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Abstract
Convex optimization problems arising in applications often have favorable objective
functions and complicated constraints, thereby precluding first-order methods from
being immediately applicable. We describe an approach that exchanges the roles of
the objective with one of the constraint functions, and instead approximately solves a
sequence of parametric level-set problems. Two Newton-like zero-finding procedures
for nonsmooth convex functions, based on inexact evaluations and sensitivity infor-
mation, are introduced. It is shown that they lead to efficient solution schemes for the
original problem. We describe the theoretical and practical properties of this approach
for a broad range of problems, including low-rank semidefinite optimization, sparse
optimization, and gauge optimization.
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1 Introduction

We demonstrate a method for solving constrained convex optimization problems that
interchanges the objective with one of the constraint functions. This interchange
defines a convex and nonsmooth univariate optimal-value function v(τ), which is
parameterized by the level values of the original objective. A solution of the original
problem can then be obtained by computing a root τ∗ of a single nonlinear equation
of the form

v(τ) = σ, (1.1)

where the root corresponds to the desired optimal level value. This approach has been
used to develop a variety of solutionmethods—some dating back to antiquity; see Sect.
1.3. Particular implementations of this idea, however, are all tied to specific choices
of the algorithm used to approximate the function value v(τk) and the algorithm used
to update the sequence of level values τk → τ∗. Our proposed approach only requires
a fixed relative accuracy between upper and lower bounds on v(τk). In doing so, we
give an algorithm with an overall iteration complexity that is only a log factor of the
iteration complexity needed to approximate v(τk). This results in a framework that
decouples the method for approximating v(τ) from the method for solving (1.1) and
thereby allows for the specification of a wide range of new approaches to constrained
convex optimization.

The story behind our approach begins with the SPGL1 algorithm for basis pur-
suit [52,53]. Although neither SPGL1 nor basis pursuit are our focus, they provide a
concrete illustration of the ideas we pursue. Recall that the goal of the basis pursuit
problem is to recover a sparse n-vector x that approximately satisfies the linear sys-
tem Ax = b. This task often arises in applications such as compressed sensing and
statistical model selection. Standard approaches, based on convex optimization, rely
on solving one of the following formulations. Computationally, BPσ is perceived to

BPσ LSτ QPλ

min
x

‖x‖1 min
x

1

2
‖Ax − b‖22 min

x

1

2
‖Ax − b‖22 + λ‖x‖1

s.t. 12 ‖Ax − b‖22 ≤ σ s.t.‖x‖1 ≤ τ

be the most challenging of the three formulations because of the complicated geom-
etry of the feasible region. For example, projected- or proximal-gradient methods for
LSτ or QPλ require at each iteration applications of the operator A and its adjoint,
and computing either a Euclidean projection onto the 1-norm ball or a proximal step,
which cost O(n log n) and O(n) operations, respectively. As a result, solvers such
as FISTA [3] and SPARSA [58], target either LSτ and QPλ. The Homotopy algo-
rithm [44] and alternating direction method of multipliers (ADMM) [11,26] can be
applied in various ways to solve BPσ , but available implementations require solving
a linear system at each iteration, which is not always practical for large problems.
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Inexact variants of ADMM, such as linearized Bregman [59], do not require a linear
solution, but may compromise by solving an approximation of the problem [59].

This paper targets optimization problems that generalize the formulations BPσ and
LSτ . To set the stage, consider the pair of convex problems

minimize
x∈X

ϕ(x) subject to ρ(Ax − b) ≤ σ, (Pσ )

minimize
x∈X

ρ(Ax − b) subject to ϕ(x) ≤ τ, (Qτ )

where X ⊆ R
n is a closed convex set, the functions ϕ : Rn → R := R ∪ {+∞} and

ρ : Rn → R are closed convex functions, and A is a linear map. Such formulations
are ubiquitous in contemporary optimization and its applications, and often ϕ may be
regarded as a regularizer on the solution x , and ρ may be regarded as a measure of
misfit between a linearmodel Ax and observations b. Other formulations are available,
of course, that may be more natural in a particular context (such as redefining ρ so
that A and b are not explicit). We choose this formulation because it most closely
represents a large class of problems that might appear in practice.

Our working assumption is that the level-set problem Qτ is easier to solve than
Pσ in the sense that there exists a specialized algorithm for its solution, but that a
comparably-efficient solver does not exist for Qτ . In Sect. 4, we discuss a range of
optimization problems, including problems with nonsmooth regularization, and conic
constraints, that have this property.

Our main contribution is to develop a practical and theoretically rigorous algo-
rithmic framework to harness existing algorithms for Qτ to efficiently solve the Pσ

formulation. As a consequence, we make explicit the fact that in typical circumstances
both problems are essentially equivalent from the viewpoint of computational com-
plexity. Hence, there is no reason not to choose any one preferred formulation based on
computational considerations alone. This observation is very significant in applications
since, although the formulations Pσ ,Qτ , and their penalty-function counterparts are,
in a sense, mathematically and computationally equivalent, they are far from equiva-
lent from a modeling perspective. Practitioners should instead focus on choosing the
formulation best suited to their applications. Our second contribution is to provide an
algorithmic recipe for achieving the same computational complexity for a wide range
of regularized data-fitting problems, listed in Sect. 1.2.

1.1 Approach

The proposed approach, which we will formalize shortly, approximately solves Pσ in
the sense that it generates a point x ∈ X that is super-optimal and ε-feasible:

ϕ(x) ≤ OPT and ρ(Ax − b) ≤ σ + ε, (1.2)

where OPT is the optimal value of Pσ . This optimality concept was introduced by
Harchaoui et al. [28], and we adopt it here. Our proposed strategy exchanges the roles
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v(τ)

σ

τ∗=OPTτL

ε

σ

τ∗=OPT

v(τ)
(a) (b)

Fig. 1 a The shaded area indicates the set of allowable solutions τ ∈ [τL , τ∗] to the root-finding prob-
lem (1.1), and corresponds to the set of super-optimal solutions x that satisfy (1.2); b the root may be a
minimizer of v, and then τ∗ corresponds to the left-most root

of the objective and constraint functions in Pσ , and approximately solves a sequence
of level-set problemsQτ for varying parameters τ . There are many precursors for this
level set approach, which we summarize in Sect. 1.3.

How does one use approximate solutions of Qτ to obtain a super-optimal and ε-
feasible solution of Pσ , the target problem? We answer this by recasting the problem
in terms of the value function for Qτ :

v(τ) := min
x∈X

{ ρ(Ax − b) | ϕ(x) ≤ τ } . (1.3)

This value function is nonincreasing and convex [50, Theorem 5.3]. Under the mild
assumption that the constraint ρ(Ax − b) ≤ σ is active at any optimal solution of Pσ ,
it is evident that the value τ∗ := OPT satisfies the Eq. (1.1). Conversely, it is immediate
that for any τ ≤ τ∗ satisfying v(τ) ≤ σ + ε, solutions of Qτ are super-optimal and
ε-feasible for Pσ , as required. Figure 1a illustrates the set of admissible solutions.

In summary, we have translated problemPσ to the equivalent problem of finding the
minimal root of the nonlinear univariate equation (1.1). Aravkin et al. [1, Theorem 2.1]
formally establish the validity of that translation.We show in Sect. 2 how approximate
solutions ofQτ can serve as the basis for two Newton-like root-finding algorithms for
this key equation.

In principle, any root-finding algorithm can be used. However, it must be able to
obtain the left-most root, which is the only permissible solution in the case when
there are multiple roots, as illustrated in Fig. 1b. Several algorithms are available for
the root-finding problem (1.1), including bisection, secant, Newton, and their variants.
Thesemethods all require an initial estimate of the left-most root τ∗. Bisection requires
two initial estimates that bracket the root, and thus it may not always be suitable in
this context because it must be initialized with an upper bound on the optimal value
τ∗ = OPT, which may be costly to compute. (Any feasible solution of (Pσ ) yields an
upper bound, though obtaining it may be as costly as computing an optimal solution.)
On the other hand, both secant and Newton can use initializations that underestimate
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the optimal value. In many important cases, this is trivial: for example, if φ is a norm,
then τ = 0 is an obvious candidate. Secant, of course, requires a second initial point,
which may not be obviously available. The root-finding algorithm should also allow
for inexact evaluations of the value function, and hence allow for approximate and
efficient solutions of the subproblems that define (1.3). If the algorithm used to solve
the subproblems is a feasible method, efficiencies may be gained if the root-finding
algorithm generates iterates that are monotonically increasing, because then solutions
for one subproblem are immediately feasible for the next subproblem in the sequence.

We focus on variants of secant and Newton methods that accommodate inexact
oracles for v, and which enjoy an unconditional global linear rate of convergence. The
secant method requires an inexact evaluation oracle that provides upper and lower
bounds on v (Definition 2.1). The Newton method additionally requires a global affine
minorant (Definition 2.2). Both algorithms exhibit the desirablemonotonicity property
described above. Coupledwith an evaluation oracle for v that has a cost that is sublinear
in ε, we obtain an algorithm with an overall cost that is also sublinear in ε, modulo a
logarithmic factor.

1.2 Roadmap

We prove in Sect. 2 complexity bounds and convergence guarantees for the level-set
scheme.We note that the iteration bounds for the root-finding schemes are independent
of the slope of v at the root. This implies that the proposed method is insensitive to the
“width” of the feasible region inPσ . Suchmethods arewell-suited for problemsPσ for
which the Slater constraint qualification fails or is close to failing (cf. Example 4.2). In
Sect. 3, we consider refinements to the overall method, focusing on linear least-squares
constraints and recovering feasibility. Section 4 explores level-set methods in notable
optimization domains, including semi-definite programming, gauge optimization, and
regularized regression. We also describe the specific steps needed to implement the
root-finding approach for some representative applications, including low-rank matrix
completion [35,47], and sensor-network localization [7–9].

1.3 Related work

The intuition for interchanging the role of the objective and constraint functions has
a distinguished history, appearing even in antiquity. Perhaps the earliest instance is
Queen Dido’s problem and the fabled origins of Carthage [22, Page 548]. In short, that
problem is to find the maximum area that can be enclosed by an arc of fixed length and
a given line. The converse problem is to find an arc of least length that traps a fixed
area between a line and the arc. Although these two problems reverse the objective and
the constraint, the solution in each case is a semi-circle. The interchange of constraint
and objective is at the heart of Markowitz mean-variance portfolio theory [37], where
the objective and constraint roles correspond to the rate of return and variance of
a portfolio. The great variety of possible modern applications is formalized by the
inverse function theorem in Aravkin et al. [1, Theorem 2.1]. More generally, trade-offs
between various objectives form the foundations formulti-objective optimization [39].

123



364 A. Y. Aravkin et al.

The idea of rephrasing a constrained optimization problemas a root-finding problem
has been used for at least half a century to thework ofMorrison [40] andMarquadt [38].
The approach there is to minimize a quadratic function q(x) subject to the trust-region
constraint:

minimize
x∈Rn

q(x) subject to ‖x‖2 ≤ Δ.

Newton’s method is used to compute a root for the equation ‖x(λ)‖22 − Δ = 0, where
x(λ) is the solution of a parameterized unconstrained problem. This is the basis for
the family of trust-region algorithms for constrained and unconstrained optimization.
Newton’s method for the trust-region subproblem motivated the SPGL1 algorithm
[52,53] for the 1-norm regularized least-squares problem and its extensions [1]. A
shortcoming of the numerical theory to date is the absence of practical complexity
and convergence guarantees. In this work, we take a fresh new look at this general
framework and provide rigorous convergence guarantees. Several examples illustrate
the vast applicability of the approach, and show how the proposed framework can be
instantiated in concrete circumstances.

The root-finding approach is central to the ideas pioneered byLemaréchal et al. [33],
who propose a level bundle method for convex optimization [32,56]. They consider
the convex optimization problem

minimize
x∈X

f0(x) subject to f j (x) ≤ 0 for j = 1, . . . ,m, (1.4)

where each function f j is convex and X is a nonempty closed convex set. The root-
finding equation is based on the function

g(τ ) := min
x∈X

max { f0(x) − τ, f1(x), . . . , fm(x)},

and their algorithm constructs the smallest solution τ∗ to the equation g(τ ) = 0,
which corresponds to the optimal value (1.4). This method is also analyzed in depth
by Nesterov [42, §3.3.4]

More recently, Harchaoui et al. [28] present an algorithm focusing on instances of
Pσwhere the constraint function ρ is smooth and ϕ is a gauge function defined by
the intersection of a unit ball for a norm and a closed convex cone. Their zero-finding
method is coupled with the Frank–Wolfe algorithm, which generates lower bounds
and affine minorants on the value function. In contrast, our root finding phase does not
depend on the algorithm used to solve the subproblems, as is the case in the approaches
described by Aravkin et al. [1] and van den Berg and Friedlander [52,53]. In particular,
the approachwe take can use any affineminorant obtained from a dual certificate, aswe
describe in Sect. 2.3. Primal-dual algorithms can generate such certificates, but are not
always practical for large-scale problems. On the other hand, first-order methods are
often more suitable for large problems, but it not always obvious how to generate such
certificates. Affine minorants can derived from the Frank–Wolfe algorithm (cf. Sect.
2.3), and from other families of first-order methods [19]. One approach that may be
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used in practice is to apply first-order methods in parallel to the the primal and dual
problems.

1.4 Notation

The notation we use is standard, and closely follows that of Rockafellar [50]. For any
function f : Rn → R, we use the shorthand [ f ≤ α] := {x | f (x) ≤ α} to denote the
α-sublevel set. An affine minorant of f is any affine function g satisfying g(x) ≤ f (x)
for all x . For any set C ⊆ R

n , we define the associated indicator function δC vanishes
over C and is infinite elsewhere. The p-norms and corresponding closed unit balls
are denoted, respectively, by ‖ · ‖p and Bp. For any convex cone K defined over a
Euclidean space, the dual cone is defined by K∗ := {y | 〈x, y〉 ≥ 0 for all x ∈ K } .

The norm on that space is given by ‖x‖ = √〈x, x〉.
We endow the space of real m × n matrices with the trace product 〈X ,Y 〉 :=

tr (XT Y ) and the induced Frobenius norm ‖X‖F := √〈X , X〉. The Euclidean space
of real n × n symmetric matrices, written as Sn , inherits the trace product 〈X ,Y 〉 :=
tr (XY ) and the corresponding norm. The closed, convex cone of n× n positive semi-
definite matrices is denoted by Sn+ = {X ∈ Sn | X � 0}.

2 Root-finding with inexact oracles

Algorithms that provides approximate solutions of Qτ are central to our framework
because these constitute the oracles through which we access v. In this section, we
describe the complexity guarantees associated with two types of oracles: an inexact-
evaluation oracle that provides upper and lower bounds on v(τ), and an affine-minorant
oracle that additionally provides a global linear underestimator on v. For example, any
primal-dual algorithm provides the required upper and lower bounds, and algorithms
such as Frank–Wolfe [24,29] automatically provide a global linear minorant, which
gives approximate derivative information. The ability to use inexact solutions is crucial
in practice, where the effort needed for each oracle call must be bounded.

As a counterpoint to the global complexity guarantees for inexact oracles that we
describe later in this section, Theorem 2.1 describes the asymptotic superlinear rate
of convergence for the secant and Newton methods with exact evaluations of any
nonsmooth convex function. To our knowledge, the superlinear convergence of the
secant method for convex root finding does not appear in the literature and so we
provide the proof of this result in the appendix.

Theorem 2.1 (Superlinear convergence of secant and Newton methods) Let f : R →
R be a decreasing, convex function on the interval [a, b]. Suppose that the point
τ∗ := inf {τ | f (τ ) ≤ 0 } lies in (a, b) and the non-degeneracy condition g∗ :=
inf {g | g ∈ ∂ f (τ∗) } < 0 holds. Fix two points τ0, τ1 ∈ (a, b) satisfying τ0 < τ1 < τ∗
and consider the following two iterations:

τk+1 :=
{

τk if f (τk) = 0,

τk − f (τk )
gk

[with gk ∈ ∂ f (τk)] otherwise;
(Newton)
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and

τk+1 :=
{

τk if f (τk) = 0,

τk − τk−τk−1
f (τk )− f (τk−1)

f (τk) otherwise.
(Secant)

If either sequence terminates finitely at some τk , then it must be the case τk = τ∗.
If the sequence {τk} does not terminate finitely, then |τ∗ − τk+1| ≤ (1 − g∗/γk)|τ∗ −
τk |, k = 1, 2, . . . , where γk = gk for the Newton sequence and γk is any element
of ∂ f (τk−1) for the secant sequence. In either case, γk ↑ g∗ and τk ↑ τ∗ globally
q-superlinearly.

The algorithms presented here apply to any convex decreasing function f : R → R

for which the equation f (τ ) = 0 has a solution. In the following discussion, τ∗ denotes
a minimal root of f (τ ) = 0. Given a tolerance ε > 0, the algorithms we discuss yield
a point τ ≤ τ∗ satisfying 0 ≤ f (τ ) ≤ ε.

2.1 Inexact secant

Our first root-finding algorithm is an inexact secant method, and is based on an oracle
that provides upper and lower bounds on the value f (τ ).

Definition 2.1 (Inexact evaluation oracle) For a function f : R → R and ε ≥ 0,
an inexact evaluation oracle is a map O f ,ε that assigns to each pair (τ, α) ∈ [ f >

0] × [1,∞) real numbers (�, u) such that � ≤ f (τ ) ≤ u and either u ≤ ε, or u > ε

and 1 ≤ u/� ≤ α.

This oracle guarantees that either (i) we obtained an ε-accurate solution τ , or (ii)
that � > 0 and 1 ≤ u/� ≤ α. The ratio u/� measures the relative optimality of the
point τ . In contrast to the absolute gap u − �, it allows the oracle to be increasingly
inexact for larger values of f (τ ). The relative-accuracy condition is no less general
than one based on an absolute gap. In particular, we can verify that if the absolute
gap satisfies the condition u − � ≤ (1 − 1/α)ε, then u and � satisfy the conditions
required by the inexact evaluation oracle. Indeed, provided that u > ε, we deduce
u/� ≤ 1+ (1− 1/α)ε/� ≤ 1+ (1− 1/α)u/�. After rearranging terms, this yields the
desired inequality 1 ≤ u/� ≤ α.

Algorithm 2.1 outlines a secant method based on the inexact evaluation oracle.
Theorem 2.2 establishes the corresponding global convergence guarantees; the proof
appears in Appendix A.

Theorem 2.2 (Linear convergence of the inexact secant method) The inexact secant
method (Algorithm 2.1) terminates after at most

k ≤ max
{
2 + log2/α(2C/ε) , 3

}
iterations, where C := max{|s1|(τ∗ − τ1), �1} and s1 := (u0 − �1)/(τ0 − τ1).
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Algorithm 2.1: Inexact secant method
Data: Target accuracy ε > 0; a decreasing convex function f : R → R via an inexact evaluation

oracle O f ,ε ; initial points τ0, τ1 with τ0 < τ1 such that f (τ1) > 0; constant α ∈ (1, 2).
(�0, u0) ← O f ,ε (τ0, α), (�1, u1) ← O f ,ε (τ1, α), u1 ← min(u1, u0), k ← 1
while uk > ε do

sk ← (uk−1 − �k )/(τk−1 − τk ) [slope of linear approximation]
τk+1 ← τk − �k/sk [secant iteration]
(�k+1, uk+1) ← O f ,ε (τk+1, α) [oracle evaluation for lower/upper

bounds]
uk+1 ← min{uk+1, uk } [ensure upper bound decreases]
k ← k + 1

return τk

The iteration bound of the inexact secant method is indifferent to the slope of the
function f at the minimal root τ∗ because termination depends on function values
rather than proximity to τ∗. The plots in Fig. 2 illustrate this behavior: panel (a) shows
the iterates for f1(τ ) = (τ − 1)2 − 10, which has a nonzero slope at the minimal
root τ∗ = 1 − √

10 ≈ −2.2 and so has a non-degenerate solution; panel (c) shows
the iterates for f2(τ ) = τ 2, which is clearly degenerate at the solution. The algorithm
behaves similarly on both problems.When applied to the value function v to find a root
of (1.1), the algorithm’s indifference to degeneracy translates to an insensitivity to the
width [48] of the feasible region of Pσ —a consequence of the fact that the scheme
maintains infeasible iterates for Pσ . Such methods are well-suited for problems Pσ

for which the Slater constraint qualification is close to failing.
The iteration bound in Theorem 2.2 is infinite for α ≥ 2. This is not an artifact of

the proof. As illustrated by Fig. 2b, the inexact secant method behaves poorly for α

close to 2. Indeed, it can fail to converge linearly (or at all) to the minimal root for
any α ≥ 2, as the following example shows. Consider the linear function f (τ ) = −τ

with lower and upper bounds �k := −2τk/(1 + α) and uk := −2ατk/(1 + α). A
quick computation shows that the quotients qk := τk/τk−1 of the iterates satisfy the
recurrence relation qk+1 = (1 − α)/(qk − α). It is then immediate that for all α ≥ 2,
the quotients qk tend to one, indicating that the method stalls.

2.2 Inexact Newton

The secant method can be improved by using approximate derivative information
(when available) to design a Newton-type method. We design an inexact Newton
method around an improved oracle that provides global linear under-estimators of f .
This approach has two main advantages over the secant method. First, it is guaranteed
to take longer steps than the inexact secant method. Second, it locally converges
quadratically whenever f is smooth, the values f (τ ) are computed exactly, and the
function has a nonzero (left) derivative at the minimal root. To formalize these ideas,
we use the following strengthened version of an inexact evaluation oracle.

Definition 2.2 (Affine minorant oracle) For a function f : R → R and ε ≥ 0, an affine
minorant oracle is a mappingO f ,ε that assigns to each pair (τ, α) ∈ [ f > 0]×[1,∞)
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k = 13, α = 1.3 k = 770, α = 1.99 k = 18, α = 1.3

k = 9, α = 1.3 k = 15, α = 1.99 k = 10, α = 1.3

(a) (b) (c)

(f)(e)(d)

Fig. 2 Inexact secant method (top row) and Newton method (bottom row) for root finding on the functions
f1(τ ) = (τ −1)2 −10 (first two columns) and f2(τ ) = τ2 (last column). Below each panel, α is the oracle
accuracy, and k is the number of iterations needed to converge, i.e., to reach fi (τk ) ≤ ε. For all problems,
ε = 10−2; the horizontal axis is τ , and the vertical axis is fi (τ )

Algorithm 2.2: Inexact Newton method
Data: Target accuracy ε > 0; convex decreasing function f : R → R via an affine minorant oracle

O f ,ε ; initial point τ0 with f (τ0) > 0; constant α ∈ (1, 2).
u−1 ← +∞, (�0, u0, s0) ← O f ,ε (τ0, α), k ← 0
while uk > ε do

τk+1 ← τk − �k/sk [Newton iteration]
(�k+1, uk+1, sk+1) ← O f ,ε (τk , α) [evaluate lower affine minorant oracle]

uk ← min{uk , uk−1} [ensure upper bound decreases]
k ← k + 1

return τk

real numbers (�, u, s) such that � ≤ f (τ ) ≤ u, and either u ≤ ε, or u > ε and
1 ≤ u/� ≤ α. The affine function τ̄ �→ � + s(τ̄ − τ) globally minorizes f .

Algorithm 2.2 gives a Newton method based on the affine minorant oracle. The
inexact Newton method has global convergence guarantees analogous to those of the
inexact secant method, as described in Theorem 2.3. A proof is given in Appendix A.

Theorem 2.3 (Linear convergence of the inexact Newtonmethod) The inexact Newton
method (Algorithm 2.2) terminates after at most

k ≤ max
{
1 + log2/α(2C/ε) , 2

}
iterations, where C := max{|s0|(τ∗ − τ0), �0}.

When we compare the two algorithms, it is easy to see that the Newton steps are
never shorter than the secant steps. Indeed, let (�k−1, uk−1, sk−1) = O f (τk−1, α) and
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(�k, uk, sk) = O f (τk, α) be the triples returned by an affine minorant oracle at τk−1
and τk , respectively. Then

uk−1 ≥ f (τk−1) ≥ �k + sk(τk−1 − τk),

which implies

ssecantk := (uk−1 − �k)/(τk−1 − τk) ≤ sk =: snewtonk .

Therefore, the Newton step length −�k/snewtonk is at least as large as the secant step
length −�k/ssecantk .

The Newton method often outperforms the secant method in practice. The bottom
row of panels in Fig. 2 shows the progress of the Newton method on the same test
problems specfied earlier. The Newton method performs relatively well even when
α is near its upper limit of 2; compare panels (b) and (e) in the figure. In this set of
experiments, we chose an oracle that has the same quality lower and upper bounds as
the experiments with secant, but has the least favorable (i.e., steepest) slope that still
results in a global minorant.

2.3 Lower minorants via duality

When are affine minorant oracles of the value function v readily available? Suppose
we can express the value function in dual form,

v(τ) = max
y∈Rm

Φ(y, τ ),

where Φ is concave in y and convex in τ . For example, appealing to Fenchel duality,
we may write

v(τ) = min
x∈X

{ρ(Ax − b) | ϕ(x) ≤ τ }
= min

x∈Rn
ρ(Ax − b) + δX∩ [ϕ≤τ ](x)

= max
y∈Rm

〈y, b〉 − ρ�(−y) − δ�
X∩ [ϕ≤τ ](A

∗y),

where the last equality holds provided that either the primal or the dual problem has
a strictly feasible point [10, Theorem 3.3.5]. Hence, the Fenchel dual objective

Φ(y, τ ) := 〈b, y〉 − ρ�(−y) − δ�
X∩[ϕ≤τ ](A

∗y) (2.1)

yields an explicit representation forΦ, which is concave in τ , as shown byLemmaA.1.
Many standard first-order methods that might be used as an oracle for evaluating

v(τ̄ ) − σ , and generate both a lower bound �̄ and a dual certificate ȳ that satisfy the
equation �̄ = Φ(ȳ, τ̄ )−σ . Examples include saddle-prox [41], Frank–Wolfe [24,29],
some projected subgradient methods [2], and accelerated versions [43,51]. Whenever
such a dual certificate ȳ is available, we have
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v(τ) − σ ≥ Φ(ȳ, τ ) − σ = (
Φ(ȳ, τ̄ ) − σ

) + (
Φ(ȳ, τ ) − Φ(ȳ, τ̄ )

)
≥ �̄ + s̄(τ − τ̄ ),

(2.2)

where s̄ ∈ ∂τ δ
�
X∩ [ϕ≤τ ](A

∗y). Hence, any dual certificate ȳ is valid if it generates an

affine minorant oracle where �̄ satisfies the accuracy condition required by Defini-
tion 2.2. In summary, if yk is a valid dual certificate, we may take

�k := Φ(yk, τk) − σ and any sk ∈ ∂τ δ
�
X∩ [ϕ≤τk ](A

∗yk).

Wederive in Sect. 4 subdifferential formulas for a large class of contemporary prob-
lems, including conic and gauge optimization (cf. Tables 1 and 2). More general rules
for computing subdifferential formulas are outlined by Aravkin et al. [1, Equations
5.1(d,e), 6.13, 6.26].

2.4 Lower minorants via Frank–Wolfe

In some instances, lower-bounds on the optimal value of Qτ that is provided by an
algorithm are seemingly not related to a dual solution. A notable example of such a
scheme is the Frank–Wolfe algorithm, which has recently received much attention.
Suppose that the functionρ is smooth.TheFrank–Wolfemethod applied to the problem
Qτ is based on the following two-step iteration:

zk = argmin
{〈A∗∇ρ(Axk − b), z〉 | z ∈ X ∩ [ϕ ≤ τ ]}

xk+1 = xk + tk(zk − xk)

for an appropriately chosen sequence of step-sizes tk (e.g., tk = 2
k+2 ). As the method

progresses, it generates the upper bounds uk = mini=1,...,k ρ(Axi − b) on the optimal
value ofQτ . Moreover, it is easy to deduce from convexity that the following are valid
lower bounds:

�k = max
i=1,...,k

{
ρ(Axi − b) + 〈A∗∇ρ(Axi − b), zi − xi 〉

}
.

Jaggi [29] provides an extensive discussion. If the step sizes tk are chosen appropriately,
the gap satisfies uk−�k ≤ O(D2L/k), where the diameter D of the feasible region and
the Lipschitz constant L of the gradient of the objective function ofQτ are measured
in an arbitrary norm. Harchaoui et al. [28] observe how to deduce from such lower
bounds �k an affine minorant of the value function v.

On the other hand, one can also show that the lower bounds �k are indeed generated
by an explicit candidate dual solution, and hence the Frank–Wolfe algorithm (and its
variants) fit perfectly in the above framework based on dual certificates. To see this,
consider the Fenchel dual
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maximize
y∈Rm

Φ(y, τ ) = 〈y, b〉 − ρ�(−y) − δ�
X∩[ϕ≤τ ](A

∗y)

of Qτ . Then for the candidate dual solutions yi := −∇ρ(Axi − b), we deduce

Φ(yi , τ ) = 〈yi , b〉 − ρ�(−yi ) − 〈A∗yi , zi 〉
= 〈yi , b〉 +

(
ρ(Axi − b) + 〈yi , Axi − b〉

)
− 〈A∗yi , zi 〉

= ρ(Axi − b) + 〈AT∇ρ(Axi − b), zi − xi 〉.

Thus, the lower bounds �k are simply equal to �k = maxi=1,...,k Φ(yi , τ ), and affine
minorants on the value function v are readily computed from the dual iterates yk and
the derivatives ∂τ δ

�
X∩ [ϕ≤τ ](A

∗yk).

3 Special cases

This section can be considered as an aside in our main exposition. We address in this
section two questions that arise in the application of our root-finding approach: how
best to apply the algorithm to problems with linear least-squares constraints, and how
to recover a feasible point.

3.1 Least-squares misfit and degeneracy

Particularly important instances of problem Pσ arise when the misfit between Ax and
b is measured by the 2-norm, i.e., ρ = ‖ · ‖2. In this case, the objective of the level-set
problemQτ is ‖Ax − b‖2, which is not differentiable whenever Ax = b. Rather than
applying a nonsmooth optimization scheme, an apparently easy fix is to replace the
constraint in Pσ with its equivalent formulation 1

2‖Ax − b‖22 ≤ 1
2σ

2, leading to the
pair of problems

minimize
x∈X

ϕ(x) subject to 1
2‖Ax − b‖22 ≤ 1

2σ
2, (P2

σ )

minimize
x∈X

1
2‖Ax − b‖22 subject toϕ(x) ≤ τ. (Q2

τ )

However, this reformulation presents some numerical difficulties. Below we
describe the potential pitfalls and a simple alternative.

For this section only, define

f1(τ ) := v(τ) − σ and f2(τ ) := 1
2v

2(τ ) − 1
2σ

2,

where v is the value function corresponding to the original (unsquared) level-set prob-
lem Qτ . Throughout this section, the problems Pσ and Qτ continue to define the
original formulations without the squares.
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A direct application of the root-finding procedure for P2
σ would be applied to the

function f2, which is degenerate at each of its roots. As a result, the secant and Newton
root-finding methods would not converge locally superlinearly—even if the values
v(τ) are evaluated exactly; see Theorem 2.1. Moreover, we have observed empirically
that this issue can in some cases cause numerical schemes to stagnate.

A simple alternative avoids this pitfall: apply the root-finding procedure to the
function f1, but approximately solveQ2

τ to obtain bounds on v. The oracle definitions
required for the secant (Algorithm 2.1) and Newton (Algorithm 2.2) methods require
suitable modification. For secant, the modifications are straightforward, but for New-
ton, care is needed in order to obtain the correct affine minorants of f1. The required
modifications for secant and Newton are described below.
SecantFor the secantmethod applied to the function f1,wederive an inexact evaluation
oracle from an inexact evaluation oracle for f2 as follows. Suppose that we have
approximately solved Q2

τ by an inexact-evaluation oracle

O f2,ε
(
τ, α2) =

(
1
2�

2 − 1
2σ

2, 1
2u

2 − 1
2σ

2
)

, (3.1)

where we have specified the relative accuracy between the lower and upper bounds
to be α2. Assume, without loss of generality, that u, � ≥ 0. Then clearly u and � are
upper and lower bounds on v(τ), respectively. It is now straightforward to deduce

0 ≤ � − σ ≤ f1(τ ) ≤ u − σ and
u − σ

� − σ
≤

√
u2 − σ 2

�2 − σ 2 ≤ α. (3.2)

Hence an inexact function evaluation oracle for f2 yields an inexact evaluation oracle
for f1.

Newton Newton’s method in this setting is slightly more intricate because of the
formulas required for obtaining a valid affine minorant of f1. We use the respective
objectives of the dual problems corresponding to Qτ and Q2

τ , given by

Φ1(y, τ ) := 〈b, y〉 − δ�
X∩[ϕ≤τ ](A

∗y) − δB2(y),

Φ2(y, τ ) := 〈b, y〉 − δ�
X∩[ϕ≤τ ](A

∗y) − 1
2‖y‖22.

As described by (3.1), an inexact solution of Q2
τ delivers values � and u that sat-

isfy (3.2). Let y be the valid dual certificate that generated the lower bound �, so
that Φ2(y, τ ) = 1

2�
2. (See the discussion in Sect. 2.3 regarding valid dual certifi-

cates.) Let s ∈ ∂τΦ2(y, τ ) be any subgradient. The following result establishes that
(�̂, u, s/‖y‖2), with �̂ := Φ1 (y/‖y‖2, τ ) , defines a valid affine minorant for f1.

Proposition 3.1 The inequalities

0 ≤ �̂ − σ ≤ f1(τ ) ≤ u − σ and (u − σ)/(�̂ − σ) ≤ α

hold, and the linear functional τ ′ �→ (�̂ − σ) − (s/‖y‖2)(τ ′ − τ) minorizes f1.
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The proof is given in Appendix A. In summary, if we wish to obtain a super-
optimal and ε-feasible solution to Pσ , in each iteration of the Newton method we
must evaluate f2(τ ) up to an absolute error of at most 12 (1−1/α)2ε2. Indeed, suppose
that in the process of evaluation, the oracle O f2

(
τ, α2

)
achieves u and l satisfying

1
2u

2 − 1
2�

2 ≤ 1
2 (1 − 1/α)2ε2. Then we obtain the inequality

u − � =
√

(u − �)2 ≤
√
u2 − �2 ≤ (1 − 1/α)ε.

Thus, by the discussion following Definition 2.1, either the whole Newton scheme can
now terminate with f1(τ ) ≤ ε or we have achieved the relative accuracy (u−σ)/(�−
σ) ≤ α for the oracle.

4 Some problem classes

A wide variety of problems can be treated by the root-finding approach, including
sparse optimization, with applications in compressed sensing and sparse recovery,
and conic optimization, including semidefinite programming (SDP). The following
sections give recipes for applying the root-finding approach in different contexts.

4.1 Conic optimization

The general conic problem (CP) has the form

minimize
x

〈c, x〉 subject to Ax = b, x ∈ K, (CP)

where A : E1 → E2 is a linear map between Euclidean spaces, and K ⊂ E1 is a
proper, closed, convex cone.The familiar formsof this problem include linear program-
ming (LP), second-order cone programming (SOCP), and semidefinite programming
(SDP). Ben-Tal and Nemirovski [5] survey an enormous number of applications and
formulations captured by conic programming.

There are at least two possible approaches for applying the level-set framework to
this problem. The first approach exchanges the roles of the original objective 〈c, x〉
with the linear constraint Ax = b, and brings a least-squares term into the objective.
The second approach moves the cone constraint x ∈ K into the objective with the
aid of a suitable distance function. This yields two distinct algorithms for the conic
problem. The two approaches are summarized in Table 1. Note that it is possible to
consider conic problems with the more general constraint ρ(Ax−b) ≤ σ , but here we
restrict our attention to the simpler affine constraint, which conforms to the standard
form of conic optimization.

4.1.1 First approach: least-squares level set

In this section we describe an application of the level-set approach to (CP) that
exchanges the roles of the linear functions, and derive the overall complexity guaran-
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tees. This approach relies on a simple transformation that guarantees a lower bound on
the objective value. To this end, we make the blanket assumption that there is available
a strictly feasible vector ŷ the dual of (CP)

maximize
y

〈b, y〉 subject to c − A∗y ∈ K∗.

Thus ŷ satisfies ĉ := c − A∗ ŷ ∈ intK∗. A simple calculation shows that minimizing
the new objective 〈̂c, x〉 only changes the objective of CP by a constant: for all x
feasible for CP, we now have

〈̂c, x〉 = 〈c, x〉 − 〈Ax, ŷ〉 = 〈c, x〉 − 〈b, ŷ〉.

In particular, we may assume b �= 0, since otherwise, the origin is the trivial solution
for the shifted problem. Note that in the important case c ∈ intK, we can simply set
ŷ = 0, which yields the equality c = ĉ.

We now illustrate the computational complexity of applying the root-finding
approach to solve (CP) using the level-set problem

minimize
x

‖Ax − b‖2 subject to 〈̂c, x〉 ≤ τ, x ∈ K. (4.1)

Our aim is then to find a root of (1.1), where v is the value function of (4.1). The top
row of Table 1, gives the corresponding dual

maximize
y, μ≥0

〈b, y〉 − μτ subject to ‖y‖2 ≤ 1, μc − A∗y ∈ K∗

of the level-set problem. We use τ0 = 0 as the initial root-finding iterate. Because of
the inclusion ĉ ∈ intK∗, we deduce that x = 0 is the only feasible solution to (4.1),
which yields v(0) = ‖b‖2 and the exact lower bound �0 = ‖b‖2. The corresponding
dual certificate is (ȳ, μ̄) = (b/‖b‖2, μ̄), where

μ̄ := min
μ

{
μĉ − (A∗b)/‖b‖2 ∈ K∗} . (4.2)

Note the inequality μ̄ > 0, because otherwisewewould deduceA∗b ∈ −K∗, implying
the inequality ‖b‖22 = 〈b,Ax〉 = 〈A∗b, x〉 ≤ 0 for any feasible x . This contradicts
our assumption that b is nonzero. In the case where K is the nonnegative orthant and
ĉ = e, the number μ̄ is simply the maximal coordinate of A∗b/‖b‖2; if K is the
semidefinite cone and ĉ = I , the number μ̄ is the maximal eigenvalue of A∗b/‖b‖2.

Let OPT denote the optimal value of CP. Theorem 2.3 asserts that within
O(

log2/α 2C/ε
)
inexact Newton iterations, where α is the accuracy of each sub-

problem solve and

C = max {μ̄ · (OPT − 〈b, ŷ〉), ‖b‖2} ,
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Table 1 Least-squares and conic level-set problems for conic optimization

Problem Pσ Qτ Dual ofQτ

CP min
x

〈c, x〉 min
x

‖Ax − b‖2 max
y, μ≥0

〈b, y〉 − μτ

Least-squares s.t. Ax = b s.t. 〈c, x〉 ≤ τ s.t. ‖y‖2 ≤ 1

Level x ∈ K x ∈ K μc − A∗y ∈ K∗
CP min

x
〈c, x〉 min

x
−λmin(x) max

y, μ≥0
〈b, y〉 − μτ

Cone s.t. Ax = b s.t. Ax = b s.t. 〈μc − A∗y, e〉 = 1

Level x ∈ K 〈c, x〉 ≤ τ μc − A∗y ∈ K∗

In these examples, we require Ax = b

the point x ∈ K that yields the final upper bound in (4.1) is a super-optimal and
ε-feasible solution of the shifted CP. Thus, x satisfies

〈̂c, x〉 ≤ OPT − 〈ŷ, b〉 and ‖Ax − b‖2 ≤ ε.

To see how good the obtained point x is for the original CP (without the shift), note
that

〈̂c, x〉 = 〈c, x〉 − 〈A∗ ŷ, x〉 = 〈c, x〉 − 〈ŷ,Ax − b〉 − 〈ŷ, b〉
≥ 〈c, x〉 − 〈ŷ, b〉 − ε‖ŷ‖2,

and hence 〈c, x〉 ≤ OPT+ ε‖ŷ‖2. In the important case where c ∈ intK∗, we deduce
super-optimality 〈c, x〉 ≤ OPT for the target problem CP.

Each Newton root-finding iteration requires an approximate solution of (4.1). As
described in Sect. 3.1, we obtain this approximation by instead solving its smooth
formulation with the squared objective (1/2)‖Ax −b‖22. Let L := ‖A‖22, where ‖A‖2
is the operator norm induced by the Euclidean norms on the spaces E1 and E2, be
the Lipschitz constant for the gradientA∗(A · −b). Also, let D be the diameter of the
region {x | 〈̂c, x〉 = 1, x ∈ K}, which is finite by the inclusion ĉ ∈ intK∗. Thus, in
order to evaluate v to an accuracy ε, we may apply an accelerated projected-gradient
method on the squared version of the problem to an additive error of 1

2 (1 − 1/α)2ε2

(see end of Sect. 3.1), which terminates in at most

O
( √

L · τD

ε(1 − 1/α)

)
= O

(‖A‖2 · D · (OPT − 〈b, ŷ〉)
ε(1 − 1/α)

)

iterations [6, §6.2]. Here, we have used the monotonicity of the root finding scheme to
conclude τ ≤ OPT− 〈b, ŷ〉. WhenK is the non-negative orthant, each projection can
be accomplished with O(n) floating point operations [12], while for the semidefinite
cone each projection requires an eigenvalue decomposition. More generally, such
projections can be quickly found as long as projections onto the coneK are available;
see Remark A.1. An improved complexity bound can be obtained for the oracles in
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the LP and SDP cases by replacing the Euclidean projection step with a Bregman
projection derived from the entropy function; see e.g., Beck and Teboulle [4] or Tseng
[51, §3.1]. We leave the details to the reader.

In summary, we can obtain a point x ∈ K that satisfies 〈c, x〉 ≤ OPT+ ε‖ŷ‖2 and
‖Ax − b‖2 ≤ ε in at most

O
(‖A‖2 · D · (OPT − 〈b, ŷ〉)

ε(1 − 1/α)

)
· O

(
log2/α

max {μ̄ · (OPT − 〈b, ŷ〉) , ‖b‖2}
ε

)

iterations of an accelerated projected-gradient method, where μ̄ is defined in (4.2).
Figure 3 shows the convergence behaviour of this approach applied to a randomly-

generated linear program with 256 constraints and 1024 variables.
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Fig. 3 Progress of the least-squares level-set method for a linear program (cf. Sect. 4.1.1). The panels on
the left depict the graph of v(τ) (solid line), and the squares and circles, respectively, show the upper and
lower bounds computed using an optimal projected-gradient method. The horizontal log scale results in
a value function that appears nonconvex. The panels on the right show the number of projected-gradient
iterations for each Newton step. Top panels: α = 1.8. Bottom panels: α = 1.01
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4.1.2 Second approach: conic level set

Renegar’s recent work [49] on conic optimization inspires a possible second level-
set approach based on interchanging the roles of the affine objective and the conic
constraint in (CP). A key step is to define a convex function κ that is nonnegative on
the coneK, and positive elsewhere, so that it acts as a surrogate for the conic constraint,
i.e.,

κ(x) ≤ 0 if and only if x ∈ K. (4.3)

The conic optimization problem can be expressed in entirely functional form as

minimize
x

〈c, x〉 subject to Ax = b, κ(x) ≤ 0,

which allows us to define the level-set function

v(τ) = inf
x

{κ(x) | Ax = b, 〈c, x〉 ≤ τ } . (4.4)

Renegar gives a procedure for constructing a suitable surrogate function κ under
the assumption that K has a nonempty interior: choose a point e ∈ intK and define
κ(x) = −λmin(x), where

λmin(x) := inf {λ | x − λe /∈ K}.

In the case of the PSD cone, we may take e = I , and then λmin yields the minimum
eigenvalue function. As is shown in [49, Prop. 2.1], the function λmin is Lipschitz con-
tinuous (with modulus one) and concave, as would be necessary to apply a subgradient
method for minimizing κ . The dual of the resulting level-set problem, needed to apply
the lower affine-minorant root-finding method, is shown in the second row of Table 1,
and can be derived using the conjugate of λmin; see Lemma A.2.

Renegar derives a novel algorithm along with complexity bounds for CP using the
λmin function. A rigorous methodology for applying the level-set scheme, as described
in the current paper, requires further research. It is an intriguing research agenda to
unify Renegar’s explicit complexity bounds with the proposed level-set approach. It
is not clear, however, that this approach holds any practical advantage over the least-
squares approach described in Sect. 4.1.1.

The function λmin is only one example of a surrogate function that satisfies (4.3).
Other choices are available for κ that yield suitable value functions (4.4). The best
choice ultimately depends on the algorithms that are available for the inexact solu-
tion of the corresponding subproblems. For example, we might choose to define the
differentiable surrogate function

κ = 1
2dist

2
K, where distK(x) := inf

z∈K
‖x − z‖

measures the distance to the cone K.
Note the significant differences between the least-squares and conic level-set prob-

lems (4.1) and (4.4). For the sake of discussion, suppose that K is the positive
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Table 2 Nonsmooth regularized data-fitting

Problem Pσ Qτ ∂τ Φ(y, τ )

Gauge min
x

ϕ(x) min
x

ρ(Ax − b) −ϕ◦(A∗y)
Optimization s.t. ρ(Ax − b) ≤ σ s.t. ϕ(x) ≤ τ

BPDN min
x

‖x‖1 min
x

‖Ax − b‖2 −‖A∗y‖∞
s.t. ‖Ax − b‖2 ≤ σ s.t. ‖x‖1 ≤ τ

Sharp min
x

α‖x‖1 + β‖x‖2 min
x

‖Ax − b‖2 −γαB∞+βB2 (A
∗y)

Elast-net s.t. ‖Ax − b‖2 ≤ σ s.t. α‖x‖1 + β‖x‖2 ≤ τ

Matrix min
X

‖X‖∗ min
x

‖AX − b‖2 −σ1(A∗y)

Completion s.t. ‖AX − b‖2 ≤ σ s.t. ‖X‖∗ ≤ τ

semidefinite cone. The least-squares level-set problem has a smooth objective whose
gradient can be easily computed by applying the operator A and its adjoint, but the
constraint set still contains the explicit cone. Projected-gradient methods, for exam-
ple, require a full eigenvalue decomposition of the steepest-descent step, while the
Frank–Wolfe method requires only a single rightmost eigenpair computation. The lat-
ter level-set problem, however, can require a potentially more complex procedure to
compute a gradient or subgradient, but has an entirely linear constraint set. In this
case, projected (sub)gradient methods require a least-squares solve for the projection
step.

4.2 Gauge optimization

We now apply the level-set approach to regularized data-fitting problems, restricting
the convex functions ϕ and ρ to be gauges—i.e., functions that are additionally non-
negative, positively homogeneous, and vanish at the origin. We assume that the side
constraint x ∈ X is absent from the formulation Pσ . Problems of this type occur in
sparsity optimization; basis pursuit (and its “denoising” variant BPσ ) [18]was our very
first example in Sect. 1. The first two columns of Table 2 describe various formulations
of current interest, including basis pursuit denoising (BPDN), low-rank matrix recov-
ery [14,23], a sharp version of the elastic-net problem [62], and gauge optimization
[25] in its standard form. The third column shows the level-set problemQτ needed to
evaluate the value function v(τ), while the fourth column shows the slopes needed to
implement the Newton scheme; cf. 2.3.

The dual representation (2.1) can be specialized for this family, and requires some
basic facts regarding a gauge function f and its polar

f ◦(y) := inf {μ > 0 | 〈x, y〉 ≤ μ f (x) for all x } .

When f is a norm, the polar f ◦ is simply the familiar dual norm. There is a close
relationship between gauges, their polars, and the support functions of their sublevel
sets, as described by the identities [25, Prop. 2.1(iv)]

123



Level-set methods for convex optimization 379

f ◦ = δ�[ f≤1] and f � = δ[ f ◦≤1].

We apply these identities to the quantities involving ρ and ϕ in the expression for the
dual representation Φ in (2.1), and deduce

δ�[ϕ≤τ ] = τδ�[ϕ≤1] = τϕ◦ and ρ� = δ[ρ◦≤1].

Substitute these into Φ to obtain the equivalent expression

Φ(y, τ ) = 〈b, y〉 − δ[ρ◦≤1](−y) − τϕ◦(A∗y).

We can now write an explicit dual for the level-set problem Qτ :

maximize
y

〈b, y〉 − τϕ◦(A∗y) subject to ρ◦(−y) ≤ 1.

In the last three rows of the table, we set ρ = ‖ · ‖2, which is self polar. For BPDN,
ϕ = ‖ · ‖1, whose polar is the dual norm ϕ◦ = ‖ · ‖∞. For matrix completion,
ϕ = ‖ · ‖∗ := ∑min{m,n}

i=1 σi (·) is the nuclear norm of a n-by-m matrix, which is polar
to the spectral norm ϕ◦ = σ1(·).

4.3 Low-rankmatrix completion

A range of useful applications that involve missing data can be modeled as matrix
completion problems. This modeling approach extends to robust principal-component
analysis (RPCA), where we decompose a signal into low-rank and sparse components,
and its variants, including its stable version, which allows for noisy measurements.
Important examples include applications in recommender systems and system iden-
tification [47], alignment of occluded images [45], scene triangulation [60], model
selection [17], face recognition, and document indexing [13].

These problems can be formulated generally as

minimize
X∈Rm×n

ϕ(X) subject to ρ(AX − b) ≤ σ, (4.5)

where b is a vector of observations, the linear operator A encodes information about
the measurement process, the objective ϕ encourages the low-rank and possibly other
structure in the solution, and the constraint ρ measures the misfit between AX and b.
If we wish to require AX = b, we can simply set σ = 0 and choose any nonnegative
convex function ρ that vanishes only at the origin, e.g., the 2-norm.

We categorize the family of low-rank problems into symmetric and asymmetric
classes. For each case, we describe a basic formulation and how the level-set approach
leads to implementable algorithms with computational kernels that scale well with
problem size.
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4.3.1 Symmetric problems

The symmetric class of problems aims to recover a low-rank PSDmatrix, with a linear
operator A that maps between the space of symmetric n × n matrices and m-vectors.
We define the objective of (4.5) by

ϕ1(X) = tr (X) + δSn+(X). (4.6)

Problem (4.5) then reduces to finding a PSD matrix with minimum trace that satisfies
the constraints ρ(AX − b) ≤ σ . It is straightforward to extend this formulation to
optimization over Hermitian matrices, so that it includes important applications such
as phase retrieval, which aims to recover phase information about a signal (e.g., and
image) from a series of magnitute-only measurements [16,36,54]. For simplicity, we
focus here only on real-valued matrices.

4.3.2 Asymmetric problems

The asymmetric class of matrix-recovery problems does not require definiteness of
X . In this case, the linear operatorA on Rm×n is not restricted to symmetric matrices.
We define the objective of (4.5) by

ϕ2(X) = ||X ||∗ (4.7)

This formulation capturesmatrix completion [46], bi-convex compressed sensing [35],
and robust PCA [15,61].

Example 4.1 (Robust PCA) We give an example of how to a problem that is not in
the form of (4.5) can be recast to fit into the required formulation. The stable version
of the RPCA problem [57] aims to decompose an m-by-n matrix B as a sum of a
low-rank matrix and a sparse matrix via the problem

minimize
L,S

λL‖L‖∗ + λS‖S‖1 + 1
2‖A[L − B] − S‖2F . (4.8)

Here the operatorA is often a mask for the known elements of B. The goal is to obtain
a low-rank approximation to Y where the deviation from the known elements of B are
sparse. The positive parameters λL and λS balance the rank of L against the sparsity
of the residual S, and the least-squared misfit.

We show how this model might be recast within the formulation (4.5). The first
step is based on the observation that, as a function of S, the objective is the Moreau
envelope of the 1-norm evaluated at A(L − B), or equivalently, the Huber function
on A(L − B). In particular,

inf
S

{
λS‖S‖1 + 1

2‖A[L − B] − S‖2F
}

= ρλS (A[L − B]),
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where

ρα(R) =
∑
i, j

{
1
2r

2
i j if |ri j | ≤ α,

α(|ri j | − 1
2α) otherwise,

is the Huber function. For some nonnegative parameter σ , we can then reinterpret (4.8)
as the problem of finding the lowest-rank approximation to B subject to a bound on a
robust measure of misfit. This yields the related problem

minimize
L

||L||∗ subject to ρλL (A[L − B]) ≤ σ.

In some contexts, this formulation may be preferable to (4.8) if there is a target level
of misfit as measured by the constraint.

4.3.3 Level-set approach and the Frank–Wolfe oracle

We apply the level-set approach to (4.5) and exchange the roles of the regularizing
function ϕ and the misfit ρ(AX − b). The objective function ϕ1 for the symmetric
case vanishes at the origin, and is convex and positively homogeneous; it is thus a
gauge. The second objective function ϕ2 is simply a norm. For both cases, we can
use the first row of Table 2 to determine the corresponding level-set subproblem and
affine minorants based on dual certificates. The corresponding level-set subproblem
Qτ , which defines the value function, is

v(τ) := min
X

{ρ(AX − b) | ϕ(X) ≤ τ } .

We use the polar calculus described by Friedlander et al. [25, §7.2.1] and the definition
of the dual norm to obtain the required polar functions

ϕ◦
1(Y ) = max{0, λ1(Y )} and ϕ◦

2(Y ) = σ1(Y )

for the symmetric (4.6) and asymmetric (4.7) cases, respectively.
The evaluation of the affine minorant oracle requires an approximate solution of

the optimization problem that defines the value function v, and computation of either
an extreme eigenvalue or singular value to determine an affine minorant. The Frank–
Wolfe algorithm [24,29] is well suited for evaluating the required quantities, Each
iteration of Frank–Wolfe updates the solution estimate via X+ ← X + α(X̂ − X),
where α is a step length, X̂ is a solution of the linearized subproblem

maximize
X̂

〈G, X̂〉 subject to ϕ(X̂) ≤ τ, (4.9)

and G := A∗∇ρ(AX − b) is the gradient of the constraint function evaluated at the
current primal iterate X . Note that the steplength in this case is easily obtained as the
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minimizer of the quadratic objective along the intersection of [ϕ ≤ τ ] and the ray
X + R+(X̂ − X).

Solutions of the subproblem (4.9) depend on the extreme eigenvalues or singular
values of G [29, §4.2]. For the symmetric case (4.6), the constraint

ϕ1(X̂) = tr (X̂) + δSn+(X̂) ≤ τ is equivalent to tr (X̂) ≤ τ, X̂ � 0.

For the asymmetric case, the constraint ϕ2(X̂) ≤ τ is simply ‖X̂‖∗ ≤ τ . The solutions
X̂1 and X̂2, respectively, of the subproblems (4.9) corresponding to the symmetric and
asymmetric cases, have the form

X̂1 = UDiag (ξi )U
T ,

X̂2 = UDiag (ξi )V
T ,

with
k∑

i=1

ξi = τ, ξi ≥ 0.

For the symmetric case, the orthonormal n-by-kmatrixU collects the k eigenvectors of
G corresponding to λ1(G). For the asymmetric case, them-by-k matrixU and n-by-k
matrix V , respectively, collect the k left- and right-singular vectors ofG corresponding
to the leading singular value σ1(G). In both cases, Krylov-based eigensolvers, such as
ARPACK [31] can be used for the required eigenvalue and singular-value computation.
If matrix-vector products with the matrix A∗y and its adjoint are computationally
inexpensive, the computation of a few rightmost eigenvalue/eigenvector pairs (resp.,
maximum singular value/vector pairs) is much cheaper than the computation of the
entire spectrum, as required by a method based on projections onto the feasible region.
Such circumstances are common, for example when the operator A is sparse or it is
accessible through a fast Fourier transform.

The next example illustrates an application where the operatorA is accessibly only
via its action on a matrix. It also gives us an opportunity to describe how the level-set
method can be easily adapted to to solve a maximization problem, which requires
computing the right-most root to the corresponding value function.

Example 4.2 (Euclidean distance completion) A common problem in distance geome-
try is the inverse problem: given only local pairwise Euclidean distance measurements
among a set of points, recover their location in space. Formally, given a weighted undi-
rected graph G = (V , E, ω) with a vertex set V = {1, . . . , n}, and a target dimension
r , the Euclidean distance completion problem asks to determine a collection of points
p1, . . . , pn in Rr approximately satisfying

‖pi − p j‖2 = ωi j for all edges i j ∈ E .

This problem is also often called �2 graph embedding and appears inwireless networks,
statistics, robotics, protein reconstruction, and manifold learning [34].

A popular convex relaxation for this problem was introduced by Weinberger et al.
[55] and extensively studied by a number of authors [8,21,27]:

maximize
X

tr (X) subject to
‖PE ◦ K(X) − ω‖ ≤ σ,

Xe = 0, X � 0,
(4.10)
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where K : Sn → Sn is the mapping [K(X)]i j = Xii + X j j − 2Xi j and PE (·) is the
canonical projection of a matrix onto entries indexed by the edge set E . Indeed, if X is
a rank r feasible matrix, we may factor it into X = PPT , where P is an n× r matrix;
the rows of P are the points p1, . . . , pn ∈ R

r we seek. The constraint Xe = 0 ensures
that the points pi are centered around the origin. Note that this formulationmaximizes
the trace tr (X) = 1

2n

∑n
i, j=1 ‖pi − p j‖2, which helps to “flatten” the realization of

the graph.
It is well-known that for σ = 0, the constraints of problem (4.10) do not admit

a strictly feasible solution [20,21,30]. In particular, for small positive σ , the feasible
region is very thin and the solution to the problem is unstable. As a result, algorithms
maintaining feasibility are likely to have difficulties. In contrast, the level-set approach
is an infeasible method, and hence the poor conditioning of the underlying problem
does not play a major role.

The least-squares level-set problem that corresponds to the minimization formula-
tion of (4.10) is

minimize ‖PE ◦ K(X) − ω‖
subject to tr (X) ≥ τ, Xe = 0, X � 0.

(4.11)

The inequality tr (X) ≥ τ takes into account that the original formulation (4.10) is
a maximization problem. As a result, the root-finding method on the value function
corresponding to (4.11) approaches the optimal value τ∗ = OPT from the right. To
initialize the approximate Newton scheme, we need an upper bound τ0 on the objective
function, which is easily available from the diameter of the graph.

The gradient of the objective function is as sparse as the edge set E , and the linear
subproblem over the feasible region requires computing only a maximal eigenvalue on
a sparsematrix [21]. This makes the problem (4.11) ideally suited for the Frank–Wolfe

0 5 10 15 20
0

0.5

1

1.5
Pareto curve

v
(τ

)

τ

Fig. 4 A plot of the value function v(τ) of (4.11). Newton’s method converges to either the min- or max-
trace solution, depending on initialization. To solve (4.10), we need the maximal root. Here, σ = 0.25,
indicated by the solid horizontal line
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algorithm. The dual problem of (4.11) takes the form

maximize
y∈RE , ‖y‖2≤1

Φ(y, τ ) := 〈y, ω〉 − 2τλe
⊥
1 (Diag (Ye) − Y ),

where λe
⊥
1 (A) is the maximal eigenvalue of the restriction of the matrix A to the

space orthogonal to e, and Y = P∗
E (y) is diagonal matrix formed from the vector

y padded with zeros. The expression of the dual objective follows from the fact that
K∗P∗

E (y) = 2(Diag (Ye) − Y ). As described in Sect. 2.4, we use the sequence {yi }
of dual certificates generated by the Frank–Wolfe algorithm to establish at iteration k
an affine minorant at defined by

�k = min
i=1,...,k

Φ(yi , τ ) and sk = 2λe
⊥
1 (Diag (Yke) − Yk)

where Yk = P∗
E (yk). A full derivation and extensive numerical results are given [21].

Figure 4 shows the iterations of Newton’s method applied to this problem.

Acknowledgements The authors extend their sincere thanks to three anonymous referees who provided an
extensive list of corrections and suggestions that helped us to streamline our presentation.

A Proofs

Proof (Proof ofTheorem2.1) Since f is convex, the subdifferential ∂ f (τ ) is nonempty
for all τ ∈ (a, b). The claim concerning finite termination is easy to deduce from
convexity; we leave the details to the reader. Suppose neither sequence terminates
finitely at τ∗. Let us first consider the Newton iteration. Convexity of f immediately
implies that the sequence τi is well-defined and satisfies τ0 < τ1 < τ2 < · · · < τ∗.
Monotonicity of the subdifferential then implies g0 ≤ g1 ≤ g2 ≤ · · · ≤ g∗ < 0. Due
to the inequalities f (τ∗) + ḡ(τk − τ∗) ≤ f (τk) and gk < 0, we have

f (τk) − f (τ∗)
gk

≤ −g∗
gk

(τ∗ − τk),

and so

0 < τ∗ − τk+1 = τ∗ − τk + f (τk) − f (τ∗)
gk

≤
(
1 − g∗

gk

)
(τ∗ − τk).

Upper semi-continuity of ∂ f on its domain implies gk ↑ g∗. Hence τk converge
q-superlinearly to τ∗.

Now consider the secant iteration. As in the Newton iteration, it is immediate from
convexity that the sequence τi is well-defined and satisfies τ0 < τ1 < τ2 < · · · < τ∗.
Monotonicity of the subdifferential then implies g0 ≤ g1 ≤ g2 ≤ · · · ≤ g∗ < 0. We
have

0 < g∗(τk − τ∗) ≤ f (τk) − f (τ∗),
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and f (τk−1) + gk−1(τk − τk−1) ≤ f (τk), and hence

τk − τk−1

f (τk) − f (τk−1)
( f (τk) − f (τ∗)) ≤ f (τk) − f (τ∗)

gk−1
< 0.

Combining the two inequalities yields

f (τk) − f (τ∗)
f (τk) − f (τk−1)

(τk − τk−1) ≤ f (τk) − f (τ∗)
gk−1

≤ g∗
gk−1

(τk − τ∗) < 0.

Consequently, we deduce

0 < τ∗ − τk+1 = τ∗ − τk + f (τk) − f (τ∗)
f (τk) − f (τk−1)

(τk − τk−1) ≤
(
1 − g∗

gk−1

)
(τ∗ − τk).

The result follows. ��

Proof (Proof of Theorem 2.2) It is easy to see by convexity that the iterates τk are
strictly increasing and satisfy f (τk) > 0. For each index j ≥ 2 for which the algorithm
has not terminated, define the following quantities:

h j := τ j − τ j−1, θ j := s j
s j−1

, and γ j := � j

� j−1
.

Note that using the equation τ j−1 − τ j = � j−1
s j−1

, we can write θ j = u j−1−� j
� j−1

. Clearly
then the bound, 0 ≤ θ j ≤ α − γ j , is valid. Define now constants β j ∈ [0, 1] by
the equation γ j = β jα. Suppose k ≥ 2 is an index at which the algorithm has not
terminated, i.e., uk > ε. Taking into account the inequality �k ≥ uk

α
> ε

α
, we deduce

ε

α
≤ �k = �1

k∏
j=2

γ j ≤ Cαk−1
k∏
j=2

β j . (A.1)

The defining equation for τk+1 and the definition of θ j yield the equality

hk+1 = �k

|sk | = �k

|s1| ·
k∏
j=2

θ−1
j .

The bounds τ∗ − τ1 ≥ hk+1, �k ≥ ε
α
, and θ j ≤ α − γ j imply

τ∗ − τ1 ≥ �k

|s1| ·
k∏
j=2

θ−1
j ≥ ε

α|s1| (α
−1)k−1

k∏
j=2

(1 − β j )
−1,
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and rearranging gives

ε ≤ (τ∗ − τ1)|s1|αk
k∏
j=2

(1 − β j ) ≤ Cαk
k∏
j=2

(1 − β j ). (A.2)

Combining (A.1) and (A.2), we get

ε ≤ Cαk min

⎧⎨
⎩

k∏
j=2

β j ,

k∏
j=2

(1 − β j )

⎫⎬
⎭ . (A.3)

One the other hand, observe⎛
⎝ k∏

j=2

β j

⎞
⎠

⎛
⎝ k∏

j=2

(1 − β j )

⎞
⎠ =

k∏
j=2

β j (1 − β j ) ≤ 0.52(k−1),

and hence

min

⎧⎨
⎩

k∏
j=2

β j ,

k∏
j=2

(1 − β j )

⎫⎬
⎭ ≤ 0.5k−1. (A.4)

Combining Eqs. (A.4) and (A.3), the claimed estimate k − 1 ≤ log2/α
(

αC
ε

)
follows.

Proof (Proof of Theorem 2.3) The proof is identical to the proof of Theorem 2.2,
except for some minor modifications. The only nontrivial change is how we arrive at
the bound θ j ≤ α − γ j . For this, observe τ j−1 − τ j = � j−1/s j−1, and because the
function τ �→ � j + s j (τ − τ j ) minorizes f , we see

u j−1 ≥ � j + s j (τ j−1 − τ j ) = � j + s j

(
� j−1

s j−1

)
= � j + θ j� j−1.

After rearranging, we get the desired upper bound on θ j :

θ j ≤ u j−1 − � j

� j−1
≤ α − γ j .

Finally, we remark that with the approximate Newton method, we can start indexing
at j = 0 instead of j = 1. This explains the different constants in the convergence
result.

Lemma A.1 (Concavity of the parametric support function) For any convex function
f : Rn → R and vector z ∈ R

n, the univariate function t �→ δ∗[ f ≤t](z) is concave.

Proof It follows from convexity of f that

λ · [ f ≤ a] + (1 − λ) · [ f ≤ b] ⊆ [ f ≤ λa + (1 − λ)b] ∀a, b ∈ R and λ ∈ [0, 1],
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where [ f ≤ α] defines the α-level set of f , and the summation of the level sets
indicates their Minkowski (i.e., direct) sum. Moreover, for any convex sets C and D
such that C ⊆ D, δ∗

C ≤ δ∗
D. Thus,

λ · δ∗[ f ≤a](z) + (1 − λ) · δ∗[ f ≤b](z) = δ∗
λ·[ f≤a]+(1−λ)·[ f ≤b](z) ≤ δ∗

[ f ≤λa+(1−λ)b](z),

which implies concavity of the function at hand..

Proof (Proof of Proposition 3.1) For this proof only, let ‖ · ‖ denote the 2-norm. Note
the inclusion s/‖y‖ ∈ ∂τΦ1 (y/‖y‖, τ ). Use the same computation from (2.2) to
deduce that the affine function

τ ′ �→ (�̂ − σ) − s

‖y‖ (τ ′ − τ)

minorizes f1.
From the definition of �̂, Φ1, and Φ2, it follows that

u − σ

�̂ − σ
= (u − σ)‖y‖

Φ2(y, τ ) + 1
2‖y‖2 − σ‖y‖ = 2(u − σ)‖y‖

�2 + ‖y‖2 − 2σ‖y‖ . (A.5)

Taking into account the equivalence

u − σ

� − σ
≤ α ⇐⇒ u + (α − 1)σ

α
≤ �,

we deduce

�2 + ‖y‖2 − 2σ‖y‖ ≥ α−2
(
(u + (α − 1)σ )2 + ‖αy‖2 − 2σα‖αy‖

)
≥ 2α−1(u − σ)‖y‖,

where the rightmost inequality follows from the computation

(u + [α − 1]σ)2 + ‖αy‖2 − 2ασ‖αy‖ − 2(u − σ)‖αy‖
= (u + [α − 1]σ)2 + ‖αy‖2 − 2‖αy‖(u + [α − 1]σ)

= (u + [α − 1]σ − ‖αy‖)2 ≥ 0.

Because the right-hand side of (A.5) is non-negative, we can deduce that �̂ ≥ σ .
Finally, the required inequality (u − σ)/(�̂ − σ) ≤ α also follows from (A.5).

Lemma A.2 (−λmin)
�(y) = δS(−y), where S = K∗ ∩ {x | 〈e, x〉 = 1}.

Proof The following formula is established in [49]:

∂(−λmin)(x) = {−y | 〈y, e〉 = 1, 〈y, z − (x − λmin(x)e)〉 ≥ 0 for all z ∈ K}

or equivalently
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∂(−λmin)(x) = {−y | 〈y, e〉 = 1,−y ∈ NK (x − λmin(x)e) }
= {−y

∣∣ 〈y, e〉 = 1, y ∈ K∗, 0 = λmin(x) − 〈y, x〉} .

Here the symbol NK denotes the normal cone toK. Now for any y ∈ ∂(−λmin)(x), we
have 〈x, y〉 = −λmin(x). Observe range ∂(−λmin) = −S. Hence by the equality in the
Fenchel-Young inequality, for any y ∈ −S, we have (−λmin)

�(y) = 0. On the other
hand, for any y with 〈y, e〉 �= −1, we have (−λmin)

�(y) ≥ 〈te, y〉 − (−λmin)(te) =
t(〈y, e〉+1) for any t ≥ 0. Letting t → ∞, we deduce (−λmin)

�(y) = +∞. Similarly,
consider y /∈ −K∗. Then we may find some x ∈ K satisfying 〈x, y〉 > 0. We deduce
(−λmin)

�(y) ≥ 〈t x, y〉−(−λmin)(t x) = t(〈y, x〉−(−λmin)(x)) for any t ≥ 0. Letting
t → ∞, we deduce (−λmin)

�(y) = +∞. We deduce that (−λmin)
� is the indicator

function of −S, as claimed. ��
Remark A.1 (Projection onto a conic slice sets) This remark is standard. Fix a proper
convex cone K and consider the projection problem

min
x

{
1
2‖x − z‖2 | 〈c, x〉 = 1, x ∈ K

}
.

Equivalently, we can consider the univariate concave maximization problem

max
β

min
x∈K

L(x, β) = max
β

min
x∈K

1
2‖x − z‖2 + β(〈c, x〉 − 1)

= max
β

min
x∈K

1
2‖x − (z − βc)‖2 + β(〈c, z〉 − 1) − 1

2β
2‖c‖2

= max
β

1
2dist

2
K(z − βc) + β(〈c, z〉 − 1) − 1

2β
2‖c‖2.

We can solve this problem for example by bisection, provided projections onto K are
available.
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