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Abstract
Weexamine the behavior of accelerated gradientmethods in smooth nonconvex uncon-
strained optimization, focusing in particular on their behavior near strict saddle points.
Accelerated methods are iterative methods that typically step along a direction that is
a linear combination of the previous step and the gradient of the function evaluated at
a point at or near the current iterate. (The previous step encodes gradient information
from earlier stages in the iterative process). We show by means of the stable manifold
theorem that the heavy-ball method is unlikely to converge to strict saddle points,
which are points at which the gradient of the objective is zero but the Hessian has at
least one negative eigenvalue. We then examine the behavior of the heavy-ball method
and other accelerated gradient methods in the vicinity of a strict saddle point of a
nonconvex quadratic function, showing that both methods can diverge from this point
more rapidly than the steepest-descent method.
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1 Introduction

We consider methods for the smooth unconstrained optimization problem

min
x∈Rn

f (x), (1)

where f : Rn → R is a twice continuously differentiable function. We say that x∗ is
a critical point of (1) if ∇ f (x∗) = 0. Critical points that are not local minimizers are
of little interest in the context of the optimization problem (1), so a desirable property
of any algorithm for solving (1) is that it not be attracted to such a point. Specifically,
we focus on functions with strict saddle points, that is, functions where the Hessian
at each saddle point has at least one negative eigenvalue.

Our particular interest here is in methods that use gradients and momentum to
construct steps. In many such methods, each step is a linear combination of two
components: the gradient ∇ f evaluated at a point at or near the latest iterate, and a
momentum term, which is the step between the current iterate and the previous iterate.
There are rich convergence theories for these methods in the case in which f is convex
or strongly convex, along with extensive numerical experience in some important
applications. However, although these methods are applied frequently to nonconvex
functions, little is known from a mathematical viewpoint about their behavior in such
settings. Early results showed that a certain modified accelerated gradient method
achieves the same order of convergence on a nonconvex problem as gradient descent
[7,10]—not a faster rate, as in the convex setting.

The heavy-ball method was studied in the nonconvex setting in [17]. From an
argument based on a Lyapunov function, this work shows that heavy-ball converges to
some set of stationary points when short step sizes are used. Their result also implies
that with these shorter stepsizes, heavy-ball converges to these stationary points with
a sublinear rate, just as gradient descent does in the nonconvex case. Another work
studied the continuous time heavy-ball method [2]. For Morse functions (functions
where all critical points have a non-singular Hessian matrix), this paper shows that
the set of initial conditions from which heavy-ball converges to a local minimizer is
an open dense subset of Rn × R

n . We present a similar result for a larger class of
functions, using techniques like those of [9], where the authors show that gradient
descent, started from a random initial point, converges to a strict saddle point with
probability zero. We show that the discrete heavy-ball method essentially shares this
property. We also study whether momentummethods can “escape” strict saddle points
more rapidly than gradient descent. Experience with nonconvex quadratics indicate
that, when started close to the (measure-zero) set of points from which convergence
to the saddle point occurs, momentum methods do indeed escape more quickly.

After submission of our paper, [8] described a method that combines accelerated
gradient, perturbation at points with small gradients and explicit negative curvature
detection to attain a method with worst-case complexity guarantees.
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Behavior of accelerated gradient methods… 405

Notation For compactness, we sometimes use the notation (y, z) to denote the vector
[yT zT ]T , for y ∈ R

n and z ∈ R
n .

2 Heavy-ball is unlikely to converge to strict saddle points

We show in this section that the heavy-ball method is not attracted to strict saddle
points, unless initialized in a very particular way, that cannot occur if the starting point
is chosen at random and the algorithm is modified slightly. Following [9], our proof
is based on the stable manifold theorem.

We make the following assumption throughout this section.

Assumption 1 The function f : Rn → R is r + 1 times continuously differentiable,
for some integer r ≥ 1, and ∇ f has Lipschitz constant L .

Under this assumption, the eigenvalues of the Hessian ∇2 f (x∗) are bounded in mag-
nitude by L .

The heavy-ball method is a prototypical momentum method (see [13]), which pro-
ceeds as follows from a starting point x0:

xk+1 := xk − α∇ f (xk) + β(xk − xk−1), with x−1 = x0. (2)

Following [13], we can write (2) as follows:

[
xk+1

xk

]
=

[
xk − α∇ f (xk) + β(xk − xk−1)

xk

]
. (3)

Convergence for this method is known for the special case in which f is a strongly
convex quadratic. Denote by m the positive lower bound on the eigenvalues of the
Hessian of this quadratic, and recall that L is the upper bound. For the settings

α = 4

(
√
L + √

m)2
, β =

√
L − √

m√
L + √

m
(4)

a rigorous version of the eigenvalue-based argument in [13, Section 3.2] can be applied
to show R-linear convergence with rate constant

√
β, which is approximately 1 −√

m/L when the ratio L/m is large. This suggests a complexity of O(
√
L/m log ε)

iterations to reduce the error ‖xk − x∗‖ by a factor of ε (where x∗ is the unique
solution). Such rates are typical of accelerated gradient methods. They contrast with
the O((L/m) log ε) rates attained by the steepest-descent method on such functions.

We note that the eigenvalue-based argument that is “sketched” by [13] does not
extend rigorously beyond strongly convex quadratic functions. A more sophisticated
argument based onLyapunov functions is needed, like the one presented forNesterov’s
accelerated gradient method in [14, Chapter 4].

The key to our argument for non-convergence to strict saddle points lies in formu-
lating the heavy-ball method as a mapping whose fixed points are stationary points of
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406 M. O’Neill, S. J. Wright

f and to which we can apply the stable manifold theorem. Following (3), we define
this mapping to be

G(z1, z2) =
[
z1 − α∇ f (z1) + β(z1 − z2)

z1

]
, (z1, z2) ∈ R

n × R
n . (5)

Note that

DG(z1, z2) =
[
(1 + β)I − α∇2 f (z1) −β I

I 0

]
. (6)

We have the following elementary result about the relationship of critical points for
(1) to fixed points for the mapping G.

Lemma 1 If x∗ is a critical point of f , then (z∗1, z∗2) = (x∗, x∗) is a fixed point for
G. Conversely, if (z∗1, z∗2) is a fixed point for G, then x∗ = z∗1 = z∗2 is a critical point
for f .

Proof The first claim is obvious by substitution into (5). For the second claim, we
have that if (z∗1, z∗2) is a fixed point for G, then

[
z∗1
z∗2

]
=

[
z∗1 − α∇ f (z∗1) + β(z∗1 − z∗2)

z∗1

]
,

from which we have z∗2 = z∗1 and ∇ f (z∗1) = 0, giving the result. 	

We now establish that G is a diffeomorphic mapping, a property needed for appli-

cation of the stable manifold result.

Lemma 2 Suppose that Assumption 1 holds. Then the mapping G defined in (5) is a
Cr diffeomorphism.

Proof We need to show that G is injective and surjective, and that G and its inverse
are r times continuously differentiable.

To show injectivity of G, suppose that G(x1, x2) = G(y1, y2). Then, we have

[
x1 − α∇ f (x1) + β(x1 − x2)

x1

]
=

[
y1 − α∇ f (y1) + β(y1 − y2)

y1

]
. (7)

Therefore, x1 = y1, and so

x1 − y1 + β(x1 − y1 + y2 − x2) = α(∇ f (x1) − ∇ f (y1)) ⇒ x2 = y2, (8)

demonstrating injectivity. To show that G is surjective, we construct its inverse G−1

explicitly. Let (y1, y2) be such that

[
y1
y2

]
= G(z1, z2) =

[
z1 − α∇ f (z1) + β(z1 − z2)

z1

]
, (9)
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Behavior of accelerated gradient methods… 407

Then z1 = y2. From the first partition in (9), we obtain z2 = (z1− y1−α∇ f (z1))/β+
z1, which after substitution of z1 = y2 leads to

[
z1
z2

]
= G−1(y1, y2) =

[
y2

1
β
(y2 − y1 − α∇ f (y2)) + y2

]
. (10)

Thus, G is a bijection. Both G and G−1 are continuously differentiable one time less
than f , so by Assumption 1, G is a Cr -diffeomorphism. 	


We are now ready to state the stable manifold theorem, which provides tools to let
us characterize the set of escaping points.

Theorem 1 (Theorem III.7 of [15]) Let 0 be a fixed point for the Cr local diffeomor-
phism φ : U → E where U is a neighborhood of 0 in the Banach space E. Suppose
that E = Ecs ⊕ Eu, where Ecs is the invariant subspace corresponding to the eigen-
values of Dφ(0) whose magnitude is less than or equal to 1, and Eu is the invariant
subspace corresponding to eigenvalues of Dφ(0) whose magnitude is greater than
1. Then there exists a Cr embedded disc Wcs

loc that is tangent to Ecs at 0 called the
local stable center manifold. Additionally, there exists a neighborhood B of 0 such
that φ(Wcs

loc) ∩ B ⊂ Wcs
loc, and that if z is a point such that φk(z) ∈ B for all k ≥ 0,

then z ∈ Wcs
loc.

This is a similar statement of the stable manifold theorem to the one found in [9],
except that sincewe have to deal with complex eigenvalues here, we emphasize that the
decomposition is between the eigenvalues whose magnitude is less than or equal to 1,
and greater than 1, respectively. It guarantees the existence of a stable center manifold
of dimension equal to the number of eigenvalues of the Jacobian at the critical point
that are less than or equal to 1.

We show now that the Jacobian DG(x∗, x∗) has the properties required for appli-
cation of this result, for values of α and β similar to the choices (4) (note that the
conditions on α and β in this result hold when α ∈ (0, 4/L) and β ∈ (−1+αL/2, 1),
where L is the Lipschitz constant from Assumption 1). For purposes of this and future
results in this section, we assume that at the point x∗ we have ∇ f (x∗) = 0 and that
the eigenvalue decomposition of ∇2 f (x∗) can be written as

∇2 f (x∗) = VΛV T =
n∑

i=1

λivi (vi )
T , (11)

where the eigenvalues λ1, λ2, . . . , λn have

λ1 ≥ λ2 ≥ · · · ≥ λn−p ≥ 0 > λn−p+1 ≥ · · · ≥ λn, (12)

for some p with 1 ≤ p < n, where Λ = diag(λ1, λ2, . . . , λn), and where vi , i =
1, 2, . . . , n are the orthonormal set of eigenvectors that correspond to the eigenvalues
in (12). The matrix V = [v1 | v2 | · · · | vn] is orthogonal.
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408 M. O’Neill, S. J. Wright

Theorem 2 Suppose that Assumption 1 holds. Let x∗ be a critical point for f at which
∇2 f (x∗) has p negative eigenvalues, where p ≥ 1. Consider the mapping G defined
by (5) where

0 < α <
4

λ1
, β ∈

(
max

(
−1 + αλ1

2
, 0

)
, 1

)
,

where λ1 is the largest positive eigenvalue of ∇2 f (x∗). Then there are matrices
Ṽs ∈ R

2n×(2n−p) and Ṽu ∈ R
2n×p such that (a) the 2n × 2n matrix Ṽ = [Ṽs | Ṽu] is

nonsingular; (b) the columns of Ṽs span an invariant subspace of DG(x∗, x∗) cor-
responding to eigenvalues of DG(x∗, x∗) whose magnitude is less than or equal to
1; (c) the columns of Ṽu span an invariant subspace of DG(x∗, x∗) corresponding to
eigenvalues of DG(x∗, x∗) whose magnitude is greater than 1.

Proof Since

DG(x∗, x∗) =
[
(1 + β)I − α∇2 f (x∗) −β I

I 0

]
, (13)

we have from (11) that

[
V T 0
0 V T

]
DG(x∗, x∗)

[
V 0
0 V

]
=

[
(1 + β)I − αΛ −β I

I 0

]
.

By performing a symmetric permutation P on this matrix, interleaving rows/columns
from the first block with rows/columns from the second block, we obtain a block
diagonal matrix with 2 × 2 blocks of the following form on the diagonals, that is,

PT
[
V T 0
0 V T

]
DG(x∗, x∗)

[
V 0
0 V

]
P =

⎡
⎢⎢⎢⎣
M1

M2
. . .

Mn

⎤
⎥⎥⎥⎦ , (14)

where

Mi :=
[
(1 + β) − αλi −β

1 0

]
, i = 1, 2, . . . , n. (15)

The eigenvalues of Mi are obtained from the following quadratic in μ:

t(μ) := ((1 + β) − αλi − μ)(−μ) + β = 0, (16)

that is,

t(μ) = μ2 − (1 + β − αλi )μ + β = 0, (17)
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Behavior of accelerated gradient methods… 409

for which the roots are

μ
hi,lo
i = 1

2

[
(1 + β − αλi ) ±

√
(1 + β − αλi )2 − 4β

]
. (18)

We examine first the matrices Mi for which λi < 0. We have

(1 + β − αλi )
2 − 4β = (1 − β)2 − 2αλi (1 + β) + α2|λi |2 > 0,

so both roots in (18) are real. Since t(·) is convex quadratic, with t(0) = β > 0 and
t(1) = αλi < 0, one root is in (0, 1) and the other is in (1,∞). We can thus write

Mi = SiΛi S
−1
i , where (19a)

Λi =
[

μhi
i 0

0 μlo
i

]
, Si =

[
μhi
i 1

1 1
μlo
i

]
, S−1

i =
(

μhi
i

μlo
i

− 1

)−1 [
1

μlo
i

−1

−1 μhi
i

]
. (19b)

where μhi
i is the eigenvalue of Mi in the range (1,∞) and μlo

i is the eigenvalue of
Mi in the range (0, 1) (This claim can be verified by direct calculation of the product
(19a)).

Consider now the matrices Mi for which λi = 0. From (18), we have that the roots
are 1 and β, which are distinct, since β ∈ (0, 1). The eigenvalue decompositions of
these matrices have the form

Mi = SiΛi S
−1
i , where Λi = diag(1, β), (20)

and the Si are 2 × 2 nonsingular matrices.
When λi > 0, we show that the eigenvalues of Mi both have magnitude less than 1,

under the given conditions on α and β. Both roots in (18) are complex exactly when
the term under the square root is negative, and in this case the magnitude of both roots
is

1

2

√
(1 + β − αλi )2 + (

4β − (1 + β − αλi )2
) = √

β,

which is less than 1 by assumption.When both roots are real, we have (1+β−αλi )
2−

4β ≥ 0, and we require the following to be true to ensure that both are less than 1 in
absolute value:

− 2 < (1 + β − αλi ) ±
√

(1 + β − αλi )2 − 4β < 2. (21)

We deal with the right-hand inequality in (21) first. By rearranging, we show that this
is implied by the following sequence of equivalent inequalities:

(1 + β − αλi ) +
√

(1 + β − αλi )2 − 4β < 2
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410 M. O’Neill, S. J. Wright

⇔
√

(1 + β − αλi )2 − 4β < 1 − β + αλi

⇔ (1 + β − αλi )
2 − 4β < (1 − β + αλi )

2

⇔ β2 + 2β(1 − αλi ) + (1 − αλi )
2 − 4β < β2 − 2β(1 + αλi ) + (1 + αλi )

2

⇔ 2β − 2βαλi − 4β + (1 − αλi )
2 < −2β − 2βαλi + (1 + αλi )

2

⇔ (1 − αλi )
2 < (1 + αλi )

2

⇔ −2αλi < 2αλi ,

where the last is clearly true, because of α > 0 and λi > 0. Thus the right-hand
inequality in (21) is satisfied.

For the left-hand inequality in (21), we have

−2 < (1 + β − αλi ) −
√

(1 + β − αλi )2 − 4β

⇔ −3 − β + αλi < −
√

(1 + β − αλi )2 − 4β

⇔ 3 + β − αλi >

√
(1 + β − αλi )2 − 4β

⇔ (3 + β − αλi )
2 > (1 + β − αλi )

2 − 4β

⇔ β2 + 2β(3 − αλi ) + (3 − αλi )
2 > β2 + 2β(1 − αλi ) + (1 − αλi )

2 − 4β

⇔ 6β − 2βαλi + 9 − 6αλi + α2(λi )
2 > −2β − 2βαλi + 1 − 2αλi + α2(λi )

2

⇔ 8β + 8 − 4αλi > 0

⇔ β > −1 + αλi/2,

and the last condition holds because of the assumption that β > −1 + αλ1/2. This
completes our proof of the claim (21). Thus our assumptions on α and β suffice to
ensure that both eigenvalues of Mi defined in (15) have magnitude less than 1 when
λi > 0.

By defining

S :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

I
. . .

I
Sn−p+1

. . .

Sn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where Si , i = n − p + 1, . . . , n are the matrices defined in (19), we have from (14)
that

S−1PT
[
V T 0
0 V T

]
DG(x∗, x∗)

[
V 0
0 V

]
PS
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=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

M1
. . .

Mn−p

Λn−p+1
. . .

Λn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (22)

We now define another 2n-dimensional permutation matrix P̃ that sorts the entries of
the diagonal matrices Λi , i = n− p+1, . . . , n into those whose magnitude is greater
than one and those whose magnitude is less than or equal to one, to obtain

P̃T S−1PT
[
V T 0
0 V T

]
DG(x∗, x∗)

[
V 0
0 V

]
PS P̃

=

⎡
⎢⎢⎢⎢⎢⎣

M1
. . .

Mn−p

Λ̃lo

Λ̃hi

⎤
⎥⎥⎥⎥⎥⎦

, (23)

where

Λ̃lo = diag(μlo
n−p+1, μ

lo
n−p+2, . . . , μ

lo
n ), Λ̃hi = diag(μhi

n−p+1, μ
hi
n−p+2, . . . , μ

hi
n ).

We now define

Ṽ =
[
V 0
0 V

]
PS P̃,

which is a nonsingular matrix, by nonsingularity of S and orthogonality of V , P , and
P̃ . As in the statement of the theorem, we define Ṽs to be the first 2n − p columns of
Ṽ and Ṽu to be the last p columns. These define invariant spaces. For the stable space,
we have

DG(x∗, x∗)Ṽs = ṼsΛ̃s, where Λ̃s :=

⎡
⎢⎢⎢⎣
M1

. . .

Mn−p

Λ̃lo

⎤
⎥⎥⎥⎦ ,

where all eigenvalues of Λ̃s have magnitude less than or equal to 1. For the unstable
space, we have

DG(x∗, x∗)Ṽu = ṼuΛ̃
hi,

where Λ̃hi is a diagonal matrix with all diagonal elements greater than 1. 	
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412 M. O’Neill, S. J. Wright

Wefind abasis for the eigenspace that corresponds to the eigenvalues of DG(x∗, x∗)
that are greater than 1 (that is, the column space of Ṽu) in the following result.

Corollary 1 Suppose that the assumptions of Theorem 2 hold. Then the eigenvector of
DG(x∗, x∗) that corresponds to the unstable eigenvalueμhi

i > 1, i = n− p+1, . . . , n
defined in (18) is

[
vi

(1/μhi
i )vi

]
, (24)

where vi is an eigenvector of ∇2 f (x∗) that corresponds to λi < 0. The set of such
vectors forms an orthogonal basis for the subspace ofR2n corresponding to the eigen-
values of DG(x∗, x∗) whose magnitude is greater than 1.

Proof We have from (13) that

DG(x∗, x∗)
[

vi
(1/μhi

i )vi

]
=

[
(1 + β)I − α∇2 f (x∗) −β I

I 0

] [
vi

(1/μhi
i )vi

]

=
[
((1 + β − αλi ) − β/μhi

i )vi
vi

]
,

so the result holds provided that

(1 + β − αλi ) − β/μhi
i = μhi

i .

But this is true because of (17), so (24) is an eigenvector of DG(x∗, x∗) corresponding
to the eigenvalueμhi

i . Since the vectors {vi | i = n− p+1, . . . , n} form an orthogonal
set, so do the vectors (24) for i = n − p + 1, . . . , n, completing the proof. 	


Our next result is similar to [9, Theorem 4.1]. It is for a modified version of the
heavy-ball method in which the initial value for x−1 is perturbed from its usual choice
of x0.

Theorem 3 Suppose that the assumptions of Theorem 2 hold. Suppose that the heavy-
ball method is applied from an initial point of (x0, x−1) = (x0, x0 + εy), where x0

and y are random vectors with i .i .d. elements, and ε > 0 is small. We then have

Pr

(
lim
k

xk = x∗
)

= 0,

where the probability is taken over the starting vectors x0 and y.

Proof Our proof tracks that of [9, Theorem 4.1]. As there, we define the stable set for
x∗ to be

Ws(x∗) :=
{
(x0, x−1) : lim

k→∞Gk(x0, x−1) = (x∗, x∗)
}

. (25)
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For the neighborhood B of (x∗, x∗) ∈ R
2n promised by Theorem 1, we have for all

z ∈ Ws(x∗) that there is some l ≥ 0 such that Gt (z) ∈ B for all t ≥ l, and therefore
by Theorem 1wemust haveGl(z) ∈ Wcs

loc∩B. ThusWs(x∗) is the set of points z such
that Gl(z) ∈ Wcs

loc for some finite l. From Theorem 1, Wcs
loc is tangent to the subspace

Ecs at (x∗, x∗), and the dimension of Ecs is 2n − p, by Theorem 2 (since Ecs is the
space spanned by the columns of Ṽs). This subspace has measure zero in R

2n , since
p ≥ 1. Since diffeomorphisms map sets of measure zero to sets of measure zero, and
countable unions of measure zero sets have measure zero, we conclude that Ws(x∗)
has measure zero. Thus the initialization strategy we have outlined produces a starting
vector in Ws(x∗) with probability zero. 	


Theorem 3 does not guarantee that once the iterates leave the neighborhood of x∗,
they never return. It does not exclude the possibility that the sequence {(xk+1, xk)}
returns infinitely often to a neighborhood of (x∗, x∗).

We note that the tweak of taking x−1 slightly different from x0 does not affect
practical performance of the heavy-ball method, and has in fact been proposed before
[17]. It also does not disturb the theory that exists for this method, which for the case of
quadratic f discussed in [13] rests on an argument based on the eigendecomposition
of the (linear) operator DG, which is not affected by the modified starting point. We
note too that the accelerated gradient methods to be considered in the next section
can also allow x−1 �= x0 without significantly affecting the convergence theory.
A Lyapunov-function-based convergence analysis of this method (see, for example
[14, Chapter 4], based on arguments in [16]) requires only trivial modification to
accommodate x−1 �= x0.

For the variant of heavy-ball method in which x0 = x−1, we could consider a
random choice of x0 and ask whether there is zero probability of (x0, x0) belonging to
the measure-zero set Ws(x∗) defined by (25). The problem is of course that (x0, x0)
lies in the n-dimensional subspace Yn := {(z1, z1) | z1 ∈ R

n}, and we would need to
establish that the intersection Ws(x∗) ∩ Yn has measure zero in Yn . In other words,
we need that the set {z1 | (z1, z1) ∈ Ws(x∗)} has measure zero in R

n . We have a
partial result in this regard, pertaining to the set Wcs

loc, which is the local counterpart
of Ws(x∗). This result also makes use of the subspace Ecs , defined as in Theorem 1,
which is the invariant subspace corresponding to eigenvalues of DG(x∗, x∗) whose
magnitudes are less than or equal to one.

Theorem 4 Suppose that the assumptions of Theorem 2 hold. Then any vector of
the form (w,w) where w ∈ R

n lies in the stable subspace Ecs only if w ∈
span{v1, v2, . . . , vn−p} that is, the span of eigenvectors of ∇2 f (x∗) that correspond
to nonnegative eigenvalues of this matrix.

Proof We write w = ∑n
i=1 τivi for some coefficients τi , i = 1, 2, . . . , n, and show

that τi = 0 for i = n − p + 1, . . . , n.
We first show that

DG(x∗, x∗)k
[
w

w

]
=

[∑n
i=1 σk,ivi∑n
i=1 ηk,ivi

]
, (26)
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where σ0,i = τi and η0,i = τi , i = 1, 2, . . . , n. To derive recurrences for σk,i and ηk,i ,
we consider the multiplication by DG(x∗, x∗) that takes us from stages k to k + 1.
We have

[∑n
i=1 σk+1,ivi∑n
i=1 ηk+1,ivi

]
=

[
(1 + β)I − α∇2 f (x∗) −β I

I 0

] [∑n
i=1 σk,ivi∑n
i=1 ηk,ivi

]

=
[∑n

i=1(1 − αλi )σk,ivi + β
∑n

i=1(σk,i − ηk,i )vi∑n
i=1 σk,ivi

]
.

By matching terms, we have

[
σk+1,i
ηk+1,i

]
=

[
(1 + β − αλi ) −β

1 0

] [
σk,i
ηk,i

]
= Mi

[
σk,i
ηk,i

]
,

where Mi is defined in (15). Using the factorization (19), we have

[
σk,i
ηk,i

]
= Mk

i

[
σ0,i
η0,i

]
= SiΛ

k
i S

−1
i

[
1
1

]
τi ,

By substitution from (19), we obtain

[
σk,i
ηk,i

]
=

[
μhi
i 1
1 1

μlo
i

] [
(μhi

i )k 0
0 (μlo

i )k

] [
1 − μlo

i
μlo
i (μhi

i − 1)

]
τi

μhi
i − μlo

i

.

Because 0 < μlo
i < 1 < μhi

i , it follows from this formula that

τi �= 0 ⇒ σk,i

τi
→k ∞,

ηk,i

τi
→k ∞,

so if w has any component in the span of vi , i = n − p + 1, . . . , n (that is, if
τi �= 0), repeated multiplications of (−w,w) by DG(x∗, x∗) will lead to divergence,
so (−w,w) cannot be in the subspace Ecs . 	


A consequence of this theorem is that for a random choice of x0, there is probability
zero that (x0− x∗, x0− x∗) ∈ Ecs , which is tangential toWcs

loc at x
∗. Thus for x0 close

to x∗, there is probability zero that (x0, x0) is in the measure-zero setWcs
loc. Successive

iterations of (2) are locally similar to repeated multiplications of (x0 − x∗, x0 − x∗)
by the matrix DG(x∗, x∗), that is, for (xk+1 − x∗, xk − x∗) small, we have

[
xk+1 − x∗
xk − x∗

]
≈ DG(x∗, x∗)

[
xk − x∗
xk−1 − x∗

]
≈ DG(x∗, x∗)k+1

[
x0 − x∗
x0 − x∗

]
.

Under the probability-one event that x0 − x∗ /∈ Ecs , this suggests divergence of the
iteration (2) away from (x∗, x∗).

On the other hand, we can show that if the sequence passes sufficiently close to a
point (x∗, x∗) such that x∗ satisfies second-order sufficient conditions to be a solution
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of (1), it subsequently converges to (x∗, x∗). For this result we need the following
variant of the stable manifold theorem.

Theorem 5 (Theorem III.7 of [15]) Let 0 be a fixed point for the Cr local diffeomor-
phism φ : U → E where U is a neighborhood of 0 in the Banach space E. Suppose
that Es is the invariant subspace corresponding to the eigenvalues of Dφ(0) whose
magnitude is strictly less than 1. Then there exists a Cr embedded disc Ws

loc that
is tangent to Es at 0, and a neighborhood B of 0 such that Ws

loc ⊂ B, and for all
z ∈ Ws

loc, we have φk(z) → 0 at a linear rate.

When x∗ satisfies second-order conditions for (1), all eigenvalues of ∇2 f (x∗) are
strictly positive. It follows from the proof of Theorem 2 that under the assumptions
of this theorem, all eigenvalues of DG(x∗, x∗) have magnitude strictly less than 1.
Thus, the invariant subspace Es in Theorem 5 is the full space (in our case, R2n),
so Ws

loc is a neighborhood of (x∗, x∗). It follows that there is some ε > 0 such that
if ‖(xK+1, xK ) − (x∗, x∗)‖ < ε for some K , the sequence (xk+1, xk) for k ≥ K
converges to (x∗, x∗) at a linear rate.

3 Speed of divergence on a Toy problem

In this section, we investigate the rate of divergence of an accelerated method on a
simple nonconvex objective function, the quadratic with n = 2 defined by

f (x) = 1

2
(x21 − δx22 ), where 0 < δ � 1. (27)

Obviously, this function is unbounded belowwith a saddle point at (0, 0)T . Its gradient
has Lipschitz constant L = 1. Despite being a trivial problem, it captures the behavior
of gradient algorithms near strict saddle points for indefinite quadratics of arbitrary
dimension, as is apparent from the analysis below.

We have described the heavy-ball method in (2). The steepest-descent method, by
contrast, takes steps of the form

xk+1 = xk − αk∇ f (xk), (28)

for some αk > 0. When ∇ f (x) has Lipschitz constant L , the choice αk ≡ 1/L leads
to decrease in f at each iteration that is consistent with convergence of ‖∇ f (xk)‖
to zero at a sublinear rate when f is bounded below [12] (The classical theory for
gradient descent says little about the case in which f is unbounded below, as in this
example).

The gradient descent and heavy-ball methods will converge to the saddle point 0
for (27) only from starting points of the form x0 = (x01 , 0) for any x01 ∈ R. (In the
case of heavy-ball, this claim follows from Theorem 4, using the fact that (1, 0)T is
the eigenvector of ∇2 f that corresponds to the positive eigenvalue 1.) From any other
starting point, both methods will diverge, with function values going to −∞. When
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the starting point x0 is very close to (but not on) the x1 axis, the typical behavior is that
these algorithms pass close to 0 before diverging along the x2 axis. We are interested
in the question: Does the heavy-ball method diverge away from 0 significantly faster
than the steepest-descent method? The answer is “yes,” as we show in this section.

We consider a starting point that is just off the horizontal axis, that is,

x0 =
[
1
ε

]
, for some small ε > 0. (29)

For the steepest-descent method with constant steplength, we have

[
xk+1
1
xk+1
2

]
=

[
xk1
xk2

]
− α

[
xk1

−δxk2

]
,

so that

[
xk1
xk2

]
=

[
(1 − α)k

(1 + δα)kε

]
. (30)

One measure of repulsion from the saddle point is the number of iterations required
to obtain |xk2 | ≥ 1. Here it suffices for k to be large enough that (1 + δα)kε ≥ 1, for
which (using the usual bound log(1 + γ ) ≤ γ ) a sufficient condition is that

k ≥ | log ε|
δα

.

Making the standard choice of steplength α = 1/L = 1, we obtain

k ≥ | log ε|
δ

. (31)

Consider now the heavy-ball method. Following (2), the iteration has the form:

[
xk+1
1
xk+1
2

]
=

[
(1 − α)xk1
(1 + δα)xk2

]
+ β

[
xk1 − xk−1

1
xk2 − xk−1

2

]
. (32)

(For this quadratic problem, the operator G defined by (5) is linear, so that DG is
constant.) We can partition this recursion into x1 and x2 components, and write

[
xk+1
1
xk1

]
= M1

[
xk1
xk−1
1

]
,

[
xk+1
2
xk2

]
= M2

[
xk2
xk−1
2

]
, (33)

where

M1 =
[
1 − α + β −β

1 0

]
, M2 =

[
1 + δα + β −β

1 0

]
. (34)
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The eigenvalues of these two matrices are given by (18), by setting λ1 = 1 and
λ2 = −δ, respectively. For α and β satisfying the conditions of Theorem 2, which
translate here to

0 < α < 4, β ∈ (−1 + α/2, 1), (35)

both eigenvalues of M1 are less than 1 in magnitude (as we show in the proof of
Theorem 2), so the x1 components converge to zero. Again referring to the proof of
Theorem 2, the eigenvalues of M2 are both real, with one of them greater than 1,
suggesting divergence in the x2 component.

To understand rigorously the behavior of the x2 sequence, we make some specific
choices of α and β. Consider

α ∈ (0, 3], β = 1 − αδ − γ, (36)

for some parameter γ ≥ 0. Note that for small δ and γ , these choices are consistent
with (35). By substituting into (18), we see that the two eigenvalues of M2 are

μ
hi,lo
2 = 1

2

[
(2 − γ ) ±

√
γ 2 + 4αδ

]
.

For reasonable choices of γ , we have that μhi
2 = 1+ c

√
δ for a modest positive value

of c. For specificity (and simplicity) let us consider α = 3 and γ = 0, for which we
have

μhi
2 = 1 + √

3δ, μlo
2 = 1 − √

3δ. (37)

The formula (19) yields M2 = S2Λ2S
−1
2 , where Λ2 = diag(1+ √

3δ, 1− √
3δ) and

S2 =
[
1 + √

3δ 1
1 1

1−√
3δ

]
, S−1

2 = 1 − √
3δ

2
√
3δ

[
1

1−√
3δ

−1

−1 1 + √
3δ

]
.

From (33), and setting x02 = x−1
2 = ε, we have

[
xk2
xk−1
2

]
= S2Λ

k
2S

−1
2

[
ε

ε

]
.

By substituting for Λ2 and S2, we obtain

[
xk2
xk−1
2

]
= εS2Λ

k
2S

−1
2

[
1
1

]

= ε
1 − √

3δ

2
√
3δ

S2Λ
k
2

[ √
3δ

1−√
3δ√

3δ

]
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= εS2Λ
k
2

[
1/2

(1 − √
3δ)/2

]

= εS2

[
(μhi

2 )k/2
(μlo

2 )k(1 − √
3δ)/2

]

≥ 1

2
ε

[
(1 + √

3δ)(μhi
2 )k

(μhi
2 )k

]
,

where we simply drop the term involving μlo
2 in the final step and use 1 − √

3δ > 0.
It follows that

xk2 ≥ 1

2
ε(1 + √

3δ)(μhi
2 )k = 1

2
ε(1 + √

3δ)k+1.

It follows from this bound, by a standard argument, that a sufficient condition for
xk2 ≥ 1 is

k + 1 ≥ log(2/ε)√
3δ

.

Thus we have confirmed that divergence from the saddle point occurs in
O(| log ε|/√δ) iterations for heavy-ball, versus O(| log ε|/δ) iterations for gradient
descent.

For larger values of δ, the divergence of steepest-descent and heavy-ball methods
are both rapid, For appropriate choices of α and β, the iterates generated by both
algorithms leave the vicinity of the saddle point quickly.

Figure 1 illustrates the divergence behavior of steepest descent and heavy-ball on
the function (27) with δ = .02. We set α = .75 for both steepest descent and heavy-
ball. For heavy-ball, we chose β = 1 − αδ = .985. Both methods were started from
x0 = (.25, .01)T . We see that the trajectory traced by steepest descent approaches the
saddle point quite closely before diverging slowly along the x2 axis. The heavy-ball
method “overshoots” the x2 axis (because of the momentum term) but quickly returns
to diverging along the x2 direction at a faster rate than for steepest descent.

4 General accelerated gradient methods applied to quadratic
functions

Here we analyze the rate at which a general class of accelerated gradient methods
escape the saddle point of an n-dimensional quadratic function:

min
x∈Rn

f (x) = 1

2
xT Hx (38)
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Steepest Descent v Heavy Ball on (1/2)*(x12-delta*x2 2)

Heavy Ball
Steepest Descent

Fig. 1 Steepest descent and heavy-ball on (27) with δ = 0.02, from starting point (0.25, 0.01)T , with
α = 0.75, β = 1 − αδ = 0.985. Every 5th iterate is plotted for each method

where H is a symmetric matrix with eigenvalues satisfying (12). We assume without
loss of generality that H is in fact diagonal, that is,

H = diag(λ1, λ2, . . . , λn). (39)

The Lipschitz constant L for ∇ f is L = max(λ1,−λn).

Algorithm 1 General Accelerated Gradient Framework

Choose x1 ∈ R
n , α < 1

L ;

Set x0 = x1;
for k = 1, 2, . . . do

Choose γk ∈ [0, 1] and βk ∈ [0, 1];
yk = xk + γk (x

k − xk−1);
xk+1 = xk + βk (x

k − xk−1) − α∇ f (yk );
end for

As in Sect. 3, gradient descent with α ∈ (0, 1/L) satisfies

xk+1
i = (1 − αλi )x

k
i = (1 − αλi )

k x1i , i = 1, 2, . . . , n. (40)
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It follows that for all i ≥ n − p + 1, for which λi < 0, gradient descent diverges in
that component at a rate of (1 − αλi ).

Algorithm 1 describes a general accelerated gradient framework, including gradient
descent when γk = βk = 0, heavy-ball when γk = 0 and βk > 0, and accelerated
gradient methods when γk = βk > 0. With f defined by (38), the update formula can
be written as

xk+1 = xk + βk(x
k − xk−1) − αH(xk + γk(x

k − xk−1))

= ((1 + βk)I − α(1 + γk)H)xk − (βk I − αγk H)xk−1,

which because of (39) is equivalent to

xk+1
i = ((1 + βk) − (1 + γk)αλi )x

k
i − (βk − γkαλi )x

k−1
i , i = 1, 2, . . . , n. (41)

The following theorem describes the dynamics of xk+1
i in (41) when λi < 0.

Theorem 6 For all i such that λi < 0, we have from (41) that

xk+1
i = x0i

k∏
m=0

(1 + bi,m) (42)

where

bi,k =
{
0, for k = 0

(βk + γkα|λi |)
(
1 − 1

1+bi,k−1

)
+ α|λi |, otherwise.

(43)

In addition if γk+1 ≥ γk and βk+1 ≥ βk for all k then,

bi,k+1 ≥ bi,k, k = 1, 2, . . . . (44)

Proof We begin by showing that (43) holds for k = 0 and k = 1. The case for k = 0
is trivial as x1 = x0. In addition, for k = 1, the update formula (41) becomes

x2i = (1 − αλi )x
0
i .

Thus because bi,0 = 0, we can make this consistent with (42) by setting bi,1 = α|λi |
which is exactly (43) for k = 1.

Now assume that (42) holds for all k ≤ K − 1. From (41), using the inductive
hypothesis for K − 1 and K − 2, we need to show

x0i

K∏
m=0

(1 + bi,m) = x0i ((1 + βK ) − (1 + γK )αλi )

K−1∏
m=0

(1 + bi,m)

−x0i (βK − γKαλi )

K−2∏
m=0

(1 + bi,m) (45)
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by the given definition of bi,K in (43). Dividing both sides by x0i
∏K−1

m=0 (1 + bi,m),
this is equivalent to

1 + bi,K = 1 + βK + (1 + γK )α|λi | − βK + γKα|λi |
1 + bi,K−1

,

which is true because

bi,K = (βK + γKα|λi |)
(
1 − 1

1 + bi,K−1

)
+ α|λi |

is (43) with k = K , as required.
Now we assume that γK+1 ≥ γK and βK+1 ≥ βK holds for all K ≥ 1 and show by

induction that bi,K+1 ≥ bi,K holds for all K ≥ 0. This is clearly true for K = 0 since
α|λi | > 0. Assume now that bi,k+1 ≥ bi,k holds for all 0 ≤ k ≤ K − 1. We have

bi,K+1 = (βK+1 + γK+1α|λi |)
(
1 − 1

1 + bi,K

)
+ α|λi |

≥ (βK+1 + γK+1α|λi |)
(
1 − 1

1 + bi,K−1

)
+ α|λi |

≥ (βK + γKα|λi |)
(
1 − 1

1 + bi,K−1

)
+ α|λi | = bi,K .

where the second inequality above follows from γK+1 ≥ γK , βK+1 ≥ βK and
bi,K−1 ≥ bi,0 = 0. 	


Since bi,k ≥ α|λi | for all k ≥ 1, Theorem 6 shows that Algorithm 1 diverges at a
faster rate than gradient descent when at least one of γk > 0 or βk > 0 is true. Now
we explore the rate of divergence by finding a limit for the sequence {bi,k}k=1,2,....

Theorem 7 Let γk+1 ≥ γk and βk+1 ≥ βk hold for all k and denote γ̄ = limk→∞ γk
and β̄ = limk→∞ βk . Then, for all i such that λi < 0, we have
limk→∞ bi,k = b̄i , where b̄i is defined by by

b̄i := 1

2

(
β̄ − 1 + α|λi |(1 + γ̄ )

) + 1

2

√
(β̄ − 1 + α|λi |(1 + γ̄ ))2 + 4α|λi | (46)

Proof We can write (41) as follows:

xk+1
i = (1 + α|λi |)xki + (βk + γkα|λi |)(xki − xk−1

i ).

Recall from Theorem 6 that xki = (1+ bi,k−1)x
k−1
i . By substituting into the equation

above, we have

xk+1
i = [

(1 + α|λi |)(1 + bi,k−1) + (βk + γkα|λi |)bi,k−1
]
xk−1
i

= [
1 + α|λi | + (1 + α|λi | + βk + γkα|λi |) bi,k−1

]
xk−1
i . (47)
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Using Theorem 6 again, we have

xk+1
i = [

(1 + bi,k)(1 + bi,k−1)
]
xk−1
i = [

1 + bi,k + bi,k−1 + bi,k−1bi,k
]
xk−1
i .

By matching this expression with (47), we obtain

α|λi | + (1 + α|λi | + βk + γkα|λi |) bi,k−1 = bi,k + bi,k−1 + bi,k−1bi,k, (48)

which after division by bi,k−1 yields

α|λi |
bi,k−1

+ (1 + α|λi | + βk + γkα|λi |) = bi,k
bi,k−1

+ 1 + bi,k . (49)

Now assume for contradiction that the nondecreasing sequence {bi,k}k=1,2,... has no
finite limit, that is, bi,k → ∞. Recalling that γk and βk have a finite limit (as they are
nondecreaseing sequences restricted to the interval [0, 1]), we have by taking the limit
as k → ∞ in (49) that the left-hand side approaches

(
1 + α|λi | + β̄ + γ̄ α|λi |

)
, while

the right-hand side approaches ∞, a contradiction. Thus, the nondecreasing sequence
{bi,k}k=1,2,... has a finite limit, which we denote by b̄i .

To find the value for b̄i , we take limits as k → ∞ in (48) to obtain

α|λi | + (
1 + α|λi | + β̄ + γ̄ α|λi |

)
b̄i = 2b̄i + b̄2i .

By solving this quadratic for b̄i , we obtain

b̄i = 1

2

(
β̄ − 1 + α|λi |(1 + γ̄ )

) ± 1

2

√
(β̄ − 1 + α|λi |(1 + γ̄ ))2 + 4α|λi |.

By Theorem 6, we know that bi,k ≥ 0 for all k, so that b̄i ≥ 0. Therefore, b̄i satisfies
(46), as claimed. 	


We apply Theorem 7 to parameter choices that typically appear in accelerated
gradient methods.

Corollary 2 Let the assumptions of Theorem 7 hold, let γk = βk hold for all k and let
γ̄ = β̄ = 1. Then,

b̄i = α|λi | + √
α|λi |

√
1 + α|λi |. (50)

Proof By direct computation with β̄ = γ̄ = 1, we have

b̄i = α|λi | + 1

2

√
4(α|λi |)2 + 4α|λi | = α|λi | + √

α|λi |
√
1 + α|λi |.
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The above corollary gives a rate of divergence for many standard choices of the
extrapolation parameters found in the accelerated gradient literature. In particular, it
includes the sequence βk = γk = tk−1−1

tk
where t0 = 1 and

tk =
√
4t2k−1 + 1 + 1

2
(51)

which was used in a seminal work by Nesterov [11]. (For completeness, we provide
a proof that tk → ∞, so that the assumptions of Corollary 2 hold for this sequence in
the “Appendix”). Another setting used in recent works βk = γk = k−1

k+η+1 [1,3,5]. For
proper choices of η > 0, this scheme has a number of impressive properties such as
fast convergence of iterates for accelerated proximal gradient as well as achieving a
o( 1

k2
) of convergence in the weakly convex case.

We can also use Theorem 7 to derive a bound for the heavy-ball method. If we target
the n-th eigenvalue and set γk = 0 and βk = 1− α|λn| for all k, simple manipulation
shows that b̄n = √

α|λn|, which gives us an equivalent rate to that derived in (37).
Note that for b̄n defined in (50) we also have b̄n ≥ √

α|λn|.
The divergence rates for accelerated gradient and heavy-ball methods are signifi-

cantly faster than the per-iteration rate of (1 + α|λn|) obtained for steepest descent.

5 Experiments

Some computational experiments verify that accelerated gradient methods escape sad-
dle points on nonconvex quadratics faster than steepest descent.

We apply these methods to a quadratic with diagonal Hessian, with n = 100 and a
single negative eigenvalue, λn = −δ = −0.01. The nonnegative eigenvalues are i.i.d.
from the uniform distribution on [0, 1], and starting vector x0 is drawn from a uniform
distribution on the unit ball. Figure 2 plots the norm of the component of xk in the
direction of the negative eigenvector en = (0, 0, . . . , 0, 1)T at each iteration k, for
accelerated gradient, heavy-ball, and steepest descent. It also shows the divergence
that would be attained if the theoretical limit b̄i from Theorem 7 applied at every
iteration. Steepest descent and heavy-ball were run with α = 1/L . Heavy-ball uses
(36) to calculate β, yielding β = 0.989 in the case of δ = .01. Accelerated gradient
is run with α = 0.99/L and βk = γk = tk−1

tk+1
where tk is defined in (51).

It is clear from Fig. 2 that accelerated gradient and heavy-ball diverge at a signifi-
cantly faster rate than steepest descent. In addition, there is only a small discrepancy
between applying accelerated gradient and its limiting rate that is derived in Corol-
lary 2, suggesting that bi,k approaches b̄i rapidly as k → ∞.

Nextwe investigate how thesemethods behave for various dimensions n and various
distributions of the eigenvalues. For two values of n (n = 100 and n = 1000), we
generate 100 random matrices with n − 5 eigenvalues uniformly distributed in the
interval [0, 1], with the 5 negative eigenvalues uniformly distributed in [−2δ,−δ].
The starting vector x0 is uniformly distributed on the unit ball. Algorithmic constants
were the same as those used to generate Fig. 2. Each trial was run until the norm of
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Fig. 2 Momentum methods and theoretical divergence applied to a quadratic function with n = 100 and
a single negative eigenvalue. The vertical axis displays the norm of the projection of xk onto the negative
eigenvector

the projection of the current iterate into the negative eigenspace of the Hessian was
greater than the dimension n. The results of these trials are shown in Table 1.

As expected, accelerated gradient outperforms gradient descent in all respects. All
convergence results are slightly faster for n = 100 than for n = 1000, because the
random choice of x0 will, in expectation, have a smaller component in the span of the
negative eigenvectors in the latter case. The eigenvalue spectrum has a much stronger
effect on the divergence rate. For steepest descent, an order of magnitude decrease in
the absolute value of the negative eigenvalues corresponds to an order of magnitude
increase in iterations, whereas Nesterov’s accelerated gradient sees significantly less
growth in the iteration count. While the accelerated gradient method diverges at a
slightly slower rate than the theoretical limit, the relative difference between the two
does not change much as the dimensions change. Thus, Theorem 7 provides a strong
indication of the practical behavior of Nesterov’s method on these problems.

6 Conclusion

We have derived several results about the behavior of accelerated gradient methods
on nonconvex problems, in the vicinity of critical points at which at least one of the
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Table 1 Divergence Behavior of Gradient Algorithms

n δ Method Av. Iters Max. Iters

100 10−2 Steepest Descent 379 518

Accelerated Gradient 71 87

b̄ Divergence Rate 46 59

100 10−3 Steepest Descent 3855 5603

Accelerated Gradient 242 299

b̄ Divergence Rate 155 194

1000 10−2 Steepest Descent 582 773

Accelerated Gradient 99 116

b̄ Divergence Rate 71 85

1000 10−3 Steepest Descent 5775 8240

Accelerated Gradient 332 399

b̄ Divergence Rate 235 282

eigenvalues of the Hessian ∇2 f (x∗) is negative. Section 2 shows that the heavy-ball
method does not converge to such a point when started randomly, while Sects. 3 and 4
show that when f is an indefinite quadratic, momentum methods diverge faster than
the steepest-descent method.

It would be interesting to extend the results on speed of divergence to non-quadratic
smooth functions f . It would also be interesting to knowwhat can be proved about the
complexity of convergence to a point satisfying second-order necessary conditions,
for unadorned accelerated gradient methods. A recent work [6] shows that gradient
descent can take exponential time to escape from a set of saddle points.We believe that
a similar result holds for accelerated methods as well. The report [8], which appeared
after this paper was submitted, describes an accelerated gradient method that add noise
selectively to some iterates, and exploits negative curvature search directions when
they are detected in the course of the algorithm. This approach is shown to have the
O(ε−7/4) rate that characterizes the best known gradient-based algorithms for finding
second-order necessary points of smooth nonconvex functions.

Acknowledgements We are grateful to Bin Hu for his advice and suggestions on the manuscript. We are
also grateful to the referees and editor for helpful suggestions.

A properties of the sequence {tk} defined by (51)

In this “Appendix” we show that the following two properties hold for the sequence
defined by (51):

tk−1 − 1

tk
is an increasing nonnegative sequence (52)
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and

lim
k→∞

tk−1 − 1

tk
= 1. (53)

We begin by noting two well known properties of the sequence tk (see for example [4,
Section 3.7.2]):

t2k − tk = t2k−1 (54)

and

tk ≥ k + 1

2
. (55)

To prove that tk−1−1
tk

is monotonically increasing, we need

tk−1 − 1

tk
= tk−1

tk
− 1

tk
≤ tk

tk+1
− 1

tk+1
= tk − 1

tk+1
, k = 1, 2, . . . .

Since tk+1 ≥ tk (which follows immediately from (51)), it is sufficient to prove that

tk−1

tk
≤ tk

tk+1
.

By manipulating this expression and using (54), we obtain the equivalent expression

tk−1 ≤ t2k
tk+1

= t2k+1 − tk+1

tk+1
= tk+1 − 1. (56)

By definition of tk+1, we have

tk+1 =
√
4t2k + 1 + 1

2
≥ tk + 1

2
=

√
4t2k−1 + 1 + 1

2
+ 1

2
≥ tk−1 + 1.

Thus (56) holds, so the claim (52) is proved. The sequence {(tk−1 − 1)/tk} is nonneg-
ative, since (t0 − 1)/t1 = 0.

Now we prove (53). We can lower-bound (tk−1 − 1)/tk as follows:

tk−1 − 1

tk
= 2(tk−1 − 1)√

4t2k−1 + 1 + 1
≥ 2(tk−1 − 1)√

4t2k−1 + 2

= 2(tk−1 − 1)

2(tk−1 + 1)
= 1 − 2

tk−1 + 1
. (57)
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For an upper bound, we have from tk ≥ tk−1 that

tk−1 − 1

tk
≤ tk−1

tk
≤ 1. (58)

Since tk−1 → ∞ (because of (55)), it follows from (57) and (58) that (53) holds.
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