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Abstract
We establish that first-order methods avoid strict saddle points for almost all initializa-
tions. Our results apply to a wide variety of first-order methods, including (manifold)
gradient descent, block coordinate descent, mirror descent and variants thereof. The
connecting thread is that such algorithms can be studied from a dynamical systems
perspective in which appropriate instantiations of the Stable Manifold Theorem allow
for a global stability analysis. Thus, neither access to second-order derivative informa-
tion nor randomness beyond initialization is necessary to provably avoid strict saddle
points.

Keywords Gradient descent · Smooth optimization · Saddle points · Local
minimum · Dynamical systems

Mathematics Subject Classification 90C26

1 Introduction

Saddle points have long been regarded as a major obstacle for machine learning
methodology that require optimizing a non-convex objective [21,43]. It is well under-
stood that in many applications of interest, the number of saddle points significantly
outnumber the number of local minima, which is especially problematic when the

This paper extends upon the special case of gradient descent dynamics developed in the conference
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solutions associated with worst-case saddle points are considerably worse than those
associated with worst-case local minima [19].

Moreover, it is not hard to construct examples where a worst-case initialization of
gradient descent (or other first-order methods) provably converge to saddle points [39,
Sect. 1.2.3].

The main message of our paper is that, under very mild regularity conditions,
saddle points have little effect on the asymptotic behavior of first-order methods.
Building on tools from the theory of dynamical systems, we generalize recent analysis
of gradient descent [32,42] to establish that a wide variety of first-order methods—
including gradient descent, proximal point algorithm, block coordinate descent, mirror
descent—avoid so-called “strict” saddle points for almost all initializations; that is,
saddle points where the Hessian of the objective function admits at least one direction
of negative curvature (see Definition 1).

Our results provide a unified theoretical framework for analyzing the asymptotic
behavior of a wide variety of classic optimization algorithms in non-convex opti-
mization. Furthermore, we believe that furthering our understanding of the behavior
and geometry of deterministic optimization techniques with random initialization can
serve in the development of stochastic algorithms which improve upon their determin-
istic counterparts and achieve strong convergence-rate results; indeed, such insights
have already led to significant improves in modifying gradient descent to navigate
saddle-point geometry [22,28].

1.1 Related work

In recent years, the optimization and machine learning communities have dedicated
much effort to understanding the geometry of non-convex landscapes by searching for
unified geometric properties which could be leverage by general-purpose optimization
techniques. The strict saddle property (Definition 1) is one such property which has
been shown to hold in a wide and diverse range of salient objective functions: PCA,
a fourth-order tensor factorization [24], formulations of dictionary learning [52,53],
phase retrieval [51], low-rank matrix factorizations [12,25,26], and simple neural net-
works [16,23,49]. It is also known that, in the worst case, the strict saddle property is
unavoidable as finding descent-directions at critical points with degenerate Hessians
is NP-hard in general [38].

Earlier work had shown that first-order descent methods can circumvent strict sad-
dle points, provided that they are augmented with unbiased noise whose variance is
sufficiently large in each direction. For example, Pemantle [44] establishes conver-
gence of the Robbins–Monro stochastic approximation method to local minimizers
for strict saddle functions. More recently, Ge et al. [24] give quantitative rates on the
convergence of noisy gradient descent to local minimizers, for strict saddle functions.
ONeill and Wright [41] use the stable manifold theorem to prove that the accelerated
gradient method converges to a single strict saddle point with probability zero. The-
orem 2 is complementary and strengthens their result to guarantee the probability of
converging to the set of strict saddles points is zero, rather than a single (or countably
many) strict saddle point.

123



First-order methods almost always avoid strict saddle… 313

To obtain provable guarantees without the addition of stochastic noise, Sun et al.
[51–53] adopt trust-region methods which leverage Hessian information in order to
circumvent saddle points. This approach represents a refinement of a long tradition
of related, “second-order” strategies, including: a modified Newton’s method with
curvilinear line search [37], the modified Cholesky method [27], trust-region methods
[20], and the related cubic regularized Newton’s method [40]. Specialized to deep
learning applications Dauphin et al. [21] and Pascanu et al. [43] have introduced a
saddle-free Newton method.

However, such curvature-based optimization algorithms have a per-iteration com-
putational complexity which scales quadratically or even cubically in the dimension
d, rendering them unsuitable for optimization of high-dimensional functions. In more
recent work, several works have presented faster curvature-based methods includ-
ing Liu and Yang [34], Reddi et al. [45], Royer and Wright [47] by combining fast
first-order methods with fast eigenvector algorithms, to obtain lower per-iteration
complexity.

Fortunately, it appears that neither the addition of isotropic noise, nor the use of
second-order methods are necessary for circumventing saddle points. For example,
recent work by Jin et al. [28] showed that by carefully perturbing the iterates of gra-
dient descent in the vicinity of possible saddles results in a first-order method which
converges to local minimizers in a number of iterations with only poly-logarithmic
dimension dependence. Moreover, many recent works have shown that, even without
any random perturbations, a combination of gradient descent and a smart-initialization
provably converges to the global minimum for a variety of non-convex problems:
such settings include matrix factorization [29,55] , phase retrieval [17,18], dictionary
learning [6], and latent-variable models [11,54]. While our results only guarantee
convergence to local minimizers, they eschew the need for complex and often com-
putationally prohibitive initialization procedures.

In addition to what has been established theoretically, there is a broadly-accepted
folklore in the field that running gradient descent with a random initialization is suffi-
cient to identity a local optima. For example, the authors of Sun et al. [51] empirically
observe gradient descent with 100 random initializations on the phase retrieval prob-
lem always converges to a local minimizer, one whose quality matches that of the
solution found using more costly trust-region techniques. It is the purpose of this
work to place these intuitions on firm mathematical footing.

Finally, we emphasize that there are many settings in which all local optima (but
not saddles!) have objective values which are nearly as small as those of the global
minima; see for example Ge et al. [25,26], Soltanolkotabi et al. [49], Sun et al.
[50,52]. Some preliminary results have suggested that this may be a quite general
phenomenon. For example, Choromanska et al. [19] study the loss surface of a par-
ticular Gaussian random field as a proxy for understanding the objective landscape
of deep neural nets. The results leverage the Kac–Rice Theorem [5,9], and establish
that critical points with more positive eigenvalues have lower expected function value,
often close to that of the global minimizer. We remark that functions drawn from this
Gaussian random field model share the strict saddle property defined above, and so
our results apply in this setting. On the other hand, our results are considerably more
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general, as they do not place stringent generative assumptions1 on the objective func-
tion f .

1.2 Organization

The rest of the paper is organized as follows. Section 2 introduces the notation and
definitions used throughout the paper. Section 3 provides an intuitive explanation
for why it is unlikely that gradient descent converges to a saddle point, by studying
a non-convex quadratic and emphasizing the analogy with power iteration. Section
4 develops the main technical theorem, which uses the stable manifold theorem to
show that the stable set of unstable fixed points has measure zero. Section 5 applies
the main theorem to show that gradient descent, block coordinate descent, proximal
point, manifold gradient descent, and mirror descent all avoid strict saddle points.
Finally, we conclude in Sect. 6 by suggesting several directions of future work.

2 Preliminaries

Throughout the paper, we will use f : X → R to denote a real-valued function in C2,
the space of twice-continuously differentiable functions.

Definition 1 (Strict saddle) When X = Rn ,

1. A point x∗ is a critical point of f if ∇ f (x∗) = 0.
2. Apoint x∗ is a strict saddle point2 of f if x∗ is a critical point andλmin(∇2 f (x∗)) <

0, where λmin(H) is the smallest eigenvalue of H . Let X ∗ denote the set of strict
saddle points.

When X is a manifold, the same definition applies, but with gradient and Hessian
replaced by the Riemannian gradient ∇R f (x) and Riemannian Hessian ∇2

R f (x). See
Sect. 5.5 for details, and Chapter 5.5 of Absil et al. [2].

Our interest is in the attraction region of an optimization algorithm g, viewed
as a mapping from X → X . The iterates of the algorithm are generated by the
sequence

xk = g(xk−1) = gk(x0),

where gk is the k-fold composition of g. As an example, gradient descent corresponds
to g(x) = x − α∇ f (x).

Since we are interested in the region of attraction of a critical point, we provide the
definition of the stable set.

Definition 2 (Global stable set) The global stable set of the strict saddles is the set of
initial conditions where iteration of the mapping g converges to a strict saddle. This
is defined as

1 This line of work assumes that f is a random function with a specific distribution.
2 For the purposes of this paper, strict saddle points include local maximizers.
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Wg =
{
x0 : lim

k
gk(x0) ∈ X ∗

}
.

3 Intuition

To illustrate why gradient descent and related first-order methods do not converge
to saddle points, consider the case of a non-convex quadratic, f (x) = 1

2 x
T Hx .

Without loss of generality, assume H = diag(λ1, . . . , λn) with λ1, . . . , λk > 0 and
λk+1, . . . , λn < 0. x∗ = 0 is the unique critical point of this function and the Hessian
at x∗ is H . Gradient descent initialized from x0 has iterates

xt+1 = g(xt ) =
n∑

i=1

(1 − αλi )
t+1〈ei , x0〉ei .

where ei denote the standard basis vectors. This iteration resembles power iteration
with the matrix I − αH .

Let L = max |λi |, and suppose α < 1/L . Thus we have (1 − αλi ) < 1 for i ≤ k
and (1−αλi ) > 1 for i > k. If x0 ∈ Es := span(e1, . . . , ek), then xt converges to the
saddle point at zero since (1− αλi )

t+1 → 0. However, if x0 has a component outside
Es then gradient descent diverges to ∞. For this simple quadratic function, we see
that the global stable set (attractive set) of zero is the subspace Es . Now, if we choose
our initial point at random, the probability of that point landing in Es is zero as long
as k < n (i.e., Es is not full dimensional).

As an example of this phenomenon for a non-quadratic function, consider the
following example from Nesterov [39, Sect. 1.2.3]. Letting f (x, y) = 1

2 x
2 + 1

4 y
4 −

1
2 y

2, the corresponding gradient mapping is

g(x) =
[

(1 − α)x
(1 + α)y − αy3

]
.

The critical points are

z1 =
[
0
0

]
, z2 =

[
0

−1

]
, z3 =

[
0
1

]
.

The points z2 and z3 are isolated local minima, and z1 is a saddle point.

Gradient descent initialized from any point of the form

[
x
0

]
converges to the saddle

point z1. Any other initial point either diverges, or converges to a local minimum, so
the stable set of z1 is the x-axis, which is a zero-measure set in R2. By computing the
Hessian,

∇2 f (x) =
[
1 0
0 3y2 − 1

]
,
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we find that ∇2 f (z1) has one positive eigenvalue with eigenvector that spans the x-
axis, thus agreeing with our above characterization of the stable set. If the initial point
is chosen randomly, there is zero probability of initializing on the x-axis and thus zero
probability of converging to the saddle point z1.

For gradient descent, the local attractive set of a critical point x∗ is well-
approximated by the span of the eigenvectors corresponding to positive eigenvalues of
the Hessian. By an application of Taylor’s theorem, one can see that if the initial point
x0 is chosen uniformly random in a small neighborhood around x∗, then the probabil-
ity of initializing in the span of these eigenvectors is zero whenever there is a negative
eigenvalue. Thus, gradient descent initialized at x0 will leave the neighborhood of x∗.
Although this argument provides valuable intuition, there are several difficulties with
formalizing this argument: (1) x0 is randomly distributed over the entire domain, not
a small neighborhood around x∗, and Taylor’s theorem does not provide any global
guarantees, and (2) it does not rule out converging to a different saddle point.

4 Stable manifold theorem and unstable fixed points

4.1 Setup

For the rest of this paper, g is a mapping from X to itself, and X is a n-dimensional
manifold without boundary. Recall that a Ck-smooth, n-dimensional manifold is a
space X , together with a collection of charts {(Uα, φα)}, called an atlas, where each
φα is a homeomorphism from an open subset Uα ⊂ X to Rn . The charts are required
to be compatible in the sense that, whenever Uα ∩ Uβ �= ∅, then the transition map
φα ◦ φ−1

β is a Ck map from φβ(Uβ ∩ Uα) → R
n . We also require that

⋃
α Uα = X ,

and X is second countable, which means that for any setU contained in
⋃

α∈I Uα for
some index set I, there exists a countable set J ⊂ I such that U ⊂ ⋃

α∈J Uα . We
can now recall the definition of a measure zero subset of a manifold:

Definition 3 (Section 5.4 of Mikusinski and Taylor [36]) Given a n-dimensional man-
ifold X , we say that a set S ⊂ X is measure zero if there is an atlas {Ui , φi }i≥1 such
that φi (S ∩Ui ) has Lebesgue-measure zero as a subset of Rn . In this case, we use the
shorthand μ(S) = 0. The measure zero property is independent of the choice of atlas
[36, Chapter 5].

Definition 4 (Chapter 3 of Absil et al. [2]) The differential of g, denoted as Dg(x),
is a linear operator from T (x) → T (g(x)), where T (x) is the tangent space of X at
point x . Given a curve γ (t) in X with γ (0) = x and dγ

dt (0) = v ∈ T (x), the linear

operator is defined as Dg(x)v = d(g◦γ )
dt (0) ∈ T (g(x)). The determinant of the linear

operator det(Dg(x)) is the determinant of the matrix representing Dg(x) with respect
to an arbitrary basis.3

Lemma 1 Let E ⊂ X be a measure zero subset. If det(Dg(x)) �= 0 for all x ∈ X ,
then μ(g−1(E)) = 0.

3 The determinant is invariant under similarity transformations, so is independent of the choice of basis.
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Proof Let h = g−1, and {(Vi , ψi )} be a countable collection of charts of the co-domain
of h. By countable additivity of measure, it suffices to show that each h(E) ∩ Vi is
measure zero. Without loss of generality, we may assume that h(E) is contained in a
chart (V , ψ), else we could repeat the same argument for each element of the chart.

Wewish to show thatμ(ψ◦h(E)) = 0. Let (Uj , φ j ) be another countable collection
of charts of the domain of g. Define E j = E ∩ Uj , and note that E = ∪∞

i=1Ei =
∪φ−1

i ◦ φi (Ei ). Thus

μ(ψ ◦ h(E)) = μ(ψ ◦ h(∪iφ
−1
i ◦ φi (Ei )))

≤
∞∑
i=1

μ(ψ ◦ h ◦ φ−1
i (φi (Ei ))).

By assumption, φi (Ei ) is measure zero. The function ψ ◦ h ◦ φ−1
i = ψ ◦ g−1 ◦ φ−1

i
is C1 if det(Dg) �= 0, and thus locally Lipschitz, so preserves measure zero sets. By
countable additivity and the displayed equation above, E has measure zero. ��

4.2 Unstable fixed points

Definition 5 (Set of unstable fixed points) Let

A∗
g =

{
x : g(x) = x,max

i
|λi (Dg(x))| > 1

}

be the set of fixed points where the differential has at least a single eigenvalue with
magnitude greater than one. These are the unstable fixed points. 0

Theorem 1 (Theorem III.7, Shub [48]) Let x∗ be a fixed point for the Cr local diffeo-
morphism g : X → X . Suppose that E = Ecs ⊕ Eu, where Ecs is the span of the
eigenvectors corresponding to eigenvalues of magnitude less than or equal to one of
Dg(x∗), and Eu is the span of the eigenvectors corresponding to eigenvalues of mag-
nitude greater than one of Dg(x∗). Then there exists a Cr embedded disk Wcs

loc that is
tangent to Ecs at x∗ called the local stable center manifold. Moreover, there exists a
neighborhood B of x∗, such that g(Wcs

loc) ∩ B ⊂ Wcs
loc, and ∩∞

k=0g
−k(B) ⊂ Wcs

loc.

Theorem 2 Let g be a C1 mapping from X → X and det(Dg(x)) �= 0 for all x ∈ X .
Then the set of initial points that converge to an unstable fixed point has measure zero,
μ({x0 : limk→∞ xk ∈ A∗

g}) = 0.

Proof For each x∗ ∈ A∗
g , there is an associated open neighborhood Bx∗ promised

by the Stable Manifold Theorem 1. ∪x∗∈A∗
g
Bx∗ forms an open cover, and since X is

second-countablewe can extract a countable subcover, so that∪x∗∈A∗
g
Bx∗ = ∪∞

i=1Bx∗
i
.

Define W = {x0 : limk→∞ xk ∈ A∗
g}. Fix a point x0 ∈ W . Since xk → x∗ ∈ A∗

g ,
then for some non-negative integer T and all t ≥ T , gt (x0) ∈ ∪x∗∈A∗

g
Bx∗ . Since we

have a countable sub-cover, gt (x0) ∈ Bx∗
i
for some x∗

i ∈ A∗
g and all t ≥ T . Since
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gt+k(x0) ∈ Bx∗
i
, then gt (x0) ∈ g−k(Bx∗

i
), and thus gt (x0) ∈ ∩∞

k=0 g−k(Bx∗
i
) for all

t ≥ T . By Theorem 1, Si � ∩∞
k=0g

−k(Bx∗
i
) is a subset of the local center stable

manifold which has co-dimension at least one, and Si is thus measure zero.
Finally, gT (x0) ∈ Si implies that x0 ∈ g−T (Si ). Since T is unknown we union

over all non-negative integers, to obtain x0 ∈ ∪∞
j=0g

− j (Si ). Since x0 was arbitrary,

we have shown that W ⊂ ∪∞
i=1 ∪∞

j=0 g− j (Si ). Using Lemma 1 and that countable
union of measure zero sets is measure zero, W has measure zero. ��

Next, we state a simple corollary that only requires verifying det(Dg(x)) �= 0, and
X ∗ ⊂ A∗

g .

Corollary 1 Under the same conditions as Theorem 2, and in addition assume X ∗ ⊂
A∗

g, then the global stable set (defined in Definition 2) is of measure zero, μ(Wg) = 0.

Proof Since X ∗ ⊂ A∗
g , then the global stable set satisfies Wg ⊂ {x0 :

limk→∞ gk(x0) ∈ A∗
g}. Using Theorem 2, μ(Wg) = 0. ��

5 Application to optimization

5.1 Gradient descent

As an application of Theorem 2, we show that gradient descent avoids saddle points.
Consider the gradient descent algorithm with step-size α:

xk+1 = g(xk) � xk − α∇ f (xk). (1)

Assumption 1 (Bounded Hessian) Let f ∈ C2, and
∥∥∇2 f (x)

∥∥
2 ≤ L for all x .

Proposition 1 Every strict saddle point x∗ is an unstable fixed point of gradient
descent, meaning X ∗ ⊂ A∗

g .

Proof First we verify that critical points of f are fixed points of g. Since ∇ f (x) = 0,
then g(x) = x − α∇ f (x) = x and is a fixed point.

At a strict saddle x∗ ∈ X ∗, Dg(x∗) = I − α∇2 f (x∗) with eigenvalues 1 − αλi ,
where λi are eigenvalues of ∇2 f (x∗). Since x∗ is a strict saddle, then there is at least
one eigenvalue λ < 0, and 1 − αλi > 1. Thus x∗ ∈ A∗

g . ��
Proposition 2 Under Assumption 1 and α < 1

L , then det(Dg(x)) �= 0 for all x.

Proof By a straightforward calculation

Dg(x) = I − α∇2 f (x) = I − αV DV T ,

where ∇2 f (x) = V DV T . The eigenvalues of Dg(x) are 1 − αλi , and so

det(Dg(x)) =
∏
i

(1 − αλi ).
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Using the bounded Hessian assumption, α < 1/|λi | and each term in the product is
positive, so det(Dg(x)) > 0. ��
Corollary 2 Let g be the gradient descent algorithm as defined in Eq. (1). Under
Assumption 1 and α < 1

L , the stable set of the strict saddle points has measure zero,
meaning μ(Wg) = 0.

Proof The proof is a straightforward application of the previous two Propositions
and Corollary 1. Proposition 1 shows that X ∗ ⊂ A∗

g , and Proposition 2 shows that
det(Dg(x)) �= 0. By applying Corollary 1, we conclude that μ({x0 : limk gk(x0) ∈
X ∗}) = 0. ��

5.2 Proximal point

The proximal point algorithm is given by the iteration

xk+1 = g(x) � argmin
z

f (z) + 1

2α
‖xk − z‖2 . (2)

Proposition 3 Under Assumption 1 and α < 1
L , then

1. det(Dg(x)) �= 0.
2. Every strict saddle point x∗ is an unstable fixed point of proximal point, meaning

X ∗ ⊂ A∗
g.

Proof Since ∇ f is L-Lipschitz, f (z) + 1
2α ‖x − z‖2 is strongly convex for α < 1

L ,
and the argmin is well-defined and unique. By the optimality conditions, g(x) +
α∇ f (g(x)) = x . By implicit differentiation, Dg(x) + α∇2 f (g(x))Dg(x) = I , and
so

Dg(x) = (I + α∇2 f (g(x)))−1.

At a strict saddle x∗, Dg(x∗) = (I +α∇2 f (x∗))−1, and thus has an eigenvalue greater
than one. For α < 1

L , Dg(x) is invertible, and thus det(Dg(x)) �= 0. ��
By combining Proposition 3 and Corollary 1, we have the following:

Corollary 3 (Proximal Point) Let g be the proximal point algorithm as defined in Eq.
(2). Under Assumption 1 and α < 1

L , the stable set of the strict saddle points has
measure zero, meaning μ(Wg) = 0.

5.3 Coordinate descent

Wedefine gi (x) = x−α(0, . . . , 0, ∂ f (x)
∂xi

, 0, . . . , 0) to be the coordinate descent update
of index i in Algorithm 1. One iteration of coordinate gradient descent corresponds to
the update

xk+1 = g(xk) = gn ◦ gn−1 ◦ · · · ◦ g1(xk). (4)
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Algorithm 1: Coordinate Descent
1 Input: Function f : Rn → R, step size α, initial point x0 ∈ R

n

2 For k = 0, 1, . . .,
3 For index i = 1, . . . , n

4 xik+1 ← xik − α
∂ f (yi−1

k )

∂xi
, where

y0k = xk and yik = (x1k+1, . . . , x
i
k+1, x

i+1
k , . . . , xnk ) (3)

Assumption 2 (Lipschitz coordinate gradient) Let f ∈ C2, and |∇2 f (x)i i | ≤ Lmax
for all i ∈ [n] and x .

Lemma 2 The differential is

Dg(xk) =
n∏
j=1

(I − αen− j+1e
T
n− j+1∇2 f (yn− j

k )), (5)

where ei is the i th standard basis vector.

Proof This is an application of the chain rule. The differential of the composition of
two functions f ◦h is just D f (h(x))·Dh(x). By repeatedly applying this and observing
that Dgi (x) = I − αei eTi ∇2 f (x), we have the result. ��

Proposition 4 Under Assumption 2 and α < 1
Lmax

, then det(Dg(x)) �= 0.

Proof It suffices to prove that every term of Eq. (5) is an invertible matrix. Using
the matrix determinant lemma, the characteristic polynomial of the matrix I −
αei eTi ∇2 f (x) is equal to (λ−1)n−1(λ−1+α

∂2 f (x)
∂x2i

). For α < 1
∂2 f (x)

∂x2i

, the eigenvalues

of Dgi are all positive, and thus Dgi is invertible. ��

Proposition 5 (Instability at saddle points) Under Assumption 2 and α < 1
Lmax

, every
strict saddle point x∗ is an unstable fixed point of coordinate descent, meaning X ∗ ⊂
A∗

g.

Proof Let H = ∇2 f (x∗), J = Dg(x∗) = ∏n
j=1(I − αen− j+1eTn− j+1H), and y0 be

the eigenvector corresponding to the smallest (leftmost) eigenvalue of H .
We shall prove that

∥∥J t y0∥∥2 ≥ c(1 + ε
4 )

t for some ε, c which depend on H ,

but not on t . By proving the aforementioned fact, we get that
∥∥J t∥∥2 ≥ ‖J t y0‖2‖y0‖2 ≥

c
‖y0‖2 (1 + ε

4 )
t . Gelfand’s theorem states that the spectral radius ρ satisfies

ρ(J ) = lim
t→∞

∥∥J t∥∥1/t2 ,
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and thus

ρ(J ) = lim
t→∞

∥∥J t∥∥1/t2 ≥ lim
t→∞

(
c

‖y0‖2

)1/t

(1 + ε

4
) = (1 + ε

4
),

i.e., J must have an eigenvalue greater than one.
We fix some arbitrary iteration t and let yt = J t y0. We will first show that there

exists an ε > 0 so that

yTt+1Hyt+1 ≤ (1 + ε)yTt Hyt , (6)

for all t ∈ N. Let z1 = yt and zi+1 = (I − αei eTi H)zi = zi − α(eTi Hzi )ei , so
that yt+1 = J yt = zn+1. We see that the sequence zTi+1Hzi+1 is decreasing (non-
increasing),

zTi+1Hzi+1 = [zTi − α(eTi Hzi )e
T
i ]H [zi − α(eTi Hzi )ei ]

= zTi Hzi − α(zTi Hei )(e
T
i Hzi ) − α(eTi Hzi )e

T
i Hzi + α2(eTi Hzi )

2eTi Hei

= zTi Hzi − α(zTi Hei )
2(2 − αeTi Hei )

< zTi Hzi − α(zTi Hei )
2, (7)

where the last inequality uses that α < 1
Lmax

.
Next, we use the following claim to show sufficient decrease by lower bounding

(zTi Hei )2.

Claim Let yt be in the range of H . There exists a j ∈ [n] so that α|eTj Hz j | ≥ δ
∥∥z j∥∥2

for some global constant δ > 0 that depends on H , n.

The proof of the claim is provided in “Appendix A”.
Decompose yt = yN +yR into the orthogonal components defined by the nullspace

N (H) and range space R(H). Notice that J acts as the identity on N (H), so

yt+1 = J yt = yN + J yR.

Define an auxiliary sequence yt+1 = J yt , and yt = yR. Similarly, z1 = yR, zi+1 =
(I − αei eTi H)zi , and zn+1 = yt+1. It follows that

yTt+1Hyt+1 = (yN + J yR)T H(yN + J yR)

= (J yR)T H(J yR)

= zTn+1Hzn+1

≤ zTj+1Hz j+1 (non-increasing property in Eq. (7))

< zTj Hz j − α(zTj He j )
2 (using Eq. (7))

< zTj Hz j − δ2

α

∥∥z j∥∥22 (using Claim 4)
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≤ zTj Hz j + δ2

αL
zTj Hz j

(
since L

∥∥z j∥∥2 ≥ zTj Hz j
)

=
(
1 + δ2

αL

)
zTj Hz j

≤
(
1 + δ2

αL

)
zT1 Hz1 (non-increasing property)

=
(
1 + δ2

αL

)
yTt H yt

=
(
1 + δ2

αL

)
yTt Hyt ,

where we used that Eq. (7) applies also the sequence z j . Let ε = δ2

αL . By inducting,
and noting that yT0 Hy0 = −λ,

yTt Hyt ≤ (1 + ε)t yT0 Hy0
= −λ(1 + ε)t .

Using −λ ‖yt‖22 ≤ yTt Hyt ,

−λ ‖yt‖22 ≤ −λ(1 + ε)t

‖yt‖22 ≥ (1 + ε)t∥∥J t y0∥∥2 ≥ (1 + ε)t/2

≥
(
1 + ε

4

)t
,

where the last inequality uses that ε ≤ 1
2 . By Gelfand’s theorem, we have established

ρ(J ) ≥ 1 + ε

4
,

and thus J has an eigenvalue of magnitude greater than one. Thus x∗ ∈ A∗
g . ��

By combining Propositions 5, 4, and Corollary 1, we have the following:

Corollary 4 (Coordinate Descent) Let g be the coordinate descent algorithm as defined
in Eq. (4). Under Assumption 2 and α < 1

Lmax
, the stable set of the strict saddle points

has measure zero, meaning μ(Wg) = 0.

Remark 1 In the worst-case, Lmax = L , but in many instances Lmax � L , so coor-
dinate descent can use more aggressive step-sizes. The step-size choice α < 1

Lmax
is

standard for coordinate-descent methods [46].

123



First-order methods almost always avoid strict saddle… 323

Algorithm 2: Block Coordinate Descent
1 Input: Function f : Rn → R, step size α, initial point x0 ∈ R

n

2 For k = 0, 1, . . .,
3 For block i = 1, . . . , b
4 For index j in block i

5 x j
k+1 ← x j

k − α
∂ f (y

Si−1
k )

∂x j
, where

y
S0
k = xk and y

Si
k = (x

S1
k+1, . . . , x

Si
k+1, x

Si+1
k , . . . , x

Sb
k ) (8)

5.4 Block coordinate descent

The results of this section are a generalization of the previous section, but we present
the coordinate descent case separately, since the proofs are simpler.

We partition the set [n] = {1, 2, . . . , n} to b blocks {S1, S2, . . . , Sb} such that
[n] = ∪i Si . For ease of notation, we define S0 = ∅.

We define gi (x) to be the block coordinate descent update of block i in Algorithm 2.
Block coordinate gradient descent is a dynamical system

xk+1 = g(xk) = gb ◦ gb−1 ◦ · · · ◦ g1, (9)

where gi (x) = x − α
∑

j∈Si e
T
j ∇ f (x). We define the matrix PS = ∑

i∈S ei eTi , i.e.,
the projector onto the entries in S.

Lemma 3 The differential is

Dg(xk) =
b∏

i=1

(I − αPSb−i+1∇2 f (ySb−i
k )). (10)

Proof This is an application of the chain rule. The differential of the composition of
two functions f ◦h is just D f (h(x))·Dh(x). By repeatedly applying this and observing
that Dgi (x) = I − αPSi ∇2 f (x), we obtain the result. ��
Assumption 3 Let f ∈ C2, and ∇2 f (x)S be the submatrix of ∇2 f (x) by extracting
the rows and columns indexed by S. Let Lb = maxi∈[b]

∥∥∇2 f (x)Si
∥∥
2

Proposition 6 Under Assumption 3 and α < 1
Lb
, then det(Dg(x)) �= 0.

Proof It suffices to prove that every term of the product (10) is an invertible matrix.
Every matrix of the form I − αPSi ∇2 f (x) has n − |Si | eigenvalues equal to one and
the rest of its eigenvalues correspond to eigenvalues of ISi − α∇2 f (x)Si ,Si . Since
α < 1

Lb
, then the eigenvalues of ISi − α∇2 f (x)Si are all greater than zero. Thus each

I − αPSi ∇2 f (x) is invertible, and Dg is also invertible. ��
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Proposition 7 (Stability at fixed points) Let x∗ be a strict saddle point of f . The
Jacobian of the update rule of block coordinate descent computed at point x∗ has an
eigenvalue of modulus greater than one.

The proof is provided in “Appendix B”. By combining Propositions 7, 6, and Corol-
lary 1, we have the following:

Corollary 5 (Block Coordinate Descent) Let g be the block coordinate descent algo-
rithm as defined in Eq. (9). Under Assumption 3 and α < 1

Lb
, the stable set of the

strict saddle points has measure zero, meaning μ(Wg) = 0.

Remark 2 The step-size choice α < 1
Lb

is standard for block coordinate descent meth-
ods [46].

5.5 Manifold gradient descent

Let M be a submanifold of Rn , and T (x) be the tangent space of M at x . PX and
PT (x) are the orthogonal projectors onto M and T (x) respectively, and IT is the
identity operator on T . Let f be a smooth extension of f to Rn , and f = f |M. The
manifold gradient descent algorithm is:

xk+1 = g(xk) � PM(xk − αPT (xk )∇ f (xk)). (11)

Recall that the Riemannian gradient ∇R f (x) = PT (x)∇ f (x), so the above iteration
is precisely manifold gradient descent with PM as retraction.

Proposition 8 At a strict saddle point x∗, Dg(x∗) has an eigenvalue of magnitude
larger than 1.

Proof Since x∗ is a strict saddle, the Riemannian Hessian (see Sect. 5.5 of [2]
for the definition) ∇2

R f (x∗) has a negative eigenvalue λv and eigenvector v, and
PT (x∗)∇ f (x∗) = 0.

Using Lewis and Malick [33, Lemma 4] , DPM(x) = PT (x) for x ∈ M,

Dg(x∗)v = PT (x∗)v − αPT (x∗)D(PT ∇ f )(x∗)v.

Using Absil et al. [3, Eq. 4], PT (x)D(PT ∇ f )(x)v = ∇2
R f (x)v, so

Dg(x∗)v = v − λvv.

Thus v is an eigenvector of Dg(x∗) with eigenvalue 1 − λv > 1. ��
Proposition 9 For a compact submanifold M, there is a strictly positive α such that
det(Dg) �= 0.

Proof Since M is a compact smooth manifold, PM is unique and smooth in
a neighborhood of radius r of the manifold [4]. Letting α < r

maxx∈M‖∇ f (x)‖ ,
PM(x − αPT (x)∇ f (x)) and its derivatives exist.
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We wish to show that Dg(x) = DPM(x − αPT (x)∇ f (x))(I − αD(PT ∇ f )(x)) is
invertible. Define

hx (α) = det
(
DPM(x − αPT (x)∇ f (x))(I − αD(PT ∇ f )(x))

)
.

Using DPM(x) = PT (x) [4], hx (0) = 1. Since

B := max
x∈M,α< r

maxx∈M‖∇ f (x)‖
|nhx
nα

(α)| < ∞,

we see that for

α < CM, f � min

(
r

maxx∈M ‖∇ f (x)‖ ,
1

B

)

that hx (α) is positive, so Dg is invertible. ��
Corollary 6 Let g be the operator corresponding to the manifold gradient descent
algorithm of Eq. (11), and M be a compact sub-manifold of Rn. Then there is a
CM, f > 0, that only depends on the properties of M and f , such that for any step-
size α < CM, f , the stable set of the strict saddle points has measure zero, meaning
μ(Wg) = 0.

Proof The proof is a straightforward application of the previous two Propositions
and Corollary 1. Proposition 8 shows that X ∗ ⊂ A∗

g , and Proposition 9 shows that
det(Dg(x)) �= 0. By applying Corollary 1, we conclude that μ({x0 : limk gk(x0) ∈
X ∗}) = 0. The parameter CM, f is specified in the proof of Proposition 9. ��

5.6 Mirror descent

In this section, we consider the mirror descent algorithm. Let D be a convex open
subset of Rn , and X = D ∩ M for some affine space M. Given a mirror map Φ, we
define the mirror descent algorithm in Algorithm 3.

Assumption 4 (Mirror map) We say thatΦ is amirror map if it satisfies the following
properties:

1. Φ is a proper closed convex function with D = dom(Φ).
2. Φ is C2 on D = int(D).
3. The gradient of Φ is surjective onto Rn , that is ∇Φ(D) = Rn .
4. The subgradient ∂Φ(x) = {∇Φ(x)} for x ∈ D and ∂Φ(x) = ∅ for x /∈ D.

Due to the affine constraint, X may not be full-dimensional, so we define the
appropriate notions of gradient and Hessian. Let T be the tangent space of M. The
Riemannian gradient is ∇RΦ(x) = PT ∇Φ(x). Similarly the Riemannian Hessian is
∇2

RΦ(x) = PT ∇2Φ(x)PT and is a linear mapping from T → T . Finally, the mirror
descent mapping is defined as

g(x) = h ◦ F(x), (12)
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Algorithm 3: Mirror Descent
1 Input: Function f : X → R, step size α, and initial point x0.
2 For k = 0, 1, . . .,
3 Update

xk+1 ← h (∇Φ(xk ) − α∇ f (xk )) ,

where h(x) � argmaxz∈X zT x − Φ(z).

with F(x) = ∇Φ(x) − α∇ f (x) and h(x) = argmaxz∈X zT x − Φ(z).

Assumption 5 (Strong convexity of Φ and Lipschitz gradient) Let IT be the identity
mapping on T . We assume that

1. Φ is μ-strongly convex, meaning ∇2
RΦ(x) � μIT for x ∈ X .

2. f has L-Lipschitz gradient, meaning ∇2
R f (x) � L IT for x ∈ X .

Example 1 (Probability simplex) Define the mirror map Φ(x) = ∑
xi log xi , with

D being the positive orthant Rn
>0, D is the non-negative orthant, and affine space

M = {x : ∑
i xi = 1}. The domain is X = D ∩M which is the probability simplex.

The mirror descent algorithm corresponds to the update:

xi ←
xi exp

(
−α

∂ f
∂xi

(x)
)

∑
j x j exp

(
−α

∂ f
∂x j

(x)
) .

The strong convexity parameter satisfies μ ≥ 1.

We first express the mapping g as a composition of simple mappings.

Lemma 4 Assume that Φ is a μ-strongly convex mirror map. The mirror descent
algorithm can be equivalently expressed as g(x) = (∇RΦ)−1 ◦ PT ◦ F(x), and
(∇RΦ)−1 : T → X is a local diffeomorphism.

Proof Recall that h(w) = argmaxz∈X zTw−Φ(z). By a standard result [10, Theorem
9.8], the maximum is uniquely attained and h(w) ∈ D.

By the first-order optimality conditions, ∇RΦ(h(w)) = PT w, and thus

h(w) = (∇RΦ)−1 ◦ PT (w).

As a shorthand, let Ψ = (∇RΦ)−1. By existence and uniqueness of the maximizer, Ψ
is a single-valued function from T → X . Thus g = h ◦ F = Ψ ◦ PT ◦ F .

Finally we verify that Ψ = (∇RΦ)−1 is a local diffeomorphism. Since
DΨ (∇RΦ(x)) = (∇2

RΦ(x))−1 and Φ is strongly convex over T , the inverse function
theorem ensures that Ψ is a local diffeomorphism. ��
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Proposition 10 Under Assumptions 4, 5 and α <
μ
L , then

1. det(Dg(x)) �= 0.
2. Every strict saddle point of x∗ is an unstable fixed point of mirror descent, meaning

x∗ ∈ A∗
g.

Proof Again adopt the shorthandΨ = (∇RΦ)−1. Using Lemma 4, g = Ψ ◦(PT ◦ F),
andΨ is a local diffeomorphism. To show det(Dg) �= 0, it suffices to show that PT ◦F
is a local diffeomorphism, or equivalently verify that D(PT ◦ F)(x) : T → T is an
invertible linear transformation for every x ∈ X .

First, D(PT ◦ F)(x) = ∇2
RΦ(x) − α∇2

R f (x). Then using that ∇2
RΦ(x) � μIT ,

∇2
R f (x) � L IT , and α ≤ μ

L ,

α∇2
R f (x) � μIT � ∇2

RΦ(x).

Thus ∇2
RΦ(x) − α∇2

R f (x) � 0 and is invertible. This completes our proof of the first
part.

Let x∗ ∈ X be a strict saddle point. First we verify that it is a fixed point of g.
Using that x∗ is a critical point,

g(x∗) = Ψ (PT ∇Φ(x∗) − PT ∇ f (x∗))
= Ψ (PT ∇Φ(x∗))
= Ψ (∇RΦ(x∗))
= x∗.

Next we verify that Dg(x∗) has an eigenvalue of magnitude greater than one. Using
the chain rule and then inverse function theorem,

Dg(x∗) = DΨ (PT ◦ F(x∗))(∇2
RΦ(x∗) − α∇2

R f (x∗)) (chain rule)

= ∇2
RΦ(x∗)−1(∇2

RΦ(x∗) − α∇2
R f (x∗))

(inverse function theorem and Ψ ◦ PT ◦ F(x∗) = x∗)
= IT − α∇2

RΦ(x∗)−1∇2
R f (x∗).

Define A = ∇2
RΦ(x∗) and H = ∇2

R f (x∗) . By similarity transformation under A1/2,

A1/2Dg(x∗)A−1/2 = IT − αA−1/2H A−1/2,

which is a symmetric linear operator. Define v = A1/2v, where v is an eigenvector of
∇2

R f (x∗) corresponding to a strictly negative eigenvalue λ, then vT A−1/2H A−1/2v <

0, so λmin(A−1/2H A−1/2) < 0. Thus 1 − αλmin(A−1/2H A−1/2) is an eigenvalue of
IT −αA−1/2H A−1/2 that is greater than one. Since similarity transformations preserve
eigenvalues, Dg(x∗) also has an eigenvalue greater than one, and so x∗ ∈ A∗

g . ��
By combining Proposition 10 with Corollary 1, we have the following:
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Corollary 7 Let g be the mirror descent algorithm defined in Eq. (12). Under Assump-
tions 4, 5, and α <

μ
L , then the stable set of the strict saddles in X is measure zero,

meaning μ(Wg) = 0.

Remark 3 This corollary does not guarantee that the stable set of saddles on X \X is
measure zero. For example in the Multiplicative Weights algorithm, there are fixed
points on X \X (e.g. all the vectors x with support size 1).

5.7 Lojasiewicz inequality and existence of a single limit point

In the previous parts of this section, we have implicitly assumed that limk xk exists,
otherwise the theorems are vacuously true. As we will show with specific citations
to recent papers, the existence of the limit is ensured when the function satisfies the
Lojasiewicz inequality, and the iterates are bounded. Both assumptions are very weak,
as we can explain below.

Assumption 6 (Lojasiewicz inequality) Let x∗ be a critical point of f . f is said to
satisfy the Lojasiewicz inequality if there are constants c > 0 and μ ∈ [0, 1) such
that

‖∇ f (x)‖ ≥ c| f (x) − f (x∗)|μ,

for all x in a neighborhood of x∗.

The Lojasiewicz inequality is very general as discussed in [7,8,13], and applies to all
real analytic functions.

Assumption 7 (Bounded iterates) The iterates {xk} remain in a bounded set.

Remark 4 The bounded iterates assumption is necessary for lim xk to exist. For exam-
ple, gradient descent on f (x) = ex has iterates that minimize f by generating a
sequence that xk ↓ −∞, and so lim xk does not exist. For algorithms that generate
non-increasing objective values, bounded iterates can be ensured when the function
has compact sub-level sets.

For gradient descent, Absil et al. [1] showed that when f satisfies the Lojasiewicz
inequality that lim xk exists. We recall the results below.

Proposition 11 (Theorems 3.2 and 4.1 of [1]) Let f satisfy Assumptions 1, 6, and 7.
Assume that the stepsize α < 1

L , then lim xk exists.

Proof Theorem 3.2 of [1] shows that lim xk exists whenever the function satisfies the
Lojasiewicz inequality and the algorithm satisfies the sufficient descent condition. An
immediate consequence of Theorem 4.1 of [1] is that gradient descent with stepsize
α < 1

L satisfies the sufficient descent condition. ��
For block coordinate descent and manifold gradient descent, Bolte et al. [14] showed
a similar result.
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Proposition 12 (Block coordinate descent limit exists [14]) Let f satisfy Assump-
tions 3, 6, and 7. Assume that α < 1

Lb
, then the block coordinate descent iterates

attain a limit, lim xk exists.

Proof This is proved in Theorem 1 and Sect. 3.6 of [14]. ��
Proposition 13 (Mirror Descent limit exists [15]) Under Assumptions 4, 5, 7, and 6
with α <

μ
L , then the mirror descent iterates attain a limit, lim xk exists.

Proof This follows from a minor modification of Bolte et al. [15], which studies
mirror descent on composite functions of the form Ψ (x) = f (x) + g(x) , where f is
smooth and differentiable and g is proper and lower semicontinuous. For our setting,
we choose g as the indicator function of M , g(x) = 1M (x). Bolte et al. assume that
dom(Φ) = Rn , but this is only used in Eq. (4.7) of [15]. The same result can be
obtained by the strong convexity of Φ over the domain X = D ∩ M and using that
xk+1 − xk ∈ T . Equation (4.7) with

f (xk) − f (xk+1) ≥
(
1

α
− L

)
(Φ(xk+1) − Φ(xk) − ∇Φ(xk)

T (xk+1 − xk))

=
(
1

α
−L

) ∫
dt

1

2
(xk+1−xk)

T∇2Φ(xk+t(xk+1 − xk))(xk+1−xk)

≥
(
1

α
− L

)
μ

2
‖xk+1 − xk‖2 .

The right-hand side is the same as Eq. (4.7) of [15], so the rest of the argument proceeds
exactly as in Theorem 4.1 of Bolte et al. ��
Remark 5 For functions f that do not satisfy the Lojasiewicz inequality, it is possible
to prove that limk xk exists under the assumption that the critical points are isolated and
Assumption 7. The strategy is standard in the literature and can be found in [31,35],
so we omit the details in the sketch below.

Let {xk}k∈N be the trajectory of any of the algorithms discussed and Ω be the set
of limit points. First, Ω is non-empty due to Assumption 7. Since the algorithms are
sufficient descent methods, it can be shown Ω consists of critical points, and is a
compact, connected set.

Finally, by the assumption that the critical points are isolated, it follows that Ω is a
singleton critical point (sinceΩ is connected), i.e.,Ω = {x∗} and hence limk xk = x∗.

6 Conclusion

We have shown that first-order methods with random initialization and appropriate
constant step-size do not converge to a strict saddle point. Our results apply to gradi-
ent descent, proximal point algorithm, coordinate descent, block coordinate descent,
manifold gradient descent and mirror descent. The key common insight in analyz-
ing all these optimization methods is to treat these algorithms as dynamical systems.
Every strict saddle point is shown to be locally unstable for these first-order methods
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and applications of the center-stable manifold theorem suffice to characterize the local
behavior. As long as the mapping induced by the optimization method is sufficiently
well behaved, e.g. local diffeomorphism, these local arguments can be extended to the
whole domain. Proving the instability of saddle points as well as the smoothness and
invertibility of the corresponding maps depends upon careful instantiations of these
generic arguments (e.g. choice of step-size) on a case-by-case basis. The global insta-
bility of saddle points for first-ordermethods ismany times informally invokedwithout
careful discussion about the necessary technical conditions needed to formalize these
arguments. We hope that this work will help ground these arguments on a unified
formal foundation. We end this paper with a brief discussion of some open directions:

Step-size It is not clear if the step size restrictions are necessary to avoid saddle
points (e.g. α < 1/L for gradient descent; see Panageas and Piliouras [42] in which
examples are provided where α < 2/L is necessary for gradient descent). Most of
the constructions where the gradient method converges to saddle points require fragile
initial conditions as discussed in Sect. 3. It remains a possibility that adaptive choice of
step-size byWolfe Line Search or backtracking, may still avoid saddle points provided
the initial point is chosen at random.

Strict saddles It is also important to understand how stringent the strict saddle assump-
tion is.Will a perturbation of a function always satisfy the strict saddle property? Adler
and Taylor [5] provide very general sufficient conditions for a random function to be
Morse, meaning the eigenvalues at critical points are non-zero, which implies the strict
saddle condition. These conditions rely on checking that the density of ∇2 f (x) has
full support conditioned on the event that ∇ f (x) = 0. This can be explicitly verified
for functions f that arise from learning problems. Similar arguments for applications
that arise in game theory are developed in Kleinberg et al. [30].

However, we note that there are very difficult unconstrained optimization problems
where the strict saddle condition fails. Perhaps the simplest is optimization of quartic
polynomials. Indeed, checking if zero is a local minimizer of the quartic

f (x) =
n∑

i, j=1

qi j x
2
i x

2
j

is equivalent to checking whether the matrix Q = [qi j ] is co-positive, a co-NP com-
plete problem. For this f , the Hessian at x = 0 is zero, so x = 0 is a second-order KKT
point, but not necessarily a local minimizer. By the change of variables zi = x2i , we see
that checking local minimality in a problemwith quadratic objective and non-negative
inequality constraints is also co-NP complete.

Speed of convergenceAlthough gradient descent can take exponential amount of time
to escape from saddle points at least for some carefully constructed non-convex func-
tions [22], its stochastic counterparts performmuch better [28]. It would be interesting
to characterize these hard instances to the extent possible and to understand whether
they are indeed prevalent in applications of interest (e.g. deep learning). In the other
direction, it would be rather useful to show that all first-order methods can be sped up
by switching to carefully chosen stochastic variants.
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Beyond saddle points Even if saddle points are provably avoided, there can be mul-
tiple local minima of widely different objective value. The performance of first-order
methods would depend crucially on whether they converge for most initial conditions
to nearly optimal global minima. Panageas and Piliouras panageas2016average ana-
lyze such a game theoretic application and show that indeed the size of the region of
attraction of the good local optima dominates that of the bad local optima implying
nearly optimal average case performance. Such arguments depend crucially both on
the setting as well as on the chosen optimization method and it would be interesting
to explore their applicability in other settings.

A Proof of Claim 4

Proof We assume that α|eTj Hz j | < δ
∥∥z j∥∥2 for all j ∈ {1, . . . , n}, for some δ to

be chosen later. For the base case j = 2, it holds that ‖yt − z2‖2 = ‖z1 − z2‖2 =
α|eT1 Hz1| < δ ‖z1‖2 < 2δ ‖yt‖2 and ‖z2‖2 < (1 + 2δ) ‖yt‖2. Suppose for j ≥ 2
that

∥∥yt − z j
∥∥
2 < 2( j − 1)δ ‖yt‖2 and thus

∥∥z j∥∥2 < [1 + 2( j − 1)δ] ‖yt‖2 . Using
induction and triangle inequality we get

∥∥yt − z j+1
∥∥
2 ≤ ∥∥yt − z j

∥∥
2 + ∥∥z j − z j+1

∥∥
2

= 2( j − 1)δ ‖yt‖2 + α|eTj Hz j |
< 2( j − 1)δ ‖yt‖2 + δ

∥∥z j∥∥2
< 2( j − 1)δ ‖yt‖2 + δ[1 + 2( j − 1)δ] ‖yt‖2
≤ 2 jδ ‖yt‖2 ,

where we assume δ < 1
2n so that 2( j − 1)δ < 1 for all j ∈ [n]. Using the above

calculation,

α|eTi Hyt | < α|eTi Hzi | + α|eTi H(yt − zi )|
< δ ‖zi‖2 + α ‖Hei‖2 ‖yt − zi‖2
< δ

(
1 + 2(i − 1)δ

) ‖yt‖2 + α ‖Hei‖2
(
2(i − 1)δ

) ‖yt‖2
≤ δ

(
1 + 2nδ + 2nαL

) ‖yt‖ .

Thus α ‖Hyt‖2 <
√
nδ

(
1 + 2nδ + 2nαL

) ‖yt‖2, and

σmin+(H) ‖yt‖2 ≤ ‖Hyt‖2 <

√
n

α
δ
(
1 + 2nδ + 2nαL

) ‖yt‖2 ,

where σmin+ is the smallest non-zero singular value of H . Thus by choosing δ small
enough such that

σmin+(H) ≥
√
n

α
δ
(
1 + 2nδ + 2nαL

)
,

we have obtained a contradiction. ��
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B Proof of Proposition 7

Proof Let H = ∇2 f (x∗), J = Dg(x∗) = ∏b
i=1(I − αPSb−i+1H), and y0 be an

eigenvector of the Hessian at x∗.
The proof technique is very similar to that of the proof of Proposition 5. We shall

prove that
∥∥J t y0∥∥2 ≥ c(1 + η)t . Hence by Gelfand’s theorem J must have at least

one eigenvalue with magnitude greater than one.
We fix some arbitrary iteration t and let yt = J t y0. We will first show that there

exists an ε > 0,

yTt+1Hyt+1 ≤ (1 + ε)yTt Hyt , (13)

for all t ∈ N. Let z1 = yt and zi+1 = (I − αPSi H)zi = zi − α
∑

j∈Si (e
T
j Hzi )e j , so

that yt+1 = J yt = zb+1. We get that

zTi+1Hzi+1 =
⎛
⎝zTi − 2α

∑
j∈Si

(eTj Hzi )e
T
j

⎞
⎠ H

⎛
⎝zi − α

∑
j∈Si

(eTj Hzi )e j

⎞
⎠

= zTi Hzi − 2α
∑
j∈Si

(eTj Hzi )
2 + α2

⎛
⎝∑

j∈Si
(eTj Hzi )e j

⎞
⎠

T

H

⎛
⎝∑

j∈Si
(eTj Hzi )e j

⎞
⎠

< zTi Hzi − 2α
∑
j∈Si

(eTj Hzi )
2 + α2Lb

∥∥∥∥∥∥
∑
j∈Si

(eTj Hzi )e j

∥∥∥∥∥∥
2

2

(using
∥∥HSi

∥∥
2 ≤ Lb)

= zTi Hzi − α(2 − αLb)

∥∥∥∥∥∥
∑
j∈Si

(eTj Hzi )e j

∥∥∥∥∥∥
2

2

≤ zTi Hzi − α

∥∥∥∥∥∥
∑
j∈Si

(eTj Hzi )e j

∥∥∥∥∥∥
2

2

(using αLb < 1).

Thus zTi Hzi is a decreasing (non-increasing) sequence.
We shall prove that there exists an i ∈ [b] so that zTi+1Hzi+1 ≤ (1 + δ)zTi Hzi for

some global constant δ to be chosen later.

Claim Let yt be in the range of H . There exists an i ∈ [b] so that α ∑
j∈Si

∣∣∣eTj Hzi
∣∣∣ ≥

δ ‖zi‖2 for some δ > 0.

To finish the proof of the lemma, suppose that Claim B applies. Then by Cauchy–
Schwarz, there exists an index i such that
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zTi+1Hzi+1 < zTi Hzi − α
∑
j∈Si

(zTi He j )
2

< zTi Hzi − α

n

⎛
⎝∑

j∈Si

∣∣∣zTi He j
∣∣∣
⎞
⎠

2

< zTi Hzi − δ2

nα
‖zi‖22 .

However, wT Hw ≥ λmin(H) ‖w‖22 ≥ −L ‖w‖22, hence we get that

zTi+1Hzi+1 <

(
1 + δ2

αLn

)
zTi Hzi . (14)

By choosing ε = δ2

αLn we showed that yTt+1Hyt+1 ≤ (1+ ε)yTt Hyt as long as yt is in
the range of H .

Assume that yt = yN + yR. It is easy to see yTt Hyt = yTRHyR and also
yt+1 = J yt = yN + J yR, hence yTt+1Hyt+1 = (J yR)T H(J yR). Therefore from
Inequality (14) proved above, if the starting vector is yR, which Claim B applies too,
then (J yR)T H J yR ≤ (1 + ε)yTRHyR = (1 + ε)yTt Hyt .

To sum up, we showed that yTt Hyt ≤ (1+ε)t yT0 Hy0 and since y0 is an eigenvector
of H (of norm one) with corresponding negative eigenvalue λ, it follows that yTt Hyt ≤
λ(1+ ε)t . Finally using yTt Hyt ≥ λmin(H) ‖yt‖22, we get ‖yt‖2 ≥ (1+ ε)t/2 λ

λmin(H)
.

Observe that λ
λmin(H)

> 0 is a positive constant, (1+ε)t/2 ≥ (1+ε/4)t (since ε ≤ 1/2)

and the proof follows (the parameters as claimed in the beginning will be c = λ
λmin(H)

and η = ε/4). ��
Proof of Claim B We assume that α

∑
j∈Si

∣∣∣eTj Hzi
∣∣∣ < δ ‖zi‖2 for all i ∈ [b]. For

base case i = 2, it holds that ‖yt − z2‖2 = ‖z1 − z2‖2 = α| ∑ j∈S1 e
T
j Hz1| <

α
∑

j∈S1 |eTj Hz1| < δ ‖z1‖2 < 2δ ‖yt‖2 and ‖z2‖2 < (1 + 2δ) ‖yt‖2. Suppose for

i ≥ 2 that ‖yt − zi‖2 < 2(i − 1)δ ‖yt‖2 and thus ‖zi‖2 < [1 + 2(i − 1)δ] ‖yt‖2 .

Using induction and triangle inequality we obtain

‖yt − zi+1‖2 ≤ ‖yt − zi‖2 + ‖zi − zi+1‖2

= 2(i − 1)δ ‖yt‖2 + α

∣∣∣∣∣∣
∑
j∈Si

eTj Hzi

∣∣∣∣∣∣
≤ 2(i − 1)δ ‖yt‖2 + α

∑
j∈Si

∣∣∣eTj Hzi
∣∣∣

< 2(i − 1)δ ‖yt‖2 + δ ‖zi‖2
< 2(i − 1)δ ‖yt‖2 + δ[1 + 2(i − 1)δ] ‖yt‖2
≤ 2iδ ‖yt‖2 ,

where we assume δ < 1
2b so that 2(i − 1)δ < 1 for all i ∈ [b]. Using the above,
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α
∑
j∈Si

∣∣∣eTj Hyt
∣∣∣ < α

∑
j∈Si

∣∣∣eTj Hzi
∣∣∣ + α

∑
j∈Si

∣∣∣eTj H(yt − zi )
∣∣∣

< δ ‖zi‖2 + α

⎛
⎝∑

j∈Si

∥∥He j
∥∥
2

⎞
⎠ ‖yt − zi‖2

< δ[1 + 2(i − 1)δ] ‖yt‖2 + α[2(i − 1)δ] ‖yt‖2
⎛
⎝∑

j∈Si

∥∥He j
∥∥
2

⎞
⎠ .

Since ‖Hei‖2 < σmax(H) ≤ L , we get that α
∑

j∈Si
∥∥He j

∥∥
2 < |Si | ≤ n and we

conclude

α
∑
j∈Si

∣∣∣eTj Hyt
∣∣∣ < 2n2δ ‖yt‖2 . (15)

Finally, using Inequality (15) it follows that α ‖Hyt‖2 < 2n2δ
√
n ‖yt‖2. Let w ∈

Im(H) be a vector that is orthogonal to null(H) (since H is symmetric). Then it
holds that ‖Hw‖2 ≥ σmin+(H) ‖w‖2 where σmin+(H) denotes the smallest posi-
tive singular value of H (greater than zero). Assume that yt ∈ Im(H) and we get

‖Hyt‖2 <
2n2δ

√
n

α
‖yt‖2. However, ‖Hyt‖2 ≥ σmin+(H) ‖yt‖2 thus by choosing

2n2
√
nδ

α
< σmin+(H) we reach a contradiction. ��
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46. Richtárik, P., Takáč, M.: Iteration complexity of randomized block-coordinate descent methods for
minimizing a composite function. arXiv preprint arXiv:1107.2848 (2011)

47. Royer, C.W., Wright, S.J.: Complexity analysis of second-order line-search algorithms for smooth
nonconvex optimization. arXiv preprint arXiv:1706.03131 (2017)

48. Shub, M.: Global Stability of Dynamical Systems. Springer, Berlin (1987)
49. Soltanolkotabi, M., Javanmard, A., Lee, J.D.: Theoretical insights into the optimization landscape of

over-parameterized shallow neural networks. arXiv preprint arXiv:1707.04926 (2017)
50. Sun, J., Qu, Q., Wright, J.: When are nonconvex problems not scary? arXiv preprint arXiv:1510.06096

(2015)
51. Sun, J., Qu, Q., Wright, J.: A geometric analysis of phase retrieval. In: 2016 IEEE International

Symposium on Information Theory (ISIT), pp. 2379–2383. IEEE (2016)
52. Sun, J., Qu, Q., Wright, J.: Complete dictionary recovery over the sphere I: overview and the geometric

picture. IEEE Trans. Inf. Theory 63(2), 853–884 (2017)
53. Sun, J., Qu, Q., Wright, J.: Complete dictionary recovery over the sphere II: recovery by Riemannian

trust-region method. IEEE Tran. Inf. Theory 63(2), 885–914 (2017)
54. Zhang, Y., Chen, X., Zhou, D., Jordan, M.I.: Spectral methods meet EM: a provably optimal algorithm

for crowdsourcing. In: Advances in Neural Information Processing Systems, pp. 1260–1268 (2014)
55. Zhao, T., Wang, Z., Liu, H.: Nonconvex low rank matrix factorization via inexact first order oracle.

Adv. Neural Inf. Process. Syst. 559–567 (2015)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Affiliations

Jason D. Lee1 · Ioannis Panageas2 · Georgios Piliouras3 ·Max Simchowitz4 ·
Michael I. Jordan4 · Benjamin Recht4

Ioannis Panageas
ioannis@sutd.edu.sg

Georgios Piliouras
georgios@sutd.edu.sg

Max Simchowitz
msimchow@berkeley.edu

Michael I. Jordan
jordan@cs.berkeley.edu

Benjamin Recht
brecht@berkeley.edu

1 Data Sciences and Operations, University of Southern California, Los Angeles, CA, USA

2 Department of Information Systems, Singapore University of Technology, Tampines, Singapore

123

http://arxiv.org/abs/1405.4604
http://arxiv.org/abs/1709.01434
http://arxiv.org/abs/1107.2848
http://arxiv.org/abs/1706.03131
http://arxiv.org/abs/1707.04926
http://arxiv.org/abs/1510.06096
http://orcid.org/0000-0003-0064-7800


First-order methods almost always avoid strict saddle… 337

3 Engineering Systems and Design Pillar, Singapore University of Technology and Design,
Tampines, Singapore

4 Department of Electrical Engineering and Computer Science, UC Berkeley, Berkeley, USA

123


	First-order methods almost always avoid strict saddle points
	Abstract
	1 Introduction
	1.1 Related work
	1.2 Organization

	2 Preliminaries
	3 Intuition
	4 Stable manifold theorem and unstable fixed points
	4.1 Setup
	4.2 Unstable fixed points

	5 Application to optimization
	5.1 Gradient descent
	5.2 Proximal point
	5.3 Coordinate descent
	5.4 Block coordinate descent
	5.5 Manifold gradient descent
	5.6 Mirror descent
	5.7 Lojasiewicz inequality and existence of a single limit point

	6 Conclusion
	A Proof of Claim 4
	B Proof of Proposition 7 
	References





