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Abstract
We consider the fully dynamic bin packing problem, where items arrive and depart in
an online fashion and repacking of previously packed items is allowed. The goal is, of
course, to minimize both the number of bins used as well as the amount of repacking.
A recently introduced way of measuring the repacking costs at each timestep is the
migration factor, defined as the total size of repacked items divided by the size of
an arriving or departing item. Concerning the trade-off between number of bins and
migration factor, if we wish to achieve an asymptotic competitive ratio of 1 + ε for
the number of bins, a relatively simple argument proves a lower bound of �(1/ε) for
the migration factor. We establish a nearly matching upper bound of O(1/ε

4 log 1/ε)

using a new dynamic rounding technique and new ideas to handle small items in a
dynamic setting such that no amortization is needed. The running time of our algorithm
is polynomial in the number of items n and in 1/ε. The previous best trade-off was
for an asymptotic competitive ratio of 5/4 for the bins (rather than 1 + ε) and needed
an amortized number of O(log n) repackings (while in our scheme the number of
repackings is independent of n and non-amortized).
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1 Introduction

For the classical bin packing problem, we are given a set I of items with a size function
s : I → (0, 1] and need to pack them into as few unit sized bins as possible. In practice,
the complete instance is often not known in advance, which has lead to the definition
of a variety of online versions of the bin packing problem. First, in the classical online
bin packing [43], items arrive over time and have to be packed on arrival. Second, in
dynamic bin packing [13], items may also depart over time. This dynamic bin packing
model is often used for instance in

– the placement and movement of virtual machines onto different servers for cloud
computing [6,8,30,31,40,45],

– the development of guaranteed quality of service channels over certain multi-
frequency time division multiple access systems [36],

– the placement of processes, which require different resources, onto physical host
machines [41,42],

– the resource allocation in a cloud network where the cost depends upon different
parameters [14,34].

Third and fourth, wemay allow already packed items to be slightly rearranged, leading
to online bin packing with repacking (known as relaxed online bin packing) [19] and
dynamic bin packing with repacking (known as fully dynamic bin packing) [23]. See
Table 1 for a short overview on the different models.

The amount of repacking can be measured in different ways. We can either count
the total number of moved items at each timestep or the sum of the sizes of the
moved items at each timestep. If one wants to count the number of moved items, one
typically counts a group of tiny items as a single move. A shifting move [19] thus
involves either a single large item or a bundle of small items in the same bin of total
size s with 1/10 ≤ s ≤ 1/5. Such a bundle may consists of up to �(n) (very small)
items. If an algorithm measures the repacking by shifting moves, a new tiny item may
lead to a large amount of repacking. In order to guarantee that a tiny item i with size
s(i) only leads to a small amount of repacking, one may allow to repack items whose
size adds up to at most β · s(i). The term β is called the migration factor [37] or
shortly migration. Note that shifting moves and migration factor are incomparable
in the sense that a small migration factor does not imply a small number of shifting
moves and vice versa.

In order to measure the quality of an online algorithm, we compare the costs
incurred by an online algorithm with the costs incurred by an optimal offline algo-
rithm. An online algorithm receives as input a sequence of items I = (i1, i2, i3, . . .)

Table 1 Overview of online
models

Name Deletion Repacking

Online bin packing ✗ ✗

Relaxed online bin packing ✗ ✓

Dynamic bin packing ✓ ✗

Fully dynamic bin packing ✓ ✓
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Fully dynamic bin packing revisited 111

and decides at each timestep t , where to place the item it without knowing future items
it+1, it+2, . . .. We denote by I (t) = (i1, i2, . . . , it ) the instance containing the first t
items of the instance I and by opt(I (t)) the minimal number of bins needed to pack
all items in I (t). Note that the packings corresponding to opt(I (t)) and opt(I (t +1))
may differ significantly, as those packings do not need to be consistent. For an online
algorithm A, we denote by A(I (t)) the number of bins generated by the algorithm on
the input sequence I (t). Note that Amust make its decision online, while opt(I (t)) is
the optimal value of the offline instance. The quality of an algorithm for the online bin
packing problem is typically measured by its asymptotic competitive ratio. An online
algorithm A is called an asymptotic α-competitive algorithm, if there is a function
f ∈ o(opt) such that A(I (t)) ≤ αopt(I (t)) + f (I (t)) for all instances I and all
t ≤ |I |. The infimum α such that A is an asymptotic α-competitive algorithm is called
the asymptotic competitive ratio of A, denoted by r N∞(A), i.e., the ratio is defined as
r N∞(A) = inf{α | A is an asymptotic α-competitive algorithm}.

The online algorithm A thus has a double disadvantage: It does not know future
items and we compare its quality to the optimal offline algorithm which may produce
arbitrary different packings at time t and time t + 1. In order to remedy this situation,
one may also compare the solution generated by A to a non-repacking optimal offline
algorithm. This non-repacking optimal offline algorithm knows the complete instance,
but is not allowed to repack.Wemake use of the stronger notion,wherewe compare our
generated solution against an optimal repacking algorithm. The absolute competitive
ratio is defined similar as above, but requires the function f in the above definition to
be 0, i.e., A(I (t)) ≤ αopt(I (t)).

In this work, we present new results in fully dynamic bin packingwherewemeasure
the quality of an algorithm against a repacking optimal offline algorithm and achieve
an asymptotic competitive ratio of 1 + ε. The amount of repacking is bounded by
O(1/ε

4 log(1/ε)). While we measure the amount of repacking in terms of the migration
factor, we also prove that our algorithm uses at most O(1/ε

4 log(1/ε)) shifting moves.
Our algorithm runs in time polynomial in the instance size and in 1/ε.

1.1 Previous results on online variants of bin packing

The survey of Christensen et al. [12] contains many results on multidimensional bin
packing problems. For the onedimensional case, we give a short overview in the
following.

1.1.1 Online bin packing

The classical version of online bin packing problem was introduced by Ullman [43].
In this classical model, items arrive over time and have to be packed at their arrival,
while one is not allowed to repack already packed items. Ullman gave the very first
online algorithm FirstFit for the problem and proved that its absolute competitive
ratio is at most 2. The next algorithmNextFitwas given by Johnson [28], who proved
that its absolute competitive is also at most 2. The analysis of the FirstFit algorithm
was refined by Johnson et al. [29], who proved that its asymptotic competitive ratio is
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at most 17/10. A revised version of FirstFit, called Revised FirstFit was shown to
have asymptotic competitive ratio of at most 5/3 by Yao [47]. A series of developments
of so called harmonic algorithms for this problemwas started by Lee and Lee [33] and
the best known algorithm of this class which has asymptotic competitive ratio at most
1.58889 was given by Seiden [38]. These bounds were further improved by Heydrich
and van Stee to 1.5815 in [21]. Currently, the best algorithm achieves an asymptotic
competitive ratio of 1.57829 and is due to Balogh et al. [1]. The lower bound on the
absolute approximation ratio of 3/2 also holds for the asymptotic competitive ratio as
shown by Yao [47]. This lower bound was first improved independently by Brown [9]
and Liang [35] to 1.53635 and subsequently to 1.54014 by van Vliet [46] and finally
to 1.54037 by Balogh, Békési and Galambos [3].

The question on the absolute approximation ratio was settled by Balogh et al. [2],
who showed an algorithm with absolute approximation ratio of 5/3 matching a long-
known lower bound.

1.1.2 Relaxed online bin packing model

In contrast to the classical online bin packing problem, Gambosi et al. [19] considered
the online casewhere one is allowed to repack items. They called thismodel the relaxed
online bin packing model and proved that the lower bound on the competitive ratio in
the classical online bin packing model can be beaten. They presented an algorithm that
uses 3 shifting moves and has an asymptotic competitive ratio of at most 3/2, and an
algorithm that uses at most 7 shifting moves and has an asymptotic competitive ratio
of 4/3. In another work, Ivković and Lloyd [22] gave an algorithm that uses O(log n)

amortized shifting moves and achieves an asymptotic competitive ratio of 1 + ε. In
this amortized setting, shifting moves can be saved up for later use and the algorithm
may repack the whole instance sometimes. Epstein and Levin [16] used the measure
of the migration factor to give an algorithm that has an asymptotic competitive ratio of
1 + ε and a migration factor of 2O((1/ε) log2(1/ε)). This result was improved by Jansen
and Klein [25] who achieved polynomial migration. Their algorithm uses a migration
factor of O(1/ε

4) to achieve an asymptotic competitive ratio of 1 + ε.
Concerning lower bounds on the migration factor, Epstein and Levin [16] showed

that no optimal solution can be maintained while having a constant migration factor
(independent of 1/ε). Furthermore, Balogh et al. [4] proved that a lower bound on the
asymptotic competitive ratio of 1.3877 holds, if the amount of repacking is measured
by the number of items and one is only allowed to repack a constant number of items.

1.1.3 Dynamic bin packing

An extension to the classical online bin packing model was given by Coffman et al.
[13], called the dynamic bin packingmodel. In addition to the insertion of items, items
also depart over time. No repacking is allowed in this model. It is easily seen that
no algorithm can achieve a constant asymptotic competitive ratio in this setting. In
order to measure the performance of an online algorithm A in this case, one compares
the maximum number of bins used by A with the maximum number of bins used by
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an optimal offline algorithm, i.e., an algorithm A in this dynamic model is called an
asymptoticα-max-competitive algorithm, if there is a function f ∈ o(max-opt),where
max-opt(I ) = maxt opt(I (t)) such thatmaxt A(I (t)) ≤ α·maxt opt(I (t))+ f (I ) for
all instances I . The infimumof all suchα is called theasymptoticmax-competitive ratio
of A. Coffman et al. modified the FirstFit algorithm and proved that its asymptotic
max-competitive ratio is at most 2.897. Furthermore, they showed a lower bound of
2.5 on the asymptotic max-competitive ratio when the performance of the algorithm
is compared to a repacking optimal offline algorithm, i.e., maxt opt(I (t)).

In the case that the performance of the algorithm is compared to an optimal non-
repacking offline algorithm, Coffman et al. showed a lower bound of 2.388. This lower
bound on the non-repacking optimum was later improved by Chan et al. [10] to 2.428
and even further in a later work by Chan et al. [11] to 2.5.

1.1.4 Fully dynamic bin packing

We consider the dynamic bin packing when repacking of already packed items is
allowed. This model was first investigated by Ivković and Lloyd [23] and is called
fully dynamic bin packing. In this model, items arrive and depart in an online fashion
and limited repacking is allowed. The quality of an algorithm is measured by the
asymptotic competitive ratio as defined in the classical online model (no maximum is
taken as in the dynamic bin packingmodel). Ivković and Lloyd developed an algorithm
that uses amortizedO(log n)many shifting moves (see definition above) to achieve an
asymptotic competitive ratio of 5/4. Based upon our work, Gupta et al. [20] developed
an algorithm for fully dynamic bin packing w ith an amortized migration factor of
O(1/ε) that achieves an asymptotic competitive ratio of 1+ε. Note that their algorithm
repacks the complete instance every once in a while and thus only has a bounded
amortized migration factor. In contrast, we guarantee a worst-case migration factor
and are thus not allowed to repack the complete instance. Furthermore, Gupta et
al. [20] and Feldkord et al. [18] studied the case of uniform movement costs (where
the repacking of an item incurs a cost of 1 independent of its size). It was shown that
an asymptotic competitive ratio of α + ε can be achieved with worst-case migration
of O(1/ε2) [18] and that every algorithm achieving asymptotic competitive ratio of
α − ε needs amortized migration depending on the number of items [20].

1.1.5 Related results on the migration factor

Since the introduction of the migration factor, several problems were considered
in this model and different robust algorithms for these problems have been devel-
oped. Following the terminology of Sanders et al. [37] we sometimes use the term
(online) approximation ratio instead of competitive ratio. Hence, we also use the
term asymptotic polynomial time approximation scheme (APTAS) and asymptotic
fully polynomial time approximation scheme (AFPTAS) in the context of online algo-
rithms. If the migration factor of an algorithm A only depends upon the approximation
ratio ε and not on the size of the instance, we say that A is a robust algorithm.

In the case of online bin packing, Epstein and Levin [16] developed the first robust
APTAS for the problem using a migration factor of 2O((1/ε2) log(1/ε)). They also proved
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that there is no online algorithm for this problem that has a constant migration fac-
tor and maintains an optimal solution. The APTAS by Epstein and Levin was later
improved by Jansen and Klein [25], who developed a robust AFPTAS for the prob-
lem with migration factor O(1/ε4). In their paper, they developed new linear program
(LP)/ integer linear program (ILP) techniques, which we also make use of to obtain
polynomial migration. It was shown by Epstein and Levin [17] that their APTAS
for bin packing can be generalized to packing d-dimensional cubes into unit cubes.
Sanders et al. [37] developed a robust polynomial time approximation scheme (PTAS)
for the makespan scheduling problem on identical machines where the objective is to
minimize the so called makespan i.e. the maximum load over all machines. Their algo-
rithm has a migration factor of 2O((1/ε) log2(1/ε)). Skutella and Verschae [39] studied
the makespan scheduling problem as well as the problem of maximizing the minimum
load over all machines. They considered those problems in the fully dynamic setting,
where jobs may also depart and showed that there is no robust (PTAS) for those prob-
lems with constant migration. The main reason for the nonexistence is due to very
small jobs. By using an amortized migration factor, they developed a (PTAS) for both
of the problems with an amortized migration factor of 2O((1/ε) log2(1/ε)). Robust algo-
rithms for the online strip packing problem were studied by Jansen et al. [26]. They
developed an algorithm with asymptotic competitive ratio of 1 + ε and amortized
migration factor of poly(1/ε). Furthermore, they show an amortized migration factor
is needed to obtain an asymptotic competitive ratio of 1 + ε.

1.2 Our contributions

1.2.1 Main result

In this work, we investigate the fully dynamic bin packing model. We measure the
amount of repacking by the migration factor; but our algorithm uses a bounded
number of shifting moves as well. Since the work of Ivković and Lloyd from 1998
[23], no progress was made on the fully dynamic bin packing problem concerning
the asymptotic competitive ratio of 5/4. It was also unclear whether the number
of shifting moves (respectively migration factor) must depend on the number of
packed items n. In this paper we give positive answers for both of these concerns.
We develop an algorithm that provides at each time step t a packing using at most
(1 + ε)opt(I (t)) + O(1/ε log(1/ε)) bins. The algorithm uses a migration factor of
O(1/ε4 · log(1/ε)) by repacking at most O(1/ε3 · log(1/ε)) bins. Hence, the generated
solution can be arbitrarily close to the optimum solution, and for every fixed ε the
provided migration factor is constant (it does not depend on the number of packed
items). The running time is polynomial in n and 1/ε. In case that no deletions are used,
the algorithm has a migration factor of O(1/ε3 · log(1/ε)), which beats the best known
migration factor of O(1/ε4) by Jansen and Klein [25]. Since the number of repacked
bins is bounded, so is the number of shifting moves as it requires at most O(1/ε) shift-
ing moves to repack a single bin. Furthermore, we prove that there is no asymptotic
approximation scheme for the online bin packing problem with a migration factor of
o(1/ε) even in the case that no items depart (and even if P = NP). Our algorithm for
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the case that no items depart is also significantly easier than the algorithm presented
in [25].

1.2.2 Outline of the paper

– In order to obtain a lower bound on the migration factor in Sect. 2, we construct a
series of instances that provably need a migration factor of �(1/ε) in order to have
an asymptotic approximation ratio of 1 + ε.

– In Sect. 3, we show how to handle large items in a fully dynamic setting. The fully
dynamic setting involves more difficulties in the rounding procedure, in contrast to
the setting where large items may not depart, treated in [25]. A simple adaption of
the dynamic techniques developed in [25] does not work here (see the introduction
of Sect. 3). Wemodify the offline rounding technique by Karmarkar and Karp [32]
such that a feasible rounding structure can be maintained when items are inserted
or removed. This way, we can make use of the LP-techniques developed in Jansen
and Klein [25].

– In Sect. 4, we explain how to deal with small items in a dynamic setting. In
contrast to the setting where departure of items is not allowed, the fully dynamic
setting provides major challenges in the treatment of small items. An approach is
thus developed where small items of similar size are packed near each other. We
describe how this structure can be maintained as new items arrive or depart. Note
that the algorithm of Ivković and Lloyd [23] relies on the ability to manipulate
up to �(n) very small items in constant time. See also their updated work for a
thorough discussion of this issue [24].

– In order to unify the different approaches for small and large items, in Sect. 5,
we develop an advanced structure for the packing. We give novel techniques and
ideas tomanage thismixed setting of small and large items. The advanced structure
makes use of a potential function, which bounds the number of bins that need to
be reserved for incoming items.

2 Lower bound

We start by showing that there is no robust (asymptotic) approximation scheme for
bin packing with migration factor of o(1/ε), even ifP = NP. This improves the lower
bound given by Epstein and Levin [16], which states that no algorithm for bin packing,
that maintains an optimal solution can have a constant migration factor. Previously it
was not clear whether there exists a robust approximation algorithm for bin packing
with sublinear migration factor or even a constant migration factor.

Theorem 1 For a fixed migration factor γ > 0, there is no robust approximation
algorithm for bin packing with asymptotic approximation ratio better than 1+(6�γ �+
5)−1.

Proof LetA be an approximation algorithmwithmigration factor γ > 0 and c = �γ �.
We will now construct an instance such that the asymptotic approximation ratio ofA
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with migration factor c is at least 1 + 1
6c+5 . The instance contains only two types of

items: An A-item has size a = 3/2
3c+2 and a B-item has size b = 1/2 − a/3. For M ∈ N,

let

IM = [(b, Insert), (b, Insert), . . . , (b, Insert)
︸ ︷︷ ︸

2M

, (a, Insert), (a, Insert), . . . , (a, Insert)
︸ ︷︷ ︸

2M(c+1)

]

be the instance consisting of 2M insertions of B-items, followed by 2M(c+ 1) inser-
tions of A-items. Denote by r(t) the approximation ratio of the algorithm A at time
t ∈ N. The approximation ratio of the algorithm is thus r = maxt {r(t)}.

The insertion of the B-items produces a packing with β1 bins containing a single
B-item and β2 bins containing two B-items. These are the only possible packings and
hence β1 + 2β2 = 2M . The optimal solution is reached if β1 = 0, β2 = M . We thus
have an approximation ratio of

r(2M) =: r1 = β1 + β2

M
= 2M − β2

M
,

which is strictly monotonically decreasing in β2.
The A-items, which are inserted afterwards, may either be put into bins which

only contain A-items or into bins which contain only one B-item. The choice of a, b
implies 2 · b + a > 1 which shows that no A-item can be put into a bin containing
two B-items. Denote by α the number of bins containing only A-items. The existing
B-items may not be moved as the choice of a, b implies b > c · a > γ · a. At most
1/2+a/3

a = c + 1 items of type A may be put into the bins containing only one B-item.
Note that this also implies that a bin containing one B-item and c + 1 items of type
A is filled completely. The optimal packing thus consists of 2M of those bins and the
approximation ratio of the solution is given by

r(2M(c + 2)) =: r2 = β1 + β2 + α

2M
= 2M − 2β2 + β2 + α

2M
= 2M − β2 + α

2M
.

There are at most β1 ·(c+1) items of type Awhich can be put into bins containing only
one B-item. The remaining (2M −β1)(c+1) items of type A therefore need to be put
into bins containing only A-items. We can thus conclude α ≥ (2M − β1)(c + 1)a =
(2M − 2M + 2β2)(c+ 1)a = 2β2(c+ 1)a. As noted above,

1/2+a/3
a = c+ 1 and thus

(c + 1)a = 1/2 + a/3. Hence the approximation ratio is at least

r2 = β1 + β2 + α

2M
≥ 2M − β2 + 2β2(1/2 + a/3)

2M

= 2M + β2(−1 + 1 + 2a/3)

2M
= 2M + β2 · 2a/3

2M
,

which is strictly monotonically increasing in β2.
As r ≥ max{r1, r2}, a lower bound on the approximation ratio is thus given if

r1 = r2 by
2M−β

M = 2M+β·2a/3
2M for a certainβ. Solving this equation leads toβ = M

a/3+1 .
The lower bound is thus given as
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r ≥ 2M − β

M
= 2 − 1

a/3 + 1
= 1 + 1

6c + 5

by the choice of a. Note that this lower bound is independent from M . Hence, r is also
a lower bound on the asymptotic approximation ratio of any algorithm as the optimal
value of the instance grows with M . 	


We obtain the following corollary:

Corollary 1 There is no robust/dynamic (asymptotic) approximation scheme for bin
packing with a migration factor γ ≤ 1/6(1/ε − 11) = �(1/ε).

3 Dynamic rounding

The goal of this section is to give a robust AFPTAS for the case that only large items
arrive and depart. In the first subsection, we present a general rounding structure. In
the second subsection we give operations on how the rounding can be modified such
that the general structure is preserved. We give the final algorithm in Sect. 3.4, which
is performed when large items arrive or depart. Finally, the correctness is proved by
using the (LP/ILP) techniques developed in [25].

In [25], the last two authors developed a dynamic rounding technique based on an
offline rounding technique from Fernandez de la Vega and Lueker [44]. However, a
simple adaption of these techniques does not work in the dynamic case where items
may also depart. In the case of the offline rounding by Fernandez de la Vega and
Lueker, items are sorted and then collected in groups of the same cardinality. When
a new item arrives in an online fashion, this structure can be maintained by inserting
the new item to its corresponding group. By shifting the largest item of each group
to the left, the cardinality of each group (except for the first one) can be maintained.
However, shifting items to the right whenever an item departs leads to difficulties in
the (LP/ILP) techniques. As the rounding for a group may increase, patterns of the
existing (LP/ILP) solution might become infeasible. We overcome these difficulties
by developing a new dynamic rounding structure and operations based on the offline
rounding technique byKarmarkar andKarp [32].Webelieve that the dynamic rounding
technique based on Karmarkar and Karp is easier to analyze since the structure can
essentially be maintained by shifting items.

Formally, a bin packing instance consists of a set of items I = {i1, i2, . . . , in}
with size function s : I → [0, 1] ∩ Q. A feasible solution is a mapping B : I → N

such that
∑

i∈B−1( j) s(i) ≤ 1 for all j ∈ N. A single set B−1( j) is called a bin. The
goal is to find a solution with a minimal number of bins, i.e. we want to minimize
|{ j ∈ N | B−1( j) �= ∅}|. The smallest value of k ∈ N such that a packing with k bins
exists is denoted by opt(I , s) or if the size function is clear by opt(I ). A trivial lower
bound is given by the value size(I , s) = ∑

i∈I s(i).
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3.1 LP-formulation

Let I be an instance of bin packingwithm different item sizes s1, . . . , sm . Suppose that
for each item ik ∈ I there is a size s j with s(ik) = s j . A configuration Ci is a multiset
of sizes {a(Ci , 1) : s1, a(Ci , 2) : s2, . . . a(Ci ,m) : sm}with∑

1≤ j≤m a(Ci , j)s j ≤ 1,
where a(Ci , j) denotes how often size s j appears in configuration Ci . We denote by
C the set of all configurations. We consider the following LP relaxation of the bin
packing problem:

min
|C|
∑

i=1

xi (LP(I , s))

∑

Ci∈C
xia(Ci , j) ≥ b j ∀1 ≤ j ≤ m

xi ≥ 0 ∀1 ≤ i ≤ |C|

Component b j states the number of items ik in I with s(ik) = s j for j = 1, . . . ,m.
This LP-formulation, known as the configuration LP, is first described by Eisemann
[15]. Suppose that each size s j is larger or equal to ε/14 for some ε ∈ (0, 1/2]. Since
the number of different item sizes is m, the number of feasible packings for a bin is
bounded by |C| ≤ ( 2

ε
+ 1)m . Obviously an optimal integral solution of the LP gives

a solution to our bin packing problem. We denote by opt(I ) the value of an optimal
integral solution. An optimal fractional solution is a lower bound for the optimal value.
We denote the optimal fractional solution by lin(I ).

3.2 Rounding

To obtain an LP formulation of fixed (independent of |I |) dimension, we use a round-
ing technique based on the offline AFPTAS by Karmarkar and Karp [32]. In order to
use the technique for our dynamic setting, we give a more general rounding. This gen-
eralized rounding has a certain structure that is maintained throughout the algorithm
and guarantees an approximate solution for the original instance. First, we divide the
set of items into small ones and large ones. An item i is called small if s(i) < ε/14,
otherwise it is called large. Instance I is partitioned accordingly into a set of large
items IL and a set of small items IS . We treat small items and large items differently.
Small items can be packed using an algorithm presented in Sect. 4.1 while large items
will be assigned using an ILP. In this section we discuss how to handle large items.

First, we characterize the set of large items more precisely by their sizes. We say
that two large items i, i ′ are in the same size category if there is an � ∈ N such that
s(i) ∈ (2−(�+1), 2−�] and s(i ′) ∈ (2−(�+1), 2−�]. Denote the set of all size categories
byW . As every large itemhas size at least ε/14, the number of size categories is bounded
by log(1/ε)+5. Next, items of the same size category are characterized by their block,
which is eitherA or B. The rounding technique of Karmarkar and Karp [32] depends
on some parameter k. This parameter is a fixed value in the offline setting, but might
increase or decrease in a fully dynamic online setting over time. In order to avoid a
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Fig. 1 Grouping in (�,A, ·) and (�,B, ·)

large number of repackings when this parameter changes, we will round some of the
items for parameter k+1 (the ones in theA-blocks) and some of them for parameter k
(the one in the B-blocks). Whenever k increases, we will make sure that the B-blocks
are empty and whenever k decreases, the A-blocks will be empty. Finally, we order
to items with the same size category decreasingly by their size. We thus assign them
a position r ∈ N in their corresponding block.

Summarizing, we partition the set of large items into a set of groups G ⊆ W ×
{A,B} × N. A group g ∈ G consists of a triple (�, X , r) with size category � ∈ W ,
block X ∈ {A,B} and position r ∈ N. The rounding function is defined as a function
R : IL �→ G that maps each large item i ∈ IL to a group g ∈ G. By g[R] we denote
the set of items being mapped to the group g, i.e., g[R] = {i ∈ IL | R(i) = g}.

Let q(�, X) be the maximal r ∈ N such that |(�, X , r)[R]| > 0. If (�, X1, r1) and
(�, X2, r2) are two different groups, we say that (�, X1, r1) is left of (�, X2, r1), if
X1 = A and X2 = B or X1 = X2 and r1 < r2. We say that (�, X1, r1) is right of
(�, X2, r2), if it is not left of it and if the two groups are not the same.

Given an instance (I , s) and a rounding function R, we define the rounded size
function sR by rounding the size of every large item i ∈ g[R] up to the size of the
largest item in its group, hence sR(i) = max

{

s(i ′) | R(i ′) = R(i)
}

. We denote by
opt(I , sR) the value of an optimal solution of the rounded instance (I , sR).

Depending on a parameter k, we define the following properties for a rounding
function R.

(a) For each i ∈ (�, X , r)[R] we have 2−(�+1) < s(i) ≤ 2−�.
(b) For each i ∈ (�, X , r)[R] and each i ′ ∈ (�, X , r ′)[R] and r < r ′, we have

s(i) ≥ s(i ′).
(c) For each � ∈ W and 1 ≤ r ≤ q(�,A) we have |(�,A, r)[R]| = 2�k and

|(�,A, 0)[R]| ≤ 2�k.
(d) For each � ∈ W and each 0 ≤ r ≤ q(�,B)−1 we have |(�,B, r)[R]| = 2�(k−1)

and furthermore |(�,B, q(�,B))[R]| ≤ 2�(k − 1).

Property (a) guarantees that the items are categorized correctly according to their sizes.
Property (b) guarantees that items of the same size category are sorted by their size
and properties (c) and (d) define the number of items in each group (Fig. 1).

Lemma 1 For k =
⌊

size(IL ,s)·ε
2(�log(1/ε)�+5)

⌋

, the number of non-empty groups in G is bounded

from above by (8/ε+2)(log(1/ε)+5) assuming that size(IL , s) > 8/ε ·(�log(1/ε)�+5).

Proof Using the definition of k and the assumption, we show 2size(IL ,s)
k−1 ≤

8/ε(�log(1/ε)� + 5). To simplify the presentation, let 	 = (�log(1/ε)� + 5). We have
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2size(IL , s)

k − 1
= 2size(IL , s)

⌊

size(IL ,s)·ε
2	

⌋

− 1
≤ 2size(IL , s)

size(IL ,s)·ε
2	 − 2

= 2size(IL , s)
size(IL ,s)·ε−4	

2	

= 2size(IL , s) · 2	
size(IL , s) · ε − 4	

As size(IL , s) > 8/ε · (�log(1/ε)� + 5), we have ε/2size(IL , s) ≥ 4	. We can thus
bound:

2size(IL , s) · 2	
size(IL , s) · ε − 4(�log(1/ε)� + 5)

≤ 2size(IL , s) · 2	
size(IL , s) · ε − ε/2size(IL , s)

= 2size(IL , s) · 2	
size(IL , s) · ε/2

= 4	
ε/2

= 8	

ε

For a size category � ∈ W , let I (�, s) = {i ∈ I | 2−(�+1) < s(i) ≤ 2−�. Note that
property (c) and property (d) imply |I (�, s)| ≥ (q(�,A)+q(�,B)−2)2�(k−1). Hence
property (a) implies that size(I (�, s), s) ≥ |I (�, s)|2−(�+1) ≥ (q(�,A) + q(�,B) −
2)(k − 1)/2 and therefore q(�,A)+ q(�,B) ≤ 2size(I (�, s), s)/(k − 1)+ 2. We can
now bound the total number of used groups by

∑

�∈W
[q(�,A) + q(�,B)] ≤

∑

�∈W

(

2size(I (�, s), s)

k − 1
+ 2

)

= 2|W | + 2

k − 1

∑

�∈W
size(I (�)) = 2|W | + 2

k − 1
size(IL , s)

≤ 2|W | + 8

ε
	

≤ 2 · (log(1/ε) + 5) + 8

ε
(log(1/ε) + 5)

= (8/ε + 2)(log(1/ε) + 5)

The total number of used groups is therefore bounded by O(1/ε log(1/ε)). 	

The following lemma shows that the rounding function does in fact yield a (1+ ε)-

approximation.

Lemma 2 Given an instance (I , s) with items greater than ε/14 and a rounding func-
tion R fulfilling properties (a) to (d), then opt(I , sR) ≤ (1 + ε)OPT(I , s).

Proof As (I , s) only contains large items, IL = I . Define for every � ∈ W the
instances J� = ⋃q(�,A)

r=2 (�,A, r)[R] ∪ ⋃q(�,B)
r=0 (�,B, r)[R], J = ⋃

�∈W J� and K =
⋃

�∈W (�,A, 0)[R] ∪ (�,A, 1)[R]. We will now prove, that the error generated by
this rounding is bounded by ε. As each solution to J ∪ K yields a solution to J
and a solution to K , we get opt(J ∪ K , sR) ≤ opt(J , sR) + opt(K , sR). For i ∈
(�,A, 0)[R] ∪ (�,A, 1)[R], we have s(i) ≤ max

{

s(i ′) | i ′ ∈ (�,A, 0)[R]} ≤ 2−�

because of property (a). We can therefore pack at least 2� items from (�,A, 0)[R] ∪
(�,A, 1)[R] into a single bin. Hence, we get with property (c) that
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opt((�,A, 0)[R] ∪ (�,A, 1)[R]), sR)

≤ (|(�,A, 0)[R]| + |(�,A, 1)[R]|) · 2−�

≤ 2k.

We can therefore bound opt(K , sR) as

opt(K , sR) ≤
∑

�∈W
opt((�,A, 0)[R] ∪ (�,A, 1)[R]), sR)

≤
∑

�∈W
2k

≤ 2(�log(1/ε)� + 5)k

= 2� size(I )ε

2(�log(1/ε)� + 5)
� · (�log(1/ε)� + 5)

≤ 2
size(I )ε

2(�log(1/ε)� + 5)
· (�log(1/ε)� + 5)

= εsize(I )

≤ εopt(I , s).

Using property (b), for each item in ((�, X , r + 1)[R]), sR) we find a unique larger
item in (�, X , r)[R]. Therefore we have for every item in the rounded instance (J , sR)

an item with larger size in instance (I , s) and hence

opt(J , sR) ≤ opt(I , s).

The optimal value of the rounded solution can be bounded by

opt(I , sR) ≤ opt(J , sR) + opt(K , sR) ≤ (1 + ε)opt(I , s).

	

We therefore have a rounding function, which generates only O(1/ε log(1/ε)) dif-

ferent item sizes and the generated error is bounded by ε.

3.3 Rounding operations

Let us consider the case where large items arrive and depart in an online fashion.
Formally this is described by a sequence of pairs S = (i1, A1), . . . , (in, An) where
Ai ∈ {Insert,Delete}. Let S(t ′, t) be the subsequence starting with t ′ and ending in t ,
i.e. S(t ′, t) = (it ′, At ′), . . . , (it , At ). At each time t ∈ {1, . . . , n}, we need to pack the
item it into the corresponding packing of i1, . . . , it−1 if Ai = Insert or remove the item
it from the corresponding packing of i1, . . . , it−1 if Ai = Delete. We will denote the
instance at time t by I (t) = {it ′ | (it ′, Insert) ∈ S(t ′, t) ∧ (it ′,Delete) /∈ S(t ′, t)} and
the corresponding packing by Bt .Wewill also round our items and denote the rounding
function at time t by Rt . The large items of I (t) are denoted by IL(t) ⊆ I (t). At time t ,
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we are allowed to repack several itemswith a total size of β ·s(it ) but we intend to keep
themigration factorβ as small as possible. The termrepack(t) = ∑

i,Bt−1(i) �=Bt (i) s(i)
denotes the sum of the items which are moved at time t . The migration factor β of
an algorithm is then defined as maxt

{

repack(t)/s(it )
}

. As the value of size will also
change over the time, we define the value κ(t) as

κ(t) = size(IL(t)) · ε

2(�log(1/ε)� + 5)
.

As shown in Lemma 1, we will make use of the value k(t) := �κ(t)�.
We present operations that modify the current rounding Rt . Associated with this

rounding is the rounded size function sRt and the configuration LP LP(I (t), sRt ). A
packing Bt of the instance is described by an ILP solution yt , based upon a fractional
LP solution xt . We will now modify Rt , Bt , yt and xt to obtain values Rt+1, Bt+1,
yt+1, and xt+1 for the new instance I (t+1). At every time t the rounding Rt maintains
properties (a) to (d). Therefore the rounding provides an asymptotic approximation
ratio of 1+ε (Lemma 2) while maintaining onlyO(1/ε log(1/ε))many groups (Lemma
1). We will now show how to adapt this rounding to a dynamic setting, where items
arrive or depart online.

In the following, fix some rounding R = Rt , some packing B = Bt , a correspond-
ing ILP solution y = yt , and a corresponding fractional LP solution x = xt . Our
rounding R is manipulated by different operations, called the insert, delete, shiftA and
shiftB operation. Some ideas behind the operations are inspired by Epstein and Levin
[16]. The insert operation is performed whenever a large item arrives and the delete
operation is performed whenever a large item departs. The shiftA/shiftB operations
are used to modify the number of groups that are contained in theA and B block. As
we often need to filter the largest items of a group g belonging to a rounding R, we
denote this item by λ(g, R).

– shift: A shift operation takes two groups (�, X1, r1) and (�, X2, r2), where
(�, X1, r1) is left of (�, X2, r2), and a rounding function R and produces a new
rounding function R′ and packing B ′ by shifting the largest item from (�, X2, r2)
to (�, X2, r2 − 1) and so on until (�, X1, r1) is reached (Fig. 2).

If X1 = X2, we thus construct the new rounding R′ with

1. (�, X2, r2 − j − 1)[R′] = ((�, X2, r2 − j − 1)[R] ∪ {λ((�, X2, r2 − j), R))} \
{λ((�, X2, r2 − j − 1), R)} for j = 0, . . . , r2 − r1 − 2,

2. (�, X2, r2)[R′] = (�, X2, r2)[R] \ {λ((�, X2, r2), R)}, and
3. (�, X2, r1)[R′] = (�, X2, r1)[R] ∪ {λ((�, X2, r1 + 1), R)}.
If X1 = A and X2 = B, we construct the new rounding R′ with

Fig. 2 shift with parameters (�, X1, r1) and (�, X2, r2)
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1. (�,B, r2 − j − 1)[R′] = ((�,B, r2 − j − 1)[R] ∪ {λ((�,B, r2 − j), R))} \
{λ((�,B, r2 − j − 1), R)} for j = 0, . . . , r2 − 1,

2. (�,A, q(�,A))[R′] = (�,A, q(�,A))[R] ∪ {λ((�,B, 0), R)} \ {λ((�,A,

q(�,A)), R)},
3. (�,A, q(�,A)− j−1)[R′] = ((�,A, q(�,A)− j−1)[R]∪{λ((�,A, q(�,A)−

j), R))} \ {λ((�,A, q(�,A) − j − 1), R)} for j = 0, . . . , q(�,A − 2, and
4. (�,A, r1)[R′] = (�,A, r1)[R] ∪ {λ((�,A, r1 + 1), R)}.
For all groups g left of (�, X1, r1) or right of (�, X2, r2) set g[R′] = g[R].
Whenever a shift-operation on (�, X1, r1) and (�, X2, r2) is performed, the LP
solution x and the corresponding ILP solution y are updated to x ′ and y′. Let
Ci be a configuration containing λ((�, X2, r2), R) with xi ≥ 1. Let C j = Ci \
s(λ((�, X2, r2), R)) be the configuration without λ((�, X2, r2), R). Set x ′

j = x j +
1, y′

j = y j + 1 and x ′
i = xi − 1, y′

i = yi − 1. In order to add the new item in
(�, X1, r1), set x ′

h = xh + 1 and y′
h = yh + 1 for the index h with Ch = {1 :

s(λ((�, X1, r1), R))}. The remaining configurations do not change.
– insert: To insert item it , find the corresponding group (�, X , r) with

– s(it ) ∈ (2−(�+1), 2−�],
– min {s(i) | i ∈ (�, X , r − 1)} > s(it ) and
– s(λ((�, X , r + 1), R)) ≤ s(it ).

We will then insert it into (�, X , r) and get the rounding R′ by shifting the
largest element of (�, X , r) to (�, X , r − 1) and the largest item of (�, X , r − 1)
to (�, X , r − 2) and so on until (�,A, 0) is reached. Formally, set R∗(it ) =
(�, X , r) and R∗(i j ) = R(i j ) for j �= t . The rounding function R′ is then
obtained by applying the shift operation on R∗ i.e. the new rounding is R′ =
shift((�,A, 0), (�, X , r), R∗). See Fig. 3 for a sketch.

If |(�,A, 0)[R′]| = 2� · k + 1 is too large now, we have to create a new round-
ing group (�,A,−1). Additionally, we shift the largest item in (�,A, 0)[R′] to
this new group (�,A,−1)[R′]. The final rounding R′′ is then obtained by setting
(�,A, r)[R′′] = (�,A, r −1)[R′], i.e. we increment the number of each rounding
group by 1. Note that the largest item in (�,A, 0)[R′] is already packed into a
bin of its own due to the shift operation. Hence, no change in the packing or the
(LP/ILP) solution is needed. The insert operation thus yields a new packing B ′
(or B ′′) which uses two more bins than the packing B.

Fig. 3 insert i into (�, X , ·)
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Fig. 4 delete i from (�, X , ·)

In order to pack the new item, let i be the indexwithCi = {1 : s(λ((�, X , r), R′))},
as it is rounded to the largest size in (�, X , r)[R] after the shift. Place item it into
a new bin by setting B ′(it ) = max j B(i j ) + 1 and x ′

i = xi + 1 and y′
i = yi + 1.

– delete: To delete item it from the group (�, X , r) with R(it ) = (�, X , r), we
remove it from this group and move the largest item from (�, X , r + 1) into
(�, X , r) and the largest item from (�, X , r + 2) into (�, X , r + 1) and so on
until (�, B, q(�, B)). Formally, the rounding R′ is described by the expression
shift((�, X , r), (�, B, q(�, B)), R∗), where

g[R∗] =
{

(�, X , r)[R] \ {it } g = (�, X , r)

g[R] else
.

As a single shift operation is used, the delete operation yields a new packing B ′
which uses one more bin than the packing B. See Fig. 4 for a sketch.

For the LP/ILP solution, letCi be a configuration containing λ((�, B, q(�, B)), R)

with xi ≥ 1. Let C j = Ci \ s(λ((�, B, q(�, B)), R)) be the configuration without
the item λ((�, B, q(�, B)), R). Set x ′

j = x j + 1, y′
j = y j + 1 and x ′

i = xi − 1,
y′
i = yi − 1. Set B ′(i j ) = B(i j ) for all j �= t in order to remove the item it from
the packing.

To control the number of groups in A and B we introduce operations shiftA and
shiftB that increase or decrease the number of groups inA respectivelyB. An operation
shiftA increases the number of groups inA by 1 and decreases the number of groups
in B by 1. Operation shiftB is roughly the inverse of shiftA.

– shiftA: In order to move a group from B to A, we will call 2� times
shift((�,B, 0), (�,B, q(�,B)), R) to receive the rounding R∗. Instead of open-
ing a new bin for each of those 2� items in every shift operation, we rather open
one bin containing all items. Since every item in the corresponding size cate-
gory has size ≤ 2−�, the items fit into a single bin. The group (�,B, 0) has
now the same size as the groups in (�,A, ·). We transfer (�,B, 0) to block A.
Hence, we define the final rounding R′ as (�,A, r)[R′] = (�,A, r)[R∗] for
r = 0, . . . , q(�,A) and (�,A, q(�,A) + 1)[R′] = (�,B, 0)[R∗] as well as
(�,B, r)[R′] = (�,B, r + 1)[R∗] for r = 0, . . . , q(�,B) − 1. The resulting
packing B ′ hence uses one more bin than the packing B. See Fig. 5 for a sketch.

– shiftB: In order to move a group from A to B, we will call 2� times
shift((�,A, 0), (�,A, q(�,A)), R) to receive the rounding R∗. As before in
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Fig. 5 shiftA

shiftA, we open a single bin containing all of the 2� items. The group
(�,A, q(�,A)) has now the same size as the groups in (�,B, ·). We transfer
(�,A, q(�,A)) to block B. Similar to shiftA we define the final rounding R′ as
(�,A, r)[R′] = (�,A, r)[R∗] for r = 0, . . . , q(�,A) − 1 and (�,B, 0)[R′] =
(�,A, q(�,A))[R∗] as well as (�,B, r + 1)[R′] = (�,B, r)[R∗]. The resulting
packing B ′ hence uses one more bin than the packing B.

Lemma 3 Let R be a rounding function fulfilling properties (a) to (d). Applying one
of the operations insert, delete, shiftA or shiftB on R results in a rounding function R′
fulfilling properties (a) to (d).

Proof Property (a) is always fulfilled as no item is moved between different size
categories and the insert operation inserts an item into its appropriate size category.

As the order of items never changes and the insert operation inserts an item into
the appropriate place, property (b) also holds.

For properties (c) and (d), we first note that the operation shift(g, g′, R) increases
the number of items in g by 1 and decreases the number of items in g′ by 1. The insert
operation consists of adding anew item to agroup g followedbya shift((�,A, 0), g, R)

operation. Hence the number of items in every group except for (�,A, 0) (which is
increased by 1) remains the same. The delete operation consists of removing an item
from a group g followed by a shift(g, (�,B, q(�,B)), R) operation. Therefore, the
number of items in all groups except for (�,B, q(�,B)) (which is decreased by 1)
remains the same. As the number of items in (�,A,0) and (�,B, q(�,B)) are treated
separately and may be smaller than 2� · k respectively 2� · (k − 1), properties (c) and
(d) are always fulfilled for the insert and the delete operation. Concerning the shiftA
operation, we increase the number of items in a group (�,B, 0) by 2�. Therefore, it
now contains 2�(k − 1) + 2� = 2� · k items, which equals the number of items in
groups of block A. As this group is now moved to block A, the properties (c) and
(d) are fulfilled. Symmetrically the shiftB operation decreases the number of items
in a group (�, A, q(�, A)) by 2�. Therefore the number of items in the group is now
2� · k − 2� = 2� · (k − 1), which equals the number of items in the groups of block B.
As this group is now moved to block B, the properties (c) and (d) are fulfilled. 	


According to Lemma 1 the rounded instance (I , sR) has O(1/ε log(1/ε)) different
item sizes (given a suitable k). Using the LP formulation of Eisemann [15] from
Sect. 3.1, the resulting LP called LP(I , sR) has m = O(1/ε log(1/ε)) constraints. We
say a packing B corresponds to a rounding R and an integral solution y of the ILP if
all items in (I , sR) are packed by B according to y.
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Lemma 4 Applying any of the operations insert, delete, shiftA or shiftB on a rounding
function R and ILP solution y with corresponding packing B defines a new rounding
function R′ and a new feasible integral solution y′ of L P(I , sR

′
).

Proof We have to analyze how the LP for instance (I , sR
′
) changes in comparison to

the LP for instance (I , sR).
shiftOperation A single shift(g1, g2, R) operation moves one item from each group
g between g1 and g2 into g and one item out of g. As no item is moved out of g1 and
no item is moved into g2, the number of items in g1 is increased by 1 and the number
of items in g2 is decreased by 1. The right hand side of the LP(I , sR) is defined by the
cardinalities |g[R]| of the rounding groups g in R. As only the cardinalities of g1 and
g2 change by ±1 the right hand side changes accordingly to ±1 in the corresponding
components of y. The moved item from g2 is removed from the configuration and a
new configuration containing the new item of g1 is added. The LP and ILP solutions
x and y are being modified such that λ(g2, R) is removed from its configuration and
a new configuration is added such that the enhanced right hand side of g1 is covered.
Since the largest item λ(g, R) of every group g between g1 and g2 is shifted to its
left group, the size sR

′
(i) of item i ∈ g[R] is defined by sR

′
(i) = s(ι(g, R)), where

ι(g, R) is the second largest item of g[R]. Therefore each item in (I , sR
′
) is rounded

to a smaller or equal value as s(ι(g, R)) ≤ s(λ(g, R)). All configurations of (I , sR)

can thus be transformed into feasible configurations of (I , sR
′
).

insert Operation The insert operation consists of inserting the new item into its
corresponding group g followed by a shift operation. Inserting the new item into g
increases the right hand side of the LP by 1. To cover the increased right hand side,
we add a new configuration {1 : sR

′
(i)} containing only the new item. In order to

reflect the change in the LP solution, the new item is added into an additional bin. The
remaining changes are due to the shift operation already treated above.
delete Operation The delete operation consists of removing an item i from its
corresponding group g followed by a shift operation. Removing the new item from g
decreases the right hand side of the LP by 1. The current LP and ILP solutions x and
y do not need to be changed to cover the new right hand side. The remaining changes
are due to the shift operation already treated above.
shiftA/shiftBOperationAs the shiftA and shiftB operations consist only of repeated
use of the shift operation, the correspondence between the packing and the (LP/ILP)
solution follows simply by induction. 	


3.4 Algorithm for dynamic bin packing

Wewill use the operations from the previous section to obtain a dynamic algorithm for
bin packing with respect to large items. The operations insert and delete are designed
to process the input depending of whether an item is to be inserted or removed. Keep

in mind that the parameter k(t) = �κ(t)� =
⌊

size(IL (t))·ε
2(�log(1/ε)�+5)

⌋

changes over time as

size(IL(t)) may increase or decrease. In order to fulfill the properties (c) and (d), we
need to adapt the number of items per group whenever k(t) changes. The shiftA and
shiftB operations are thus designed to manage the dynamic number of items in the
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groups as k(t) changes. Note that a group in the A-block with parameter k(t) has by
definition the same number of items as a group in theB-block with parameter k(t)−1
assuming they are in the same size category. If k(t) increases, the former A-block is
treated as the new B-block in order to fulfill the properties (c) and (d) while a new
empty A-block is introduced. To be able to rename the blocks, the B-block needs to
be empty. Accordingly the A-block needs to be empty if k(t) decreases in order to
treat the old B-block as new A-block. Hence we need to make sure that there are no
groups in the B-block if k(t) increases and vice versa, that there are no groups in the
A-block if k(t) decreases.

3.5 Two auxiliary algorithms

We will make use of two very useful algorithms throughout this work. The algorithm
improve was developed in [25] to improve the objective value of an LP with integral
solution y and corresponding fractional solution x . For a vector z ∈ R

n let V (z) be
the set of all integral vectors v = (v1, . . . vn)

T such that 0 ≤ vi ≤ zi .
Let x be an approximate solution of the LP min {‖x‖1 | Ax ≥ b, x ≥ 0}, call it

(∗), with m inequalities (excluding the non-negativity constraints) and let ‖x‖1 ≤
(1 + δ)lin and ‖x‖1 ≥ 2α(1/δ + 1), where lin denotes the fractional optimum of
the LP, α ∈ N is part of the input of the algorithm (see Jansen and Klein [25]), and
0 < δ < 1 is some precision. Let y be an approximate integral solution of the LP
with ‖y‖1 ≤ lin+ 2C for some value C ≥ δlin and with ‖y‖1 ≥ (m + 2)(1/δ + 2).
Suppose that both x and y have only≤ C non-zero components. For every component
i we suppose that yi ≥ xi . Furthermore we are given indices a1, . . . , aK , such that the
non-zero components ya j are sorted in non-decreasing order, i.e., ya1 ≤ · · · ≤ yaK .

Algorithm 1 (improve)

1. Set xvar := 2α(1/δ+1)
‖x‖ x , x f i x := x − xvar and bvar = b − A(x f i x )

2. Compute an approximate solution x̂ of the LPmin {‖x‖1 | Ax ≥ bvar , x ≥ 0}with
approximation ratio (1 + δ/2)

3. If
∥

∥x f i x + x̂
∥

∥

1 ≥ ‖x‖1 then set x ′ = x , ŷ = y and goto step 9
4. Choose the largest � such that the sum of the smallest components y1, . . . , y� is

bounded by
∑

1≤i≤� yai ≤ (m + 2)(1/δ + 2)

5. For all i set x̄ f i x
i =

{

0 if i = a j , j ≤ �

x f i x
i else

and ȳi =
{

0 if i = a j , j ≤ �

yi else
6. Set x̄ = x̂ + x� where x� is a vector consisting of the components xa1 , . . . , xa�

.
Reduce the number of non-zero components to at most m + 1 by solving a linear
equation system

7. Set x ′ = x̄ f i x + x̄
8. For all non-zero components i set ŷi = max{�x ′

i�, ȳi }
9. If possible choose d ∈ V (ŷ − x ′) such that ‖d‖1 = α(1/δ + 1) otherwise choose

d ∈ V (ŷ − x ′) such that ‖d‖1 < α(1/δ + 1) is maximal
10. Return y′ = ŷ − d

In the following,we prove that the algorithm improve applied to the bin packingILP
actually generates a new improved packing B ′ from the packing B with corresponding
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LP and ILP solutions x ′ and y′. We therefore use Theorem 2 and Corollary 2 that were
proven in [25].

Theorem 2 (Theorem8 in [25])Let x be a solution of theLP (∗)with‖x‖1 ≤ (1+δ)lin
and furthermore ‖x‖1 ≥ 2α(1/δ + 1). Let y be an integral solution of the LP with
‖y‖1 ≤ lin+2C for somevalueC ≥ δlinandwith‖y‖1 ≥ (m+2)(1/δ+2). Solutions
x and y have the same number of non-zero components and for each component we
have xi ≤ yi . The algorithm improve(x, y, α) then returns a fractional solution x ′
with

∥

∥x ′∥∥
1 ≤ (1+δ)lin−α and an integral solution y′ where one of the two properties

hold:
∥

∥y′∥∥
1 = ‖y‖1−α or

∥

∥y′∥∥
1 = ∥

∥x ′∥∥
1+C. Both x ′ and y′ have at most C non-zero

components and the distance between y′ and y is bounded by
∥

∥y′ − y
∥

∥

1 = O(m+α
δ

).

Corollary 2 (Corollary 9 in [25]) Let ‖x‖1 = (1+ δ′)lin for some δ′ ≥ δ and ‖x‖1 ≥
2α(1/δ +1) and let ‖y‖1 ≤ lin+2C for some C ≥ δ′lin and ‖y‖1 ≥ (m+2)(1/δ +
2). Solutions x and y have the same number of non-zero components and for each
component we have xi ≤ yi . Then algorithm improve(x, y, α) returns a fractional
solution x ′ with

∥

∥x ′∥∥
1 ≤ ‖x‖1 − α = (1 + δ′)lin − α and integral solution y′ where

one of the two properties hold:
∥

∥y′∥∥
1 = ‖y‖1 − α or

∥

∥y′∥∥
1 = ‖x‖1 − α + C. Both,

x ′ and y′ have at most C non-zero components and the distance between y′ and y is
bounded by

∥

∥y′ − y
∥

∥

1 = O(m+α
δ

).

In the following, let � = ε + δ + εδ and C = �opt(I , s) + m.

Theorem 3 Given a rounding function R and the LP defined for (I , sR), let x be
a fractional solution of the LP with ‖x‖1 ≤ (1 + �)opt(I , s), ‖x‖1 ≥ 2α(1/δ +
1) and ‖x‖1 = (1 + δ′)lin(I , sR) for some δ′ > 0. Let y be an integral solution
of the LP with ‖y‖1 ≥ (m + 2)(1/δ + 2) and corresponding packing B such that
maxi B(i) = ‖y‖1 ≤ (1 + 2�)opt(I , s) + m. Suppose x and y have the same
number ≤ C of non-zero components and for all components i we have yi ≥ xi .
Then algorithm improve(x, y, α) returns a new fractional solution x ′ with

∥

∥x ′∥∥
1 ≤

(1+�)opt(I , s)−α and also a new integral solution y′ with corresponding packing
B ′ such that

max
i

B ′(i) = ∥

∥y′∥
∥

1 ≤ (1 + 2�)opt(I , s) + m − α.

Further, both solutions x ′ and y′ have the same number ≤ C of non-zero components
and for each component we have x ′

i ≤ y′
i . The number of changed bins from the

packing B to the packing B ′ is bounded by O(m
δ
).

Proof TouseTheorem2andCorollary 2wehave to prove that certain conditions follow
from the prequisites of Theorem3.We havemaxi B(i) = ‖y‖1 ≤ (1+2�)opt(I , s)+
m by condition. Since opt(I , s) ≤ opt(I , sR) we obtain for the integral solution y
that ‖y‖1 ≤ 2�opt(I , s) + m + opt(I , sR) ≤ 2�opt(I , s) + m + lin(I , sR) + m.
Hence by definition of C we get ‖y‖1 ≤ lin(I , sR) + 2C . This is one requirement to
use Theorem 2 or Corollary 2. We distinguish the cases where δ′ ≤ δ and δ′ > δ and
look at them separately.
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Case 1 δ′ ≤ δ. For the parameter C we give a lower bound by the inequality
C > �opt(I , s) = (δ + ε + δε)opt(I , s). Lemma 2 shows that opt(I , sR) ≤
(1 + ε)opt(I , s) and therefore yields

δ + ε + δε

1 + ε
opt(I , sR) = (1 + δ)(1 + ε) − 1

1 + ε
opt(I , sR)

= (1 + δ)opt(I , sR) − 1

1 + ε
opt(I , sR)

≥ δopt(I , sR) ≥ δL I N (I , sR)

and hence C > δlin(I , sR). We can therefore use Theorem 2.
Algorithm improve returns by Theorem 2 an x ′ with

∥

∥x ′∥∥
1 ≤ (1+ δ)lin(I , sR)−

α ≤ (1 + δ)opt(I , sR) − α and an integral solution y′ with
∥

∥y′∥∥
1 ≤ ∥

∥x ′∥∥
1 + C

or
∥

∥y′∥∥
1 ≤ ‖y‖1 − α. Using that opt(I , sR) ≤ (1 + ε)opt(I , s) we can conclude

∥

∥x ′∥∥
1 ≤ (1 + δ)(1 + ε)opt(I , s) − α = (1 + �)opt(I , s) − α. In the case where

∥

∥y′∥∥
1 ≤ ∥

∥x ′∥∥
1 + C we can bound the number of bins of the new packing B ′ by

maxi B ′(i) = ∥

∥y′∥∥
1 ≤ ∥

∥x ′∥∥
1 + C ≤ (1 + 2�)opt(I , s) + m − α. In the case that

∥

∥y′∥∥
1 ≤ ‖y‖1−α we obtain maxi B ′(i) = ∥

∥y′∥∥
1 ≤ ‖y‖1−α ≤ (1+2�)opt(I , s)+

m − α. Furthermore we know by Theorem 2 that x ′ and y′ have at most C non-zero
components.

Case 2 δ′ > δ. First we prove that C is bounded from below. Since ‖x‖1 =
(1 + δ′)lin(I , sR) ≤ (1 + �)opt(I , s) = opt(I , s) + �opt(I , s) ≤ opt(I , sR) +
�opt(I , s) ≤ lin(I , sR) + m + �opt(I , s) = lin(I , sR) + C we obtain that C ≥
δ′lin(I , sR), which is a requirement to use Corollary 2. By using Algorithm improve
on solutions x with ‖x‖1 = (1 + δ′)lin(I , sR) and y with ‖y‖1 ≤ lin(I , sR) + 2C
we obtain by Corollary 2 a fractional solution x ′ with

∥

∥x ′∥∥
1 ≤ ‖x‖1 − α ≤ (1 +

�)opt(I , s)−α and an integral solution y′ with either
∥

∥y′∥∥
1 ≤ ‖y‖1 −α or

∥

∥y′∥∥
1 ≤

‖x‖1+C−α. So for the new packing B ′ we can guarantee that maxi B ′(i) = ∥

∥y′∥∥
1 ≤

‖y‖1 − α = maxi B(i) − α ≤ (1 + 2�)opt(I , s) + m − α if
∥

∥y′∥∥
1 ≤ ‖y‖1 − α. In

the case that
∥

∥y′∥∥
1 ≤ ‖x‖1 + C − α, we can guarantee that maxi B ′(i) = ∥

∥y′∥∥
1 ≤

‖x‖1+C−α ≤ (1+�)opt(I , s)+C−α ≤ (1+2�)opt(I , s)+m−α. Furthermore
we know by Corollary 2 that x ′ and y′ have at most C non-zero components.

Theorem 2 as well as Corollary 2 state that the distance
∥

∥y′ − y
∥

∥

1 is bounded by
O(m/δ). Since y corresponds directly to the packing B and the new integral solution
y′ corresponds to the new packing B ′, we know that only O(m/δ) bins of B need to be
changed to obtain packing B ′. 	


Wewill also make use of the auxiliary Algorithm 2 (ReduceComponents). Due to
a delete-operation, the value of the optimal solution opt(I , s) might decrease. Since
the number of non-zero components has to be bounded by C = �opt(I , s) + m,
the number of non-zero components might have to be adjusted down. The following
algorithmdescribes howa fractional solution x ′ and an integral solution y′ with reduced
number of non-zero components can be computed such that

∥

∥y − y′∥∥
1 is bounded. The

idea behind the algorithm is also used in the Improve algorithm. The smallest m + 2
components are reduced to m + 1 components using a standard technique presented
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for example in [5]. Arbitrary many components of x ′ can thus be reduced to m + 1
components without making the approximation guarantee worse.

Algorithm 2 (ReduceComponents)

1. Choose the smallest non-zero components ya1 , . . . , yam+2

2. If
∑

1≤i≤m+2 yai ≥ (1/� + 2)(m + 2) then return x = x ′ and y = y′
3. Reduce the components xa1 , . . . , xam+2 to m + 1 components x̂b1 , . . . , x̂bm+1 with

∑m+2
j=1 xa j = ∑m+1

j=1 x̂b j

4. For all i set x ′
i =

⎧

⎪
⎨

⎪
⎩

x̂i + xi if i = b j for some j ≤ m

0 if i = a j for some j ≤ m + 1

xi else

and ŷi =

⎧

⎪
⎨

⎪
⎩

�x̂i + x ′
i� if i = b j for some j ≤ m

0 if i = a j for some j ≤ m + 1

yi else
5. If possible choose d ∈ V (ŷ − x ′) such that ‖d‖1 = m + 1 otherwise choose

d ∈ V (ŷ − x ′) such that ‖d‖1 < m + 1 is maximal
6. Return y′ = ŷ − d

The following theorem shows that the algorithm above yields a new fractional solution
x ′ and a new integral solution y′ with a reduced number of non-zero components.

Theorem 4 Let x be a fractional solution of the LP with ‖x‖1 ≤ (1+�)opt(I , s). Let
y be an integral solution of the LP with ‖y‖1 ≤ (1 + 2�)opt(I , s) + m. Suppose x
and y have the same number≤ C +1 of non-zero components and for all components
i we have yi ≥ xi . Using the Algorithm ReduceComponents on x and y returns a
new fractional solution x ′ with

∥

∥x ′∥∥
1 ≤ (1+�)opt(I , s) and a new integral solution

y′ with
∥

∥y′∥∥
1 ≤ (1 + 2�)opt(I , s) + m. Further, both solutions x ′ and y′ have the

same number of non-zero components and for each component we have x ′
i ≤ y′

i .
The number of non-zero components is now at most C. Furthermore, we have that
∥

∥y − y′∥∥
1 ≤ 2 · (1/� + 3)(m + 2).

Proof Case 1
∑

1≤i≤m+2 yai ≥ (1/� + 2)(m + 2). We will show that in this case, x
and y already have ≤ C non-zero components and returns x ′ = x and y′ = y. Since
∑

1≤i≤m+2 yai ≥ (1/� + 2)(m + 2) the components ya1 , . . . , yam+2 have an average
size of at least (1/� + 2) and since ya1 , . . . , yam+2 are the smallest components, all
components of y have average size at least (1/� + 2). The size ‖y‖1 is bounded by
(1 + 2�)opt(I , s) + m. Hence the number of non-zero components can be bounded
by (1+2�)opt(I ,s)+m

1/�+2 ≤ �opt(I , s) + �m ≤ C .
Case 2

∑

1≤i≤m+1 yai < (1/� + 2)(m + 2). We have to prove different properties
for the new fractional solution x ′ and the new integral solution y′.

Number of non-zero components: The only change in the number of non-zero
components is in step 3 of the algorithm, where the number of non-zero components
is reduced by 1. As x, y have at most C + 1 non-zero components, x ′, y′ have at most
C non-zero components. In step 4 of the algorithm, ŷ is defined such that ŷi ≥ x ′

i .
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In step 5 of the algorithm d is chosen such that ŷi − d ≥ x ′
i . Hence we obtain that

y′
i = ŷi − d ≥ x ′

i .
Distance between y and y′: The only steps where components of y changes are in

step 4 and 5. The distance between y and ŷ is bounded by the sum of the components
that are set to 0, i.e.,

∑m+2
j=1 ya j and the sumof the increase of the increased components

∑m+1
j=1 �x̂b j � ≤ ∑m+1

j=1 x̂b j +m+1 = ∑m+2
j=1 xa j +m+1.As

∑m+2
j=1 xa j ≤ ∑m+2

j=1 ya j <

(1/� + 2)(m + 2), we obtain that the distance between y and ŷ is bounded by 2 ·
(1/� + 2)(m + 2) +m + 1. Using that ‖d‖1 ≤ m + 1, the distance between y and y′
is bounded by

∥

∥y′ − y
∥

∥

1 < 2 · (1/� + 3)(m + 2).
Approximation guarantee: The fractional solution x is modified by condition of

step 3 such that the sum of the components does not change. Hence
∥

∥x ′∥∥
1 = ‖x‖1 ≤

(1 + �)opt(I , s).
Case 2a ‖d‖1 < m + 1. Since d is chosen maximally we have for every non-zero
component that y′

i − x ′
i < 1. Since there are at most C = �opt(I , s) + m non-

zero components we obtain that
∥

∥y′∥∥
1 ≤ ∥

∥x ′∥∥
1 + C ≤ (1 + 2�)opt(I , s) + m.

Case 2b ‖d‖1 = m + 1. By definition of ŷ we have
∥

∥ŷ
∥

∥

1 ≤ ‖y‖1 + ∑m+1
j=1 � ˆxb j +

xb j � − ∑m+2
j=1 xa j ≤ ‖y‖1 + m + 1. We obtain for y′ that

∥

∥y′∥∥
1 = ∥

∥ŷ
∥

∥

1 − ‖d‖1 ≤
‖y‖1 + m + 1 − (m + 1) = ‖y‖1 ≤ (1 + 2�)opt(I , s) + m. 	


3.6 Large items

In the following, we describe the algorithm to handle the large items. The treatment
of small items is described in Sect. 4 and the general case is described in Sect. 5. We
denote the number of all groups in all A-blocks at time t by A(t) and the number of
groups in all B-blocks at time t by B(t). To make sure that the B-block (respectively
the A-block) is empty when k(t) increases (decreases) the ratio A(t)

A(t)+B(t) needs to
correlate to the fractional digits ofκ(t) at time t denotedby�(t).Hencewepartition the

interval [0, 1) into exactlyA(t)+B(t) smaller intervals Ji =
[

i
A(t)+B(t) ,

i+1
A(t)+B(t)

)

.

We will make sure that �(t) ∈ Ji iff
A(t)

A(t)+B(t) ∈ Ji . Note that the term
A(t)

A(t)+B(t) is
0 if the A-blocks are empty and the term is 1 if the B-blocks are empty. This way,
we can make sure that as soon as k(t) increases, the number of B-blocks is close to
0 and as soon as k(t) decreases, the number of A-blocks is close to 0. Therefore, the
A,B-block can be renamed whenever k(t) changes. The algorithm uses shiftA and
shiftB operations to adjust the number of groups in theA- and B-blocks. Recall that a
shiftA operation reduces the number of groups in the B-block by 1 and increases the
number of groups in theA-block by 1 (shiftB works vice versa). Let d be the number
of shiftA/shiftB operations that need to be performed to adjust A(t)

A(t)+B(t) .
In the following algorithm we make use of the algorithm improve, which was

developed in [25] to reduce the number of used bins. Using improve(x) on a packing
B using maxi B(i) ≤ (1 + ε̄)opt + C bins for some ε̄ = O(1) · ε and some additive
termC yields a new packing B ′ usingmaxi B(i) ≤ (1+ε̄)opt+C−x bins.We use the
operations in combination with the improve algorithm to obtain a fixed approximation
guarantee.
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Algorithm 3 (AFPTAS for large items)

Algorithm: Insertion

if SIZE(I (t)) < (m + 2)(1/δ + 2) or SIZE(I (t)) < 8(1/δ + 1) then
use offline Bin Packing

else
improve(2); insert(i);
// Shifting to the correct interval
Let Ji be the interval containing �(t);

Let J j be the interval containing
A(t)

A(t)+B(t) ;

Set d = i − j ;
if k(t) > k(t − 1) then // Modulo A(t) + B(t) when k(t) increases

d = d + (A(t) + B(t));
// Shifting d groups from B to A
for p := 0 to |d| − 1 do

if i + p = A(t) + B(t) then
Rename(A,B);

improve(1); shiftA;

Algorithm: Deletion

if SIZE(I (t)) < (m + 2)(1/δ + 2) or SIZE(I (t)) < 8(1/δ + 1) then
use offline Bin Packing

else
// Departing item i
improve(4); delete(i);
ReduceComponents;
// Shifting to the correct interval
Let Ji be the interval containing �(t);

Let J j be the interval containing
A(t)

A(t)+B(t) ;

Set d = i − j ;
if k(t) < k(t − 1) then // Modulo A(t) + B(t) when k(t) decreases

d = d − (A(t) + B(t));
// Shifting d groups from A to B
for p := 0 to |d| − 1 do

if i − p = 0 then
Rename(A,B);

improve(1); shiftB;

The following lemma shows that the number of shifted groups d can be bounded
by 11. See Fig. 6 for an example.

Lemma 5 At most 11 groups are shifted from A to B (or B to A) in Algorithm 3.

Proof Since the value |size(I (t − 1)) − size(I (t))| changes at most by 1 we can
bound D = |κ(t −1)−κ(t)| by ε

2(�log(1/ε)�+5) ≤ ε
log(1/ε)+5 to obtain the change in the

fractional part. By Lemma 1 the number of intervals (equaling the number of groups)
is bounded by ( 8

ε
+2)(log(1/ε)+5). Using�(t−1) ∈ [ A(t−1)

A(t−1)+B(t−1) ,
A(t−1)+1

A(t−1)+B(t−1) )

and the fact that the number of groupsA(t − 1) +B(t − 1) increases or decreases at
most by 1, we can give a bound for the parameter d in both cases by

123



Fully dynamic bin packing revisited 133

(a)

(b)

Fig. 6 Comparison of the situation before and after an insert operation. a Before insert. b After insert

d ≤ D

interval length
+ 1 = D · #intervals + 1

≤
((

ε

log (1/ε) + 5

)

·
(

8

ε
+ 2

)

· (log(1/ε) + 5)

)

+ 1

= 8 + 2ε + 1 < 11

Hence, the number of shiftA/shiftB operations is bounded by 11. 	


Lemma 6 Every rounding function Rt produced byAlgorithm 3 fulfills properties (a) to

(d) with parameter k(t) =
⌊

size(IL )·ε
2(�log(1/ε)�+5)

⌋

, as long as all conditions to use algorithm

improve are fulfilled.

We will later show in the proof of Theorem 5, that the preconditions for improve are
fulfilled.

Proof Since Algorithm 3 uses only the operations insert, delete, shiftA and shiftB,
the properties (a) to (d) are always fulfilled by Lemma 3 and the (LP/ILP) solutions
x, y correspond to the rounding function by Lemma 4.
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Note that as exactly d groups are shifted from A to B (or B to A) the algorithm

maintains the property that �(t) ∈
[ A(t)
A(t)+B(t) ,

A(t)+1
A(t)+B(t)

)

. Whenever k(t) increases

by 1, the value �(t) flips from 1 (implying that the B-block is empty), to 0 (implying
that the A-block is empty). Hence the A-block is renamed to be the new B-block.
Vice versa, wenever k(t) decreases theA-block is empty and the B-block is renamed
to be the new A-block. Therefore the number of items in the groups is dynamically
adapted to match with the parameter k(t). 	


We will prove that the migration between packings Bt and Bt+1 is bounded by
O(1/ε3 log(1/ε)) and that we can guarantee an asymptotic approximation ratio such
that maxi {Bt (i)} ≤ (1+ 2�)opt(I (t), s) + poly(1/�) for a parameter � = O(ε) and
for every t ∈ N.

Theorem 5 Algorithm 3 is an AFPTAS with running timeO(1/ε
5 · log4(1/ε)+ log(1/ε) ·

n(t)) and migration factor at most O( 1
ε3

· log(1/ε)) for the fully dynamic bin packing
problem with respect to large items.

Proof Set δ = ε. Then � = 2ε + ε2 = O(ε). We assume in the following that � ≤ 1
(which holds for ε ≤ √

2 − 1).
We prove by induction that four properties hold for any packing Bt , rounding Rt ,

and the corresponding LP solutions. Let x be a fractional solution of the LP defined
by the instance (I (t), sRt ) and y be an integral solution of this LP. The properties (2)
to (4) are necessary to apply Theorem 3 and property (1) provides the wished upper
bound on the cost of the approximated solution for the bin packing problem.

(1) maxi {Bt (i)} = ‖y‖1 ≤ (1+2�)opt(I (t), s)+m (the number of bins is bounded)
(2) ‖x‖1 ≤ (1 + �)opt(I (t), s)
(3) for every configuration i we have xi ≤ yi
(4) x and y have the samenumber of non-zero components and that number is bounded

by �opt(I (t), s) + m

To apply Theorem 3, we furthermore need a guaranteed minimal size for ‖x‖1 and
‖y‖1.According toTheorem3 the integral solution y needs‖y‖1 ≥ (m+2)(1/δ+2) and
‖x‖1 ≥ 8(1/δ+1) as we set α ≤ 4. By condition of the while-loop, the call of improve
is made iff size(I (t), s) ≥ 8(1/δ + 1) and size(I (t), s) ≥ (m + 2)(1/δ + 2). Since
‖y‖1 ≥ ‖x‖1 ≥ size(I (t), s) the requirements for the minimum size are fulfilled. As
long as the instance is smaller than 8(1/δ + 1) or (m + 2)(1/δ + 2) an offline algorithm
for bin packing is used. Note that there is an offline algorithm which fulfills properties
(1) to (4) as shown by Jansen and Klein [25].

Now let Bt be a packing with size(I (t), s) ≥ 8(1/δ + 1) and size(I (t), s) ≥
(m+2)(1/δ+2) for instance I (t)with solutions x and y of theLP defined by (I (t), sRt ).
Suppose by induction that the properties (1) to (4) hold for the instance I (t). We have
to prove that these properties also hold for the instance I (t +1) and the corresponding
solutions x ′′ and y′′. The packing Bt+1 is created by the repeated use of an call of
improve for x and y followed by an operation (insert, delete, shiftA or shiftB). We
will prove that the properties (1) to (4) hold after a call of improve followed by an
operation.
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Improve:Let x ′ be the resulting fractional solution of Theorem3, let y′ be the resulting
integral solution of Theorem 3 and let B ′

t be the corresponding packing. Properties (1)
to (4) are fulfilled for x , y and Bt by induction hypothesis. Hence, all conditions are
fulfilled to use Theorem 3. By Theorem 3, the properties (1) to (4) are still fulfilled
for x ′, y′ and B ′

t and moreover we get
∥

∥x ′∥∥
1 ≤ (1+ �)opt(I (t), s) − α and

∥

∥y′∥∥
1 =

maxi B ′
t (i) ≤ (1 + 2�)opt(I (t), s) + m − α for chosen parameter α. Let x ′′ and y′′

be the fractional and integral solution after an operation is applied to x ′ and y′. We
have to prove that the properties (1) to (4) are also fulfilled for x ′′ and y′′.
Operations: First we take a look at how the operations modify

∥

∥x ′∥∥
1 and

∥

∥y′∥∥
1 =

maxi B ′
t (i). By construction of the insert operation,

∥

∥x ′∥∥
1 and

∥

∥y′∥∥ are increased at
most by 2. By construction of the delete operation,

∥

∥x ′∥∥
1 and

∥

∥y′∥∥
1 are increased by

1. By construction of the shiftA and shiftB operation,
∥

∥x ′∥∥
1 and

∥

∥y′∥∥
1 are increased

by 1. An improve(2) call followed by an insert operation therefore yields
∥

∥y′′∥∥ =
∥

∥y′∥∥
1 + 2 = (1 + 2�)opt(I (t), s) + m − 2 + 2 = (1 + 2�)opt(I (t + 1), s) + m

since opt(I (t), s) ≤ opt(I (t + 1), s). An improve(4) call followed by a delete
operation yields

∥

∥y′′∥∥ = ∥

∥y′∥∥
1 + 1 = (1 + 2�)opt(I (t), s) + m − 3 ≤ (1 +

2�)opt(I (t + 1), s) + (1 + 2�) + m − 3 ≤ (1 + 2�)opt(I (t + 1), s) + m since
opt(I (t), s) ≤ opt(I (t+1), s)+1 (an item is removed) and� ≤ 1. For an improve(1)
call followed by a shiftA or shiftB operation, we have that

∥

∥y′′∥∥ = ∥

∥y′∥∥
1 − 1 + 1 =

(1 + 2�)opt(I (t), s) + m, as the items (and thus the optimum) does not change.
This concludes the proof that property (1) is fulfilled for I (t + 1). The proof

that property (2) holds is analog since
∥

∥x ′∥∥
1 increases in the same way as

∥

∥y′∥∥
1

and
∥

∥x ′∥∥
1 ≤ (1 + �)opt(I (t), s) − α. For property (3) note that in the operations

a configuration Ci of the fractional solution x is increased by 1 if and only if the
configurationCi in y is increased by1.Therefore the property that for all configurations
x ′′
i ≤ y′′

i retains from x ′ and y′. By Theorem 3, the number of non-zero components
of x ′ and y′ is bounded by �opt(I (t), s) + m ≤ �opt(I (t + 1), s) + m in case of
an insert operation. If an item is removed, the number of non-zero components of x ′
and y′ is bounded by �opt(I (t), s) + m ≤ �opt(I (t + 1), s) + m + 1 = C + 1.
By Theorem 4, the algorithm ReduceComponents guarantees that there are at most
C = �opt(I (t + 1), s) + m non-zero components. By construction of the shift-
operation, x ′′ and y′′ might have two additional non-zero components. But since these
are being reduced by Algorithm 3 (note that we increased the number of components
being reduced in step 6 by 2 to- see [25] for details), the LP solutions x ′′ and y′′
have at most �opt(I (t +1), s)+m non-zero components which proves property (4).
Algorithm 3 therefore has an asymptotic approximation ratio of 1 + ε.

We still need to examine the migration factor of Algorithm 3. In the case that the
offline algorithm is used, the size of the instance is smaller than 8(1/δ + 1) = O(1/ε)

or smaller than (m + 2)(1/δ + 2) = O( 1
ε2

log(1/ε)). Hence the migration factor in

that case is bounded by O( 1
ε3

log(1/ε)). If the instance is bigger the call of improve
repacks at most O(m/ε) bins by Theorem 3. Since every large arriving item has size
> ε/14 and m = O( 1

ε
log(1/ε)) we obtain a migration factor of O( 1

ε3
log(1/ε)) for the

Algorithm improve. Since the migration factor of each operation is also bounded by
O( 1

ε2
log(1/ε)), we obtain an overall migration factor of O( 1

ε3
log(1/ε)).
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The main complexity of Algorithm 3 lies in the use of Algorithm improve for bin
packing. Combining the analysis by Jansen and Klein [25] with the AFPTAS due to
Jansen and Kraft [27], the running time of improve is bounded byO(1/ε

5 · log4(1/ε)+
log(1/ε) · n(t)). By using heap structures to store the items, each operation can be
performed in time O(1/ε log(1/ε) · log(ε2 · n(t))) at time t , where n(t) denotes the
number of items in the instance at time t . As the number of non-zero components
is bounded by O(ε · n(t)), the total running time of the algorithm is bounded by
O(1/ε

5 · log4(1/ε) + log(1/ε) · n(t)). As this is polynomial in n(t) and in 1/ε we can
conclude that Algorithm 3 is an AFPTAS. 	


If no deletions are present, we can use a simple FirstFit algorithm (as described by
Jansen and Klein [25]) to pack the small items into the bins. This does not change the
migration factor or the running time of the algorithm and we obtain a robust AFPTAS
with O( 1

ε3
· log(1/ε)) migration for the case that no items is removed. This improves

the best known migration factor of O( 1
ε4

) [25].

4 Handling small items

In this section we present methods for dealing with arbitrary small items in a dynamic
online setting. First, we present a robust AFPTAS with migration factor of O(1/ε)

for the case that only small items arrive and depart. In Sect. 6 we generalize these
techniques to a setting where small items arrive into a packing where large items are
already packed and can not be rearranged. In a robust setting without departing items,
small items can easily be treated by packing them greedily via the classical FirstFit
algorithm of Johnson et al. [29] (see Epstein and Levin [16] or Jansen and Klein [25]).
However, in a settingwhere itemsmay also depart, small items need to be treatedmuch
more carefully. We show that the FirstFit algorithm does not work in this dynamic
setting.

Lemma 7 Using the FirstFit algorithm to pack small items may lead to an arbitrarily
bad approximation.

Proof Suppose, that there is an algorithmAwithmigration factor cwhich uses FirstFit
on items with size < ε/14. We will now construct an instance where A yields an
arbitrary bad approximation ratio. Let b = ε/14 − δ and a = ε/(14c) − ((δ+cδ)/c) for a
small δ such that (1−b)/a is integral. Note that ac < b by definition. Furthermore, let
M ∈ N be an arbitrary integer and consider the instance

IM = [A, A, . . . , A
︸ ︷︷ ︸

M

, B, B, . . . , B
︸ ︷︷ ︸

M

]

with

A = (b, Insert), (a, Insert), (a, Insert), . . . , (a, Insert)
︸ ︷︷ ︸

(1−b)/a
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Fig. 7 Construction in the proof
of Lemma 7. a A single bin after
the insertion. b A single bin after
the deletion

(a) (b)

B = (a,Delete), (a,Delete), . . . , (a,Delete)
︸ ︷︷ ︸

(1−b)/a

.

After the insertion of all items, there are M bins containing an item of size b and
1−b/a items of size a (see Fig. 7a). As ac < b, the deletion of the items of size a can
not move the items of size b. The remaining M bins thus only contain a single item of
size b (see Fig. 7b), while �M ·b� bins would be sufficient to pack all of the remaining
items. The approximation ratio is thus at least M/M ·b = 1/b ≈ 1

ε
and thus grows as ε

shrinks.
	


In order to avoid this problem, we design an algorithm which groups items of similar
size together. Using such a mechanism would therefore put the second item of size
b into the first bin by shifting out an appropriate number of items of size a and so
on. Our algorithms achieves this grouping of small items by enumerating the bins and
maintaining the property, that larger small items are always left of smaller small items.

4.1 Only small items

We consider a setting where only small items exist, i.e., items with a size less than
ε/14. First, we divide the set of small items into different size intervals S� where

S� =
[

ε
2�+1 ,

ε
2�

)

for � ≥ 3. Let b1, . . . , bm be the used bins of our packing. We say a

size category S� is bigger than a size category S�′ if � < �′, i.e., the item sizes contained
in S� are larger (note that a size category S� with large index is called small). We say
a bin bi is filled completely if it has less than ε

2� remaining space, where S� is the
biggest size category appearing in bi . Furthermore we label bins bi as normal or as
buffer bins and partition all bins b1, . . . , bm into queues Q1, . . . , Qd for |Q| ≤ m. A
queue is a subsequence of bins bi , bi+1 . . . , bi+c where the first bins bi , . . . , bi+c−1
are normal bins and the last bin bi+c is a buffer bin. We denote the i-th queue by Qi

and the number of bins in Qi by |Qi |. The unique buffer bin of queue Qi is denoted
by bbi . See Fig. 8 for a sketch.
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Fig. 8 Distribution of bins with small items into queues

We will maintain a special form for the packing of small items such that the fol-
lowing properties are always fulfilled. For the sake of simplicity, we assume that 1/ε

is integral.

(1) For every item i ∈ b j with size s(i) ∈ S� for some �, j ∈ N, there is no item
i ′ ∈ b j ′ with size s(i ′) ∈ S�′ such that j ′ > j and �′ > �. This means: Items are
ordered from left to right by their size intervals.

(2) Every normal bin is filled completely.
(3) The length of each queue is at least 1/ε and at most 2/ε except for the last queue

Qd .

Note that property (1) implies that all items in the same size interval S j are packed
into consecutive bins bx , bx+1, . . . , bx+c. Items in the next smaller size category S j+1
are then packed into bins bx+c, bx+c+1, . . . and so on. We denote by bS(�) the last bin
in which an item of size interval S� appears. We denote by S>� the set of smaller size
categories S�′ with �′ > �, i.e. S>� = ⋃

�′>� S�′ . Note that items in size category S>�

are smaller than items in size category S�.
The following lemma guarantees that a packing that fulfills properties (1) to (3) is

close to the optimum solution.

Lemma 8 If properties (1) to (3) hold, then at most (1+O(ε))opt(I , s) + 2 bins are
used in the packing for every ε ≤ 1/3.

Proof Let C be the number of used bins in our packing. By property (2) we know
that all normal bins have less than ε/14 free space. Property (3) implies that there are
at most ε · C + 1 buffer bins and hence possibly empty. The number of normal bins
is thus at least (1 − ε) · C − 1. Therefore we can bound the total size of all items by
≥ (1− ε/14) ·((1−ε) ·C−1). As opt(I , s) ≥ size(I , s) ≥ (1− ε/14) ·((1−ε) ·C−1)
and 1

(1−ε/14)(1−ε)
≤ 1 + 2ε for ε ≤ 1/3 we get C ≤ (1 + 2ε)opt(I , s) + 2. 	


We will now describe the operations that are applied whenever a small item has
to be inserted or removed from the packing. The operations are designed such that
properties (1) to (3) are never violated and hence a good approximation ratio can be
guaranteed by Lemma 8 at every step of the algorithm. The operations are applied
recursively such that some items from each size interval are shifted from left to right
(insert) or right to left (delete). The recursion halts if the first buffer bin is reached.
Therefore, the free space in the buffer bins will change over time. Since the recursion
always halts at the buffer bin, the algorithm is applied on a single queue Qk .

The following insert/delete operation is defined for a whole set J = {i1, . . . , in}
of items. If an item i of size interval S� has to be inserted or deleted, the algorithm
is called with insert({i}, bS(�), Qk) respectively delete({i}, bx , Qk), where bx is the
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bin containing item i and Qk is the queue containing bin bS(�) or bx . Recall that S� =
[

ε
2�+1 ,

ε
2�

)

is a fixed interval for every � ≥ 3 and S≤� = ⋃�
i=1 Si and S>� = ⋃

�′>� S�′ .

Algorithm 4 (insert or delete for only small items)

– insert(J , bx , Qk):

– Insert the set of small items J = {i1, . . . , in} with size s(i j ) ∈ S≤� into bin
bx . (By Lemma 9 the total size of J is bounded by O(1/ε) times the size of the
item which triggered the first insert operation.)

– Remove just as many items J ′ = {i ′1, . . . , i ′m} of the smaller size interval S>�

appearing in bin bx (starting by the smallest) such that the items i1, . . . , in fit
into the bin bx . If there are not enough items of smaller size categories to insert
all items from I , insert the remaining items from I into bin bx+1.

– Let J ′
�′ ⊆ J ′ be the items in the respective size interval S�′ with �′ > �. Put the

items J ′
�′ recursively into bin bS(�′) (i.e., call insert(J ′

�′ , bS(�′), Qk) for each
�′ > �). If the buffer bin bbk is left of bS(�′) call insert(J ′

�′ , bbk, Qk) instead.

– delete(J , bx , Qk):

– Remove the set of items J = {i1, . . . , in} with size s(i j ) ∈ S≤� from bin bx
(By Lemma 9 the total size of J is bounded by O(1/ε) times the size of the
item which triggered the first delete operation.)

– Insert as many small items J ′ = {i ′1, . . . , i ′m} from bS(�′), where S�′ is the
smallest size interval appearing in bx such that bx is filled completely. If there
are not enough items from the size category S�′ , choose items fromsize category
S≥�′+1 in bin bx+1.

– Let J ′
�′ ⊆ J ′ be the items in the respective size interval S�′ with �′ > �. Remove

items J ′
�′ from bin bS(�′) recursively (i.e., call delete(J ′

�′ , bS(�′), Qk) for each
�′ > �). If the buffer bin bbk is left of bS(�′), call delete(J ′

�′, bbk, Qk) instead.

Using the above operations maintains the property of normal bins to be filled com-
pletely. However, the size of items in buffer bins changes. In the following we describe
how to handle buffer bins that are being emptied or filled completely.

Algorithm 5 (Handle filled or emptied buffer bins)

– Case 1: The buffer bin of Qi is filled completely by an insert operation.

– Label the filled bin as a normal bin and add a new empty buffer bin to the end
of Qi .

– If |Qi | > 2/ε, split Qi into two new queues Q′
i , Q

′′
i with |Q′′

i | = |Q′
i |+1. The

buffer bin of Q′′
i is the newly added buffer bin. Add an empty bin labeled as

the buffer bin to Q′
i such that |Q′

i | = |Q′′
i |.

– Case 2: The buffer bin of Qi is being emptied due to a delete operation.

– Remove the now empty bin.
– If |Qi | ≥ |Qi+1| and |Qi | > 1/ε, choose the last bin of Qi and label it as new

buffer bin of Qi .
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(a) (b)

Fig. 9 Example calls of insert and delete. a insert({i},bx ,Qk ) with s(i) ∈ S1. b delete({i},bx ,Qk ) with
s(i) ∈ S1

– If |Qi+1| > |Qi | and |Qi+1| > 1/ε, choose the first bin of Qi+1 and move the
bin to Qi and label it as buffer bin.

– If |Qi+1| = |Qi | = 1/ε, merge the two queues Qi and Qi+1. As Qi+1 already
contains a buffer bin, there is no need to label another bin as buffer bin for the
merged queue.

Creating and deleting buffer bins this way guarantees that property (3) is never violated
since queues never exceed the length of 2/ε and never fall below 1/ε.

Figure 9a shows an example call of insert({i},bx ,Qk). Item i with s(i) ∈ S1 is
put into the corresponding bin bx into the size interval S1. As bx now contains too
many items, some items from the smallest size interval S2 are put into the last bin
bx+2 containing items from S2. Those items in turn push items from the smallest
size interval S3 into the last bin containing items of this size and so on. This process
terminates if either no items need to be shifted to the next bin or the buffer bin bbk is
reached.

It remains to prove that the migration of the operations is bounded and that the
properties are invariant under those operations.

Lemma 9 (i) Let I be an instance that fulfills properties (1) to (3). Applying oper-
ations insert/delete on I yields an instance I ′ that also fulfills properties (1) to
(3).

(ii) The migration factor of a single insert/delete operation is bounded by O(1/ε) for
all ε ≤ 2/7.

Proof Proof for (i): Suppose the insert/delete operation is applied to a packing which
fulfills properties (1) to (3). By construction of the insert operation, items from a size
category S� in bin bx are shifted to a bin by . The bin by is either bS(�) or the buffer bin
left of bS(�). By definition by contains items of size category S�. Therefore property
(1) is fulfilled. Symmetrically, by construction of the delete operation, items from a
size category S� in bin bS(�) are shifted to a bin bx . By definition bx contains items
of size category S� and property (1) is therefore fulfilled. For property (2): Let bx be
a normal bin, where items i1, . . . , in of size category S≤� are inserted. We have to
prove that the free space in bx remains smaller than ε/2�, where S� is the smallest size
category appearing in bin bx . By construction of the insert operation, just as many
items of size categories S>� are shifted out of bin bx such that i1, . . . , in fit into bx .
Hence the remaining free space is less than ε

2� and bin bx is filled completely. The
same argumentation holds for the delete operation. Property (3) is always fulfilled by
definition of Algorithm 5.
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Proof for (ii): According to the insert operation, in every recursion step of the algo-
rithm, it tries to insert a set of items into a bin bx ′ , starting with an insert({i}, bx ′ , Qk)

operation. Let insert(S≤�+y, bx ) (x ≥ x ′) be the size of all items in size cate-
gories S�′ with �′ ≤ � + y that the algorithm tries to insert into bx as a result
of an insert({i}, bx ′ , Qk) call. Let pack(bx ) be the size of items that are actually
packed into bin bx . We have to distinguish between two cases. In the case that
insert(S≤�+y, bx ) = pack(bx ) there are enough items of smaller size categories
S>�+y that can be shifted out, such that items I fit into bin bx . In the case that
insert(S≤�+y, bx ) > pack(bx ) there are not enough items of smaller size category
that can be shifted out and the remaining size of insert(S≤�+y, bx )−pack(bx ) has to
be shifted to the following bin bx+1. Under the assumption that insert(S≤�, bx ) ≤ 1
for all x and � (which is shown in the following) all items fit into bx+1. Note that no
items from bins left of bx can be shifted into bx+1 since bx = bS(�+y) is the last bin
where items of size category S≤�+y appear. Hence all items shifted out from bins left
of bx are of size categories S≤�+y (property (1)) and they are inserted into bins left of
bx+1. We prove by induction that for each insert(S≤�+y, bx ) the total size of moved
items is at most

insert(S≤�+y, bx ) ≤ s(i) + 3
y

∑

j=1

ε

2�+ j
.

The claim holds obviously for insert(S≤�, bx ′) since bx ′ = bS(�) is the bin where
only item i is inserted. Fig. 10 shows all cases to consider.

Case 1 insert(S≤�+y, bx ) > pack(bx )
In this case, the size of all items that have to be inserted into bx+1 can be bounded by
the size of items that did not fit into bin bx plus the size of items that were removed
from bin bx . We can bound insert(S≤�+ȳ, bx+1) where ȳ > y is the largest index
S�+ȳ appearing in bin bx by

insert(S≤�+y, bx ) + ε

2�+y
≤ s(i) + 3

y
∑

j=1

ε

2�+ j
+ 2

ε

2�+y+1 < s(i) + 3
y+1
∑

j=1

ε

2�+ j
.

Case 2 insert(S≤�+y, bx ) = pack(bx )
Suppose that the algorithm tries to insert a set of items I of size categories S≤�+ȳ into
the bin bx+1 = bS(�+ȳ). The items I can only be shifted fromprevious binswhere items

(a) (b) (c)

Fig. 10 All cases to consider in Lemma 9. a Case 1. b Case 2a. c Case 2b
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of size category S≤�+ȳ appear. There are only two possibilities remaining. Either all
items I are shifted from a single bin bx̂ (x̂ ≤ x) or from two consecutive bins bx̂ , bx̂+1
with insert(S≤�+y, bx̂ ) > pack(bx̂ ).

Note that bx+1 can only receive items from more than one bin if there are bins
bx̂ , bx̂+1 with insert(S≤�+y, bx̂ ) > pack(bx̂ ) such that bx+1 = bS(�+ȳ) and all items
shifted out of bx̂ , bx̂+1 and into bx+1 are of size category S�+ȳ . Hence bins left of bx̂
or right of bx̂+1 can not shift items into bx+1.

Case 2a All items I are shifted from a single bin bx̂ with x̂ ≤ x (note that x̂ < x
is possible since pack(bx ) = insert(S≤�+y, bx ) can be zero). The total size of items
that are shifted out of bx̂ can be bounded by insert(S≤�+y, bx̂ ) + ε

2�+y . By induction

hypothesis insert(S≤�+y, bx̂ ) is bounded by s(i) + 3
∑y

j=1
ε

2�+ j . Since all items that
are inserted into bx+1 come from bx̂ , the value insert(S≤�+ȳ, bx+1) (ȳ > y) can
be bounded by insert(S≤�+y, bx̂ ) + ε

2�+y ≤ s(i) + 3
∑y

j=1
ε

2�+ j + ε
2�+y < s(i) +

3
∑ȳ

j=1
ε

2�+ j where S�+ȳ is the smallest size category inserted into bx+1. Note that the
items I belong to only one size category S�+ȳ if x̂ < x since all items that are in size
intervals S<�+ȳ are inserted into bin bx̂+1.

Case 2b Items I are shifted from bins bx̂ and bx̂+1 (x̂ + 1 ≤ x) with
insert(S≤�+y, bx̂ ) > pack(bx̂ ). In this case, all items I belong to the size cate-
gory S�+ȳ since bx̂ is left of bx . Hence all items which are inserted into bx̂+1 are from
I , i.e., insert(S≤�+y, bx̂ ) = pack(bx̂ ) + pack(bx̂+1) as all items in I belong to the
same size category S�+ȳ . We can bound insert(S�+ȳ, bx+1) by the size of items that
are shifted out of bx̂ plus the size of items that are shifted out of bx̂+1. We obtain

insert(S≤�+ȳ, bx+1) ≤ pack(bx̂ ) + ε

2�+y
+ pack(bx̂+1) + ε

2�+ȳ

= insert(S≤�+y, bx̂ )) + ε

2�+y
+ ε

2�+ȳ

≤ s(i) + 3
y

∑

j=1

ε

2�+ j
+ ε

2�+y
+ ε

2�+ȳ

≤ s(i) + 3
y

∑

j=1

ε

2�+ j
+ 3

ε

2�+ȳ
≤ s(i) + 3

ȳ
∑

j=1

ε

2�+ j
.

This yields that insert(S≤�+y, bx ) is bounded by s(i) + 3
∑ȳ

j=1
ε

2�+ j for all bins
bx in Qk . Now, we can bound the migration factor for every bin bx of Qk for any
y ∈ N by pack(bx ) + ε

2�+y ≤ insert(S≤�+y, bx ) + ε
2�+y . Using the above claim, we

get:

insert(S≤�+y, bx ) + ε

2�+y
≤ s(i) + 3

y
∑

j=1

ε

2�+ j
+ 2

ε

2�+y+1

< s(i) + 3
∞
∑

j=1

ε

2�+ j
= s(i)+3

ε

2�

∞
∑

j=1

1

2 j
= s(i)+3 · ε

2�
≤7s(i).
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Since there are at most 2/ε bins per queue, we can bound the total migration of
insert({i}, bS(�), Qk) by 7 · 2/ε ∈ O(1/ε). Note also that s(i) ≤ ε/14 for every i implies
that insert(S≤�, bx ) is bounded by ε/2 for all x and � .

Suppose that items i1, . . . , in of size interval S�+y have to be removed from bin bx .
In order to fill the emerging free space, items from the same size category are moved
out of bS(�) into the free space. As the bin bx may already have additional free space,
we need to move at most a size of size(i1, . . . , in) + ε/2�+y . Using a symmetric proof
as above yields a migration factor of O( 1

ε
). 	


5 Handling small items in the general setting

In the scenario that there are both item types (small and large items),we need to bemore
careful in the creation and the deletion of buffer bins. To maintain the approximation
guarantee, we have to make sure that as long as there are bins containing only small
items, the remaining free space of all bins can be bounded. Packing small items
into empty bins and leaving bins with large items untouched does not lead to a good
approximation guarantee as the free space of the bins containing only large items is not
used. In this section we consider the case where a sequence of small items is inserted
or deleted. We assume that the packing B of large items does not change and thus fix
such a packing. Therefore the number of bins containing large items equals a fixed
value 	(B). In the previous section, all bins bi had a capacity of 1. In order to handle
a mixed setting, we will treat a bin bi containing large items as having capacity of
c(bi ) = 1−S, where S is the total size of the large items inbi . The bins containing small
items are enumerated by b1, . . . , bL(B), bL(B)+1, . . . , bm(B) for some L(B) ≤ m(B)

where c(b1), . . . , c(bL(B)) < 1 and c(bL(B)+1) = · · · = c(bm(B)) = 1. Additionally
we have a separate set of bins, called the heap bins, which contain only large items. This
set of bins is enumerated by h1, . . . hh(B). Note that L(B)+h(B) = 	(B). In general
we may consider only bins bi and hi with capacity c(bi ) ≥ ε/14 and c(hi ) ≥ ε/14 since
binswith less capacity are alreadypackedwell enough for our approximationguarantee
as shown by Lemma 9. Therefore, full bins are not considered in the following.

As before, we partition the bins b1, . . . , bL(B), bL(B)+1, . . . , bm(B) into queues
Q1, . . . , Q�(B), Q�(B)+1, . . . , Qd(B) such that b1, . . . bL(B) are put into the queues
Q1, . . . Q�(B) and bL(B)+1, . . . bm(B) are put into Q�(B)+1, . . . , Qd(B). If the corre-
sponding packing B is clear from the context, we will simply write h, L, �, d,m,	

instead of h(B), L(B) etc. We denote the last bin of queue Qi—which is a buffer
bin—by bbi . The buffer bin bb� is special and will be treated differently in the insert
and delete operation. Note that the bins containing large items b1, . . . , bL(B) are enu-
merated first. This guarantees that the free space in the bins containing large items is
used before new empty bins are opened to pack the small items. However, enumerating
bins containing large items first leads to a problem if a buffer bin is being filled and
a new bin has to be inserted right to the filled bin according to Algorithm 5. Instead
of inserting a new empty bin, we insert a heap bin at this position. Since the heap bin
contains only large items, we do not violate the order of the small items (see Fig. 11).
As the inserted heap bin has remaining free space (is not filled completely) for small
items, it can be used as a buffer bin. In order to get an idea of how many heap bins we
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Fig. 11 Distribution of bins

have to reserve for Algorithm 5 where new bins are inserted or deleted, we define a
potential function. As a buffer bin is being filled or emptied completely, Algorithm 5
is executed and inserts or deletes buffer bins. The potential function�(B) thus bounds
the number of buffer bins in Q1, . . . , Q�(B) that are about to get filled or emptied. The
potential �(B) is defined by

�(B) =
�−1
∑

i=1

ri + �ε	� − �,

where the fill ratio ri is defined by ri = s(bbi )
c(bbi )

and s(bbi ) is the total size of all small
items in bbi . Note that the potential only depends on the queues Q1, . . . , Q�(B) and the
bins which contain small and large items. The term ri intends tomeasure the number of
buffer bins that become full. According to Case 1 of the previous section, a new buffer
bin is opened whenever bbi is filled, i.e., ri ≈ 1. Hence the number of buffer bins
getting filled is bounded by the sum

∑�−1
i=1 ri . The term ε	 in the potential measures

the number of bins that need to be inserted due to the length of a queue exceeding 2/ε,
as we need to split this queue Qi into two queues of length 1/ε according to Case 1.
Each of those queues needs a buffer bin, hence we need to insert a new buffer bin out
of the heap bins. Therefore the potential �(B) bounds the number of bins which will
be inserted as new buffer bins according to Case 1.

Just like in the previous section we propose the following properties to bound the
approximation ratio and the migration factor. The first three properties remain the
same as in Sect. 4.1 and the last property gives the desired connection between the
potential function and the heap bins.

(1) For every item i ∈ b j with size s(i) ∈ S� for some j, � ∈ N, there is no item
i ′ ∈ b j ′ with size s(i ′) ∈ S�′ such that j ′ > j and �′ > �. This means: Items are
ordered from left to right by their size intervals.

(2) Every normal bin of b1, . . . , bm is filled completely
(3) The length of each queue is at least 1/ε and at most 2/ε except for Q� and Qd .

The length of Q� and Qd is only limited by 1 ≤ |Q�|, |Qd | ≤ 1/ε. Furthermore,
|Q�+1| = 1 and 1 ≤ |Q�+2| ≤ 2/ε.

(4) The number of heap bins H1, . . . , Hh is exactly h = ��(B)�
Since bins containing large items are enumerated first, property (1) implies in this
setting that bins with large items are filled before bins that contain no large items.
Note also that property (3) implies that �(B) ≥ 0 for arbitrary packings B since
ε	 ≥ �−1+ε and thus �ε	� ≥ �. The following lemma proves that a packing which
fulfills properties (1) to (4) provides a solution that is close to the optimum.
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Lemma 10 Let M = m + h be the number of used bins and ε ≤ 1/4. If properties (1)
to (4) hold, then at mostmax{	, (1+5 ·ε)opt(I , s)+4} bins are used in the packing.
Proof Case 1 There is no bin containing only small items, i.e., L = m. Hence all items
are packed into M = L + h = 	 bins.

Case 2 There are bins containing only small items, i.e., L < m. Property (3)
implies that the number of queues d is bounded by d ≤ εm + 4. Hence the number
of buffer bins is bounded by εm + 4 and the number of heap bins �(B) (property
(4)) is bounded by �(B) = ∑�−1

i=1 ri + �ε	� − � ≤ � − 1 + ε	 + 1 − � = ε	 as
ri ≤ 1. Since 	 < M , we can bound �(B) by �(B) < εM . The number of normal
bins is thus at least M − (εm + 5) − (εM − 1) ≥ M − 2εM − 4 = (1 − 2ε)M − 4.
By property (2), every normal bin has less than ε/14 free space and the total size S
of all items is thus at least S ≥ (1 − ε/14)(1 − 2ε)M − 4. Since opt(I , s) ≥ S,
we have opt(I , s) ≥ (1 − ε/14)(1 − 2ε)M − 4. A simple calculation shows that

1
(1−ε/14)(1−2ε) ≤ (1 + 5ε) for ε ≤ 1/4. Therefore we can bound the number of used
bins by (1 + 5ε)opt(I , s) + 4. 	


According to property (4)wehave to guarantee, that if the roundedpotential ��(B)�
changes, the number of heap bins has to be adjusted accordingly. The potential ��(B)�
might increases by 1 due to an insert operation. Therefore the number of heap bins
has to be incremented. If the potential ��(B)� decreases due to a delete operation,
the number of heap bins has to be decremented. In order to maintain property (4), we
have to make sure that the number of heap bins can be adjusted whenever ��(B)�
changes. Therefore we define the fractional part {�(B)} = �(B) − ��(B)� of �(B)

and put it in relation to the fill ratio r� of bb� (the last bin containing large items)
through the following invariant:

|(1 − r�) − {�(B)}| ≤ s(�)

c(bb�)
, (Heap Equation)

where s(�) is the biggest size of a small item appearing in bb�. The Heap Equation
ensures that the potential �(B) is correlated to 1− r�. The values may only differ by

the small term s(�)
c(bb�)

. Note that the Heap Equation can always be fulfilled by shifting
items from bb� to queue Q�+1 or vice versa.

Assuming the Heap Equation holds and the potential ��(B)� increases by 1, we
can guarantee that buffer bin bb� is nearly empty. Hence, the remaining items can be
shifted to Q�+1 and bb� can bemoved to the heap bins. The bin left of bb� becomes the
new buffer bin of Q�. Vice versa, if ��(B)� decreases, we know by the Heap Equation
that bb� is nearly full. Hence, we can label bb� as a normal bin and open a new buffer
bin from the heap at the end of queue Q�. Our goal is to ensure that the Heap Equation
is fulfilled at every step of the algorithm along with properties (1) to (4). Therefore we
enhance the delete and insert operations from the previous section. Whenever a small
item i is inserted or removed, we will perform the operations described in Algorithm
4 (which can be applied to bins of different capacities) in the previous section. This
will maintain properties (1) to (3). If items are inserted or deleted from queue Q�

(the last queue containing large and small items) the recursion does not halt at bb�.
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Instead the recursion goes further and halts at bb�+1. Thus, when items are inserted
into bin bb� according to Algorithm 4, the bin bb� is treated as a normal bin. Items are
shifted from bb� to queue Q�+1 until the Heap Equation is fulfilled. This way we can
make sure that the Heap Equation maintains fulfilled whenever an item is inserted or
removed from Q�.

Algorithm 6 (insert or delete small items for the mixed setting)
insert(i, bx , Q j ):

– Use Algorithm 4 to insert item i into Q j with j < �.
– Let i1, . . . , im be the items that are inserted at the last step of Algorithm 4 into
bb j .

– For k = 1, . . . ,m do

1. Insert item ik into bin bb j .
2. If bb j is completely filled use Algorithm 5.
3. If the potential ��(B)� increases use Algorithm 7 (see below) to adjust the

number of heap bins (property (4)).
4. Decrease the fill ratio r� of bb� by shifting the smallest items in bb� to Q�+1

until (1 − r�) ≤ {�(B)} to fulfill the Heap Equation.

delete(i, bx , Q j ):

– Use Algorithm 4 to remove item i from bin bx in queue Q j with j < �.
– Let i1, . . . , im be the items that are removed at the last step of Algorithm 4 from
bb j .

– For k = 1, . . . ,m do

1. If bb j is empty use Algorithm 5.
2. Remove item ik from bin bb j .
3. If the potential ��(B)� decreases use Algorithm 7.
4. Increase the fill ratio r� of bb� by shifting the smallest items in bb� to Q�+1

until (1 − r�) ≥ {�(B)} to fulfill the Heap Equation.

For the correctness of step 4 (the adjustment to r�) note the following: In case of
the insert operation, the potential �(B) increases and we have �(B) ≥ 1 − r�. As
items are being shifted from bb� to Q�+1, the first time that (1 − r�) ≤ {�(B)} is
fulfilled, the Heap Equation is also fulfilled. Since the fill ratio of bb� changes at most

by s(�)
c(bb�)

as an item (which has size at most s(�)) is shifted to Q�+1 we know that

|(1 − r�) − {�(B)}| ≤ s(�)
c(bb�)

. Correctness of step 4 in the delete operation follows
symmetrically.

The potential �(B) changes if items are inserted or deleted into queues
Q1, . . . , Q�−1. Due to these insert or delete operations it might happen that the poten-
tial ��(B)� increases or that a buffer bin is being filled or emptied. The following
operation is applied as soon as an item is inserted or deleted into a buffer bin and the
potential ��(B)� increases or decreases.
Algorithm 7 (Change in the potential)

– Case 1: The potential ��(B)� increases by 1.
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– According to the Heap Equation, the remaining size of small items in bb� can
be bounded. Shift all small items from bb� to Q�+1.

– If |Q�| > 1 then label the now empty buffer bin bb� as a heap bin and the last
bin in Q� is as a buffer bin.

– If Q� only consists of the buffer bin (i.e., |Q�| = 1), shift items from bb�−1
to Q�+1 until the heap equation is fulfilled. If bb�−1 becomes empty, remove
bb�−1 and bb�. The bin left to bb�−1 becomes the new buffer bin of Q�−1. The
queue Q� is deleted and Q�−1 becomes the new last queue containing large
items.

– Case 2: The potential ��(B)� decreases by 1.

– According to the Heap Equation, the remaining free space in bb� can be
bounded. Shift items from bb�+1 to bb� such that the buffer bin bb� is filled
completely.

– Add the new buffer bin from the heap to Q�.
– If |Q�| = 1/ε label an additional heap bin as a buffer bin to create a new queue

Q�+1 with |Q�+1| = 1.

Like in the last section we also have to describe how to handle buffer bins that
are being emptied or filled completely. We apply the same algorithm when a buffer
bin is being emptied or filled but have to distinguish now between buffer bins of
Q1, . . . , Q� and buffer bins of Q�+1, . . . , Qd . Since the buffer bins in Q�+1, . . . , Qd

all have capacity 1, we will use the same technique as in the last section. If a buffer bin
in Q1, . . . , Q� is emptied or filled, we will also use a similar technique. But instead of
inserting a new empty bin as a new buffer bin, we take an existing bin out of the heap.
And if a buffer bin from Q1, . . . Q� is being emptied (it still contains large items), it
is put into the heap. This way we make sure that there are always sufficiently many
bins containing large items which are filled completely.

Lemma 11 Let B be an packing which fulfills the properties (1) to (4) and the Heap
Equation. Applying Algorithm 7 or Algorithm 5 on B during an insert/delete operation
yields an packing B ′ which also fulfills properties (1) to (4). The migration to fulfill
the Heap Equation is bounded by O(1/ε).

Proof
Analysis of Algorithm 7 Properties (1) and (2) are never violated by the algorithm
because the items are only moved by shift operations. Property (3) is never violated
because no queue (except for Q�) exceeds 2/ε or falls below 1/ε by construction.
Algorithm 7 is called during an insert or delete operation. The Algorithm is executed
as items are shifted into or out of buffer bb j such that ��(B)� changes.

In the following, we prove property (4) for the packing B ′ assuming that ��(B)� =
h(B) holds by induction. Furthermore we give a bound for the migration to fulfill the
heap equation:

– Case 1 The potential ��(B)� increases during an insert operation, i.e., it holds
��(B ′)� = ��(B)� + 1. Let item i∗ be the first item that is shifted into a bin
bb j such that ��(B) + r∗� = ��(B ′)�, where r∗ is the fill ratio being added to
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bb j by item i∗. In this situation, the fractional part changes from {�(B)} ≈ 1 to
{�(B ′)} ≈ 0.

– In the case that |Q�| > 1, the buffer bin bb� is being emptied and moved
to the heap bins. The bin left of bb� becomes the new buffer bin bb′

� of Q�.
Hence the number of heap bins increases and we have h(B ′) = h(B) + 1 =
��(B)� + 1 = ��(B ′)�, which implies property (4).
To give a bound on the total size of items needed to be shifted out of (or into)
bin bb� to fulfill the heap equation, we bound the term |(1 − r ′

�) − {�(B ′)}|
by some term C ≤ O(s(i)/ε), where r ′

� is the fill ratio of bb′
� and s(i) is the

size of the arriving or departing item. If the term |(1 − r ′
�) − {�(B ′)}| can be

bounded byC , the fill ratio of bb′
� has to be adjusted to fulfill the heap equation

according to the insert and delete operations. This can be done by shifting a
total size of at most C items out of (or into) bb′

�.
The bin bb′

� is completely filled by property (3) and therefore has a fill ratio of

r ′
� ≥ c(bb�)−s(�)

c(bb�)
≥ 1− 2 s(�)

ε
, where s(�) ≤ ε

2k
is the largest size of a small item

appearing in bb� and Sk is the largest size category appearing in bb′
�. Let k

′ be
the largest size category appearing in bin bb j . As the bin bb′

� is right of bb j we

know k ≤ k′ (property (1)) and hence s(�) ≤ 2s(i∗). We get r ′
� ≥ 1 − 4 s(i∗)

ε
.

Using that {�(B ′)} ≤ r∗ ≤ 2s(i∗)/ε, we can bound |(1 − r ′
�) − {�(B ′)}| by

4 s(i∗)
ε

+ 2s(i∗)/ε = O(s(i∗)/ε). Hence the Heap Equation can be fulfilled by
shifting items of total size O(s(i∗)/ε) at the end of the insert operation.

– If |Q�| = 1, a set of items in the buffer bin bb�−1 is shifted to Q�+1 to fulfill
the Heap Equation. Since items are being removed from bb�−1, the potential
decreases. If r�−1 > {�(B ′)}, there are enough items which can be shifted
out of bb�−1 such that we obtain a new potential �(B ′′) < �(B ′) − {�(B ′)}.
Hence ��(B ′′)� = ��(B)� and the Heap Equation is fulfilled.
Note that the size of items that are shifted out of bb�−1 is bounded by r∗+s(�) =
O(s(i∗)/ε), where s is the biggest size of an item appearing in bb�−1.
If r�−1 ≤ {�(B ′)}, all items are shifted out of bb�−1. As the number of
queues decreases, we obtain the new potential �(B ′′) = �(B ′) − r�−1 + 1 =
��(B ′)�+{�(B ′)}−r�−1+1 ≥ ��(B ′)�+1. Hence ��(B ′′)� = ��(B)�+2.
The buffer bins bb�−1 and bb� are moved to the heap and thus h(B ′′) =
h(B) + 2 = ��(B)� + 2 = ��(B ′′)� (property (4)).
Note that if r�−1 ≤ {�(B ′)}, item i∗ is not inserted into bin bb�−1 as r�−1 ≥
r∗ > {�(B ′)}. Therefore, bin bb j is left of bb�−1 and we can bound the fill

ratio of the bin left of bb�−1 called r ′′
� by 1 − 2 s(i∗)

ε
. Using {�(B ′′)} ≤ r∗ =

O(s(i∗)/ε), the heap equation can be fulfilled by shifting items of total size
O(s(i)/ε) at the end of the insert operation.

– Case 2 The potential ��(B)� decreases during a delete operation, i.e., it holds
��(B ′)� = ��(B)� − 1 = ��(B) − r∗�, where r∗ is the fill ratio being removed
from a buffer bin bb j due to the first shift of an item i∗ that decreases the potential.
According toAlgorithm7, buffer binbb� is beingfilled completely and anewbuffer
bin for Q� is inserted from the heap. Hence the number of heap bins decreases and
we have ��(B ′)� = h(B) − 1 = h(B ′).
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As ��(B)�−1 = �(B)−{�(B)}−1 = ��(B)−r∗�, it holds that {�(B)} ≤ r∗
and by the heap equation, the fill ratio of bb� is r� ≥ r∗ + s(�), where s(�) is
the largest size of a small item in bb�. As above, r∗ and s(�) can be bounded by
O(

s(i∗)
ε

). The total size shifted from Q�+1 into bin bb� can thus be bounded by

O(
s(i∗)

ε
).

Furthermore {�(B ′)} ≥ 1 − r∗ (as �(B ′) = �(B) − r∗) and r ′
� = 0, therefore

we can bound |(1− r ′
�) − {�(B ′)}| by r∗ ≤ O(s(i∗)/ε) and the Heap Equation can

be fulfilled by shifting a total size of at most O(s(i∗)/ε) items.
In the case that |Q�| = 1/ε, a new queue Q�+1 is created which consists of a
single buffer bin (inserted from the heap), which does not contain small items,
i.e., h(B ′′) = h(B ′) − 1 = h(B) − 2, where B ′′ is the packing after the insertion
of item i∗. Let �(B ′′) be the potential after the queue Q�+1 is created. Then

�(B ′′) = ∑�(B′′)−1
i=1 ri+ε	−�(B ′′) = ∑�(B′)−2

i=1 ri+ε	−�(B ′)−1 = �(B ′)−1,
as the buffer bin bb� is now counted in the potential, but does not contain any small
items and thus r ′′

� = 0. Hence �(B ′′) = �(B ′) − 1 = h(B ′) − 1 = h(B ′′).
Analysis of Algorithm 5

Algorithm 5 is executed as an item i∗ is moved into a buffer bin bb j such that bb j

is completely filled or it is executed if the buffer bin bb j is emptied by moving the
last item i∗ out of the bin. As in the analysis of Algorithm 7, properties (1) and (2)
are never violated by the algorithm as the items are only moved by shift operations.
Property (3) is never violated because no queue (except for Q�) exceeds 2/ε or falls
below 1/ε by construction.

It remains to prove property (4) and a bound for the migration to fulfill the heap
equation:

– Case 1An item i∗ ismoved into the buffer bin bb j such that bb j is filled completely
for some j < �. According toAlgorithm5, a bin is taken out of the heap and labeled
as the new buffer bin bb′

j with fill ratio r ′
j = 0 of queue Q j , i.e., the number of

heap bins decreases by 1. Let�(B) be the potential before Algorithm 5 is executed
and let�(B ′) be the potential after Algorithm 5 is executed. The potential changes
as follows:

�(B) − �(B ′) = (r j − r ′
j ) − (�(B) − �(B ′)).

Since r ′
j = 0, the new potential is �(B ′) = �(B) − r j ≈ �(B) − 1 (assuming

�(B) = �(B ′), as the splitting of queues is handled later on).

– If ��(B ′)� = ��(B)�−1, property (4) is fulfilled since the number of heapbins

decreases by h(B ′) = h(B)−1 = ��(B)�−1 = ��(B ′)�. As r j ≥ c(bb j )−s
c(bb j )

,

where s is the biggest size category appearing in bb j and s(�) ≤ 2s(i∗), we
obtain for the fractional part of the potential that {�(B)}−{�(B ′)} ≤ 2 s(�)

ε
≤

4 s(i∗)
ε

. Hence the Heap Equation can be fulfilled by shifting items of total size
O(s(i∗)/ε) at the end of the insert operation as in the above proof.

– In the case that ��(B ′)� = ��(B)� = ��(B) − r j�, we know that the frac-
tional part changes by {�(B ′)} = {�(B)} − r j . Since the bin bb j is filled
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completely, we know that r j ≥ c(bb j )−s(�)

c(bb j )
≈ 1 and hence {�(B)} ≥ r j ≈ 1

and {�(B ′)} ≤ 1− r j ≈ 0. According to the Heap Equation, items have to be
shifted out of r� such that the fill ratio r� changes from r� ≤ 1 − r j to r� ≈ 1.
Therefore we know that as items are shifted out of bb� to fulfill the Heap Equa-
tion, the buffer bin bb� is being emptied and moved to the heap (see Algorithm
7). We obtain for the number of heap bins that h(B ′) = h(B) + 1− 1 = h(B)

and hence h(B ′) = ��(B ′)� (property (4)).
As {�(B)} ≥ r j ≥ 1 − 4 s(i∗)

ε
, the Heap Equation implies that r� ≤ 4 s(i∗)

ε
+

s(�)
c(bb�)

= O(s(i∗)/ε). The buffer bin bb� is thus emptied by moving a total size
of O(s(i∗)/ε) items out of the bin. Let bb′

� be the new buffer bin of Q� that was
left of bb�. The Heap Equation can be fulfilled by shifting at mostO(s(i)/ε) out
of bb′

� since {�(B ′)} is bounded by 1 − r j = O(s(i∗)/ε).
– In the case that |Q j | > 2/ε, the queue is split into two queues and an additional
heap bin is inserted, i.e., h(B ′′) = h(B ′) − 1. As the potential changes by
�(B ′′) = �(B ′) + (�(B ′) − �(B ′′)) = �(B ′) − 1, we obtain again that
h(B ′′) = ��(B ′′)�.

– Case 2Algorithm 5 is executed if bin bb j is emptied due to the removal of an item
i∗ as a result of a delete(i, bx , Q j ) call. According to Algorithm 5, the emptied
bin is moved to the heap, i.e., the number of heap bins increases by 1. Depending
on the length of Q j and Q j+1, the bin right of bb j or the bin left of bb j is chosen
as the new buffer bin bb′

j . The potential changes by �(B ′) = �(B) + r ′
j , where

r ′
j is the fill ratio of bb

′
j as in case 1.

– If ��(B ′)� = ��(B)� + 1 property (4) is fulfilled since the number of heap
bins increases by h(B ′) = h(B) + 1.

As bin bb′
j is completely filled, the fill ratio is bounded by r ′

j ≥ 1 − 2 s(�)
ε
,

where s is the largest size appearing in bb′
j . Since the bin bx has to be left of,

we know that s(�) ≤ 2s(i).We obtain for the fractional part of the potential that

{�(B)} ≥ {�(B ′)} − 2 s(�)
ε

≤ 4 s(i)
ε
. Hence the Heap Equation can be fulfilled

by shifting items of total size O(s(i)/ε) at the end of the delete operation.
– In the case that ��(B ′)� = ��(B)� = ��(B) + r ′

j�, we know that the frac-
tional part changes similar to case 1 by {�(B ′)} = {�(B)} + r ′

j . Since the

bin bb j is filled completely, we know that r j ≥ c(bb j )−s(�)

c(bb j )
≈ 1 and hence

{�(B ′)} ≥ r j ≈ 1 and {�(B)} ≤ 1 − r j ≈ 0. According to the Heap Equa-
tion, items have to be shifted to bb� such that the fill ratio r� changes from
r� ≈ 0 to r� ≈ 1. Therefore we know that as items are shifted into bb� to fulfill
theHeapEquation, bb� is filled completely and a bin from the heap is labeled as
the new buffer bin of Q� (see Algorithm 7). We obtain for the number of heap
bins that h(B ′) = h(B) − 1 + 1 = h(B) and hence h(B ′) = �(B ′) (property
(4)). The Heap Equation can be fulfilled similarly to case 1 by shifting items
of total size O(s(i)/ε).
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Using the above lemma, we can finally prove the following central theorem, which
states that the migration of an insert/delete operation is bounded and that properties
(1) to (4) are maintained.

Theorem 6 (i) Let B be a packing which fulfills properties (1) to (4) and the Heap
Equation. Applying insert(i, bx , Q j ) or delete(i, bx , Q j ) on a packing B yields
an instance B ′ which also fulfills properties (1) to (4) and the Heap Equation.

(ii) The migration factor of an insert/delete operation is bounded by O(1/ε).

Proof Suppose a small item i with size s(i) is inserted or deleted from queue Q j .
The insert and delete operation basically consists of an application of Algorithm 4
and iterated use of steps (1) to (3) where Algorithms 5 and 7 are used and items in
bb� are moved to Q�+1 and vice versa. Let B be the packing before the insert/delete
operation and let B ′ be the packing after the operation.

Proof for (i): Now suppose by induction that property (1) to (4) and the Heap
Equation are fulfilled for packing B.We prove that property (4) and the Heap Equation
maintain fulfilled after applying an insert or delete operation on B resulting in the new
packing B ′. Properties (1) to (3) hold by conclusion of Lemma 9 and Lemma 11. Since
the potential and the number of heap bins only change as a result of Algorithm 5 or
Algorithm 7, property (4) maintains fulfilled also. By definition of step 4 in the insert
operation, items are shifted from bb� to Q�+1 until the Heap Equation is fulfilled. By
definition of step 4 of the delete operation, the size of small items in bb� is adjusted
such that the Heap Equation is fulfilled. Hence the Heap Equation is always fulfilled
after application of insert(i, bx , Q j ) or delete(i, bx , Q j ).

Proof for (ii): According to Lemma 9, the migration factor of the usual insert
operation is bounded by O(1/ε). By Lemma 11, the migration in Algorithm 5 and
Algorithm 7 is also bounded by O(1/ε). It remains to bound the migration for step 4
in the insert/delete operation. Therefore we have to analyze the total size of items to
be shifted out or into bb� in order to fulfill the Heap Equation.

Since the size of all items i1, . . . , ik that are inserted into bb j is bounded by 7s(i)
(see Lemma 9) and the capacity of bb j is at least ε/14, the potential �(B) changes
by at most O(s(i)/ε). By Lemma 11 the size of items that needs to be shifted out or
into bb� as a result of Algorithm 5 or 7 is also bounded by O(s(i)/ε). Therefore the
size of all items that need to be shifted out or into bb� in step (4) of the insert/delete
operation is bounded by O(s(i)/ε).

Shifting a total size of O(s(i)/ε) to Q�+1 or vice versa leads to a migration factor
of O(1/ε2) (Lemma 9). Fortunately, we can modify the structure of queues Q�+1 and
Q�+2 such that we obtain a smaller migration factor. Assuming that Q�+1 consists of
a single buffer bin, i.e., |Q�+1| = 1, items can directly be shifted from bb� to bb�+1
and therefore we obtain a migration factor of O(1/ε). A structure with |Q�+1| = 1 and
1 ≤ |Q�+2| ≤ 2/ε [see property (3)] can be maintained by changing Algorithm 5 in
the following way:

– If bb�+1 is filled completely, move the filled bin to Q�+2.

– If |Q�+2| > 2/ε, split Q�+2 into two queues.

– If bb�+1 is being emptied, remove the bin and label the first bin of Q�+2 as bb�+1.
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– If |Q�+2| = 0, remove Q�+2.

	


6 Handling the general setting

In the previous section, we described how to handle small items in a mixed setting.
It remains to describe how large items are handled in this mixed setting. Algorithm
3 describes how to handle large items only. However, in a mixed setting, there are
also small items and we have to make sure that properties (1) to (4) and the Heap
Equation maintain fulfilled as a large item is inserted or deleted. Algorithm 3 changes
the configuration of at most O(1/ε

2 · log 1/ε) bins (Theorem 5). Therefore, the size of
large items in a bin b (= 1− c(b)) changes, as Algorithm 3 may increase or decrease
the capacity of a bin. Changing the capacity of a bin may violate properties (2) to (4)
and the Heap Equation.We describe an algorithm to change the packing of small items
such that all properties and the Heap Equation are fulfilled again after Algorithm 3
was applied.

The following algorithm describes how the length of a queue Q j is adjusted if the
length |Q j | falls below 1/ε:

Algorithm 8 (Adjust the queue length)

– Remove all small item IS from bb j and add bb j to the heap.
– Merge Q j with Q j+1. The merged queue is called Q j .
– If |Q j | > 2/ε split queue Q j by adding a heap bin in the middle.
– Insert items IS using Algorithm 6.

The following algorithm describes how the number of heap bins can be adjusted.

Algorithm 9 (Adjust number of heap bins)

– Decreasing the number of heap bins by 1.

– Shift small items from Q�+1 to bb� until bb� is filled completely
– Label a heap bin as the new buffer bin of Q�

– Increasing the number of heap bins by 1.

– Shift all small items from bb� to Q�+1
– Label bb� as a heap bin
– Label the bin left of bb� as new buffer bin of Q�

Note that the Heap Equation can be fulfilled in the same way, by shifting items from
bb� to Q�+1 or vice versa.

Using these algorithms, we obtain our final algorithm for the fully dynamic
binpacking problem.

Algorithm 10 (AFPTAS for the mixed setting)

– If i is large do
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1. Use Algorithm 3.
2. Remove all small items IS of bins b with changed capacity.
3. Adjust queue length.
4. Adjust the number of heap bins.
5. Fulfill the Heap Equation by shifting items from bb� to Q�+1 or vice versa.
6. Insert all items IS using Algorithm 6.

– If i is small use Algorithm 6

Combining all the results from the current and the previous section, we finally prove
the central result that there is fully dynamic AFPTAS for the binpacking problem
with polynomial migration.

Theorem 7 Algorithm 10 is a fully dynamic AFPTAS for the binpacking problem,
that achieves a migration factor of at most O(1/ε

4 · log 1/ε) by repacking items from at
most O(1/ε

3 · log 1/ε) bins. It has running time O(1/ε
5 · log4(1/ε) + log(1/ε) · n(t)).

Proof Approximation guarantee:By definition of the algorithm, it generates at every
timestep t a packing Bt of instance I (t) such that properties (1) to (4) are fulfilled.
According to Lemma 10, at most max{	, (1+O(1) · ε)opt(I (t), s) +O(1)} bins are
used where 	 is the number of bins containing large items. Since we use Algorithm
3 to pack the large items, Theorem 5 implies that 	 ≤ (1 + O(1) · ε)opt(I (t), s) +
O(1/ε log 1/ε). Hence the number of used bins can be bounded in any case by (1 +
O(1) · ε)opt(I (t), s) + O(1/ε log 1/ε).

Migration factor: Note that the Algorithm uses Algorithm 6 or Algorithm 3 to
insert and delete small or large items. The migration factor for Algorithm 6 is bounded
by O(1/ε) due to Theorem 6 while the migration factor for Algorithm 3 is bounded by
O(1/ε3 · log 1/ε) due to Theorem 5.

It remains to bound the migration needed to adjust the heap bins, the length of a
queue falling below 1/ε and the Heap Equation if a large item arrives and Algorithm 3
is applied.

Suppose the number of heap bins has to be adjusted by 1. In this case Algorithm 9
shifts items from Q�+1 to bb� or vice versa until bb� is either filled or emptied. Hence,
the size of moved items is bounded by 1. Since the size of the arriving or departing
item is ≥ ε/14 the migration factor is bounded by O(1/ε). In the same way, a migration
of at most O(1/ε) is used to fulfill the Heap Equation which implies that the migration
in step 5 is bounded by O(1/ε).

If |Q j | falls below 1/ε, the two queues Q j and Q j+1 are merged by emptying bb j .
The removed items are inserted by Algorithm 6. As their total size is bounded by 1 and
the algorithm has a migration factor of O(1/ε), the size of the moved items is bounded
byO(1/ε). The migration needed to merge two queues can thus be bounded byO(1/ε2).

Note that the proof of Theorem 5 implies that at most γ = O(1/ε2 log 1/ε) bins are
changed by Algorithm 3. The total size of the items IS which are removed in step 2 is
thus bounded by γ . Similarly, the length of at most γ queues can fall below 1/ε. The
migration of step 3 is thus bounded by γ · 1/ε2. As at most γ buffer bins are changed,
the change of the potential (and thus the number of heap bins) is also bounded by
γ and the migration in step 4 can be bounded by γ · 1/ε. The migration in step 6 is
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bounded by s(IS) · 1/ε ≤ γ · 1/ε as Algorithm 6 has migration factor 1/ε. The total
migration of the adjustments is thus bounded by γ · 1/ε2 = O(1/ε4 log 1/ε).

Running time: The handling of small items can be performed in linear time while
the handling of large items requiresO(1/ε

5 ·log4(1/ε)+log(1/ε)·n(t)) (see Theorem 5).
The total running time of the algorithm is thus O(1/ε

5 · log4(1/ε)+ log(1/ε) · n(t)). 	
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