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Abstract
In this paper, we present two newmethods for solving convex mixed-integer nonlinear
programming problems based on the outer approximation method. The first method
is inspired by the level method and uses a regularization technique to reduce the
step size when choosing new integer combinations. The second method combines
ideas from both the level method and the sequential quadratic programming technique
and uses a second order approximation of the Lagrangean when choosing the new
integer combinations. The main idea behind the methods is to choose the integer
combination more carefully at each iteration, in order to obtain the optimal solution
in fewer iterations compared to the original outer approximation method. We prove
rigorously that bothmethodswill find and verify the optimal solution in a finite number
of iterations. Furthermore, we present a numerical comparison of the methods based
on 109 test problems to illustrate their advantages.

Mathematics Subject Classification 65K05 · 90C11 · 90C30 · 90C55

1 Introduction

Mixed-integer nonlinear programming (MINLP) is a class of optimization problems
containing both integer and continuous variables as well as nonlinear functions. The
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integer variables make it possible to incorporate logic relations and discrete quantities
in the mathematical model. Together with linear and nonlinear constraints, MINLP
becomes a powerful framework for modeling real-world optimization problems, and
thus, there is a vast number of applications in areas such as engineering, computational
chemistry, and finance [3,14]. MINLP problems are by definition non-convex; how-
ever, they are still commonly classified as either convex or non-convex. An MINLP
problem is considered as convex if an integer relaxation results in a convex nonlinear
programming (NLP) problem [25]. Convexity is a desirable property since it enables
the direct use of several decomposition techniques for solving the problem. Such
decomposition techniques are, e.g., outer approximation (OA) [10], extended cutting
plane (ECP) [34], extended supporting hyperplane (ESH) [23], generalized Benders
decomposition (GBD) [16], and branch and bound (BB) techniques [8]. For reviews
of MINLP methods and applications see [2,4,25,30]. Even if there are several meth-
ods available for solving convex MINLP problems, it is still a challenging type of
optimization problems as shown in the solver benchmark in [23].

Methods such as OA, ECP, ESH, and GBD all generate an iteratively improv-
ing linear approximation of the MINLP problem, where the nonlinear functions are
underestimated by first-order Taylor series expansions. The linear approximation is
a mixed-integer linear programming (MILP) problem and is often referred to as the
MILP-master problem. All these methods iteratively choose the integer trial solutions
as the minimizer of the MILP-master problem. Choosing the iterative solutions as the
minimizer of a linear approximation is similar to the approach used in Kelley’s method
[21], which is an algorithm intended for convex NLP problems. It is known that Kel-
ley’s method is not efficient at handling nonlinearities and it has a poor complexity
bound, see, e.g., [27]. Kelley’s method is sometimes even referred to as unstable since
the iterative solutions tend tomake large jumps in the search space [11]. Sincemethods
such asECP,ESH,GBD, andOAchoose the iterative integer solutions in the sameman-
ner as Kelley’s method, they could also suffer from the same instability. Several tech-
niques to reduce the instability ofKelley’smethod have successfully been used forNLP
problems, e.g., regularization to reduce the step size or the concept of a trust region [1].

Due to the non-convex nature of MINLP problems, it is not trivial to use regu-
larization of the step size or a trust region when solving such problems, since the
integer requirements may cause solutions to be far apart in the search space. However,
recently there has been interest in the idea of using regularization for solving convex
MINLP problems, e.g., using quadratic stabilization with Benders decomposition was
proposed in [37] and using regularization combined with a cutting plane method was
presented in [12].

Here we present an approach for introducing stabilization in the subproblems for
choosing the integer combination in OA. The stabilization technique is inspired by
the regularization used in the level method for NLP, see [22,26], and therefore, the
method is referred to as level-based outer approximation (L-OA). By modifying the
L-OA method it is possible to include second order information in the subproblems
of choosing the integer combination, and we refer to this method as quadratic outer
approximation (Q-OA). In Q-OA we use a second order Taylor series expansion for
the Lagrangean function as the objective in the subproblems for finding a new inte-
ger combination. A similar quadratic approach was presented in [13]. However, the
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level constraint used in the level method provides a more robust way of enforcing
an improvement and avoiding cycling. Furthermore, the level constraint forces the
solutions to be chosen as an interpolation between the minimizer of the Lagrangean
approximation and the minimizer of the linear approximation in the MILP-master
problem. The proposed methods are motivated by the strong convergence properties
of the level method compared to Kelley’s, and recent advances in software for solving
MILP and mixed-integer quadratic programming (MIQP) problems.

The proposed methods are intended to accelerate the convergence of OA by choos-
ing the integer combinations more carefully, using either a regularization technique
or second-order information. Due to the regularization and the use of second-order
derivatives, the proposed methods should be better suited for handling nonlinearities
compared to OA. However, each iteration in L-OA and Q-OA will also be more com-
plex than an iteration in OA. For MINLP problems with only a few nonlinear terms,
there might not be significant improvements by the proposed methods. The methods
are, thus, mainly intended for problems with moderate to high degree of nonlinearity.
We begin with a brief review of OA in Sect. 2, and from there we continue by pre-
senting the basics of L-OA and Q-OA in Sects. 3 and 4. In Sect. 5, it is proven that
the convergence properties of OA still hold with the modifications in the proposed
methods. Finally, in Sect. 6 we present a numerical comparison of Q-OA, L-OA, and
OA, based on test problems from the problem library MINLib2 [15].

2 Background

The MINLP problems considered here can be written as follows,

min
x,y

f (x, y)

s.t. g j (x, y) ≤ 0 ∀ j = 1, . . . l,
Ax + By ≤ b,

x ∈ R
n, y ∈ Z

m .

(MINLP)

In order to guarantee global convergence, we need to assume some properties of the
nonlinear functions. Throughout this paper we rely on the following assumptions:

Assumption 1 The nonlinear functions f , g1, . . . , gl : Rn ×R
m → R are convex and

continuously differentiable.

Assumption 2 The linear constraints define a nonempty compact set.

Assumption 3 For each feasible integer combination y, an integer combination such
that there exist x variables for which the problem is feasible, a constraint qualification
holds, e.g., Slater’s condition [29].

These are the typical assumptions needed for rigorously proving convergence of OA,
see [10,13]. OA can be generalized to be applicable to non-differentiable problems,
see, e.g., [33], although such problems are not considered here.

We begin by briefly presenting the main steps of the outer approximation method.
As previously mentioned, the method uses a linear approximation of the MINLP
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problem to obtain trial solutions for the integer variables. Once an integer combination
is obtained, the corresponding continuous variables can be determined by solving a

continuous optimization problem. The previously obtained trial solutions
{
(xi, yi)

}k
i=0

are used to construct the linear approximationof theMINLPproblem.At iteration k, the
next integer combination yk+1 is obtained by solving the followingMILP subproblem

min
x,y,μ

μ

s.t. f (xi, yi) + ∇ f (xi, yi)T
[
x − xi

y − yi

]
≤ μ ∀i = 1, . . . , k,

g j (xi, yi) + ∇g j (xi, yi)T
[
x − xi

y − yi

]
≤ 0 ∀i = 1, . . . k,∀ j ∈ Ii ,

Ax + By ≤ b,

x ∈ R
n, y ∈ Z

m, μ ∈ R.

(OA-master)

Here Ii are index sets containing the indexes of the nonlinear constraints active at the
trial solution (xi, yi) [13]. Due to convexity, we know that the feasible set is overes-
timated and that the objective will be underestimated, see, e.g., [10] and Lemma 1 in
Sect. 5. The optimum of problem (OA-master), thus, provides a valid lower bound to
the MINLP problem, which is referred to as LBk+1. Once the new integer combina-
tion yk+1 is obtained, the corresponding x variables can be obtained by solving the
following convex NLP subproblem,

min
x

f (x, yk+1)

s.t. g j (x, yk+1) ≤ 0 ∀ j = 1, . . . l,

Ax + Byk+1 ≤ b,

x ∈ R
n .

(NLP-I)

If problem (NLP-I) is feasible and solved to optimality, we obtain xk+1 and further-
more, the optimum provides a valid upper bound UBk+1 to the MINLP problem.
Otherwise, if the NLP problem is infeasible, we need a different approach to obtain
the x variables and this can be done, for example, by solving a feasibility problem.
The feasibility problem minimizes the constraint violation with the current choice of
y variables, e.g., using the �∞ norm, and it can be defined as,

min
x,r

r

s.t. g j (x, yk+1) ≤ r ∀ j = 1, . . . l,

Ax + Byk+1 ≤ b,

x ∈ R
n, r ∈ R+.

(NLP-f)

By solving problem (NLP-f) the continuous variables xk+1 are obtained. However,
in this case, (xk+1, yk+1) is not a feasible solution, and thus, no upper bound is obtained
at this iteration. The feasibility problem always satisfies Slater’s condition and due to
the convexity assumption, we know that the feasibility problem is always feasible and
tractable.
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In case the difference between the upper and lower bound is not within the desired
tolerance, we improve the linear approximation by adding new linearizations to prob-
lem (OA-master). These linearizations are often referred to as cutting planes or
supporting hyperplanes, and they are given by,

f (xk+1, yk+1) + ∇ f (xk+1, yk+1)T
[
x − xk+1

y − yk+1

]
≤ μ,

g j (xk+1, yk+1) + ∇g j (xk+1, yk+1)T
[
x − xk+1

y − yk+1

]
≤ 0 ∀ j ∈ Ik+1.

(1)

Due to convexity, the cuts will not exclude any feasible solution from the search space
[6]. Adding these cuts to the MILP subproblem ensures that the integer combination
yk+1 will not be obtained in a consecutive iteration unless it is the optimal integer
solution. Convergence can be ensured since each iteration will either result in a new
integer combination or verify optimality. For more details of OA see [10,13,31]. The
basic steps of OA are summarized as a pseudo-code in Algorithm 1.

Algorithm 1 An algorithm summarizing the basic steps of the outer approximation
method

Define accepted optimality gap ε ≥ 0.

1. Initialization.

1.1 Obtain a relaxed solution x̃, ỹ by solving an integer relaxation of the MINLP problem.
1.2 Generate cuts at x̃, ỹ according to (1) and construct problems (OA-master).
1.3 Set iteration counter k = 1, UB0 = inf and LB0 = − inf.

2. Repeat until UBk−1 − LBk−1 ≤ ε.

2.1 Solve problem (OA-master) to obtain yk and LBk

2.4 Solve problem (NLP-I) with integer variables fixed as yk to obtain xk .
2.4.1 If problem (NLP-I) is infeasible, obtain xk by solving feasibility problem (NLP-f) and set

UBk = UBk−1.
2.5 Generate cuts at xk, yk according to (1) and add these to problems (OA-master).
2.6 If xk, yk is feasible, set UBk = min{ f (xk, yk),UBk−1}.
2.7 Increase iteration counter, k = k + 1

3 Return the best found solution.

Here we have not considered the integer cuts used in [10], since these are not
needed for convex problems. To get a better understanding of OA and to highlight the
differences compared to the other methods, consider the following simple example

minimize −6x − y
s.t. 0.3(x − 8)2 + 0.04(y − 6)4 + 0.1e2x y−4 ≤ 56

1/x + 1/y − x0.5y0.5 ≤ −4
2x − 5y ≤ −1
1 ≤ x ≤ 20, 1 ≤ y ≤ 20, x ∈ R, y ∈ Z.

(Ex 1)

The basic features of problem (Ex 1) are illustrated in Fig. 1, showing the constraints,
objective, and the optimal solution.
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Fig. 1 The figure to the left shows the feasible regions of the constraints in problem (Ex 1). The second
figure shows the integer relaxed feasible region, contours of the objective and the optimal solution

Fig. 2 The figures show the feasible region defined by the nonlinear constraints in dark gray, and the light
gray areas show the outer approximation obtained by the generated cuts. The squared dots represent the
solutions obtained from the MILP subproblem and diamond shaped dots represent the solutions obtained
by one of the NLP subproblems. The dot in the first figure shows the starting point (x0, y0)

Later, we use the same example to illustrate the differences between the original OA
and the proposed methods. To make the results comparable, we will use the starting
point, x0 = 5.29, y0 = 3 with all the methods. Instead of solving the relaxed problem
in the initialization step in Algorithm 1, we simply use (x0, y0) as a starting point. OA
required 7 iterations to solve this problem, of which the first six iterations are shown in
Fig. 2. For this specific problem, the first four iterations all result in infeasible solutions
where one of the nonlinear constraints are violated. The optimal solution is obtained
in iteration five, but verifying optimality requires two additional iterations.
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Next, we will show how ideas from the level method can be combined with OA to
obtain a stabilized approach for choosing new integer combinations.

3 Level-based OA

The level methodwas originally presented in [26], as amethod for solving non-smooth
NLP problems. Like OA, the level method also constructs a linear approximation of
the original optimization problem. However, the trial solutions are not chosen as the
minimizer of the linear approximation. Instead, the trial solutions are obtained by
projecting the current solution onto a specific level set of the linearly approximated
objective function. For more details see [22,27]. Here we will use a similar approach
combined with OA, which we show is equivalent to adding specific trust regions to
the problems (OA-master) in the original OA.

Herewe assume that a feasible solution to theMINLPproblem x̄, ȳ is known. Such a
solution can for example be obtained by first preforming some original OA iterations
or by using a specific procedure such as the feasibility pump [5]. An upper bound
to the MINLP problem is, thus, given by f (x̄, ȳ) and cuts at x̄, ȳ can be generated
according to (1) to form problem (OA-master). A valid lower bound LB1 can be
obtained by solving the linear subproblem (OA-master), and thus, the bounds for the
optimal objective f ∗ are given by LB1 ≤ f ∗ ≤ f (x̄, ȳ).

From the bounds of the optimal objective we can in each iteration k estimate a value
of the optimal objective according to,

f̂ ∗
k = (1 − α) f (x̄, ȳ) + αLBk, (2)

where α ∈ (0, 1] and x̄, ȳ is chosen as the best found feasible solution, similarly
as in the level method. The lower bound LBk is obtained as in the original OA, by
solving problem (OA-master). In Eq. (2) α is a parameter which represents how much
the linear approximation of the MINLP problem is trusted. Setting α close to one
results in an estimated optimum f̂ ∗

k close to the lower bound, while setting it close to
zero results in an estimated optimum close to the best incumbent solution. The next
integer solution yk+1 can now be obtained by projecting x̄, ȳ onto the f̂ ∗

k level set of
the linearly approximated objective function. The projection is performed by solving
the following MIQP problem,

min
x,y,μ

∥∥∥∥
x − x̄
y − ȳ

∥∥∥∥

2

s.t. μ ≤ f̂ ∗
k

f (xi, yi) + ∇ f (xi, yi)T
[
x − xi

y − yi

]
≤ μ ∀i = 1, . . . , k,

g j (xi, yi) + ∇g j (xi, yi)T
[
x − xi

y − yi

]
≤ 0 ∀i = 1, . . . k,∀ j ∈ Ii ,

Ax + By ≤ b,

x ∈ R
n, y ∈ Z

m, μ ∈ R,

(MIQP-Proj)
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where ‖·‖ is the Euclidean norm. TheMIQP problem should contain all the supporting
hyperplanes and cutting planes present in problem (OA-master), which was solved to
obtain the lower bound. The objective function of problem (MIQP-Proj) introduces a
regularization to each iteration, by penalizing the change from the best known solution
(the step size). The next integer solution yk+1 is thereby chosen as a point as close as
possible to the best known feasible solution, which reduces the linearly approximated
objective to at most f̂ ∗

k . Since f̂ ∗
k is calculated according to (2) there always exists a

solution to theMIQP problem, e.g., theminimizer of problem (OA-master) will satisfy
all the constraints. Once the new integer combination is obtained, the corresponding
continuous variables can be determined using the same technique as described in the
previous section.We summarize the level based outer approximation as a pseudo-code
in Algorithm 2.

The regularization will not only reduce the step size between the iterative solu-
tions, but it will also try to keep the trial solutions close to the best known solution and
simultaneously close to the feasible set. This gives an advantage over the original OA,
especially, in early iterations where the linear MILP-master problems might only pro-
vide a poor approximation which can result in trial solutions far from the feasible set.

The main difference of L-OA compared to OA is the two-step procedure for obtain-
ing the new integer combination, which involves both the solution of an MILP and an
MIQP subproblem. This increases the complexity of each iteration. However, as we
will prove later the MIQP need not to be solved to optimality. Basically, any feasible
solution to the MIQP will be sufficient for ensuring convergence. The computational
aspects are described in more detail in Sect. 6 and convergence of both L-OA and
Q-OA is proved in Sect. 5.

To obtain a geometrical understanding of how L-OA differs from the original OA,
we again consider problem (Ex 1). Here we use the same starting point as before and
we set the level parameter as α = 0.4. To solve the problem with these parameters L-
OA requires four iterations. The three first iterations are shown in Fig. 3. In the fourth
iteration, we are able to verify optimality directly after solving the MILP subproblem
since we obtain LB4 = f (x̄, ȳ).

Fig. 3 The figure illustrates the first three iterations needed to solve problem (Ex 1) with the L-OAmethod.
The dashed circles represent the contours of the objective function in the MIQP subproblems and the red

line shows the level constraint given by μ ≤ f̂ ∗
k . The circular dots represent the best-found solution so

far, the squared dots represent the solutions obtained from the MIQP subproblem and diamond shaped dots
represent the solutions obtained by one of the NLP subproblems
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Algorithm 2 An algorithm summarizing the basic steps of level-based outer approx-
imation (L-OA)

Define accepted optimality gap ε ≥ 0 and choose the parameter α ∈ (0, 1].
1. Initialization.

1.1 Obtain a feasible solution x̄, ȳ, either by OA or by any other technique.
1.2 Generate cuts at x̄, ȳ according to (1) and construct problems (OA-master) and (MIQP-Proj).
1.3 Set iteration counter k = 1, and LB0 = − inf.

2. Repeat until f (x̄, ȳ) − LBk−1 ≤ ε.

2.1 Solve problem (OA-master) to obtain LBk

2.2 Calculate the estimated optimal value f̂ ∗
k according to (2).

2.3 Solve problem (MIQP-Proj) to obtain yk

2.4 Solve problem (NLP-I) with integer variables fixed as yk to obtain xk .
2.4.1 If problem (NLP-I) is infeasible, obtain xk by solving feasibility problem (NLP-f).

2.5 Generate cuts at xk, yk according to (1) and add these to problems (OA-master) and (MIQP-Proj).
2.6 If xk, yk is feasible and f (xk, yk) ≤ f (x̄, ȳ), set x̄, ȳ = xk, yk .
2.7 Increase iteration counter, k = k + 1

3 Return x̄, ȳ as the optimal solution.

As mentioned earlier, L-OA will find similar integer solutions as adding specific
trust regions to the MILP subproblems in the original OA. This property is further
described in Theorem 1.

Theorem 1 The procedure of solving problems (OA-master) and (MIQP-Proj) will
result in a solution equivalent to adding the trust region constraint

∥∥∥∥
x − x̄
y − ȳ

∥∥∥∥

2

≤ rk, (3)

to problem (OA-master) in the original OA, where rk is chosen as the optimum of
problem (MIQP-Proj).

Proof First, assume that there exists a unique solution to problem (MIQP-Proj), and
denote the minimizer as xMIQP, yMIQP, μMIQP. As stated the radius of the trust region
constraint is chosen as

rk =
∥∥∥∥
xMIQP − x̄
yMIQP − ȳ

∥∥∥∥

2

. (4)

Adding the trust region constraint given by Eq. (3) with radius rk to problem (OA–
master) gives the solution xMILP, yMILP, μMILP. Now, assume this solution is not the
same as the MIQP solution. Since the MIQP solution is assumed to be unique and not
equal to the MILP solution, it follows that,

rk >

∥∥∥∥
xMILP − x̄
yMILP − ȳ

∥∥∥∥

2

. (5)
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Furthermore, since (OA-master) minimizes μ we get μMILP ≤ μMIQP ≤ f̂ ∗
k .

This leads to a contradiction since xMILP, yMILP, μMILP would then define a feasible
solution to problem (MIQP-Proj) with an objective strictly lower than the solution
obtained by solving the minimization problem.

Next, we consider the case where there is not a unique optimal solution to
problem (MIQP-Proj), but multiple optimal solutions. As before, we assume that
xMILP, yMILP, μMILP is not an optimal solution to problem (MIQP-Proj). However,
Eq. (5) must still hold with strict inequality, since the MILP solution satisfies the
trust region constraint given by Eq. (3) and it is not an optimal solution to problem
(MIQP-Proj). This leads to the same contradiction as in the case of a unique solution,
and therefore, theMILP solutionmust be an optimal solution to problem (MIQP-Proj).

��
Note that there are no practical implications that follow from Theorem 1 because

the radius of the trust region resulting in similar solutions cannot be determined in
advance. However, the theorem proves that the procedure used in L-OA can be viewed
as a technique of using a trust region with OA. Next, we show that it is possible to
use a similar approach as L-OA to incorporate second order information in the task of
obtaining the integer combinations.

4 Quadratic outer approximation

In order to obtain better integer solutions, it would be desirable to use information
regarding the curvature of the constraints and objective in the task of choosing the
integer combinations. We propose a technique where second-order information is
incorporated by minimizing a second order Taylor series expansion of the Lagrangean
function, which was also suggested in [13]. By using the Lagrangean it is possible to
include curvature of both the constraints and objective while keeping the constraints
of the subproblems linear.

Here we define the Lagrangean function L : Rn × R
m × R

l → R as

L(x, y,λ) = f (x, y) +
l∑

j=1

λ j g j (x, y), (6)

where λ j ≥ 0 is the Lagrange multiplier of the j-th nonlinear constraint. We do not
include the linear constraints in the Lagrangean, since these are handled directly in
the subproblems. The Lagrangean is frequently used in NLP techniques and has the
following important properties.

Property 1 If all nonlinear functions f , g1, . . . , g j in problem (MINLP) are convex,
then for nonnegative multipliers the Lagrangean defined in Eq. (6) will be a convex
function in the x, y variables, see, e.g., [6,36].

Property 2 Strong duality holds for convex optimization problems that satisfy Slater’s
condition; i.e., there exists valid multipliers such that the minimum of the Lagrangean
is equal to the minimum of the original problem [6].
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Since the MINLP problems are non-convex by nature, we cannot expect strong
duality to hold. However, the first property is important since it will ensure that the
subproblem we use for finding the integer combinations will be tractable. We do not
want to directlyminimize the Lagrangean, because that problem is basically as difficult
as the original problem. Therefore, we will use a second order approximation of the
Lagrangean, which is given by

L(x̄, ȳ, λ̄) + ∇x,yL(x̄, ȳ, λ̄)T
[
Δx
Δy

]
+ 1

2

[
Δx
Δy

]T

∇2
x,yL(x̄, ȳ, λ̄)

[
Δx
Δy

]
, (7)

where ∇x,yL is the gradient of the Lagrangean with respect to x, y and ∇2
x,y denotes

the Hessian matrix. To make the notation more compact we have introduced the Δ-
variables that are given by Δx = x − x̄ and Δy = y − ȳ. Due to Property 1, we
know that that the Hessian ∇2

x,y will be positive semidefinite for all λ ≥ 0. For small
changes in the Δ-variables Eq. (7) should give a good approximation, although the
approximation does not under- or overestimate the real Lagrangean function.

The natural approach of using the quadratic approximation in OA would be to
replace the linear objective of the MILP-master problem with the quadratic function
given by Eq. (7). However, this approach will not guarantee convergence on its own,
because, unlike the original OA the quadratic master problem will not always result in
new integer combinations. Since the second order approximation does not necessarily
underestimate the Lagrangean, it is possible that the approximation point x̄, ȳ is the
optimum of the approximation even if it is not the optimal solution to the original
problem, and thus, the approach could stagnate at non-optimal solutions. To avoid
this, the method presented in [13] uses an ε improvement strategy, where the next
solution must reduce the linearly approximated objective by a small ε-value. The ε

improvement is enforced by the following constraints

μ ≤ f (x̄, ȳ) − ε

f (xi, yi) + ∇ f (xi, yi)T
[
x − xi

y − yi

]
≤ μ ∀i = 1, . . . , k,

(8)

where x̄, ȳ is the best found solution. With this approach ε must be chosen smaller
than the desired optimality gap. Thus, it will only result in a small reduction require-
ment. Therefore, the quadratic outer approximation method in [13] will rely heavily
on the second order approximation of the Lagrangean. In case the approximation point
x̄, ȳ with the corresponding multipliers λ̄ is not the optimal solution to the MINLP,
then the Lagrangean might not give a good approximation of the original problem
and this might cause slow convergence. Due to the discrete nature of MINLP prob-
lems, it is possible that only the optimal integer combination with the corresponding
continuous variables will result in the optimal set of active constraints and nonzero
multipliers.

Here, we use a different approach, which combines information from both the
linear approximation with the quadratic approximation of the Lagrangean, to make
sure the proposed method does not stagnate at non-optimal solutions. By using the
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same approach as in L-OA, an estimate of the optimal objective f̂ ∗
k can be calculated

according to Eq. (2). The estimated optimum can further be used to construct the
following reduction constraint,

μ ≤ f̂ ∗
k

f (xi, yi) + ∇ f (xi, yi)T
[
x − xi

y − yi

]
≤ μ ∀i = 1, . . . , k.

(9)

As long as f̂ ∗
k is calculated using the same technique as in L-OA, there will always

exist a solution that satisfies the reduction constraints in Eq. (9). Furthermore, since f̂ ∗
k

is chosen as an interpolation between the upper and lower bound it will usually result
in a stricter reduction constraint. We will construct the master problem by minimizing
the quadratic approximation of the Lagrangean with the reduction constraint given
by Eq. (9), the accumulated cuts given by Eq. (1) and all linear constraints from the
MINLP problem. The new integer combination yk+1 is, thus, obtained by solving the
following MIQP problem,

min
x,y,μ

∇x,yL(x̄, ȳ, λ̄)T
[
Δx
Δy

]
+ 1

2

[
Δx
Δy

]T

∇2
x,yL(x̄, ȳ, λ̄)

[
Δx
Δy

]

s.t. μ ≤ f̂ ∗
k

f (xi, yi) + ∇ f (xi, yi)T
[
x − xi

y − yi

]
≤ μ ∀i = 1, . . . , k

g j (xi, yi) + ∇g j (xi, yi)T
[
x − xi

y − yi

]
≤ 0 ∀i = 1, . . . k,∀ j ∈ Ii ,

Ax + By ≤ b,

x ∈ R
n, y ∈ Z

m, μ ∈ R,

(QOA-master)

where Δx = x − x̄ and Δy = y − ȳ. As in L-OA x̄, ȳ is chosen as the best found
feasible solution and λ̄ are the corresponding Lagrangemultipliers obtained by solving
problem (NLP-I). The NLP subproblem with fixed integer variables will provide both
the x variables and the multipliers λ. If the NLP subproblem is infeasible we solve the
problem (NLP-f), from which we obtain the corresponding multipliers. As mentioned
before ∇2

x,y is positive semidefinite due to the convexity of the nonlinear functions;
therefore, the MIQP problem can be solved efficiently with software such as Gurobi
[19] or Cplex [20].

Once the next integer solution has been obtained, the continuous variables are
determined as in OA or L-OA, and more cuts are generated according to Eq. (1).
The lower bound is updated in each iteration as in L-OA by solving problem (OA–
master). The quadratic outer approximation method is summarized as a pseudocode
in Algorithm 3.

As in L-OA, each iteration includes both an MILP and an MIQP subproblem. We
will show later that it is sufficient to merely obtain a feasible solution to the MIQP,
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Algorithm 3An algorithm summarizing the basic steps of the quadratic outer approx-
imation (Q-OA) method

Define accepted optimality gap ε ≥ 0 and choose the parameter α ∈]0, 1].
1. Initialization.

1.1 Obtain a feasible solution x̄, ȳ and the multipliers λ̄ , either by OA or by any other technique.
1.2 Generate cuts at x̄, ȳ according to (1) and construct problems (OA-master) and (QOA-master).
1.3 Set iteration counter k = 1, and LB0 = − inf.

2. Repeat until f (x̄, ȳ) − LBk−1 ≤ ε.

2.1 Solve problem (OA-master) to obtain LBk

2.2 Calculate the estimated optimal value f̂ ∗
k according to (2).

2.3 Solve problem (QOA-master) to obtain yk

2.4 Solve problem (NLP-I) with integer variables fixed as yk to obtain xk and λk .
2.4.1 If problem (NLP-I) is infeasible, obtain xk by solving feasibility problem (NLP-f).

2.5 Generate cuts atxk, yk according to (1) and add these to problems (OA-master) and (QOA-master).
2.6 If xk, yk is feasible and f (xk, yk) ≤ f (x̄, ȳ), set x̄, ȳ, λ̄ = xk, yk, λk .
2.7 Increase iteration counter, k = k + 1

3 Return x̄, ȳ as the optimal solution.

which can reduce the computational complexity of both the L-OA and Q-OAmethod.
Section 5 proves the method’s convergence to the optimal solution in a finite number
of iterations, and Sect. 6 discusses the computational aspect more in detail.

The technique used for obtaining the integer combinations in Q-OA actually results
in an interpolation between theminimizer of the linear approximation in problem (OA–
master) and the minimizer of the Lagrangean approximation, where α in Eq. (2) is the
interpolation parameter. Setting α = 1 will force the solution of problem (QOA-mas-
ter) to the minimizer of problem (OA-master), and setting α close to zero will allow
the solution to be close to the minimizer of the Lagrangean approximation. The Q-OA
method will, therefore, be less sensitive to the accuracy of the Lagrangean approx-
imation, compared to the method in [13]. In the next section, we prove that finite
convergence of Q-OA can still be guaranteed even if the Hessian of the Lagrangean
is only estimated as long as it remains positive semidefinite.

To provide a geometric interpretation of the method and to show how it differs from
OA and L-OA, we apply the method to the illustrative test problem (Ex 1). We use the
same starting point (x0, y0) as before and we set the level parameter as α = 0.5. To
solve the problem with these parameters Q-OA requires three iterations. The first two
iterations are shown in Fig. 4. In the third iteration, we are able to verify optimality
after only solving the MILP subproblem, since we obtain LB3 = f (x̄, ȳ). From the
figure, note that the reduction constraint given by Eq. (9), prevents the algorithm form
taking a too short step in the first iteration, and the optimal solution is actually obtained
in the first iteration. If the trial solution had only been chosen as the minimizer of the
Lagrangean relaxation, it would have resulted in less progress per iteration. It should
also be noted that not a single infeasible integer combination was encountered.
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Fig. 4 The figures illustrate the first two iterations needed to solve problem (Ex 1) with the Q-OA method.
The dashed ellipses represent the contours of the approximated Lagrangean used as the objective in the

MIQP subproblem and the red line shows the level constraint given by μ ≤ f̂ ∗
k . The circular dots represent

the best found solution so far, the squared dots represent the solutions obtained from the MIQP subproblem
and diamond shaped dots represent the solutions obtained by one of the NLP subproblems

5 Convergence properties

Proving finite convergence of L-OA andQ-OA can be done similarly as for the original
OA, and some of the results from [10,13] are directly applicable. Finite convergence
can be proven as follows. We show that an infeasible integer combination obtained by
L-OA or Q-OAwill be cut off by the cuts generated according to Eq. (1) and therefore,
this integer combination cannot be obtained in any future iteration. Next, we prove
that a specific integer combination cannot be obtained twice with either method unless
optimality is proven. The methods, therefore, obtain new integer combinations at each
iteration, and since there are only a finite number of such combinations, the methods
will converge in a finite number of iterations.

Convexity of the nonlinear functions is crucial since it ensures that no feasible
integer solution is cut off by the cuts generated by L-OA or Q-OA and that problem
(OA-master) gives a valid lower bound, as is stated in Lemma 1. The lemma and a
proof is also found in [13].

Lemma 1 Solving problem (OA-master) yields a valid lower bound to the optimum of
the MINLP problem.

Proof From the first order convexity condition we know that for any convex differen-
tiable function φ(x, y),

φ(x, y) ≥ φ(x0, y0) + ∇φ(x0, y0)T
[
x − x0

y − y0

]
∀(x, y), (x0, y0) ∈ Dφ,

where Dφ is the domain in which the function is convex. Therefore, the feasible
region of the problem (MINLP) will be overestimated and the objective function will
be underestimated at each iteration. ��
In Theorem 2, we prove that L-OA andQ-OA always find new integer combinations as
long as optimality is not guaranteed, which requires some intermediate results given
in the following two lemmas.
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Lemma 2 An infeasible integer combination yk, i.e., an integer combination such that
problem (NLP-I) is infeasible, will be cut off by the cuts generated in L-OA and Q-OA.

Proof It is proved in [13], that solving the feasibility problem and adding cuts for
the active constraints will cut off yk from the search space. For more details see [13]
Lemma 1 page 331. ��
Lemma 3 If the lower bound is not equal to the upper bound, then there exists a
solution to the MIQP subproblems in L-OA and Q-OA.

Proof Due to convexity, the linear approximation problem (OA-master) is always
feasible if theMINLPproblem is feasible. TheMIQP subproblem in both L-OAandQ-
OAcontains the sameconstraints as problem (OA-master) and the reduction constraint.
Since f̂ ∗

k is calculated according to Eq. (2), the solution to problem (OA-master) is a
feasible solution to the MIQP subproblem. If problem (OA-master) is infeasible, the
search will be terminated since it verifies that the MINLP is infeasible. ��
Theorem 2 If the lower bound is not equal to the upper bound, then the MIQP sub-
problems in L-OA and Q-OA will give a new integer combination.

Proof By Lemma 2, we know that any infeasible integer combination that has been
found is cut off from the search space by the cuts added to the subproblems. Since
the upper and lower bound are not equal, we know that the estimated optimum will
be smaller than the upper bound, i.e., f̂ ∗

k < f (x̄, ȳ). This is obviously true for all
feasible solutions found so far, which we denote as x̂i, ŷi, and the following relation
is obtained,

f̂ ∗
k < f (x̄, ȳ) ≤ f (x̂i, ŷi) ∀i . (10)

At all the obtained feasible solutions x̂i, ŷi, the methods generate the following lin-
earizations of the objective,

f (x̂i, ŷi ) + ∇ f (x̂i, ŷi )T
[
x − x̂i

y − ŷi

]
≤ μ. (11)

In both theMIQP subproblem in L-OA and in Q-OA, we have the reduction constraint
μ ≤ f̂ ∗

k , and from Eq. (11) it follows that the next solution must satisfy,

∇ f (x̂i, ŷi )T
[
x − x̂i

y − ŷi

]
< 0 ∀i . (12)

Now, assume that one of the feasible solutions x̃, ỹ ∈ {x̂i, ŷi } can be perturbed in the
x-variables by Δx such that it satisfies all constraints of the MIQP subproblem and
the property given by Eq. (12). Since x̃ was obtained by solving problem (NLP-I), it
must satisfy the KKT-conditions,
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∇x f (x̃, ỹ) +
l∑

j=1

λ j∇xg j (x̃, ỹ) + AT γ = 0

g j (x̃, ỹ) ≤ 0 ∀ j = 1, . . . , l

Ax̃ + Bỹ ≤ b

λ, γ ≥ 0

λ j g j (x̃, ỹ) = 0 ∀ j = 1, . . . , l

(Ax̃ + Bỹ − b) ◦ γ = 0,

(13)

where ∇x is the gradient with respect to x-variables, and γ are the multipliers of
the linear constraints. At the solution x̃, ỹ, the methods will generate the following
supporting hyperplanes,

g j (x̃, ỹ) + ∇g j (x̃, ỹ)T
[
x − x̃
y − ỹ

]
≤ 0 ∀ j | λ j �= 0. (14)

Since these are all active constraints, the constant on the left-hand side must be zero,
i.e., g j (x̃, ỹ) = 0. The perturbationΔxmust satisfy Eq. (14), which can be written as,

λ j∇x g j (x̃, ỹ)TΔx ≤ 0 ∀ j = 1, . . . , l. (15)

The same is also true for the linear constraints. For all active linear constraints Δx
cannot increase the value of the left hand side. This condition can be summed over all
linear constraints by the multipliers γ as

γ TAΔx ≤ 0. (16)

The perturbation also has to satisfy the reduction stated in Eq. (12), which yields,

∇x f (x̃, ỹ)TΔx < 0. (17)

Adding all inequalities from Eqs. (15), (16) and (17) results in the following strict
inequality,

∇x f (x̃, ỹ)TΔx +
l∑

j=1

λ j∇xg j (x̃, ỹ)TΔx + γ TAΔx < 0. (18)

However, taking the inner product of Δx and both sides of the first KKT condition
results in the following equality

∇x f (x̃, ỹ)TΔx +
l∑

j=1

λ j∇xg j (x̃, ỹ)TΔx + γ TAΔx = 0, (19)
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which leads to a contradiction. Therefore, there cannot exist a Δx that satisfies all
constraints of the MIQP subproblems without a change in the y-variables. As stated in
Lemma 3, there always exists a solution to theMIQP subproblems as long as the lower
bound is not equal to the upper bound. Solving the MIQP subproblem will, therefore,
result in a new integer combination different from all previously obtained solutions.

��

Note that no assumptions were made in Theorem 2 regarding optimality of the MIQP
subproblem. Therefore, the theorem is true for any solution that satisfies all constraints
of the MIQP subproblem, optimal or not. Furthermore, Theorem 2 holds even if we
make an arbitrary change to the objective function in the MIQP subproblems. An
estimate of the Hessian in Q-OA will, therefore, be sufficient for Theorem 2 to hold.
The next theorem summarizes the convergence properties.

Theorem 3 Both L-OA and Q-OA will terminate after a finite number of iterations,
either by verifying optimality of the best-found solution or proving that the MINLP
problem is infeasible.

Proof From Lemma 1, it is clear that solving problem (OA-master) will either provide
a valid lower bound or prove infeasibility. Furthermore, the proof of Lemma 1 also
establishes that no feasible solution will be excluded from the search space. According
to Theorem 2, both L-OA and Q-OA will find new integer combinations at each
iteration as long as the gap between the upper and lower bound is not equal to zero.
Since the linear constraints are assumed to give rise to a compact set, it is clear that
there can only exist a finite number of different integer combinations, and thus, both
methods must terminate after a finite number of iterations. ��

Hence, we have proved that both proposed methods converge to a global optimal
solution in a finite number of iterations. In the next section, we present a numerical
comparison of the proposed methods and compare the results to the original OA
method.

6 Computational results

In this section, we discuss our computational experiments and the obtained results. To
compare the practical performance of the methods, we have implemented the original
OA as well as L-OA and Q-OA. The main advantage of L-OA and Q-OA compared
to the original OA, is the ability to handle highly nonlinear MINLP problems more
efficiently. L-OA is more conservative when choosing the trial solutions, and tries
to stay close to the best found feasible solution, which should reduce the number of
infeasible integer combinations obtained. In Q-OA we are also able to incorporate
second order information when choosing new integer combinations. Hence, the new
integer combination is chosen with information regarding the curvature around the
current solution. From the test problems, we observed a significant reduction in the
number of iterations with both L-OA and Q-OA compared to the original OA.
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To test and compare the methods we have implemented them and applied them to
convexMINLPproblemsobtained fromMINLPlib2 (rev. 373, as of 2017-11-07)1 [15].
This set was chosen since it contains a large variety of different test problems originat-
ing from both practical applications as well as theoretical test problems. As mentioned
earlier, both L-OA and Q-OA are intended for problems with high to medium degrees
of non-linearity, and therefore, we used the following criteria for choosing the test
problems

1. Classified as convex.
2. Having at least one discrete variable.
3. Having at least one continuous variable.
4. Satisfying the following inequality

nnonlin
n + m

> 0.5, (20)

where nnonlin is the number of variables present in some nonlinear term and m + n is
the total number of discrete and continuous variables. There are in total 109 convex
MINLP problems in MINLPlib2 (rev. 373, as of 2017-11-07) that satisfy the given
criteria. These problems originate from several applications such as process synthesis,
facility layout problems, batch designwith storage, portfolio optimization andMINLP
test problems. The test instances have between 7 and 4530 variables and 0–1822
constraints.More details of the test instances are provided in the supplementalmaterial.

Next, we describe some details regarding the implementation of the methods and
the computational results are presented in Sects. 6.2 and 6.3.

6.1 Implementation details

The implementation of the methods compared here was made in MATLAB using
Gurobi 7.5.1 [19] as subsolver for the MILP/MIQP subproblems and IPOPT 3.12.7
[32] for the NLP subproblems. Furthermore, we use some functionality from OPTI
Toolbox [7] to read the test problems.

Both L-OA and Q-OA require a feasible starting solution, and to obtain such a
solution we start by performing a few original OA iterations. Once a feasible solution
is obtained, we switch to either L-OA or Q-OA. The level parameter α was set to 0.5
with both methods in the comparison.

According toTheorem2, it is not necessary to find the optimal solution for theMIQP
subproblems, and any feasible solution for these problems is sufficient for guaranteeing
that both L-OA and Q-OA converge to the global optimum. This is an important
property, since solvers such as Gurobi or CPLEX are often able to quickly find several
feasible solutions, and quite often the majority of the solution time is spent proving
optimality. We use a strategy of stopping the solver once a certain number of feasible
solutions have been found, and specifically, we stop after 10 solutions have been
found. This is simply done by setting the SolutionLimit parameter to 10. Using this

1 http://www.gamsworld.org/minlp/minlplib2/html/index.html.
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approach,we hope to ensure thatwe obtain a good solution to theMIQPproblem,while
significantly reducing the total solution time. For the MIQP subproblems, we always
have a feasible solution available, the solution to the MILP subproblem (OA-master),
and providing this as a starting solution to Gurobi also improved the performance. For
the MILP subproblems, we used the default settings in Gurobi, and we also used the
default settings for IPOPT.

The NLP subproblem (NLP-I) is always convex for these test problems. However,
for some specific test problems we encountered some difficulties where the solver
failed to find the optimal solution. Such difficulties could, for example, be caused
by a specific integer combination not satisfying the constraint qualifications. These
issues were not frequent and they only occurred for a few test problem in the entire
MINLPLib2. To deal with such issues we chose a simple approach; if the NLP sub-
problem (NLP-I) is feasible but the NLP solver fails, we generate cutting planes for
all violated constraints at the solution given by the MILP subproblem (OA-master)
according to Eq. (1). These cuts will exclude the current solution to subproblem (OA–
master) from the search space [35], and thus prevent cycling. Adding these cuts is
equivalent to performing an iteration of the ECP method. From the convergence prop-
erties of the ECP method, we know that adding these cuts will eventually result in a
new integer combination or verify optimality of an obtained solution.

Since the problems we consider are all convex, the Hessian of the Lagrangean is
always positive semidefinite. However, due to numerical accuracy we did encounter
a few cases where the Hessian was not strictly positive semidefinite, i.e., the smallest
eigenvalue was not positive but in the range of − 10−9. To make sure that the MIQP
subproblems are convex, we slightly modify the diagonal elements of the Hessian. For
each row i of theHessianwhich contains a nonzero element,wemodify the diagonal by

∇2
x,yL(i, i) := ∇2

x,yL(i, i) + |λmin|, (21)

where λmin is chosen as the smallest eigenvalue of the Hessian. This modification
guarantees that all eigenvalues are positive [17], and thus, ensures convexity of the
MIQP subproblem. The modification of the Hessian is only done in case one of the
eigenvalues are negative.

As termination criteria, we used both an absolute optimality tolerance ε and a
relative optimality tolerance εrel . The search is, thus terminated if either

f (x̄, ȳ) − LB ≤ ε or
f (x̄, ȳ) − LB

| f (x̄, ȳ)| + 10−10 ≤ εrel

are satisfied. Here LB denotes the current lower bound. These can be considered as
the standard termination criteria for MINLP problems.

All tests were performed on an Intel Core i7 2.93GHz CPU desktop with 16GB of
RAM running Windows 7. As termination criteria, we set the tolerances ε = 10−5

and εrel = 10−3, and a time limit of 900s.
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Fig. 5 Bound profiles for instance cvxnonsep_nsig40 against time. The figure shows the upper bound
(UB) and lower bound (LB) obtained by the OA, L-OA, and Q-OA methods

6.2 Illustrative examples

In this section, we present more detailed results of two particular instances of the
selected test set. These instanceswere chosen such that they could exemplify the results
shown in the following section. The selected instances are cvxnonsep_nsig402

and ibs2.3 The first instance was proposed by Kronqvist et al. [24], it contains
20 integer variables and 20 continuous variables, a linear objective and a signomial
constraint. This seemingly simple problem is designed to be challenging for methods
such asOAandECPdue to a highly nonlinear constraint. The second instance has 1500
binary variables, 1510 continuous variables, a linear objective, and 1821 constraints,
of which 10 are nonlinear including square and logarithm operators. This problem
represents a particular challenge for theOAmethod given its combinatorial complexity
and the fact that most of its variables, discrete and continuous, are involved in a
nonlinear fashion in the constraints.

To illustrate how themethods differ for these problems,we show the upper and lower
bounds obtained by each method. Figures 5 and 6 show the progress of the bounds
as a function of time for problems cvxnonsep_nsig40 and ibs2, respectively.
From the figures, it can be observed that Q-OA is able to improve the upper bound
more quickly than the other methods. This is usually the case and is explained by that
fact that Q-OA utilizes more information when choosing the integer combinations
than the other methods. Especially for the instance ibs2, there was a clear advantage
of incorporating information from the second order derivatives, and Q-OA clearly
performs better than L-OA.

From the results presented in the bounds profiles and in Table 1, we notice how
including the level regularization can improve the performance of the OA method

2 http://www.gamsworld.org/minlp/minlplib2/html/cvxnonsep_nsig40.html.
3 http://www.gamsworld.org/minlp/minlplib2/html/ibs2.html.
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Fig. 6 Bound profiles for instance ibs2 against time. The figure shows the upper bound (UB) and lower
bound (LB) obtained by the OA, L-OA, and Q-OA methods

while solving convex MINLPs. For the instance cvxnonsep_nsig40 we notice a
reduction in time of 59% and 66% using the L-OA and the Q-OAmethod, respectively.
Although the new methods require the solution of an MIQP subproblem in each iter-
ation, the extra time invested in finding the next integer combination is compensated
with a reduction in both iterations and time.

For the instance ibs2, OA is unable to close the optimality gap under 0.1% within
the time limit of 900s even though it performs 431 iterations. When solving the prob-
lem with L-OA the upper bound initially diminishes faster in terms of both time and
iterations compared to OA, but the MIQP subproblems become hard to solve result-
ing in only 41 iterations before hitting the time limit. When utilizing second order
information with the Q-OA method, the problem is solved within an optimality gap
of 0.1% in 104s and just after 16 iterations, while only encountering 2 infeasible
NLP subproblems. Note that, for both illustrative examples the methods are all able
to obtain a tight lower bound already in the first iteration, which is not generally
the case. Usually, the lower bounds can also vary significantly between the meth-
ods.

6.3 Numerical results

Having observed the improvement in performance of the proposed methods compared
to OA in the illustrative examples, we considered the whole test set defined at the
beginning of this section. In order to compare the performance of the methods, we
have used performance profiles [9] both in terms of solution time and iterations in
Figs. 7 and 8, respectively. The profiles show the number of problems solved against
the respective performance ratio threshold τ . A data point at each plot represents the
number of instances that each method solved within a factor τ of the best solver.
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Fig. 7 Time performance profiles for test problems
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Fig. 8 Iterations performance profiles for test problems

Figure 7 shows how the Q-OA method is superior to both L-OA and OA for the
selected test set in terms of solution time. The figure shows that Q-OA solves most
instances to the desired optimality gap, and it solves the problems in the least amount
of time. L-OAhas initially theworst performance of the 3methods for τ ≤ 3, but in the
end, the performance is similar to that of OA without reaching the number of solved
instances by Q-OA. It is also worth mentioning, that all the instances that remained
unsolved with Q-OA are also unsolved with both OA and L-OA. Q-OA is thus able to
solve all the problems solved with the other methods and some additional problems.

The performance profiles in terms of iterations in Fig. 8 show a clear advantage of
Q-OA compared to the other 2 methods. Considering iterations, L-OA also performs
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Table 2 Number of instances solved and comparison in solution time and iterations of OA, L-OA, and
Q-OA

Method Instances
solved

Less time
than OA

Fewer
iterations
than OA

Less time
than L-OA

Fewer
iterations
than L-OA

Less time
than Q-OA

Fewer
iterations
than Q-OA

OA 94/109 – – 61/94 23/94 38/94 3/94

L-OA 95/109 34/95 57/95 – – 9/94 2/94

Q-OA 96/109 57/96 80/96 86/96 84/96 – –

better than OA, and the profiles show a clear reduction in terms of iterations for both
L-OA and Q-OA.

Given that the performance profiles show the results without distinguishing the
individual instances, we include Table 2, which shows a direct comparison of the
methods in terms of solution time and iterations. Note that Q-OA is able to solve 1
and 2 instances more than L-OA and OA, respectively.

None of the methods were able to find a solution within 0.1% of optimality gap for
13 instances in the test set. When comparing the proposed methods to OA, we see that
L-OA is able to reduce the solution time in 36% of the instances and the iterations in
60%, while Q-OA reduced the time in 59% of the instances and the iterations in 83%.
From the results, it was also noticed that the benefits of Q-OA are more apparent for
the more challenging instances. By comparing the two proposed methods we see that
Q-OA solves 90% of the instances in less time and 87.5% of the instances in fewer
iterations than L-OA. Detailed solution information for all instances and methods can
be found in the supplemental material.

An interesting result is that the proposed methods significantly decreased the num-
ber of infeasible NLP subproblems found while solving the selected problems. Using
OA we obtained 877 infeasible NLP subproblems, while using L-OA and Q-OA we
only obtained 259 and 257, respectively. This can be explained by the fact that the
integer combinations are chosen closer in the search space to the best feasible solution,
and information about the curvature is utilized with the proposed methods. Choosing
an integer combination close to a feasible solution also results in trial solutions close
to the feasible region, which resulted in fewer infeasible trial solutions.

The solutions reported here were obtained using the level parameter α = 0.5. We
performed several tests varying the value of α, which resulted in significant changes
for individual instances but rather insignificant when considering the whole test set.
Overall, α = 0.5 gave us the best results for this set of test problems.

7 Conclusions and future work

We have presented two newmethods for solving convexMINLP problems, based on a
regularization technique and a secondorder approximation of theLagrangean.Wehave
proven that both methods converge to the global optimal solution in a finite number of
iterations, and shown that the proofs hold even if the MIQP subproblem is only solved
approximately. Both methods are mainly intended for problems with moderate to high
degrees of nonlinearity, and for such problems, both methods performed better than
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the original OA method. The new method called Q-OA required significantly fewer
iterations than the original OA, and there was also a clear advantage in the solution
time. The advantage is due to the fact that more information is utilized when choosing
the integer combinations. The method L-OA uses a regularization technique which we
showed is equivalent to using a trust region. The regularization prevents large jumps
between iterations and tries to keep the trial solutions close to the feasible region, and
for the test problems, it gave an advantage over the original OA. For the test problems,
Q-OA performed better than the other methods, both with respect to the number of
iteration and time. Furthermore, using Q-OAwewere able to solve a larger percentage
of the test problems within the time limit.

As future work we plan to implement the methods in a more efficient and flexible
framework, e.g., within anMINLP solver likeDICOPT [18] or as part of a Toolkit in an
optimization modeling software such as Pyomo or JuliaOpt. It could also be worth to
investigate a dynamic update of the level parameterα. For example, it could be possible
to adjust the parameter based on the current optimality gap. Another idea would be to
investigate if the concepts used within L-OA and Q-OA could be effectively integrated
within the framework of the NLP/LP based branch and bound algorithm presented in
[28].
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