to implement. On the other hand, switching structures naturally appear via
modelling of certain real-world applications as presented in e.g. [19,22,36]. Such
models can be interpreted as mixed-integer optimal control problems, see [22,32]
and the references therein. Disclaiming the use of discrete control variables, penality
approaches for the solution of such problems are derived in Clason et al. [7,8]. To the
best of our knowledge, optimization problems with switching constraints have not yet
been considered in the finite-dimensional framework. This, however, is desirable in
order to establish a solid theory for the numerical treatment of switching constraints
in optimal control.

Another possible application of switching structures in optimization theory appears
in the context of either-or-constraints, see e.g. [9, Section 3.2.2] and [33, Section 5.3].
Let the functions c1, c2 : R

n → R be continuously differentiable. In order to model
that at least one of the constraints c1(x) ≤ 0 or c2(x) ≤ 0 shall hold, one generally
introduces a binary variable y as well as some sufficiently large constant M > 0 and
states

c1(x) ≤ My

c2(x) ≤ M(1 − y)

y ∈ {0, 1}.

Hence, if y = 0 holds, c1(x) ≤ 0 must be satisfied while c2(x) ≤ 0 needs to
hold for y = 1. Clearly, the use of a binary variable induces a mixed-integer regime
whichmakes the numerical treatment of this so-called either-or-constraint challenging.
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Switching-constrained programming 151

Furthermore, a reasonable value for M has to be computed a priori in order to apply
this technique. Another possible way to model the described situation is given by

min{c1(x); c2(x)} ≤ 0.

An obvious drawback of this constraint is its inherent nonsmoothness. However, intro-
ducing continuous variables z1, z2 ∈ R and postulating

(c1(x) − z1)(c2(x) − z2) = 0

z1, z2 ≤ 0,

this situation can be modeled in a different way exploiting the idea of switching
systems. Since all appearing variables are now continuous while all involved functions
are continuously differentiable, this system might be easier to handle than its mixed-
integer or nonsmooth counterpart from above.

Problem (MPSC) is closely related to mathematical programs with complemen-
tarity constraints, MPCCs for short, see [29,30], and mathematical programs with
vanishing constraints, MPVCs for short, see [1,24]. By definition, any MPCC is a
switching-constrained optimization problem of special structure. Vice versa, it is eas-
ily seen that (MPSC) can be stated as an equivalent MPCC or MPVC. One possible
(but, obviously, lightheaded) way in order to carry out this transformation is to square
G1, . . . , Gk, H1, . . . , Hk while adding superflous nonnegativity constraints on some
of these square functions. It is easy to check that problem-tailored constraint qualifi-
cations for MPCCs, see [39], and MPVCs, see [24,25], are likely to fail at all feasible
points of the resulting problems, respectively. Moreover, the respective weak station-
arity conditions, see [39, Definition 2.3] and [23, Definition 6.1.12], of the transformed
problem do not comprise any information on the actual switching constraints. Similar
problems may appear when more enhanced transformation techniques are used since
some of the inherent structural properties of the switching constraints are annihilated
during the transfer. Thus, a direct treatment of (MPSC) seems to be more promising.

One could write ‖G(x) • H(x)‖0 = 0 in order to state the switching constraints in
compact form. Here, • denotes the Hadamard product (i.e. the componentwise product
of two vectors) while ‖·‖0 : R

l → N represents themappingwhich counts the nonzero
entries of a vector. That is why (MPSC) seems to be related to mathematical programs
with cardinality constraints as well, see [5,6]. Defining

C := {(a, b) ∈ R
2 | ab = 0} (1)

which is the union of two convex polyhedrons, one can represent (MPSC) in the form

f (x) → min

gi (x) ∈ R
0− i = 1, . . . , m

h j (x) ∈ {0} j = 1, . . . , p

(Gk(x), Hk(x)) ∈ C k = 1, . . . , l.

(2)
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152 P. Mehlitz

Here, R
0− ⊂ R denotes the set of all nonpositive reals. Consequently, (MPSC) is an

instance of disjunctive programming as well, see e.g. [4,14,15].
As it turns out, standard constraint qualifications like MFCQ, the so-called

Mangasarian–Fromovitz constraint qualification, and, thus, LICQ, the linear inde-
pendence constraint qualification, do not hold at the feasible points of (MPSC) in
several situations. Thus, the associated Karush–Kuhn–Tucker (KKT for short) condi-
tions do not provide a necessary optimality criterion in general. This phenomenon is
well known from the rich theory on MPCCs and MPVCs as well. In order to over-
come this shortcoming, applicable stationarity notions for (MPSC) and compatible
constraint qualifications need to be introduced. This is the central purpose of this
paper.

The remaining part of the article is structured as follows: in Sect. 2, we motivate the
study of (MPSC) by means of an optimal control problem with switching constraints.
Afterwards, we recall some basics from variational analysis and nonlinear program-
ming in Sect. 3. In Sect. 4, we first show that reasonable constraint qualifications from
nonlinear programming may easily fail to hold at the feasible points of (MPSC). Thus,
we studyweaker stationarity notionswhich are suited for the investigation of switching
constraints. Particularly, we derive notions of weak, Mordukhovich-, and strong sta-
tionarity. Furthermore, MPSC-tailored versions of MFCQ and LICQ are introduced.
Section 5 is dedicated to the study of MPSC-tailored versions of the Abadie and Guig-
nard constraint qualification which are some of the weakest regularity conditions
from nonlinear programming. Our findings are applied to state necessary optimality
conditions for (discretized) optimal control problems with switching constraints in
Sect. 6. In Sect. 7, we study a switching-constrained reformulation of mathematical
programs with either-or-constraints. First, we interrelate the local and global mini-
mizers of the original program and its surrogate. Afterwards, the developed theory on
switching-constrained programs is used to derive necessary optimality conditions for
the either-or-constrained optimization problem. Some final comments on the paper’s
results and aspects of future research are presented in Sect. 8.

2 Amotivating example

For some bounded domain Ω ⊂ R
d with sufficiently smooth boundary Γ and some

time interval I := (0, T ), we consider the optimal control of a non-stationary heat
sourcewith switching constraints on the controls.Moreprecisely, twocontrol functions
u, v : I → R are used to model whether heating/cooling elements Ωu,Ωv ⊂ Ω are
active or not while at most one heating/cooling element is allowed to be active at
any time instance from I . Moreover, an initial heat distribution y0 ∈ L2(Ω) shall
be given. The overall aim of optimization is to find controls and the resulting state
function ȳ : I ×Ω → R, such that the terminal heat distribution ȳ(T , ·) : Ω → R fits
a desirable heat distribution yd ∈ L2(Ω) as best as possible while the overall control
cost has to be minimized. In order to guarantee the existence of optimal solutions,
L2-regularity of control functions is in general not enough, see [8, Section 2]. Instead,
we choose the Sobolev space H1(I ) for the control space. A suitable space for the
state functions is given by W (I ; H1(Ω)). The latter set contains all functions from
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Switching-constrained programming 153

L2(I ; H1(Ω))which possess a weak derivative in L2(I ; H1(Ω)�), see [37, Section 3]
for a precise definition of these function spaces.

For brevity, let Q := I × Ω be the time-space-cylinder and let Σ := I × Γ be its
lateral boundary. A potential formulation of the problem described above is given as
stated below:

1
2 ‖y(T , ·) − yd‖2L2 + σu

2 ‖u‖2H1 + σv

2 ‖v‖2H1 → min
y,u,v

∂t y(t, ω) − Δω y(t, ω) − χΩu (ω)u(t) − χΩv(ω)v(t) = 0 a.e. on Q

n(ω) · ∇ω y(t, ω) = 0 a.e. on Σ

y(0, ω) − y0(ω) = 0 a.e. on Ω

u(t)v(t) = 0 a.e. on I .

(3)

Here, σu, σv > 0 are regularization parameters, Δω = ∑d
i=1 ∂2ωi ωi

is the Laplacian
w.r.t. space variables, n : Γ → R

d denotes the unit vector pointing out of Ω , and ∇ω

represents the weak gradient w.r.t. space variables. Furthermore, for any measurable
set A ⊂ Ω , χA ∈ L∞(Ω) is the characteristic function of A which equals 1 on A and
vanishes otherwise. Noting that the embedding H1(I ) ↪→ L2(I ) is continuous, the
control-to-state-operator,which assigns to anypair of controls (u, v) ∈ H1(I )×H1(I )
the (uniquely determined) weak solution y ∈ W (I ; H1(Ω)) of the state equation, is
affine and continuous, see [37, Section 3.6.4]. Due to the demanded Sobolev-regularity
of the control functions, the set of feasible controls of (3) isweakly sequentially closed.
Now, it is possible to exploit standard arguments in order to see that (3) possesses an
optimal solution.

In practice, the control functions often need to be bounded in order to ensure their
technical feasibility. Thus, it is reasonable to state additional control constraints of the
form

u(t) ≤ u(t) ≤ u(t) a.e. on I

v(t) ≤ v(t) ≤ v(t) a.e. on I .
(4)

Here, the functions u, u, v, v ∈ H1(I ) shall satisfy the following requirements:

u(t) < 0 < u(t) everywhere on I

v(t) < 0 < v(t) everywhere on I .

It is easily seen that in the presence of the additional control constraints (4), (3) still
possesses an optimal solution. Similarly, one could consider the situation where only
upper or only lower bounds on u or v are postulated, or the setting where only u (or
v, respectively) has to satisfy additional control constraints.

Using a tessellation ofΩ as well as a suitable finite element space, (3) can be trans-
ferred into an optimal control problem of ordinary differential equations. Afterwards,
one can fix a partition of the interval I and use e.g. the implicit Euler scheme in order
to discretize (3) completely. For simplicity, we denote the variables of the resulting
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154 P. Mehlitz

finite-dimensional optimal control problem with switching constraints by y ∈ R
n and

u, v ∈ R
l again. In abstract form, this program looks as stated below:

1
2 |Qy − yd|22 + σu

2 |Mu|22 + σv

2 |Mv|22 → min
y,u,v

Ay − Bu − Cv = d

ukvk = 0 k = 1, . . . , l

uk ≤ uk ≤ uk k = 1, . . . , l

vk ≤ vk ≤ vk k = 1, . . . , l.

(OCSC)

Here, we already included the discretized control constraints associated with (4). It
will be assumed that the data satisfies

uk < 0 < uk k = 1, . . . , l

vk < 0 < vk k = 1, . . . , l.
(5)

Due to the properties of the control-to-state-operator associated with the constraining
partial differential equation in (3), we can assume that the matrixA ∈ R

n×n is regular.
Above, bold matrices and vectors indicate that these objects result from the original
data of (3) as well as the precise choice of the finite element space and the time
discretization.

In this paper, we will derive necessary optimality conditions for (OCSC). It is
shown that local minimizers of (OCSC) satisfy strong stationarity-type conditions,
see Theorem 6.1.

3 Preliminaries

In this section, we provide the necessary background for the investigation of (MPSC).
Therefore, we first review some essentials from variational analysis, see e.g. [31],
before we recall some constraint qualifications from nonlinear programming, see e.g.
[2].

For some nonempty set A ⊂ R
n , we call

A◦ := {
y ∈ R

n | ∀x ∈ A : x · y ≤ 0
}

the polar cone of A. Here, x · y denotes the Euclidean inner product of the two vectors
x, y ∈ R

n . It is well known that A◦ is a nonempty, closed, convex cone. If C ⊂ R
n

is a cone, then C◦◦ = convC is valid. This relation is called bipolar theorem in the
literature. Supposing that U , V ⊂ R

n are nonempty sets, we obtain the polarization
rule (U ∪ V )◦ = U ◦ ∩ V ◦ directly from the definition. For polyhedral cones, the
following duality relation is a straightforward consequence of e.g. Motzkin’s lemma.
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Switching-constrained programming 155

Lemma 3.1 For matrices C ∈ R
m×n and D ∈ R

p×n, let K ⊂ R
n be the closed, convex

cone defined below:

K := {
d ∈ R

n
∣
∣Cd ≤ 0, Dd = 0

}
.

Then, we have

K◦ =
{
Cλ + Dρ

∣
∣
∣ λ ∈ R

m, λ ≥ 0, ρ ∈ R
p
}

.

Now, suppose that A ⊂ R
n is closed and choose x̄ ∈ A arbitrarily. The tangent

(or Bouligand) cone, the Fréchet (or regular) normal cone, and the limiting (or basic,
Mordukhovich) normal cone to A at x̄ are defined as stated below:

TA(x̄) :=
{

d ∈ R
n

∣
∣
∣
∣
∣

∃{ds}s∈N ⊂ R
n ∃{ts}s∈N ⊂ R+ :

ds → d, ts → 0, x̄ + tsds ∈ A ∀s ∈ N

}

,

N̂A(x̄) := TA(x̄)◦,

NA(x̄) :=
{

η ∈ R
n

∣
∣
∣
∣
∣

∃{xs}s∈N ⊂ A ∃{ηs}s∈N ⊂ R
n :

xs → x̄, ηs → η, ηs ∈ N̂A(xs)∀s ∈ N

}

.

Note that R+ ⊂ R denotes the set of all positive real numbers. All these cones are
closed. Additionally, the Fréchet normal cone is a convex subset of the limiting normal
cone. Note that the Fréchet and the limiting normal cone coincide with the normal
cone in the sense of convex analysis provided A is a convex set.

For later use,we compute theFréchet and limiting nomal cones to the setC defined in
(1). The proof of the subsequent result directly follows by definition of these variational
objects.

Lemma 3.2 Let (a, b) ∈ C be arbitrarily chosen where C is the set defined in (1). Then,
the following formulas are valid:

N̂C(a, b) =

⎧
⎪⎨

⎪⎩

R × {0} if a = 0 ∧ b �= 0,

{0} × R if a �= 0 ∧ b = 0,

{(0, 0)} if a = 0 ∧ b = 0,

NC(a, b) =

⎧
⎪⎨

⎪⎩

R × {0} if a = 0 ∧ b �= 0,

{0} × R if a �= 0 ∧ b = 0,

C if a = 0 ∧ b = 0.

Let us consider the standard nonlinear program

f̃ (x) → min

g̃i (x) ≤ 0 i = 1, . . . , m

h̃ j (x) = 0 j = 1, . . . , p

(P1)
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156 P. Mehlitz

for continuously differentiable functions f̃ , g̃1, . . . , g̃m, h̃1, . . . , h̃ p : R
n → R. Let

X ⊂ R
n be the feasible set of (P1) and choose x̄ ∈ X arbitrarily. Then, the linearization

cone to X at x̄ is defined as follows:

LX (x̄) :=
{

d ∈ R
n

∣
∣
∣
∣
∣

∇ g̃i (x̄) · d ≤ 0 i ∈ I g̃(x̄)

∇h̃ j (x̄) · d = 0 j ∈ I h̃

}

.

Here, we used

I g̃(x̄) := {i ∈ {1, . . . , m} | g̃i (x̄) = 0},
I h̃ := {1, . . . , p}.

Below, we recall some constraint qualifications which are applicable to (P1).

Definition 3.1 Let x̄ ∈ R
n be a feasible point of (P1). Then, x̄ is said to satisfy

1. the linear independence constraint qualification, LICQ for short, provided the
following condition is valid:

0 =
∑

i∈I g̃(x̄)

λi∇ g̃i (x̄) +
∑

j∈I h̃

ρ j∇h̃ j (x̄) �⇒ λ = 0, ρ = 0,

2. the Mangasarian–Fromovitz constraint qualification, MFCQ for short, provided
the following condition is valid:

0 =
∑

i∈I g̃(x̄)

λi∇ g̃i (x̄) +
∑

j∈I h̃

ρ j∇h̃ j (x̄),

∀i ∈ I g̃(x̄) : λi ≥ 0

⎫
⎪⎬

⎪⎭
�⇒ λ = 0, ρ = 0,

3. the Abadie constraint qualification, ACQ for short, if TX (x̄) = LX (x̄) holds, and
4. the Guignard constraint qualification, GCQ for short, if N̂X (x̄) = LX (x̄)◦ holds.
Note that in the above definition, we stated the dual representations of LICQ and

MFCQ. Primal versions of these constraint qualifications can be found in the literature
and are easily derived via Motzkin’s lemma. It is well known from the literature,
see e.g. [2], that the following relations hold between the aforementioned constraint
qualifications:

LICQ �⇒ MFCQ �⇒ ACQ �⇒ GCQ.

Since the validity of GCQ at a local minimizer x̄ ∈ R
n of (P1) implies that the KKT

conditions

0 = ∇ f̃ (x̄) +
∑

i∈I g̃(x̄)

λi∇ g̃i (x̄) +
∑

j∈I h̃

ρ j∇h̃ j (x̄),

∀i ∈ I g̃(x̄) : λi ≥ 0
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Switching-constrained programming 157

provide a necessary criterion for optimality, the same holds true for the stronger con-
straint qualifications LICQ, MFCQ, and ACQ, respectively.

Finally, we take a short look at the more abstract nonlinear program

f̃ (x) → min

F(x) ∈ D
(P2)

where F : R
n → R

q is continuously differentiable while D ⊂ R
q is a nonempty,

closed set. Clearly, (P1) is a specific instance of (P2) for F := (g̃, h̃), q := m + p, and
D := {z ∈ R

m | z ≤ 0} × {0}. A feasible point x̄ ∈ R
n of (P2) is said to satisfy the no

nonzero abnormal multiplier constraint qualification, NNAMCQ for short, provided
the following condition is valid:

0 = ∇F(x̄)η,

η ∈ ND(F(x̄))

}

�⇒ η = 0.

In [14], this condition is referred to as generalized Mangasarian–Fromovitz constraint
qualification since it equals MFCQ when applied to (P1). If NNAMCQ is valid at a
locally optimal solution x̄ ∈ R

n of (P2), then the following necessary optimality
condition holds:

0 = ∇ f̃ (x̄) + ∇F(x̄)η,

η ∈ ND(F(x̄)),

see e.g. [31, Section 6.D]. Due to the appearence of the limiting normal cone, this
condition is called the system of Mordukhovich–stationarity, M-stationarity for short.
We note thatM-stationarity of localminimizers associatedwith (P2) can be guaranteed
under much weaker conditions like metric subregularity of the induced feasibility map
x ⇒ {F(x)} − D at (x̄, 0) which is implied by validity of NNAMCQ at x̄ , see [17,
Section 2] for details.

If we replace the limiting normal cone ND(F(x̄)) by the smaller Fréchet normal
cone N̂D(F(x̄)), then the system of strong stationarity, S-stationarity for short, is
obtained. Cleary, S-stationarity is a more restrictive condition than M-stationarity in
general. For (P1), however, the systems of M- and S-stationarity are both equivalent
to the KKT conditions. It is well known from the literature, see e.g. [31, Exercise 6.7,
Theorem 6.12], that whenever ∇F(x̄) possesses full row rank q at a locally optimal
solution x̄ ∈ R

n of (P2), then the S-stationarity conditions are satisfied. A slightly
weaker but far more technical constraint qualification implying local minimizers of
(P2) to be S-stationary is provided in [16, Theorem 4].

In the case where D is the union of finitely many polyhedral sets, we call (P2) a
disjunctive program. We note that under a problem-tailored version of GCQ called
generalized Guignard constraint qualification, local minimizers of disjunctive pro-
grams are M-stationary, see [14, Theorem 7]. There exist other reasonable stationarity
notions which may serve as necessary optimality conditions for disjunctive programs,
see [3,4,15].
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158 P. Mehlitz

4 MPSC-tailored stationarity conditions

In this section, we derive three different stationarity notions for (MPSC) which are
not stronger than the associated KKT conditions which will be stated later on as well.
Therefore, we introduce some index sets which depend on a feasible point x̄ ∈ R

n of
(MPSC) first:

I G(x̄) := {k ∈ {1, . . . , l} | Gk(x̄) = 0 ∧ Hk(x̄) �= 0},
I H (x̄) := {k ∈ {1, . . . , l} | Gk(x̄) �= 0 ∧ Hk(x̄) = 0},

I G H (x̄) := {k ∈ {1, . . . , l} | Gk(x̄) = 0 ∧ Hk(x̄) = 0}.

Note that
{

I G(x̄), I H (x̄), I G H (x̄)
}
is a disjoint partition of {1, . . . , l}. We will also

exploit the set I g(x̄) of all indices associated with active inequality constraints as well
as I h := {1, . . . , p}, see Sect. 3.
The necessity of considering weaker stationarity notions than the KKT conditions is
motivated by the following observation.

Lemma 4.1 Let x̄ ∈ R
n be a feasible point of (MPSC) where I G H (x̄) �= ∅ is valid.

Then, MFCQ and, thus, LICQ are violated at x̄ .

Proof For the proof, we define the function Kk : R
n → R by

∀x ∈ R
n : Kk(x) := Gk(x)Hk(x)

for any k ∈ {1, . . . , l}. Note that its gradient at x̄ is given by

∇Kk(x̄) = Hk(x̄)∇Gk(x̄) + Gk(x̄)∇Hk(x̄) =

⎧
⎪⎨

⎪⎩

Hk(x̄)∇Gk(x̄) if k ∈ I G(x̄),

Gk(x̄)∇Hk(x̄) if k ∈ I H (x̄),

0 if k ∈ I G H (x̄).

Thus, if I G H (x̄) �= ∅ holds true, then at least one of the gradients associated with the
equality constraints in (MPSC) is zero. Consequently, MFCQ and, thus, LICQ cannot
hold at the point x̄ . ��

In the setting I G H (x̄) = ∅, the standard constraint qualifications MFCQ and
LICQ are reasonably applicable to (MPSC), i.e. the KKT conditions may turn out
to be necessary optimality conditions in this situation. Clearly, the KKT conditions
provide a necessary optimality criterion under the weaker regularity condition GCQ
as well, see Sect. 3. However, the latter might be more difficult to check than MFCQ
or LICQ.
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Corollary 4.1 Let x̄ ∈ R
n be a local minimizer of (MPSC) where GCQ is valid. Then,

the following system possesses a solution:

0 = ∇ f (x̄) +
∑

i∈I g(x̄)

λi∇gi (x̄) +
∑

j∈I h

ρ j∇h j (x̄)

+
∑

k∈I G (x̄)

μk∇Gk(x̄) +
∑

k∈I H (x̄)

νk∇Hk(x̄),

∀i ∈ I g(x̄) : λi ≥ 0.

(6)

Proof Exploiting the definition of K1, . . . , Kl : R
n → R and the computation of their

respective derivatives in the proof of Lemma 4.1, we find multipliers λi (i ∈ I g(x̄)),
ρ j ( j ∈ I h), and ξk (k = 1, . . . , l) which solve the KKT system of (MPSC) which is
given as stated below:

0 = ∇ f (x̄) +
∑

i∈I g(x̄)

λi∇gi (x̄) +
∑

j∈I h

ρ j∇h j (x̄)

+
∑

k∈I G (x̄)

ξk Hk(x̄)∇Gk(x̄) +
∑

k∈I H (x̄)

ξk Gk(x̄)∇Hk(x̄),

∀i ∈ I g(x̄) : λi ≥ 0.

(7)

Thus, we define μk := ξk Hk(x̄) (k ∈ I G(x̄)) and νk := ξk Gk(x̄) (k ∈ I H (x̄)) in order
to show the claim. ��

Remark 4.1 The proof of Corollary 4.1 shows that any KKT point of (MPSC) solves
the system (6). However, the converse statement is also true. Namely, if x̄ ∈ R

n is a
feasible point of (MPSC) such that there exist multipliers λi (i ∈ I g(x̄)), ρ j ( j ∈ I h),
μk (k ∈ I G(x̄)), and νk (k ∈ I H (x̄)) which solve the system (6), then setting

∀k ∈ {1, . . . , l} : ξk :=

⎧
⎪⎪⎨

⎪⎪⎩

μk/Hk(x̄) if k ∈ I G(x̄),

νk/Gk(x̄) if k ∈ I H (x̄),

0 if k ∈ I G H (x̄),

we easily see that (7) possesses a solution, i.e. x̄ is a KKT point of (MPSC).

In the situation where I G H (x̄) is nonempty, the reasoning from Corollary 4.1
is not longer possible. Thus, we may have to rely on weaker stationarity notions
than the KKT conditions of (MPSC). In order to find such stationarity systems, we
apply the concepts of M- and S-stationarity mentioned in Sect. 3 to (2). There-
fore, Lemma 3.2 is helpful. We also state a natural definition of so-called weak
stationarity.
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Definition 4.1 Let x̄ ∈ R
n be a feasible point of (MPSC). Then, x̄ is called

1. weakly stationary, W-stationary for short, if there exist multipliers which solve the
following system:

0 = ∇ f (x̄) +
∑

i∈I g(x̄)

λi∇gi (x̄) +
∑

j∈I h

ρ j∇h j (x̄)

+
l∑

k=1

[
μk∇Gk(x̄) + νk∇Hk(x̄)

]
,

∀i ∈ I g(x̄) : λi ≥ 0,

∀k ∈ I H (x̄) : μk = 0,

∀k ∈ I G(x̄) : νk = 0,

(8)

2. Mordukhovich–stationary, M-stationary for short, if there exist multipliers which
satisfy the conditions (8) and

∀k ∈ I G H (x̄) : μkνk = 0,

3. strongly stationary, S-stationary for short, if there exist multipliers which satisfy
the conditions (8) and

∀k ∈ I G H (x̄) : μk = 0 ∧ νk = 0.

By definition, we easily see that the following relations hold between the introduced
stationarity notions:

S-stationarity �⇒ M-stationarity �⇒ W-stationarity.

Furthermore, consulting Remark 4.1, we obtain that the S-stationarity conditions of
(MPSC) equal its KKT conditions in a certain sense. This behavior of switching-
constrained problems is similar toMPCCs andMPVCs. Finally, it has to bementioned
that the W-stationarity conditions of (MPSC) at one of its feasible points x̄ ∈ R

n

are equivalent to the KKT conditions of the subsequently stated tightened nonlinear
problem at x̄ :

f (x) → min

gi (x) ≤ 0 i = 1, . . . , m

h j (x) = 0 j = 1, . . . , p

Gk(x) = 0 k ∈ I G(x̄) ∪ I G H (x̄)

Hk(x) = 0 k ∈ I H (x̄) ∪ I G H (x̄).

(TNLP)

Note that the feasible set of (TNLP) is a subset of the feasible set of (MPSC).
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Let P(I G H (x̄)) be the set of all (disjoint) bipartitions of I G H (x̄). For fixed
(β1, β2) ∈ P(I G H (x̄)), we define

f (x) → min

gi (x) ≤ 0 i = 1, . . . , m

h j (x) = 0 j = 1, . . . , p

Gk(x) = 0 k ∈ I G(x̄) ∪ β1

Hk(x) = 0 k ∈ I H (x̄) ∪ β2.

(NLP(β1, β2))

Again, its feasible set is included in the feasible set of (MPSC).Note that locally around
x̄ , the union of all the feasible sets of (NLP(β1, β2)) over (β1, β2) ∈ P(I G H (x̄))

corresponds to the feasible set of (MPSC). This allows to apply a so-called local
decomposition approach in order to derive weak constraint qualifications for (MPSC)
in Sect. 5.

In the following lemma, we show a close relationship between the M-stationary
points of (MPSC) and the KKT points of (NLP(β1, β2)).

Lemma 4.2 A feasible point x̄ ∈ R
n of (MPSC) is M-stationary if and only if there

exists a partition (β1, β2) ∈ P(I G H (x̄)) such that x̄ is a KKT point of (NLP(β1, β2)).

Proof “�⇒” Let x̄ be an M-stationary point of (MPSC) and let (λ, ρ, μ, ν) be the
vector of associated multipliers which solve the system of M-stationarity. Then, the
sets

β1 :=
{

k ∈ I G H (x̄)

∣
∣
∣ μk �= 0

}
, β2 :=

{
k ∈ I G H (x̄)

∣
∣
∣ μk = 0

}

arewell-defined and (β1, β2) ∈ P(I G H (x̄))holds true.Bydefinition ofM-stationarity,
we have

0 = ∇ f (x̄) +
∑

i∈I g(x̄)

λi∇gi (x̄) +
∑

j∈I h

ρ j∇h j (x̄)

+
∑

k∈I G (x̄)∪β1

μk∇Gk(x̄) +
∑

k∈I H (x̄)∪β2

νk∇Hk(x̄),

∀i ∈ I g(x̄) : λi ≥ 0,

i.e. x̄ is a KKT point of (NLP(β1, β2)).
“⇐�” Let x̄ be a KKT point of (NLP(β1, β2)) for (β1, β2) ∈ P(I G H (x̄)). Then,
we find multipliers λi (i ∈ I g(x̄)), ρ j ( j ∈ I h), ηk (k ∈ I G(x̄) ∪ β1), as well as
θk (k ∈ I H (x̄) ∪ β2) which satisfy

123



162 P. Mehlitz

0 = ∇ f (x̄) +
∑

i∈I g(x̄)

λi∇gi (x̄) +
∑

j∈I h

ρ j∇h j (x̄)

+
∑

k∈I G (x̄)∪β1

ηk∇Gk(x̄) +
∑

k∈I H (x̄)∪β2

θk∇Hk(x̄),

∀i ∈ I g(x̄) : λi ≥ 0.

Defining

μk :=
{

ηk k ∈ I G(x̄) ∪ β1,

0 k ∈ I H (x̄) ∪ β2,
νk :=

{
0 k ∈ I G(x̄) ∪ β1,

θk k ∈ I H (x̄) ∪ β2,

the multipliers (λ, ρ, μ, ν) solve the M-stationarity system, i.e. x̄ is an M-stationary
point of (MPSC). ��

Wewould like to remark that a similar result as the above lemma can be obtained for
MPCCs if the associated M-stationarity condition is replaced by the weaker Abadie-
stationarity notion, see [10, Section 3.3] for details.

The upcoming corollary follows immediately.

Corollary 4.2 Let x̄ ∈ R
n be a locally optimal solution of (MPSC). Furthermore,

assume that there exists a partition (β1, β2) ∈ P(I G H (x̄)) such that GCQ holds for
(NLP(β1, β2)) at x̄ . Then, x̄ is an M-stationary point of (MPSC).

Next,we introduce someMPSC-tailored constraint qualifications.Here,weproceed
in a similar way as it is well known from the theory of MPCCs and MPVCs.

Definition 4.2 Let x̄ ∈ R
n be a feasible point of (MPSC). Then, x̄ is said to satisfy

1. MPSC-LICQ, provided LICQ holds for (TNLP) at x̄ ,
2. MPSC-MFCQ, provided MFCQ holds for (TNLP) at x̄ , and
3. MPSC-NNAMCQ, provided NNAMCQ holds for (2) at x̄ , i.e. we have

0 =
∑

i∈I g(x̄)

λi∇gi (x̄) +
∑

j∈I h

ρ j∇h j (x̄)

+
l∑

k=1

[
μk∇Gk(x̄) + νk∇Hk(x̄)

]
,

∀i ∈ I g(x̄) : λi ≥ 0,

∀k ∈ I H (x̄) : μk = 0,

∀k ∈ I G(x̄) : νk = 0,

∀k ∈ I G H (x̄) : μkνk = 0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

�⇒ λ = 0, ρ = 0,

μ = 0, ν = 0.

Due to the above definition and the dual representations of LICQ and MFCQ stated
in Definition 3.1, we find

MPSC-LICQ �⇒ MPSC-MFCQ �⇒ MPSC-NNAMCQ.
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Clearly, if I G H (x̄) = ∅ holds true, then MPSC-LICQ and MPSC-MFCQ are
equivalent to the classical constraint qualifications LICQ and MFCQ for (MPSC),
respectively. Furthermore, MPSC-NNAMCQ equals MPSC-MFCQ and, thus, MFCQ
in this situation. Obviously, all the introduced stationarity notions for (MPSC) equal
its KKT conditions whenever I G H (x̄) is empty.

Mimicing classical ideas from the theory of MPCCs, see e.g. [34], the following
result is easily obtained.

Theorem 4.1 Let x̄ ∈ R
n be a locally optimal solution of (MPSC)where MPSC-LICQ

is valid. Then, x̄ is an S-stationary point of (MPSC).

Proof Clearly, x̄ is a locally optimal solution of the program (NLP(β1, β2)) for the
partitions (β1, β2) ∈ {(I G H (x̄), ∅), (∅, I G H (x̄))} as well. Since the validity of
MPSC-LICQ for (MPSC) at x̄ implies the validity of LICQ for (NLP(β1, β2)) at x̄ for
arbitrary partitions (β1, β2) ∈ P(I G H (x̄)), we find two sets of multipliers satisfying

0 = ∇ f (x̄) +
∑

i∈I g(x̄)

λ1i ∇gi (x̄) +
∑

j∈I h

ρ1
j ∇h j (x̄)

+
∑

k∈I G (x̄)∪I G H (x̄)

μ1
k∇Gk(x̄) +

∑

k∈I H (x̄)

ν1k ∇Hk(x̄),

∀i ∈ I g(x̄) : λ1i ≥ 0

and

0 = ∇ f (x̄) +
∑

i∈I g(x̄)

λ2i ∇gi (x̄) +
∑

j∈I h

ρ2
j ∇h j (x̄)

+
∑

k∈I G (x̄)

μ2
k∇Gk(x̄) +

∑

k∈I H (x̄)∪I G H (x̄)

ν2k ∇Hk(x̄),

∀i ∈ I g(x̄) : λ2i ≥ 0,

respectively. Thus, we obtain

0 =
∑

i∈I g(x̄)

(λ1i − λ2i )∇gi (x̄) +
∑

j∈I h

(ρ1
j − ρ2

j )∇h j (x̄)

+
∑

k∈I G (x̄)

(μ1
k − μ2

k)∇Gk(x̄) +
∑

k∈I H (x̄)

(ν1k − ν2k )∇Hk(x̄)

+
∑

k∈I G H (x̄)

μ1
k∇Gk(x̄) −

∑

k∈I G H (x̄)

ν2k ∇Hk(x̄).

Due to the validity of MPSC-LICQ, λ1i = λ2i (i ∈ I g(x̄)), ρ1
j = ρ2

j ( j ∈ I h),μ1
k = μ2

k

(k ∈ I G(x̄)), ν1k = ν2k (k ∈ I H (x̄)), and μ1
k = ν2k = 0 (k ∈ I G H (x̄)) are obtained.

This shows
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0 = ∇ f (x̄) +
∑

i∈I g(x̄)

λ1i ∇gi (x̄) +
∑

j∈I h

ρ1
j ∇h j (x̄)

+
∑

k∈I G (x̄)

μ1
k∇Gk(x̄) +

∑

k∈I H (x̄)

ν1k ∇Hk(x̄),

∀i ∈ I g(x̄) : λ1i ≥ 0,

i.e. the S-stationarity conditions are satisfied. ��
Under the assumptions of Theorem 4.1 it is easy to show that the associated S-

stationarity multipliers (λ, ρ, μ, ν) are uniquely determined.
The next theorem is a direct consequence of the abstract theory onMordukhovich’s

stationarity concept provided in Sect. 3.

Theorem 4.2 Let x̄ ∈ R
n be a locally optimal solution of (MPSC) where MPSC-

NNAMCQ is valid. Then, x̄ is an M-stationary point of (MPSC).

Due to the relations between the introduced constraint qualifications, we infer the
following corollary from Theorem 4.2.

Corollary 4.3 Let x̄ ∈ R
n be a locally optimal solution of (MPSC) where MPSC-

MFCQ is valid. Then, x̄ is an M-stationary point of (MPSC).

The upcoming example indicates, that local minimizers of (MPSC) where MPSC-
MFCQ is valid do not generally satisfy the S-stationarity conditions, i.e. the assertion
of Corollary 4.3 cannot be strengthened without additional assumptions.

Example 4.1 We consider the following optimization problem:

(x1 − 2)2 + (x2 − 1)2 + (x3 − 2)2 → min

x21 + x22 + x23 ≤ 3

x3 ≤ 1

(x1 − x22 )(x2 − x21 ) = 0.

On can check that x̄ := (1, 1, 1) is a globally optimal solution of this program. Since
I g(x̄) = {1, 2} and I G H (x̄) = {1} hold, MPSC-LICQ is trivially violated at x̄ . On
the other hand, one can check that MPSC-MFCQ is satisfied at x̄ . The associated
M-stationarity system reads as

0 = −2 + 2λ1 + μ1 − 2ν1,

0 = 2λ1 − 2μ1 + ν1,

0 = −2 + 2λ1 + λ2,

λ1 ≥ 0, λ2 ≥ 0, μ1ν1 = 0.

It possesses the solutions λ11 = λ12 = μ1
1 = 2

3 , ν
1
1 = 0 and λ21 = 1

3 , λ
2
2 = 4

3 , μ
2
1 = 0,

ν21 = − 2
3 . Note that none of these multipliers solves the associated S-stationarity

system since the multipliers μi
1 and νi

1, i = 1, 2, do not vanish at the same time.
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5 Abadie- and Guignard-type constraint qualifications

5.1 Derivation of MPSC-ACQ andMPSC-GCQ

Let x̄ ∈ R
n be a feasible point of (MPSC) and let TX (x̄) be the tangent cone to the

feasible set X of (MPSC) at x̄ . The associated linearization cone is given by

LX (x̄) =

⎧
⎪⎨

⎪⎩
d ∈ R

n

∣
∣
∣
∣
∣
∣
∣

∇gi (x̄) · d ≤ 0 i ∈ I g(x̄)

∇h j (x̄) · d = 0 j ∈ I h

(Hk(x̄)∇Gk(x̄) + Gk(x̄)∇Hk(x̄)) · d = 0 k = 1, . . . , l

⎫
⎪⎬

⎪⎭

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

d ∈ R
n

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∇gi (x̄) · d ≤ 0 i ∈ I g(x̄)

∇h j (x̄) · d = 0 j ∈ I h

∇Gk(x̄) · d = 0 k ∈ I G(x̄)

∇Hk(x̄) · d = 0 k ∈ I H (x̄)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

.

Obviously,LX (x̄) is a polyhedral and, thus, convex cone. In the situation I G H (x̄) �= ∅,
however, the set X is likely to behave in a nonconvexway in a neighborhood of x̄ which
is why TX (x̄) might be nonconvex as well. Consequently, the constraint qualification
ACQ may turn out to be too selective for (MPSC). The constraint qualification GCQ,
on the other hand, might be applicable even if I G H (x̄) �= ∅ holds.

Example 5.1 Let us consider the program

(x1 − 1)2 + x22 → min

x1 ≤ 0

−x2 ≤ 0

x1x2 = 0,

which is actually an MPCC, at its unique global minimizer x̄ := (0, 0). We easily
check

TX (x̄) = {d ∈ R
2 | d1 ≤ 0, d2 ≥ 0, d1d2 = 0},

N̂X (x̄) = {η ∈ R
2 | η1 ≥ 0, η2 ≤ 0},

LX (x̄) = {d ∈ R
2 | d1 ≤ 0, d2 ≥ 0},

LX (x̄)◦ = {η ∈ R
2 | η1 ≥ 0, η2 ≤ 0}.

Consequently, GCQ is valid at x̄ while ACQ is violated there. Note that MPSC-
NNAMCQ and, thus, MPSC-MFCQ as well as MPSC-LICQ do not hold at x̄ .

Clearly, any locally optimal solution of (MPSC) where GCQ is valid must be an
S-stationary point since this stationarity notion equals the KKT conditions of (MPSC),
see Corollary 4.1, Remark 4.1, and Definition 4.1.
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Here, we want to introduce MPSC-tailored versions of ACQ and GCQ, respec-
tively. Therefore, we follow ideas from [10,12,25] where a similar approach is used to
tackle MPCCs and MPVCs, respectively. First, an MPSC-tailored linearization cone
is defined:

LMPSC
X (x̄) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

d ∈ R
n

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∇gi (x̄) · d ≤ 0 i ∈ I g(x̄)

∇h j (x̄) · d = 0 j ∈ I h

∇Gk(x̄) · d = 0 k ∈ I G(x̄)

∇Hk(x̄) · d = 0 k ∈ I H (x̄)

(∇Gk(x̄) · d)(∇Hk(x̄) · d) = 0 k ∈ I G H (x̄)

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

.

Clearly,LMPSC
X (x̄) ⊂ LX (x̄) is valid. The relation TX (x̄) ⊂ LMPSC

X (x̄), however, does
not follow directly from the definition of these cones. For the proof of the correctness
of this inclusion, we want to exploit the following lemma which is similar to [10,
Lemma 3.1] for MPCCs and [25, Lemma 2.4] which addresses MPVCs.

Lemma 5.1 For a fixed feasible point x̄ ∈ R
n of (MPSC), the following formulas hold

true:

TX (x̄) =
⋃

(β1,β2)∈P(I G H (x̄))

TNLP(β1,β2)(x̄),

LMPSC
X (x̄) =

⋃

(β1,β2)∈P(I G H (x̄))

LNLP(β1,β2)(x̄).

For any partition (β1, β2) ∈ P(I G H (x̄)), TNLP(β1,β2)(x̄) and LNLP(β1,β2)(x̄) denote
the tangent cone and the linearization cone to the feasible set of the program
(NLP(β1, β2)) at x̄ , respectively.

Proof Let us start with the proof of the formula for the tangent cone. We show both
inclusions separately.
[⊂] Choose a direction d ∈ TX (x̄) arbitrarily. By definition, we find sequences
{ds}s∈N ⊂ R

n and {ts}s∈N ⊂ R+ such that ds → d, ts → 0, and x̄ + tsds ∈ X for all
s ∈ N hold true. Particularly, Gk(x̄ + tsds)Hk(x̄ + tsds) = 0 is valid for all s ∈ N and
k = 1, . . . , l. Due to continuity of G and H , we obtain I G(x̄) ⊂ I G(x̄ + tsds) and
I H (x̄) ⊂ I H (x̄ + tsds) for all sufficiently large s ∈ N. Let us define

βs
1 :=

{
k ∈ I G H (x̄)

∣
∣
∣ Gk(x̄ + tsds) = 0

}
,

βs
2 :=

{
k ∈ I G H (x̄)

∣
∣
∣ Gk(x̄ + tsds) �= 0

}

for all s ∈ N. Clearly, (βs
1, β

s
2) ∈ P(I G H (x̄)) holds true for all s ∈ N.

Since there are only finitely many bipartitions in P(I G H (x̄)), there is a partition
(β1, β2) ∈ P(I G H (x̄)) and an infinite set N ⊂ N such that βs

1 = β1 and βs
2 = β2 hold
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true for all s ∈ N . Particularly, x̄ + tsds is feasible to (NLP(β1, β2)) for all s ∈ N . By
definition, we obtain d ∈ TNLP(β1,β2)(x̄).
[⊃] For (β1, β2) ∈ P(I G H (x̄)), choose d ∈ TNLP(β1,β2)(x̄) arbitrarily. Then, there
exist sequences {ds}s∈N ⊂ R

n and {ts}s∈N ⊂ R+ such that ds → d, ts → 0, and
x̄ + tsds is feasible to (NLP(β1, β2)) for all s ∈ N. Noting that the feasible set of
(NLP(β1, β2)) is a subset of X , we already have d ∈ TX (x̄).

Next, we show the formula for the linearization cone. Therefore, observe that

LNLP(β1,β2)(x̄) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

d ∈ R
n

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∇gi (x̄) · d ≤ 0 i ∈ I g(x̄)

∇h j (x̄) · d = 0 j ∈ I h

∇Gk(x̄) · d = 0 k ∈ I G(x̄) ∪ β1

∇Hk(x̄) · d = 0 k ∈ I H (x̄) ∪ β2

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(9)

is valid for any partition (β1, β2) ∈ P(I G H (x̄)). Thereby, the inclusion [⊃] follows
trivially.
For a fixed d ∈ LMPSC

X (x̄), let us define

β1 :=
{

k ∈ I G H (x̄)

∣
∣
∣ ∇Gk(x̄) · d = 0

}
,

β2 :=
{

k ∈ I G H (x̄)

∣
∣
∣ ∇Gk(x̄) · d �= 0

}
.

Then, d ∈ LNLP(β1,β2)(x̄) follows by definition, i.e. the inclusion [⊂] holds as well.��
Clearly, the formula for the tangent cone also follows from the fact that the family of

all problems (NLP(β1, β2)), (β1, β2) ∈ P(I G H (x̄)), provides a local decomposition
of (MPSC) around x̄ .

Corollary 5.1 Let x̄ ∈ R
n be a feasible point of (MPSC). Then, TX (x̄) ⊂ LMPSC

X (x̄)

holds.

Proof For any partition (β1, β2) ∈ P(I G H (x̄)), we obtain the trivial inclusion
TNLP(β1,β2)(x̄) ⊂ LNLP(β1,β2)(x̄) since (NLP(β1, β2)) is a standard nonlinear pro-
gram. That is why Lemma 5.1 yields

TX (x̄) =
⋃

(β1,β2)∈P(I G H (x̄))

TNLP(β1,β2)(x̄)

⊂
⋃

(β1,β2)∈P(I G H (x̄))

LNLP(β1,β2)(x̄) = LMPSC
X (x̄).

This completes the proof. ��
Exploiting a more abstract definition of linearization cones which applies to (P2)

and, thus, to (2), the statement of Corollary 5.1 would follow from [31, Theorem 6.31]
as well.
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The result of Corollary 5.1 justifies the following definition.

Definition 5.1 Let x̄ ∈ R
n be a feasible point of (MPSC). Then, x̄ is said to satisfy

1. MPSC-ACQ, provided TX (x̄) = LMPSC
X (x̄) holds,

2. MPSC-GCQ, provided N̂X (x̄) = LMPSC
X (x̄)◦ holds.

By definition, we obtain

MPSC-ACQ �⇒ MPSC-GCQ.

InvokingCorollary 5.1,wehaveTX (x̄) ⊂ LMPSC
X (x̄) ⊂ LX (x̄) and, using polarization,

LX (x̄)◦ ⊂ LMPSC
X (x̄)◦ ⊂ N̂X (x̄). Particularly, the validity of GCQ implies the validity

of MPSC-GCQ. The converse relation, which holds in the context of cardinality-
constrained programming, see [6, Corollary 3.8], does not hold true in general.

Example 5.2 Let us consider the optimization problem

x1 + x22 → min

−x1 + x2 ≤ 0

x1x2 = 0.

Clearly, its unique global minimizer is given by x̄ := (0, 0). We easily check

TX (x̄) = {d ∈ R
2 | d1 ≥ 0, d2 ≤ 0, d1d2 = 0},

N̂X (x̄) = {η ∈ R
2 | η1 ≤ 0, η2 ≥ 0},

LX (x̄) = {d ∈ R
2 | d2 ≤ d1},

LMPSC
X (x̄) = {d ∈ R

2 | − d1 + d2 ≤ 0, d1d2 = 0},
LX (x̄)◦ = cone{(−1, 1)}.

Thus, MPSC-ACQ is valid which implies that MPSC-GCQ holds true as well. On the
other hand, neither ACQ nor GCQ are satisfied in the present situation.

Bymeans of this example, we also see thatMPSC-MFCQ is generally stronger than
MPSC-NNAMCQ since the latter is valid at x̄ while the former fails to hold there.

One can easily check that x̄ is an M- but not an S-stationary point of the program.

5.2 Relations to other constraint qualifications

First, we would like to mention a sufficient condition for the validity of standard GCQ.
This result parallels [12, Theorem 4.6] for MPCCs and [25, Theorem 4.3] for MPVCs.

Lemma 5.2 Let x̄ ∈ R
n be a feasible point of (MPSC) where MPSC-LICQ is valid.

Then, GCQ holds at x̄ as well.
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Proof For the proof, we note that under validity of MPSC-LICQ, x̄ is an S-stationary
point of (MPSC) provided it is a local minimizer, see Theorem 4.1. Now, the desired
result follows from [18, Section 3] observing that the S-stationarity conditions and the
KKT conditions of (MPSC) coincide, see Remark 4.1. ��

Exploiting Lemma 5.1 once more, the upcoming result follows immediately. The
subsequent corollary can be derived easily.

Lemma 5.3 Let x̄ ∈ R
n be a feasible point of (MPSC). Assume that ACQ is valid at

x̄ for (NLP(β1, β2)) for all partitions (β1, β2) ∈ P(I G H (x̄)). Then, MPSC-ACQ is
valid at x̄ .

Corollary 5.2 Let x̄ ∈ R
n be a feasible point of (MPSC) where all the functions g, h,

G, and H are affine. Then, MPSC-ACQ is valid at x̄ .

Proof By assumption, for any partition (β1, β2) ∈ P(I G H (x̄)), (NLP(β1, β2))
is a standard nonlinear program with affine constraints. Thus, ACQ holds for
(NLP(β1, β2)) at x̄ , see [2, Lemma 5.1.4]. Thus, the corollary’s assertion follows
from Lemma 5.3. ��

Next,we aim to study the relationship betweenMPSC-NNAMCQandMPSC-ACQ.

Lemma 5.4 Let x̄ ∈ R
n be a feasible point of (MPSC) where the constraint qualifi-

cation MPSC-NNAMCQ is valid. Then, MPSC-ACQ holds at x̄ as well.

Proof Clearly, we only need to show that the validity of MPSC-NNAMCQ at x̄
implies that MFCQ holds at x̄ for the program (NLP(β1, β2)) for all partitions
(β1, β2) ∈ P(I G H (x̄)). Afterwards, the lemma’s assertion would follow immediately
by Lemma 5.3.

Thus, choose a partition (β1, β2) ∈ P(I G H (x̄)) arbitrarily and fix multipliers λi

(i ∈ I g(x̄)), ρ j ( j ∈ I h),μk (k ∈ I G(x̄)∪β1), and νk (k ∈ I H (x̄)∪β2) which satisfy

0 =
∑

i∈I g(x̄)

λi∇gi (x̄) +
∑

j∈I h

ρ j∇h j (x̄)

+
∑

k∈I G (x̄)∪β1

μk∇Gk(x̄) +
∑

k∈I H (x̄)∪β2

νk∇Hk(x̄),

∀i ∈ I g(x̄) : λi ≥ 0.

Defining μk := 0 (k ∈ I H (x̄) ∪ β2) and νk := 0 (k ∈ I G(x̄) ∪ β1), we obtain

0 =
∑

i∈I g(x̄)

λi∇gi (x̄) +
∑

j∈I h

ρ j∇h j (x̄) +
l∑

k=1

[
μk∇Gk(x̄) + νk∇Hk(x̄)

]
,

∀i ∈ I g(x̄) : λi ≥ 0,

∀k ∈ I H (x̄) : μk = 0,

∀k ∈ I G(x̄) : νk = 0,

∀k ∈ I G H (x̄) : μkνk = 0
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MPSC-LICQ

MPSC-MFCQ

MPSC-NNAMCQ

MPSC-ACQ

GCQ

MPSC-GCQ

Fig. 1 Relations between constraint qualifications

from β1 ∩ β2 = ∅ and β1 ∪ β2 = I G H (x̄). Since MPSC-NNAMCQ holds at x̄ , we
deduce that all these multipliers need to vanish. As a consequence, MFCQ is valid for
(NLP(β1, β2)) at x̄ . Due to the above arguments, this completes the proof. ��

In Fig. 1, the relations between all the introduced constraint qualifications for
(MPSC) are visualized. This summarizes the above results.

Consulting the rich literature on MPCCs, see [39], there might exist even more
regularity conditions like MPSC-tailored versions of Slater’s or Zangwill’s constraint
qualification which are applicable to (MPSC). A detailed study of such conditions is,
however, beyond the scope of this paper.

5.3 Necessary optimality conditions

In this section, we will show that the validity of MPSC-GCQ at a locally optimal
solution of (MPSC) implies that this point is M-stationary. This result parallels [13,
Theorem 3.1] for MPCCs.

Theorem 5.1 Let x̄ ∈ R
n be a locally optimal solution of (MPSC) where MPSC-GCQ

is valid. Then, x̄ is an M-stationary point of (MPSC).

Proof Since x̄ is a local minimizer of (MPSC), we obtain

∀d ∈ TX (x̄) : ∇ f (x̄) · d ≥ 0

from [31, Theorem 6.12]. The above condition is equivalent to −∇ f (x̄) ∈ N̂X (x̄).
Then, −∇ f (x̄) ∈ LMPSC

X (x̄)◦ follows by validity of MPSC-GCQ. This yields

∀d ∈ LMPSC
X (x̄)◦◦ : ∇ f (x̄) · d ≥ 0.
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Since we have LMPSC
X (x̄)◦◦ = convLMPSC

X (x̄) ⊃ LMPSC
X (x̄) by the bipolar theorem,

∀d ∈ LMPSC
X (x̄) : ∇ f (x̄) · d ≥ 0

holds true. Next, we invoke Lemma 5.1 in order to obtain

∀d ∈ LNLP(β1,β2)(x̄) : ∇ f (x̄) · d ≥ 0

for any partition (β1, β2) ∈ P(I G H (x̄)). Let us fix a particular partition (β1, β2) ∈
P(I G H (x̄)). Then, the above condition and (9) imply that d̄ := 0 solves the linear
program

∇ f (x̄) · d → min

∇gi (x̄) · d ≤ 0 i ∈ I g(x̄)

∇h j (x̄) · d = 0 j ∈ I h

∇Gk(x̄) · d = 0 k ∈ I G(x̄) ∪ β1

∇Hk(x̄) · d = 0 k ∈ I H (x̄) ∪ β2.

Since ACQ is valid at all feasible points of this program, see [2, Lemma 5.1.4], we
find λi (i ∈ I g(x̄)), ρ j ( j ∈ I h), μk (k ∈ I G(x̄)∪β1), and νk (k ∈ I H (x̄)∪β2) which
satisfy

0 = ∇ f (x̄) +
∑

i∈I g(x̄)

λi∇gi (x̄) +
∑

j∈I h

ρ j∇h j (x̄)

+
∑

k∈I G (x̄)∪β1

μk∇Gk(x̄) +
∑

k∈I H (x̄)∪β2

νk∇Hk(x̄),

∀i ∈ I g(x̄) : λi ≥ 0.

Particularly, x̄ is a KKT point of (NLP(β1, β2)). Now, we can invoke Lemma 4.2 in
order to obtain that x̄ is an M-stationary point of (MPSC). ��

Interpreting (MPSC) as a disjunctive program, the statement of the above theorem
follows from [14, Theorem 7] as well. However, the proof we presented is completely
elementary and only exploits the specific switching structure as well as the charac-
terization of M-stationarity we derived in Lemma 4.2. Particularly, we do not need
to rely on the calmness property of polyhedral multifunctions which is indispensable
in order to derive necessary optimality conditions of M-stationartity-type for general
disjunctive programs, see [14,15].

Clearly, if x̄ ∈ R
n is a locally optimal solution of (MPSC)whereMPSC-ACQholds,

then x̄ is anM-stationary point of (MPSC) by means of Theorem 5.1 since the validity
of MPSC-ACQ implies that MPSC-GCQ is satisfied as well. Thus, the subsequent
corollary is an immediate consequence of the above result and Corollary 5.2. On
the other hand, it follows directly from Corollary 4.2. It parallels similar results for
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MPCCs, see [11, Theorem 3.5, Proposition 3.8], and MPVCs, see [24, Theorems 3.4,
4.2].

Corollary 5.3 Let x̄ ∈ R
n be a locally optimal solution of (MPSC) where all the

functions g, h, G, and H are affine. Then, x̄ is an M-stationary point of (MPSC).

Taking a look at the proof of Theorem 5.1, the condition

N̂X (x̄) ⊂

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

η ∈ R
n

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

η =
∑

i∈I g(x̄)

λi∇gi (x̄) +
∑

j∈I h

ρ j∇h j (x̄)

+
l∑

k=1

[
μk∇Gk(x̄) + νk∇Hk(x̄)

]

∀i ∈ I g(x̄) : λi ≥ 0

∀k ∈ I H (x̄) : μk = 0

∀k ∈ I G(x̄) : νk = 0

∀k ∈ I G H (x̄) : μkνk = 0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(10)

is sufficient to guarantee that a local minimizer x̄ ∈ R
n of (MPSC) is an M-stationary

point. Moreover, one can mimic the proof of [20, Theorem 3.3] in order to show that
the validity of MPSC-GCQ at x̄ implies that (10) holds as well. The final example of
this section visualizes that (10) might be strictly weaker thanMPSC-GCQ in some sit-
uations. Consequently, MPSC-GCQ is not the weakest constraint qualification which
implies localminimizers of (MPSC) to beM-stationary. This contrasts classical results
for standard nonlinear programming problems where it is well known that GCQ is the
weakest available constraint qualification which guarantees that a local minimizer is a
KKT point as well, see e.g. [18]. However, it has to be noted that checking the validity
(10) might be rather difficult in practice.

Example 5.3 Let us investigate the switching-constrained optimization problem

x1 + x2 → min

x21 − x2 ≤ 0

x1x2 = 0.

Its uniquely determined global minimizer is given by x̄ := (0, 0). One can check that
it is an M-stationary point of this program. We compute

TX (x̄) = cone{(0, 1)},
N̂X (x̄) = {η ∈ R

2 | η2 ≤ 0},
LMPSC

X (x̄) = {d ∈ R
2 | d2 ≥ 0, d1d2 = 0},

LMPSC
X (x̄)◦ = cone{(0,−1)}
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which shows that MPSC-GCQ is violated at x̄ . On the other hand, we have

N̂X (x̄) = cone{(0,−1)} + span{(1, 0)}
⊂

{
λ(0,−1) + μ(1, 0) + ν(0, 1) ∈ R

2 | λ ≥ 0, μν = 0
}

,

i.e. the constraint qualification (10) holds at x̄ .

6 Necessary optimality conditions for discretized optimal control
problems with switching constraints

In this section, we apply the results obtained for (MPSC) to the discretized optimal
control problem with switching constraints (OCSC). In order to do so, we have to
clarify some notation first. Choose a feasible point x̄ := (ȳ, ū, v̄) ∈ R

n × R
l × R

l of
(OCSC). We set

I G(x̄) := {k ∈ {1, . . . , l} | ūk = 0 ∧ v̄k �= 0},
I H (x̄) := {k ∈ {1, . . . , l} | ūk �= 0 ∧ v̄k = 0},

I G H (x̄) := {k ∈ {1, . . . , l} | ūk = 0 ∧ v̄k = 0},
I ↑
u (x̄) := {k ∈ {1, . . . , l} | ūk = uk},

I ↓
u (x̄) := {k ∈ {1, . . . , l} | ūk = uk},

I ↑
v (x̄) := {k ∈ {1, . . . , l} | v̄k = vk},

I ↓
v (x̄) := {k ∈ {1, . . . , l} | v̄k = vk}.

By definition and the additional requirement (5), we obtain I ↑
u (x̄) ∪ I ↓

u (x̄) ⊂ I H (x̄)

and I ↑
v (x̄) ∪ I ↓

v (x̄) ⊂ I G(x̄).
First, we check that MPSC-LICQ is valid at all feasible points of (OCSC).

Lemma 6.1 Let x̄ := (ȳ, ū, v̄) ∈ R
n × R

l × R
l be a feasible point of (OCSC). Then,

MPSC-LICQ is valid at x̄ .

Proof Suppose that there are multipliers ρ ∈ R
n and α, β, γ, δ, μ, ν ∈ R

l which solve
the system

0 = Aρ,

0 = −Bρ + μ + α − β,

0 = −Cρ + ν + γ − δ,

∀k ∈ I H (x̄) : μk = 0,

∀k ∈ I G(x̄) : νk = 0,

∀k ∈ {1, . . . , l}\I ↑
u (x̄) : αk = 0,

∀k ∈ {1, . . . , l}\I ↓
u (x̄) : βk = 0,
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∀k ∈ {1, . . . , l}\I ↑
v (x̄) : γk = 0,

∀k ∈ {1, . . . , l}\I ↓
v (x̄) : δk = 0.

Since A ∈ R
n×n is regular, the same holds true for its transpose and, thus, ρ = 0

follows. Excluding all trivially vanishing multipliers, the above system reduces to

0 =
∑

k∈I G (x̄)∪I G H (x̄)

μkel
k +

∑

k∈I ↑
u (x̄)

αkel
k −

∑

k∈I ↓
u (x̄)

βkel
k,

0 =
∑

k∈I H (x̄)∪I G H (x̄)

νkel
k +

∑

k∈I ↑
v (x̄)

γkel
k −

∑

k∈I ↓
v (x̄)

δkel
k .

Here, el
k ∈ R

l denotes the kth unit vector in R
l for all k = 1, . . . , l. Noting that

I ↑
u (x̄), I ↓

u (x̄) ⊂ I H (x̄) are disjoint, we obtain μk = 0 (k ∈ I G(x̄)∪ I G H (x̄)), αk = 0
(k ∈ I ↑

u (x̄)), and βk = 0 (k ∈ I ↓
u (x̄)) from the trivial linear independence of the

vectors in {el
k | k ∈ {1, . . . , l}}. Similarly, we derive νk = 0 (k ∈ I H (x̄) ∪ I G H (x̄)),

γk = 0 (k ∈ I ↑
v (x̄)), and δk = 0 (k ∈ I ↓

v (x̄)). Thus, all multipliers vanish and,
particularly, MPSC-LICQ is valid at all feasible points of the program (OCSC). ��

Due to the inherent validity of MPSC-LICQ at the feasible points of (OCSC),
the associated S-stationarity conditions provide a necessary optimality criterion, see
Theorem 4.1.

Theorem 6.1 Let x̄ := (ȳ, ū, v̄) ∈ R
n × R

l × R
l be a locally optimal solution of

(OCSC). Then, there exist multipliers ρ ∈ R
n and φ,ψ ∈ R

l which solve the following
system:

0 = Q(Qȳ − yd) + Aρ,

0 = σuMMū − Bρ + φ,

0 = σvMMv̄ − Cρ + ψ,

∀k ∈ I ↑
u (x̄) : φk ≥ 0,

∀k ∈ I ↓
u (x̄) : φk ≤ 0,

∀k ∈ I G H (x̄) ∪ [
I H (x̄)\(I ↑

u (x̄) ∪ I ↓
u (x̄))

] : φk = 0,

∀k ∈ I ↑
v (x̄) : ψk ≥ 0,

∀k ∈ I ↓
v (x̄) : ψk ≤ 0,

∀k ∈ I G H (x̄) ∪ [
I G(x̄)\(I ↑

v (x̄) ∪ I ↓
v (x̄))

] : ψk = 0.

Proof We apply Theorem 4.1 in order to find ρ ∈ R
n and α, β, γ, δ, μ, ν ∈ R

l which
solve the system

0 = Q(Qȳ − yd) + Aρ,

0 = σuMMū − Bρ + μ + α − β,
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0 = σvMMv̄ − Cρ + ν + γ − δ,

∀k ∈ I H (x̄) ∪ I G H (x̄) : μk = 0,

∀k ∈ I G(x̄) ∪ I G H (x̄) : νk = 0,

α ≥ 0, ∀k ∈ {1, . . . , l}\I ↑
u (x̄) : αk = 0,

β ≥ 0, ∀k ∈ {1, . . . , l}\I ↓
u (x̄) : βk = 0,

γ ≥ 0, ∀k ∈ {1, . . . , l}\I ↑
v (x̄) : γk = 0,

δ ≥ 0, ∀k ∈ {1, . . . , l}\I ↓
v (x̄) : δk = 0.

Now, we only need to define φ := μ + α − β and ψ := ν + γ − δ in order to show
the theorem’s assertion. ��

Invoking Lemmas 5.2 and 6.1, we find that GCQ is valid at any feasible point of
(OCSC), i.e. any local minimizer is a KKT point already, cf. Remark 4.1. We note,
however, that due to the inherently nonconvex geometry of the feasible set of (OCSC),
it might be technically challenging to verify the validity of GCQ directly without
exploiting the obtained results for switching-constrained optimization problems.

7 Necessary optimality conditions for mathematical programs with
either-or-constraints

Next, we are going to investigate the following mathematical program with either-or-
constraints:

f (x) → min

gi (x) ≤ 0 i = 1, . . . , m

h j (x) = 0 j = 1, . . . , p

c1k (x) ≤ 0 ∨ c2k (x) ≤ 0 k = 1, . . . , l.

(MPEOC)

Therein, the functions c11, . . . c1l , c21, . . . , c2l : R
n → R are assumed to be continuously

differentiable. Let c1, c2 : R
n → R

l be the mappings which possess the component
functions c11, . . . , c1l and c21, . . . , c2l , respectively. Let us emphasize that ∨ denotes the
logical OR. For simplicity of notation, the standard nonlinear parts of (MPEOC) are
modeled by the continuously differentiable functions f : R

n → R, g : R
n → R

m ,
and h : R

n → R
p again.

For further investigations, we fix an arbitrary point x̄ ∈ R
n which is feasible to

(MPEOC) and introduce the following index sets:

I 0−(x̄) := {k ∈ {1, . . . , l} | c1k (x̄) = 0 ∧ c2k (x̄) < 0},
I −0(x̄) := {k ∈ {1, . . . , l} | c1k (x̄) < 0 ∧ c2k (x̄) = 0},
I 0+(x̄) := {k ∈ {1, . . . , l} | c1k (x̄) = 0 ∧ c2k (x̄) > 0},
I +0(x̄) := {k ∈ {1, . . . , l} | c1k (x̄) > 0 ∧ c2k (x̄) = 0},
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I −+(x̄) := {k ∈ {1, . . . , l} | c1k (x̄) < 0 ∧ c2k (x̄) > 0},
I +−(x̄) := {k ∈ {1, . . . , l} | c1k (x̄) > 0 ∧ c2k (x̄) < 0},
I 00(x̄) := {k ∈ {1, . . . , l} | c1k (x̄) = 0 ∧ c2k (x̄) = 0},

I −−(x̄) := {k ∈ {1, . . . , l} | c1k (x̄) < 0 ∧ c2k (x̄) < 0}.

Note that these index sets form a disjoint partition of {1, . . . , l}.
In order to avoid the introduction of binary variables or the appearance of nons-

mooth constraints (which are possible drawbacks connected to the elimination of the
logical OR as depicted in Sect. 1), it is reasonable to consider the following associated
optimization problem with switching constraints:

f (x) → min
x,z

gi (x) ≤ 0 i = 1, . . . , m

h j (x) = 0 j = 1, . . . , p

z1k , z2k ≤ 0 k = 1, . . . , l

(c1k (x) − z1k)(c
2
k (x) − z2k) = 0 k = 1, . . . , l.

(SC-MPEOC)

In the remaining part of this section, we aim for the derivation of necessary optimality
conditions for (MPEOC) via its surrogate (SC-MPEOC).

7.1 On the switching-constrained reformulation of an either-or-constrained
problem

In this section, we interrelate the local and global minimizers of the programs
(MPEOC) and (SC-MPEOC). Let us start with the consideration of locally optimal
solutions.

Lemma 7.1 Let x̄ ∈ R
n be a locally optimal solution of (MPEOC). Furthermore,

define z̄1, z̄2 ∈ R
l as stated below for any k ∈ {1, . . . , l}:

z̄1k :=

⎧
⎪⎨

⎪⎩

c1k (x̄) if k ∈ I −0(x̄) ∪ I −+(x̄) ∪ I −−(x̄),

−1 if k ∈ I 0−(x̄),

0 if k ∈ I 0+(x̄) ∪ I +0(x̄) ∪ I +−(x̄) ∪ I 00(x̄),

z̄2k :=

⎧
⎪⎨

⎪⎩

c2k (x̄) if k ∈ I 0−(x̄) ∪ I +−(x̄) ∪ I −−(x̄),

−1 if k ∈ I −0(x̄),

0 if k ∈ I 0+(x̄) ∪ I +0(x̄) ∪ I −+(x̄) ∪ I 00(x̄).

(11)

Then, (x̄, z̄1, z̄2) is a locally optimal solution of (SC-MPEOC).
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Proof Clearly, we have z̄1, z̄2 ≤ 0. Furthermore, one obtains

(c1k (x̄) − z̄1k)(c
2
k (x̄) − z̄2k) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1 · 0 if k ∈ I 0−(x̄),

0 · 1 if k ∈ I −0(x̄),

0 · c2k (x̄) if k ∈ I 0+(x̄) ∪ I −+(x̄),

c1k (x̄) · 0 if k ∈ I +0(x̄) ∪ I +−(x̄),

0 · 0 if k ∈ I 00(x̄) ∪ I −−(x̄)

(12)

for any k ∈ {1, . . . , l}, i.e. (x̄, z̄1, z̄2) is feasible to (SC-MPEOC).
Suppose on the contrary that (x̄, z̄1, z̄2) is no local minimizer of (SC-MPEOC).

Then, we find a sequence {(xs, z1s , z2s )}s∈N ⊂ R
n × R

l × R
l of points which are

feasible to (SC-MPEOC) such that xs → x̄ , z1s → z̄1, and z2s → z̄2 as well as
f (xs) < f (x̄) for all s ∈ N hold true. By construction, c1k (xs) ≤ 0 or c2k (xs) ≤ 0 is
valid for all k ∈ {1, . . . , l} and s ∈ N. Thus, xs is feasible to (MPEOC) for all s ∈ N.
From xs → x̄ and the local optimality of x̄ for (MPEOC) we infer a contradiction. ��

We note that formula (11) provides only one possible construction which assigns to
a feasible point of (MPEOC) a feasible point of (SC-MPEOC). Particularly, if x̄ ∈ R

n

is a local minimizer of (MPEOC), then there exist several locally optimal solutions of
(SC-MPEOC) associated with x̄ . However, the particular point we considered in the
above lemma will be beneficial for our investigations in Sect. 7.2.

The following example depicts that local minimizers of (SC-MPEOC) do not gen-
erally need to correspond to locally optimal solutions of (MPEOC).

Example 7.1 Let us consider the simple program

(x1 − 1)2 → min

x1 ≤ 0 ∨ x2 ≤ 0
(13)

as well as its continuous reformulation

(x1 − 1)2 → min
x,z

z1, z2 ≤ 0

(x1 − z1)(x2 − z2) = 0.

(14)

The set of global minimizers associated with (13) is given by {(1, t) | t ≤ 0}. There
do not exist local minimizers of (13) which are different from its globally optimal
solutions. Consider the point (x̄1, x̄2, z̄1, z̄2) := (0,− 1, 0,− 2) which is feasible
to (14). We show that this point is a local minimizer of this program. Note that its
associated objective value can only decrease if the x1-component enlarges to some
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ε ∈ (0, 1]. Thus, if (ε, x2, z1, z2) is feasible to (14), we have ε − z1 > 0 and, thus,
x2 = z2 due to the presence of the switching constraint. This, however, shows

∥
∥
∥(x̄1, x̄2, z̄1, z̄2) − (ε, x2, z1, z2)

∥
∥
∥
2

2
≥ ε2 + (x2 + 1)2 + (z2 + 2)2

≥ (x2 + 1)2 + (x2 + 2)2 ≥ 1
2 .

Thus, (x̄1, x̄2, z̄1, z̄2) is a local minimizer of (14) while (x̄1, x̄2) is no locally optimal
solution of (13). Similarly, one can show that (x̃1, x̃2, z̃1, z̃2) := (0, 0, 0,− 2) is a
local minimizer of (14) while (x̃1, x̃2) does not provide a local minimizer of (13).
Note that in these situations, the respective index sets I 0−(x̄1, x̄2) and I 00(x̃1, x̃2) are
nonempty.

Despite the above example, it can be shown that locally optimal solutions associated
with (SC-MPEOC) correspond to local minimizers of (MPEOC) under additional
assumptions.

Lemma 7.2 Let (x̄, z̄1, z̄2) ∈ R
n × R

l × R
l be a locally optimal solutions of the

problem (SC-MPEOC). Furthermore, assume that the index sets I −0(x̄), I 0−(x̄), and
I 00(x̄) are empty. Then, x̄ is a local minimizer of (MPEOC).

Proof Assume on the contrary that x̄ is no local minimizer of (MPEOC). Then, there
exists a sequence {xs}s∈N ⊂ R

n of points feasible to (MPEOC) which converges to
x̄ such that f (xs) < f (x̄) holds true for all s ∈ N. Below, we construct sequences
{z1s }s∈N, {z2s }s∈N ⊂ R

l such that z1s → z̄1, z2s → z̄2, and (xs, z1s , z2s ) is feasible to
(SC-MPEOC) for sufficiently large s ∈ N. This yields a contradiction to the local
optimality of (x̄, z̄1, z̄2) for (SC-MPEOC).

Due to continuity of c1 and c2, we note that the inclusions

I −−(x̄) ⊂ I −−(xs),

I 0+(x̄) ∪ I −+(x̄) ⊂ I 0+(xs) ∪ I −+(xs),

I +0(x̄) ∪ I +−(x̄) ⊂ I +0(xs) ∪ I +−(xs)

(15)

hold true for sufficiently large s ∈ N. Fix k ∈ {1, . . . , l}.
If k ∈ I −−(x̄) is valid, then we have 0 > c1k (x̄) = z̄1k or 0 > c2k (x̄) = z̄2k . W.l.o.g.

we assume c1k (x̄) = z̄1k and set

∀s ∈ N : z1s,k := c1k (xs), z2s,k := z̄2k .

On the other hand, if k ∈ I 0+(x̄) ∪ I −+(x̄) is valid, then we infer c1k (x̄) = z̄1k from
c2k (x̄) − z̄2k ≥ c2k (x̄) > 0. In this case, we set

∀s ∈ N : z1s,k := c1k (xs), z2s,k := z̄2k .
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Finally, k ∈ I +0(x̄) ∪ I +−(x̄) is possible. Due to c1k (x̄) − z̄1k ≥ c1k (x̄) > 0, we have
c2k (x̄) = z̄2k . Let us set

∀s ∈ N : z1s,k := z̄1k , z2s,k := c2k (xs).

By construction, the convergences z1s → z̄1 and z2s → z̄2 hold true. Furthermore,
by means of (15), the points (xs, z1s , z2s ) are feasible to (SC-MPEOC) for sufficiently
large s ∈ N. As mentioned above, this completes the proof. ��

Finally, let us take a look at globally optimal solutions. Here, the situation is much
more comfortable.

Lemma 7.3 1. Let x̄ ∈ R
n be a globally optimal solution of (MPEOC). Furthermore,

define z̄1, z̄2 ∈ R
l as stated in (11). Then, (x̄, z̄1, z̄2) is a globally optimal solution

of (SC-MPEOC).
2. Let (x̄, z̄1, z̄2) ∈ R

n × R
l × R

l by a globally optimal solution of (SC-MPEOC).
Then, x̄ is a globally optimal solution of (MPEOC).

Proof The proof of this result directly follows from the following observations: If
x ∈ R

n is feasible to (MPEOC), then we find z1, z2 ∈ R
l such that (x, z1, z2) is

feasible to (SC-MPEOC) [e.g. via construction (11)]. If, on the other hand, the point
(x̃, z̃1, z̃2) ∈ R

n×R
l×R

l is feasible to (SC-MPEOC), then x̃ is feasible to (MPEOC).��

Again, we need to remark that there exist several globally optimal solutions of
(SC-MPEOC) which correspond to a particular global minimizer of (MPEOC).

7.2 Necessary optimality conditions and constraint qualifications

Let x̄ ∈ R
n be a feasible point of (MPEOC). If it is a locally optimal solution of

this problem, then, due to Lemma 7.1, (x̄, z̄1, z̄2) is a locally optimal solution of the
switching-constrained problem (SC-MPEOC) where z̄1 and z̄2 are defined as in (11).
Thus, theW-,M-, or S-stationarity conditions of (SC-MPEOC)may provide necessary
optimality conditions for (MPEOC) provided suitable constraint qualifications are
valid.

In order to state these stationarity conditions, we first recall that for any feasible
point (x, z1, z2) ∈ R

n×R
l×R

l of (SC-MPEOC), the sets I G(x, z1, z2), I H (x, z1, z2),
and I G H (x, z1, z2) are given by

I G(x, z1, z2) = {k ∈ {1, . . . , l} | c1k (x) = z1k ∧ c2k (x) �= z2k},
I H (x, z1, z2) = {k ∈ {1, . . . , l} | c1k (x) �= z1k ∧ c2k (x) = z2k},

I G H (x, z1, z2) = {k ∈ {1, . . . , l} | c1k (x) = z1k ∧ c2k (x) = z2k}.
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For the particular point (x̄, z̄1, z̄2) constructed in (11), we obtain

I G(x̄, z̄1, z̄2) = I −0(x̄) ∪ I 0+(x̄) ∪ I −+(x̄),

I H (x̄, z̄1, z̄2) = I 0−(x̄) ∪ I +0(x̄) ∪ I +−(x̄),

I G H (x̄, z̄1, z̄2) = I 00(x̄) ∪ I −−(x̄)

from (12). Taking the precise definition of z̄1 and z̄2 into account, the associated
W-stationarity system of (SC-MPEOC) is given by

0 = ∇ f (x̄) +
∑

i∈I g(x̄)

λi∇gi (x̄) +
∑

j∈I h

ρ j∇h j (x̄)

+
l∑

k=1

[
μk∇c1k (x̄) + νk∇c2k (x̄)

]
,

0 = α − μ,

0 = β − ν,

∀i ∈ I g(x̄) : λi ≥ 0,

∀k ∈ I 0−(x̄) ∪ I −0(x̄) ∪ I −+(x̄) ∪ I −−(x̄) : αk = 0,

∀k ∈ I 0+(x̄) ∪ I +0(x̄) ∪ I +−(x̄) ∪ I 00(x̄) : αk ≥ 0,

∀k ∈ I 0−(x̄) ∪ I −0(x̄) ∪ I +−(x̄) ∪ I −−(x̄) : βk = 0,

∀k ∈ I 0+(x̄) ∪ I +0(x̄) ∪ I −+(x̄) ∪ I 00(x̄) : βk ≥ 0,

∀k ∈ I 0−(x̄) ∪ I +0(x̄) ∪ I +−(x̄) : μk = 0,

∀k ∈ I −0(x̄) ∪ I 0+(x̄) ∪ I −+(x̄) : νk = 0.

We eliminate the multipliers α and β in order to come up with the following natural
definitions.

Definition 7.1 Let x̄ ∈ R
n be a feasible point of (MPEOC). Then, x̄ is called

1. weakly stationary, W-stationary for short, if there exist multipliers which solve the
following system:

0 = ∇ f (x̄) +
∑

i∈I g(x̄)

λi∇gi (x̄) +
∑

j∈I h

ρ j∇h j (x̄)

+
∑

k∈I 0+(x̄)∪I 00(x̄)

μk∇c1k (x̄) +
∑

k∈I +0(x̄)∪I 00(x̄)

νk∇c2k (x̄),

∀i ∈ I g(x̄) : λi ≥ 0,

∀k ∈ I 0+(x̄) ∪ I 00(x̄) : μk ≥ 0,

∀k ∈ I +0(x̄) ∪ I 00(x̄) : νk ≥ 0.

(16)
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2. Mordukhovich–stationary, M-stationary for short, if there exist multipliers which
satisfy the conditions (16) and

∀k ∈ I 00(x̄) : μkνk = 0.

3. strongly stationary, S-stationary for short, if there exist multipliers which satisfy
the conditions (16) and

∀k ∈ I 00(x̄) : μk = 0 ∧ νk = 0.

Next,we apply theMPSC-tailored constraint qualifications to the surrogate problem
(SC-MPEOC) at the point (x̄, z̄1, z̄2) in order to ensure that a locally optimal solution
x̄ ∈ R

n of (MPEOC) satisfies the M- or S-stationarity conditions from Definition 7.1.
Here, we first present a result which addresses the S-stationarity conditions. It directly
follows from Theorem 4.1.

Theorem 7.1 Let x̄ ∈ R
n be a locally optimal solution of (MPEOC) and assume that

the following vectors are linearly independent:

∇gi (x̄) i ∈ I g(x̄),

∇h j (x̄) j ∈ I h,

∇c1k (x̄) k ∈ I 0+(x̄) ∪ I 00(x̄),

∇c2k (x̄) k ∈ I +0(x̄) ∪ I 00(x̄).

Then, x̄ is an S-stationary point of (MPEOC).

Proof Let z̄1, z̄2 ∈ R
l be the vectors defined in (11). Then, due to Lemma 7.1,

(x̄, z̄1, z̄2) is a locally optimal solution of (SC-MPEOC).
Next, we show that the only multipliers which satisfy

⎡

⎣
0
0
0

⎤

⎦ =
∑

i∈I g(x̄)

λi

⎡

⎣
∇gi (x̄)

0
0

⎤

⎦ +
∑

j∈I h

ρ j

⎡

⎣
∇h j (x̄)

0
0

⎤

⎦

+
l∑

k=1

αk

⎡

⎣
0
el

k
0

⎤

⎦ +
l∑

k=1

βk

⎡

⎣
0
0
el

k

⎤

⎦

+
l∑

k=1

μk

⎡

⎣
∇c1k (x̄)

−el
k

0

⎤

⎦ +
l∑

k=1

νk

⎡

⎣
∇c2k (x̄)

0
−el

k

⎤

⎦ ,

∀k ∈ I 0−(x̄) ∪ I −0(x̄) ∪ I −+(x̄) ∪ I −−(x̄) : αk = 0,

∀k ∈ I 0−(x̄) ∪ I −0(x̄) ∪ I +−(x̄) ∪ I −−(x̄) : βk = 0,

∀k ∈ I 0−(x̄) ∪ I +0(x̄) ∪ I +−(x̄) : μk = 0,

∀k ∈ I −0(x̄) ∪ I 0+(x̄) ∪ I −+(x̄) : νk = 0
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are constantly zero. Recall that el
k ∈ R

l denotes the kth unit vector in R
l for all

k = 1, . . . , l. From the obvious equalities α = μ and β = ν, we deduce μk = 0 for
all k ∈ I 0−(x̄)∪ I −0(x̄)∪ I +0(x̄)∪ I −+(x̄)∪ I +−(x̄)∪ I −−(x̄) as well as νk = 0 for
all k ∈ I 0−(x̄) ∪ I −0(x̄) ∪ I 0+(x̄) ∪ I −+(x̄) ∪ I +−(x̄) ∪ I −−(x̄). Now, we only take
a look at the first component, i.e. the derivatives w.r.t. x . The constraint qualification
postulated in the theorem’s assumptions implies λi = 0 (i ∈ I g(x̄)), ρ j = 0 ( j ∈ I h),
μk = 0 (k ∈ I 0+(x̄) ∪ I 00(x̄)), and νk = 0 (k ∈ I +0(x̄) ∪ I 00(x̄)). This finally yields
α = μ = 0 and β = ν = 0.

Thus, MPSC-LICQ is valid at (x̄, z̄1, z̄2) for (SC-MPEOC). By means of Theo-
rem 4.1, (x̄, z̄1, z̄2) is an S-stationary point of (SC-MPEOC), i.e. x̄ is an S-stationary
point of (MPEOC). ��

Using a local decomposition approach, the above result can be obtained in a
completely different way which is related to the proof strategy we used to validate
Theorem 4.1.

Remark 7.1 Let x̄ ∈ R
n be a locally optimal solution of (MPEOC)where the constraint

qualification of Theorem 7.1 holds and set

I −
1 (x̄) := I −0(x̄) ∪ I −+(x̄) ∪ I −−(x̄),

I −
2 (x̄) := I 0−(x̄) ∪ I +−(x̄) ∪ I −−(x̄).

Then, for any partition (β1, β2) ∈ P(I 00(x̄)), x̄ is a locally optimal solution of

f (x) → min

gi (x) ≤ 0 i = 1, . . . , m

h j (x) = 0 j = 1, . . . , p

c1k (x) ≤ 0 k ∈ I −
1 (x̄) ∪ I 0+(x̄) ∪ β1

c2k (x) ≤ 0 k ∈ I −
2 (x̄) ∪ I +0(x̄) ∪ β2

(MPEOC(β1, β2))

as well since the feasible set of (MPEOC(β1, β2)) is a subset of the feasible set
of (MPEOC) and x̄ is feasible to (MPEOC(β1, β2)). Let us consider the particular
partitions (β1, β2) ∈ {(I 00(x̄), ∅), (∅, I 00(x̄))}. Since the constraint qualifica-
tion of Theorem 7.1 is valid, standard LICQ holds for the associated problems
(MPEOC(β1, β2)) at x̄ . Consequently, the associated respective KKT conditions hold.
Let λ1i (i ∈ I g(x̄)), ρ1

j ( j ∈ I h), μ1
k (k ∈ I 0+(x̄) ∪ I 00(x̄)), ν1k (k ∈ I +0(x̄)) and λ2i

(i ∈ I g(x̄)), ρ2
j ( j ∈ I h),μ2

k (k ∈ I 0+(x̄)), ν2k (k ∈ I +0(x̄)∪ I 00(x̄)) be the respective
Lagrange multipliers. Then, we obtain
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0 =
∑

i∈I g(x̄)

(λ1i − λ2i )∇gi (x̄) +
∑

j∈I h

(ρ1
j − ρ2

j )∇h j (x̄)

+
∑

k∈I 0+(x̄)

(μ1
k − μ2

k)∇c1k (x̄) +
∑

k∈I +0(x̄)

(ν1k − ν2k )∇c2k (x̄)

+
∑

k∈I 00(x̄)

μ1
k∇c1k (x̄) −

∑

k∈I 00(x̄)

ν2k ∇c2k (x̄).

Exploiting the linear independence of all appearing vectors, we easily obtain the rela-
tion μ1

k = ν2k = 0 for all k ∈ I 00(x̄). It follows that the multipliers λ1i (i ∈ I g(x̄)),
ρ1

j ( j ∈ I h), μ1
k (k ∈ I 0+(x̄) ∪ I 00(x̄)), and ν2k (k ∈ I +0(x̄) ∪ I 00(x̄)) solve the

S-stationarity system of (MPEOC).

Wenote that the derivation of theW-,M-, andS-stationarity conditions of (MPEOC)
via the construction from Lemma 7.1 heavily relies on the particular point from (11).
The above remark, however, justifies that this choice was well founded since the
obtained results are of reasonable strength, i.e. they parallel those results one would
obtain via standard local decomposition.

Below, situations are presented where M-stationarity is an inherent necessary opti-
mality condition for (MPEOC).

Theorem 7.2 Let x̄ ∈ R
n be a locally optimal solution of (MPEOC) where the data

functions g, h, c1, and c2 are affine. Then, x̄ is an M-stationary point of (MPEOC).

Proof Due to the assumptions of the theorem, the data functions which model the
constraints of the surrogate switching-constrained problem (SC-MPEOC) are affine
aswell. Bymeans of Corollary 5.3, (x̄, z̄1, z̄2), where z̄1, z̄2 ∈ R

l are defined in (11), is
anM-stationary point of (SC-MPEOC). Thus, x̄ is anM-stationary point of (MPEOC)
and the proof is completed. ��
Theorem 7.3 Let x̄ ∈ R

n be a locally optimal solution of (MPEOC). Furthermore,
assume that there exists a partition (β1, β2) ∈ P(I 00(x̄)) such that standard GCQ is
valid for (MPEOC(β1, β2)) at x̄ . Then, x̄ is an M-stationary point of (MPEOC).

Proof Noting that x̄ is a locally optimal solution of (MPEOC(β1, β2)) where GCQ
holds, it is a KKT point of the latter program. Particularly, there exist multipliers λi

(i ∈ I g(x̄)), ρ j ( j ∈ I h),μk (k ∈ I 0+(x̄)∪β1), and νk (k ∈ I +0(x̄)∪β2) which solve
the system

0 = ∇ f (x̄) +
∑

i∈I g(x̄)

λi∇gi (x̄) +
∑

j∈I h

ρ j∇h j (x̄)

+
∑

k∈I 0+(x̄)∪β1

μk∇c1k (x̄) +
∑

k∈I +0(x̄)∪β2

νk∇c2k (x̄),

∀i ∈ I g(x̄) : λi ≥ 0,

∀k ∈ I 0+(x̄) ∪ β1 : μk ≥ 0,

∀k ∈ I +0(x̄) ∪ β2 : νk ≥ 0.
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Setting μk := 0 (k ∈ β2) as well as νk := 0 (k ∈ β1), we obtain that x̄ is an
M-stationary point of (MPEOC). ��

Finally, we present an example which shows that the assertions of Theorems 7.2
and 7.3 cannot be strengthened in general.

Example 7.2 We consider the optimization problem

(x1 + 1)2 + x22 → min

−x1 + x2 ≤ 0

−x1 ≤ 0 ∨ −x2 ≤ 0.

Its unique globally optimal solution is given by x̄ = (0, 0) and I 00(x̄) = {1} holds
true. Due to Theorems 7.2 or 7.3, x̄ satisfies the M-stationarity conditions. Indeed,
the multipliers λ11 = 0, μ1

1 = 2, ν11 = 0 and λ21 = 2, μ2
1 = 0, ν21 = 2 solve

the associated M-stationarity system. Note that these multipliers do not solve the
associated S-stationarity system since μi

1 and νi
1, i = 1, 2, do not vanish at the same

time. Clearly, the constraint qualification from Theorem 7.1 is violated.

8 Final remarks

In this paper, we derived necessary optimality conditions as well as constraint qual-
ifications for the abstract nonlinear model problem (MPSC), inferred that locally
optimal solutions of discretized optimal control problems with switching constraints
are S-stationary without additional requirements, and presented a novel reformula-
tion as well as reasonable necessary optimality conditions for optimization problems
with either-or-constraints. The derivation of second-order optimality conditions for
(MPSC) should be possible taking into account that such results are available for the
related classes of MPCCs, see [21,34,39], and MPVCs, see [23]. Moreover, using
second-order information, it seems to be possible to discuss genericity properties of
(MPSC) as it has been done for MPCCs, see e.g. [35]. Due to the special structure
of (MPEOC), a separate analysis of this problem class seems to be a nearby topic of
future research.

Relying on the First-Discretize-Then-Optimize approach for the numerical treat-
ment of optimal control problems with switching constraints like (3), efficient
computational solution methods for (MPSC) need to be developed in the future. Here,
it might be possible to adapt well-known relaxation techniques for the numerical han-
dling of MPCCs, see [27], or MPVCs, see [26], for that purpose. Taking into account
that the comparatively strong regularity condition MPSC-LICQ is valid at all feasible
points of problem (OCSC), see Lemma 6.1, these relaxation methods should be appli-
cable to the setting of switching control. On the other hand, numerical methods for the
computational solution of (MPSC) might be applicable to problems of type (MPEOC)
as well. This is a promising approach in order to tackle either-or-constraints without
the aid of tools from mixed-integer or nonsmooth optimization.
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