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Abstract
The affine scaling algorithm is one of the earliest interior point methods developed
for linear programming. This algorithm is simple and elegant in terms of its geo-
metric interpretation, but it is notoriously difficult to prove its convergence. It often
requires additional restrictive conditions such as nondegeneracy, specific initial solu-
tions, and/or small step length to guarantee its global convergence. This situation
is made worse when it comes to applying the affine scaling idea to the solution of
semidefinite optimization problems or more general convex optimization problems.
In (Math Program 83(1–3):393–406, 1998), Muramatsu presented an example of lin-
ear semidefinite programming, for which the affine scaling algorithm with either short
or long step converges to a non-optimal point. This paper aims at developing a strategy
that guarantees the global convergence for the affine scaling algorithm in the context of
linearly constrained convex semidefinite optimization in a least restrictive manner. We
propose a new rule of step size, which is similar to the Armijo rule, and prove that such
an affine scaling algorithm is globally convergent in the sense that each accumulation
point of the sequence generated by the algorithm is an optimal solution as long as the
optimal solution set is nonempty and bounded. The algorithm is least restrictive in the
sense that it allows the problem to be degenerate and it may start from any interior
feasible point.
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2 X. Qian et al.

1 Introduction

Let Sn denote the vector space of real symmetric n × n matrices. The standard inner
product on Sn is

A • B = tr(AB) =
∑

i, j

Ai j Bi j and tr(·) = trace(·).

By X � 0 (X � 0), where X ∈ Sn , we mean that X is positive semidefinite (positive
definite). Consider the following convex semidefinite programming (SDP) problem

min
X∈Sn

f (X)

s.t. Ak • X = bk, k = 1, . . . ,m,

X � 0,

(P)

where f : Sn → R is convex and continuously differentiable, b ∈ Rm , and Ak ∈ Sn ,
k = 1, . . . ,m. As a blanket assumption, we assume that the optimal value for problem
(P) is finite and attainable, therefore, we use min rather than inf in problem (P).

The following notations will be used in our subsequent discussions

Rn+ = {x ∈ Rn|x ≥ 0}, Rn++ = {x ∈ Rn|x > 0},
Sn+ = {X ∈ Sn|X � 0}, Sn++ = {X ∈ Sn|X � 0},
P+ = {X ∈ Sn|Ak • X = bk, k = 1, . . . ,m, X � 0},
P++ = {X ∈ Sn|Ak • X = bk, k = 1, . . . ,m, X � 0}.

A comprehensive study of SDP with linear objective function can be found in [35].
There are many interior point algorithms for solving problem (P), for example,

[1,16,17,19,25,28,38] for f (X) being linear, [12,21,30,31] for f (X) being convex
quadratic, and [36,37] for general nonlinear semidefinite programming. Some related
continuous trajectorieswere studied for semidefinite programming, for instance, [8,10,
11,13,15].Most of interior point algorithms are primal–dual path-following algorithms
that are extensions of primal–dual path-following algorithm for linear programming
(LP). The affine scaling algorithm for LP was originally proposed by Dikin [5], and
further discussed by Barnes [2], and Vanderbei et al. [33]. For more details on the
development of the affine scaling algorithm, see [7,20], and the references therein.
Unfortunately, the affine scaling algorithm for linear SDP with either the short or the
long step version may fail [20], even though the affine scaling continuous trajectory,
which is contained in Cauchy trajectories, converges to the optimal solution set of
problem (P) [13].

In [20], Muramatsu gave an example of linear SDP such that the affine scaling
algorithm converges to a non-optimal point. In that example, for both the short and the
long step version of the affine scaling algorithm, there exists a region of starting points
such that the generated sequence converges to a non-optimal point. In the concluding
remarks of [20], Muramatsu pointed that it may still be possible to prove the global
convergence from well-chosen starting points, or by allowing variable step sizes. In
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A strategy of global convergence for the affine scaling… 3

this paper, we focus on the second strategy—allowing variable step sizes, and propose
a new step size rule which is similar to the Armijo-type rule [3]. Under this new
rule of step size, we can prove that starting from any interior feasible point, every
accumulation point of the affine scaling algorithm is an optimal solution of problem
(P). It should be noted that Renegar and Sondjaja studied a polynomial-time affine
scaling method for linear semidefinite and hyperbolic programming in [22], where
the method is actually a variant of Dikin’s affine scaling method. The algorithm in
[22] shares the similar spirit as Dikin’s method in that at each iteration, the cone in
the original optimization problem is replaced by an ellipsoidal cone centered at the
current iterate, rather than an ellipsoid as in Dikin’s method. The algorithm differs
from Dikin’s method in that at each iteration, the ellipsoidal cone is chosen to contain
the original cone rather than to be contained by it.

In Sect. 5, we will consider a special case where X and Ai (i = 1, . . . ,m) are
all diagonal in (P) and with a slightly different but less restrictive step size rule.
In this special case, problem (P) becomes linearly constrained convex programming
which has been studied in [7] in the context of affine scaling algorithms and in [32]
through a first-order interior point method, which includes the affine scaling algorithm
as a special case. However, to ensure optimality, they both require nondegeneracy
assumptions, and the strong convergence of the (first-order) affine scaling algorithm
is still open. The line search procedure in [7] is quite general, in order to guarantee
optimality, the step size in [32] needs to be bounded. The second-order affine scaling
algorithm for linearly constrained convex programming has been studied in [18,27]. In
[27], Sun proved the global convergence at a local linear rate under aHessian similarity
condition of the objective function, and an ε-optimal solution can be obtained if the
step size is in the order of O(ε)without nondegeneracy assumptions. In [18],Monteiro
and Wang studied a version of the second-order affine scaling algorithm in which a
fraction of the ellipsoid used at each iteration is selected according to a trust region
strategy for linearly constrained convex and concave programs. In the convex case of
[18], optimality is obtained under the primal nondegeneracy assumption, and it was
shown that the sequences of iterates and objective function values generated by the
algorithm converge R-linearly and Q-linearly, respectively, under certain invariance
condition on the Hessian of the objective function.

For simplicity, in what follows, we use ‖ · ‖ to denote either the 2-norm of vector
or the spectral norm of matrix, and use ‖ · ‖F to denote the Frobenius norm of matrix.
xi denotes the i th component of a vector x , and I stands for the identity matrix whose
dimension will be clear from the context. diag(x) for the vector x denotes the diagonal
matrix whose diagonal entries are that of x . For any Q ∈ Sn , λmin(Q) denotes the
smallest eigenvalue of Q.

The definition of the affine scaling direction in linear semidefinite programming
can be found in [6] or [20]. In the convex case, the affine scaling direction can be
defined similarly. Similar to [20], the affine scaling direction for problem (P) can be
obtained by first defining the associated dual estimate. For a point X ∈ P++, we define
the dual estimate (u(X), S(X)) ∈ Rm × Sn as the unique solution of the following
optimization problem
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4 X. Qian et al.

min
S∈Sn ,u∈Rm

‖X 1
2 SX

1
2 ‖2F

s.t. S +
m∑
i=1

ui Ai = ∂ f
∂X ,

(1)

where X
1
2 ∈ Sn++ is the unique square root matrix of X . Using the KKT condition of

problem (1), (u(X), S(X)) can be solved as (see (4) in [20])

u(X) = G(X)−1 p(X), S(X) = ∂ f

∂X
−

m∑

i=1

ui (X)Ai , (2)

where G(X) ∈ Sm and p(X) ∈ Rm are such that Gi j (X) = tr(Ai X A j X) and
p j (X) = tr(A j X

∂ f
∂X X) for i, j = 1, 2, . . . ,m, respectively. Assumption 2 below

guarantees that G(X) is invertible (see Proposition 1 in [20]).
Then the affine scaling direction D(X) for problem (P) can be defined as

D(X) = − XS(X)X = − X

(
∂ f

∂X
−

m∑

i=1

ui (X)Ai

)
X . (3)

The rest of this paper is organized as follows. In Sect. 2, we study some properties
of the affine scaling direction. In Sect. 3, we propose an affine scaling algorithm
with a new step size rule, which is similar to the Armijo-type rule. In Sect. 4, we
prove that any accumulation point of the affine scaling algorithm with the new step
size rule is an optimal solution of problem (P) for any starting interior feasible point
without nondegeneracy assumptions. In Sect. 5, we consider a special case of problem
(P) where X and Ai ’s are diagonal. A slightly different step size rule, which is less
restrictive, is proposed for the affine scaling algorithm. For any accumulation point
of the resulting algorithm, optimality is obtained as well. In Sect. 6, the convergence
of our affine scaling algorithm on the counter example in [20] and on some randomly
generated linear SDP problems are illustrated. Finally, some concluding remarks are
drawn in Sect. 7.

2 Properties of the affine scaling direction

The following assumptions are made throughout this paper.

Assumption 1 P++ is nonempty.

Assumption 2 The matrix A has full row rank m.

Assumption 3 The optimal solution set of problem (P) is nonempty and bounded.

Now we introduce another form of the affine scaling direction D(X) in (3). Firstly
we need the following notations.
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A strategy of global convergence for the affine scaling… 5

• We define the map svec : Sn → Rn(n+1)/2 as

svec(U ) := (u11,
√
2u21, . . . ,

√
2un1, u22,

√
2u32, . . . ,

√
2un2, . . . , unn)

T ,

where U ∈ Sn and “T” is the transpose.
• The symmetrized Kronecker product � is defined as

(G � K )svec(H) = 1

2
svec(K HGT + GHKT ),

where G, K ∈ Rn×n and H ∈ Sn . The properties of operator � can be found in
the Appendix of [1,24].

• Let matrix A be defined as follows

A =
⎛

⎜⎝
svec(A1)

T

...

svec(Am)T

⎞

⎟⎠ ∈ Rm×n(n+1)/2.

From (2), we can rewrite Gi j (X) and p j (X) as svec(Ai )(X � X)svec(A j ) and

svec(A j )(X � X)svec
(

∂ f
∂X

)
, respectively. Therefore, G(X) and p(X) can be denoted

as A(X � X)AT and A(X � X)svec
(

∂ f
∂X

)
, respectively, consequently

u(X) = (A(X � X)AT )−1A(X � X)svec

(
∂ f

∂X

)
, (4)

and

svec(S(X)) = (I − PAX (X � X))svec

(
∂ f

∂X

)
, (5)

where we denote PAX = AT (A(X � X)AT )−1A for simplicity. Now we can present
another form of the affine scaling direction D(X) as

svec(D(X)) = − (I − (X � X)PAX ) (X � X)svec

(
∂ f

∂X

)
. (6)

Using the above notations, the affine scaling direction in (3) can be also derived from
the following optimization problem

min
D∈Rn×n

∂ f
∂X • D

s.t. Ak • D = 0, k = 1, . . . ,m,

‖X− 1
2 DX− 1

2 ‖2F ≤ β̃2 < 1,

(7)

where X− 1
2 is the inverse of X

1
2 . In fact, if the current point X ∈ P++ is not an optimal

solution of problem (P), then by the KKT condition of problem (7), it is not difficult
to obtain the solution of problem (7) as
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6 X. Qian et al.

svec(D) = −
β̃ (I − (X � X)PAX ) (X � X)svec

(
∂ f
∂X

)

∥∥∥
(
I −

(
X

1
2 � X

1
2

)
PAX

(
X

1
2 � X

1
2

)) (
X

1
2 � X

1
2

)
svec

(
∂ f
∂X

)∥∥∥
,

or equivalently

D = − β̃XS(X)X

‖X 1
2 S(X)X

1
2 ‖F

.

We can see this D and the D(X) in (3) represent the same direction.
For linear SDP, the properties of the affine scaling direction have been discussed

in [20]. For convex SDP, these properties can be obtained similarly. The proof of
Theorem 1 below can be obtained identically from the proof of Proposition 2 in [20]
except replacing matrix C with ∂ f

∂X , hence the proof is omitted.

Theorem 1 We have
Ai • D(X) = 0, (8)

for all i = 1, . . . ,m, and

∂ f

∂X
• D(X) = −‖X 1

2 S(X)X
1
2 ‖2F . (9)

3 A new step size rule

It has been shown in [20] that the affine scaling algorithm for linear SDP can fail no
matter it uses a long step strategy or a short step strategy. Hence here we design a new
step size strategy which is similar to the Armijo-type rule [3]. For any initial point
X0 ∈ P++, the iterations in the affine scaling algorithm have the form

Xk+1 = Xk + αk D(Xk), k = 0, 1, . . . , (10)

where αk > 0 is the step size and D(X) is given in (3). In order to state our step size
strategy, we first introduce some notations. Let

ρ(X) = sup{ρ > 0|X + ρD(X) � 0},

for any X ∈ Sn++ and select a positive sequence {ai }+∞
i=0 such that limi→+∞ ai = 0

and lims→+∞
∑s

i=0 ai = +∞. For instance, the sequence can be { 1
(i+1)α }+∞

i=0 with

0 < α ≤ 1 or { 1
ln(i+2) }+∞

i=0 . Then αk in (10) can be defined from the following two
steps:

Step 1:

αk
0 = min

{
ak

‖Sk Xk‖c(‖Sk‖) , τρ(Xk)

}
> 0, (11)
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A strategy of global convergence for the affine scaling… 7

where Sk = S(Xk), 0 < τ < 1 is a constant, and c(x) is a scalar function which
satisfies c1x ≤ c(x) ≤ max(c2x, c3), where 0 < c1 ≤ c2, c3 > 0 are constants.
Step 2: αk is the largest α ∈ {αk

0β
l}l=0,1,... satisfying

f (Xk + αD(Xk)) ≤ f (Xk) + σαGk • D(Xk), (12)

where Gk = ∂ f
∂X |X=Xk , 0 < β, σ < 1 are constants.

It should be noticed that in (11) Sk should be a nonzero matrix. In fact, if Sk = 0, then
it is easy to verify that Xk is actually an optimal solution from the KKT condition,
and the iteration should stop, hence we will not consider this trivial case for brevity.

4 Optimality of the affine scaling algorithm

In this section, wewill show that the affine scaling algorithmwith our step size strategy
(12) will succeed without nondegeneracy assumptions. We begin our discussions with
the following lemmas.

Lemma 1 (Section 3.1.3, [4]) Suppose f is differentiable (i.e., its gradient ∇ f exists
at each point in dom f ). Then f is convex if and only if dom f is convex and

f (y) ≥ f (x) + ∇ f (x)T (y − x) (13)

holds for all x, y ∈ dom f .

According to [9], a vector β is said to majorize a vector α if

min

⎧
⎨

⎩

k∑

j=1

βi j : 1 ≤ i1 < · · · < ik ≤ n

⎫
⎬

⎭ ≥ min

⎧
⎨

⎩

k∑

j=1

αi j : 1 ≤ i1 < · · · < ik ≤ n

⎫
⎬

⎭ ,

for any k = 1, 2, . . . , n with equality for k = n.

Lemma 2 (Theorem 4.3.26, [9]) Let A be Hermitian. Then the vector composed of the
diagonal entries of A majorizes the vector composed of the eigenvalues of A.

Lemma 3 The level set F = {X ∈ P+| f (X) ≤ f (X0)} is bounded.
Proof Let δP+(X) be the indicator function of P+ which is defined by

δP+(X) =
{
0 if X ∈ P+,

+∞ Otherwise.

Then f (X)+ δP+(X) is a closed proper convex function, and the optimal solution set
of problem (P) can be expressed as

{X ∈ Sn| f (X) + δP+(X) ≤ f ∗},
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8 X. Qian et al.

where f ∗ is the optimal objective value for problem (P). According to Assumption
3, the optimal solution set of problem (P) is nonempty and bounded, hence Corollary
8.7.1 in [23] implies that

{X ∈ Sn| f (X) + δP+(X) ≤ f (X0)} = F = {X ∈ P+| f (X) ≤ f (X0)} (14)

is also bounded. 
�
Theorem 2 Let {Xk} be generated by the affine scaling algorithm (10) with the step
size {αk} chosen by (12). Then

(i) Xk ∈ P++, { f (Xk)} is nonincreasing, {Xk} and {D(Xk)} are bounded;
(ii) every accumulation point of {Xk} is an optimal solution for problem (P).

Proof Proof of (i). Since X0 ∈ P++ and αk ≤ τρ(Xk) at each step, by using an
induction argument on k, we have that Xk ∈ Sn++ for all k. Moreover, from (8)
in Theorem 1 and X0 ∈ P++, we have Xk ∈ P++ for all k. Also, since f (X) is
continuously differentiable and αk

0 > 0, 0 < σ < 1 in (12), we know αk > 0 for all k.
Combining (9) and (12), we have for all k

f (Xk+1) − f (Xk) ≤ σαkGk • D(Xk) = − σαk
∥∥∥∥X

1
2
k Sk X

1
2
k

∥∥∥∥
2

F
≤ 0, (15)

thus { f (Xk)} is nonincreasing. Then Xk ∈ F for all k. Since the level set F in (14) is
bounded from Lemma 3, we know {Xk} is bounded as well. For D(Xk), since

svec(D(Xk)) =
(
X

1
2
k � X

1
2
k

)
Pk

(
X

1
2
k � X

1
2
k

)
Gk,

where Pk = I − (X
1
2
k � X

1
2
k )PAXk (X

1
2
k � X

1
2
k ) is an idempotent matrix which implies

‖Pk‖ ≤ 1 for all k. Then along with the facts that {Xk} is bounded and f (X) is
continuously differentiable, we have {D(Xk)} is also bounded.

Proof of (ii). From (i), we have {Xk} is bounded, hence {Xk} must have at least
one accumulation point. Let X̄ be any accumulation point of {Xk}, we will show it is
actually an optimal solution for problem (P) by contradiction.

Assume X̄ is not an optimal solution of problem (P). First, since Xk ∈ P++, we
have X̄ ∈ P+. From Assumption 3, we can choose a point X∗ ∈ P+ such that X∗
is an optimal solution for problem (P). According to the hypothesis and the fact that
{ f (Xk)} is nonincreasing from (i), we have

f (X0) ≥ f (X̄) = lim
k→+∞ f (Xk) > f (X∗).

Let us define

Ȳ = f (X̄) − f (X∗)
2( f (X0) − f (X∗))

X0 +
[
1 − f (X̄) − f (X∗)

2( f (X0) − f (X∗))

]
X∗,
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A strategy of global convergence for the affine scaling… 9

then Ȳ ∈ P++. Since f (X) is convex, we have

f (Ȳ ) ≤ f (X̄) − f (X∗)
2( f (X0) − f (X∗))

f (X0) +
[
1 − f (X̄) − f (X∗)

2( f (X0) − f (X∗))

]
f (X∗)

= f (X̄) + f (X∗)
2

.

Let us define

V (X) = ln det X + tr(X−1Ȳ ),

where X ∈ Sn++. (Remark: The definition of V (x) is inspired by the potential function
in Losert and Akin [14].) Then at Xk , we can define a scalar function Vk(α) as

Vk(α) = V (Xk + αD(Xk)),

where 0 ≤ α ≤ αk
0. Obviously, Vk(0) = V (Xk) and Vk(αk) = V (Xk+1). Moreover,

dVk(α)

dα
= tr(X(α)−1D(Xk)) − tr(X(α)−1Ȳ X(α)−1D(Xk))

= tr
[
(X(α) − Ȳ )X(α)−1D(Xk)X(α)−1

]

= tr
[
(Ȳ − X(α))X(α)−1XkSk Xk X(α)−1

]
,

where X(α) = Xk + αD(Xk) = Xk − αXk Sk Xk . Notice X−1
k X(α) = I − αSk Xk ,

which implies
X(α)−1Xk = I + αSk Xk(I − αSk Xk)

−1, (16)

hence

dVk(α)

dα
= tr

[
(Ȳ − X(α))X(α)−1Xk Sk Xk X(α)−1

]

= tr
{
(Ȳ − X(α)) [I + αSk XkW ] Sk

[
I + αWT Xk Sk

]}

= tr
{
(Ȳ − X(α)) [Sk + αSk XkW Sk]

}

+ tr
{
(Ȳ − X(α))

[
αSkW

T Xk Sk + α2Sk XkW SkW
T Xk Sk

]}
,

where W = X(α)−1Xk = (I − αSk Xk)
−1. Next we show that when 0 ≤ α ≤ αk ,

dVk(α)
dα

is always negative if k is large enough. Since the level set F in (14) is bounded
and f (X) is continuously differentiable, there existM1, M2 > 0 such that ‖X‖ ≤ M1,
‖ ∂ f

∂X ‖ ≤ M2 if X ∈ F . From Theorem 1 and Lemma 1, we have

tr((Ȳ − Xk)Sk) = tr((Ȳ − Xk)Gk) ≤ f (Ȳ ) − f (Xk)

≤ f (Ȳ ) − f (X̄) ≤ f (X∗) − f (X̄)

2
< 0,
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10 X. Qian et al.

which implies

f (X̄) − f (X∗)
2

≤ tr((Xk − Ȳ )Sk) ≤ ‖Xk − Ȳ‖ · ‖Sk‖ ≤ 2M1‖Sk‖,

thus

‖Sk‖ ≥ f (X̄) − f (X∗)
4M1

, (17)

for all k. Then when 0 ≤ α ≤ αk we have

tr((Ȳ − X(α))Sk) = tr
[
(Ȳ − Xk + αXk Sk Xk)Gk

]

≤ f (X∗) − f (X̄)

2
+ αM1M2‖Sk Xk‖

≤ f (X∗) − f (X̄)

2
+ M1M2

ak
c1‖Sk‖

≤ f (X∗) − f (X̄)

2
+ 4M2

1M2ak
c1( f (X̄) − f (X∗))

.

From (16), if 0 < ak <
c1( f (X̄)− f (X∗))

4M1
and 0 ≤ α ≤ αk , we have

‖W‖ ≤ 1 + α‖Sk Xk‖ · ‖W‖ ≤ 1 + 4M1ak
c1( f (X̄) − f (X∗))

‖W‖,

which indicates that

‖WT ‖ = ‖W‖ ≤ 1

1 − 4M1ak
c1( f (X̄)− f (X∗))

. (18)

Therefore if 0 < ak <
c1( f (X̄)− f (X∗))

4M1
and 0 ≤ α ≤ αk , we have

dVk(α)

dα
≤ f (X∗) − f (X̄)

2
+ 4M2

1M2ak
c1( f (X̄) − f (X∗))

+ 4αM1‖Sk Xk‖ · ‖W‖ · ‖Sk‖
+ 2α2M1‖Sk Xk‖2 · ‖W‖2 · ‖Sk‖

≤ f (X∗) − f (X̄)

2
+ 4M2

1M2ak
c1( f (X̄) − f (X∗))

+ 4M1ak‖W‖
c1

+ 2M1a2k‖W‖2
c21‖Sk‖

,

then from (17), (18), and the fact that limk→+∞ ak = 0, we know there exists a K > 0
such that for all k ≥ K , if 0 ≤ α ≤ αk , then dVk (α)

dα
< 0. Especially, we have

V (Xk+1) = Vk(α
k) < Vk(0) = V (Xk),
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A strategy of global convergence for the affine scaling… 11

for all k ≥ K . Hence there exists an M3 ∈ R such that V (Xk) ≤ M3 for all k. When
X ∈ Sn++, let X = Q�QT be an eigenvalue decomposition of X , and {λi }ni=1 be the
eigenvalues of X . Then

V (X) = ln det X + tr
(
Q�−1QT Ȳ

) =
n∑

i=1

ln λi + tr
(
�−1QT Ȳ Q

)
,

since Ȳ ∈ P++, we have

λmin(Q
T Ȳ Q) = λmin(Ȳ ) > 0.

Therefore from Lemma 2, we have

V (X) =
n∑

i=1

ln λi + tr(�−1QT Ȳ Q)

≥
n∑

i=1

ln λi +
n∑

i=1

λi
−1λmin(Ȳ )

=
n∑

i=1

(ln λi + λi
−1λmin(Ȳ )).

For each i , ln λi +λi
−1λmin(Ȳ ) ≥ ln λmin(Ȳ )+1 and limλi→0[ln λi +λi

−1λmin(Ȳ )] =
+∞. Thus, by V (Xk) ≤ M3 for all k, we know there exists an M4 > 0 such that for
all k, we have

λmin(Xk) ≥ M4 > 0.

Let us define

H = {X ∈ Sn++| λmin(X) ≥ M4}.

Then for all k, Xk ∈ H ∩ F which implies ‖X− 1
2

k ‖ ≤ 1√
M4

. Along with (17), we get
for all k,

∥∥∥∥X
1
2
k Sk X

1
2
k

∥∥∥∥
F

≥
∥∥∥∥X

1
2
k Sk X

1
2
k

∥∥∥∥ ≥ ‖Sk‖
‖X− 1

2
k ‖2

≥ M4( f (X̄) − f (X∗))
4M1

> 0. (19)

From (15), (19), and limk→+∞ f (Xk+1) − f (Xk) = 0, we know limk→+∞ αk = 0.
Next we show that the index set

I = { k | αk = αk
0β

l , l ≥ 1 in (12)}
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12 X. Qian et al.

is finite. If not, then we can choose a subsequence {Xk}k∈K (K ⊆ {0, 1, . . .}) such that
K ⊆ I and limk∈K, k→+∞ Xk = X̃ ∈ H ∩ F . Then for k ∈ K, the condition (12) is
violated by α = αk/β, i.e.,

f
(
Xk + αk

β
D(Xk)

)
− f (Xk)

αk

β

> σGk • D(Xk). (20)

Since limk→+∞ αk = 0 and f (X) is continuously differentiable, from (20) we have
G̃ • D(X̃) ≥ σ G̃ • D(X̃) where G̃ = ∂ f

∂X |X=X̃ , which implies

−
∥∥∥X̃

1
2 S(X̃)X̃

1
2

∥∥∥
2

F
= G̃ • D(X̃) ≥ 0,

but this contradicts with (19). Thus the index set I is finite and there must exist an
N1 > 0 such that for all k ≥ N1, αk = αk

0 in (12). From (4), we know ‖u(X)‖ is
a continuous function on H ∩ F which is closed and bounded, thus ‖u(X)‖ will be
bounded onH ∩ F . Along with (2) and (17), there exists an M5 > 0 such that for all
k, ‖Sk‖ ≤ M5 and

c1( f (X̄) − f (X∗))
4M1

≤ c(‖Sk‖) ≤ M5. (21)

Since limk→+∞ ak = 0, there exists an N2 > 0 such that for all k ≥ N2, we have

ak <
τc1( f (X̄)− f (X∗))

4M1
. Then for k ≥ N2, by using Theorem 1.3.20 in [9] and (21), for

α = ak
τ‖Sk Xk‖c(‖Sk‖) , we have

∥∥∥∥αX
1
2
k Sk X

1
2
k

∥∥∥∥ = αr

(
X

1
2
k Sk X

1
2
k

)
= αr(Sk Xk)

≤ α‖Sk Xk‖ = ak
τc(‖Sk‖) ≤ 4M1ak

τc1( f (X̄) − f (X∗))
< 1,

where r(A) denotes the spectral radius of matrix A, this implies

Xk + αD(Xk) = X
1
2
k

(
I − αX

1
2
k Sk X

1
2
k

)
X

1
2
k ∈ Sn++,

therefore α ≤ ρ(Xk) and then ak‖Sk Xk‖c(‖Sk‖) ≤ τρ(Xk). Thus for all k ≥ N2, by (21)
we have

αk
0 = ak

‖Sk Xk‖c(‖Sk‖) ≥ ak
‖Sk‖ · ‖Xk‖c(‖Sk‖) ≥ ak

M1M2
5

. (22)

Combining (15), (19), and (22), we know for all k ≥ N3 = max(N1, N2),

f (Xk+1) − f (Xk) ≤ − σαk
0
M2

4 ( f (X̄) − f (X∗))2

16M2
1

≤ − σM2
4 ( f (X̄) − f (X∗))2

16M3
1M

2
5

ak,
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A strategy of global convergence for the affine scaling… 13

this implies

f (X̄) − f (XN3) ≤ − σM2
4 ( f (X̄) − f (X∗))2

16M3
1M

2
5

+∞∑

k≥N3

ak = −∞,

which is a contradiction. Therefore any accumulation point of {Xk} is an optimal
solution for problem (P). 
�

5 A special case of problem (P)

In this section, we consider a special case of problem (P) where X and Ai (i =
1, . . . ,m) are all diagonal. The results of this section are therefore applicable to the
linearly constrained convex programming. We will show that in this special case,
the step size can be larger in (12) in the sense that the positive sequence {ai }+∞

i=0 is

not required. If X = diag(x), where x ∈ Rn++, then S(X), D(X), and ∂ f
∂X are all

diagonal matrices. Let A ∈ Rm×n such that Ai j = (Ai ) j j and ∇ f ∈ Rn such that
(∇ f )i = (

∂ f
∂X )i i . Then from (4), u(X) can be denoted as

u(X) = (AX2AT )−1AX2∇ f . (23)

In this special case, the step size αk is also chosen by (12) but αk
0 is defined as

0 < αk
0 = min

{
c5

‖Sk Xk‖c4 , τρ(Xk)

}
, (24)

where 0 ≤ c4 < 1, c5 > 0 are constants.

Theorem 3 Let {Xk} be generated by the affine scaling algorithm (10) with the step
size {αk} chosen by (12) and (24). Then

(i) Xk ∈ P++, { f (Xk)} is nonincreasing, {Xk} and {D(Xk)} are bounded;
(ii) limk→+∞ ‖X

1
2
k Sk X

1
2
k ‖F = 0;

(iii) every accumulation point of {Xk} is an optimal solution for problem (P).

Proof Proof of (i). Similar to the proof of (i) in Theorem 2.

Proof of (ii). We prove this by contradiction. Assume limk→+∞ ‖X
1
2
k Sk X

1
2
k ‖F = 0 is

not true, then since {Xk}, {D(Xk)} are both bounded, there must exist a subsequence

{Xk}k∈K (K ⊆ {0, 1, . . .}) and an M̄1 > 0 such that limk∈K, k→+∞ ‖X
1
2
k Sk X

1
2
k ‖F =

M̄1, limk∈K, k→+∞ Xk = X̂ , and limk∈K, k→+∞ D(Xk) = D̂.
Then from (15) and limk→+∞ f (Xk+1) − f (Xk) = 0, we know

lim
k∈K, k→+∞

αk = 0. (25)

123



14 X. Qian et al.

From Lemma 3 and the Remark in Sun [26], we know that if x > 0, then every entry
of (AX2AT )−1AX2 is bounded, and the bound depends only on A and n. Thus from
(23), we know that u(Xk) is bounded which implies that S(Xk) is also bounded. Hence
there exists an M̄2 > 0 such that ‖Sk Xk‖ ≤ M̄2 for all k. If α = 1

2M̄2
, then

∥∥∥∥αX
1
2
k Sk X

1
2
k

∥∥∥∥ = α‖Sk Xk‖ < 1,

which implies

Xk + αD(Xk) = X
1
2
k

(
I − αX

1
2
k Sk X

1
2
k

)
X

1
2
k ∈ Sn++,

therefore ρ(Xk) ≥ 1
2M̄2

for all k. Let M̄3 = min( c5
M̄

c4
2

, τ 1
2M̄2

). Then from (24), we have

αk
0 ≥ M̄3 > 0. Hence from (25), we know for all k ∈ K sufficiently large, αk < αk

0,
which implies that condition (12) is violated by α = αk/β, i.e.,

f
(
Xk + αk

β
D(Xk)

)
− f (Xk)

αk

β

> σGk • D(Xk). (26)

Since limk∈K, k→+∞ αk = 0 and f (X) is continuously differentiable, from (26) we
have Ĝ • D̂ ≥ σ Ĝ • D̂ where Ĝ = ∂ f

∂X |X=X̂ , which implies

Ĝ • D̂ = 0,

but this contradicts with limk∈K, k→+∞ ‖X
1
2
k Sk X

1
2
k ‖F = M̄1 > 0. Hence the hypoth-

esis is not true, and limk→+∞ ‖X
1
2
k Sk X

1
2
k ‖F = 0.

Proof of (iii). Similar to Theorem 2, we also prove this by contradiction. From (ii),
we have

0 ≤ lim inf
k→+∞ αk‖Sk Xk‖ ≤ lim sup

k→+∞
αk‖Sk Xk‖

≤ lim sup
k→+∞

αk
0‖Sk Xk‖ ≤ lim sup

k→+∞
c5‖Sk Xk‖1−c4 = 0,

which implies limk→+∞ αk‖Sk Xk‖ = 0. Moreover, ‖Sk‖ is also bounded, hence
similar to the proof of Theorem 2, we can also get (19) (M1, M4 > 0may be different),
but this contradicts with (ii). Hence every accumulation point of {Xk} is an optimal
solution for problem (P). Thus the proof is complete. 
�
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6 Numerical experiments

In this section, we provide computational results of our affine scaling algorithm on
the counter example in [20] and on some randomly generated linear SDP problems.
The algorithm is implemented in Matlab (version 2017a) on a PC, and it should be
mentioned that the main goal of this paper is on the theoretical aspect, hence the
program is coded only for the demonstration purpose. In our algorithm, for linear
SDP, αk = αk

0, and for simplicity, we set c1 = c2 = c3 = 1 and c(‖Sk‖) = ‖Sk‖ in
the following numerical experiments.

The example in [20] is the following SDP problem:

min
X∈Sn

(
1 0
0 1

)
• X s.t.

(
0 1
1 0

)
• X = 2, X � 0. (27)

The equality constraint in problem (27) implies that X =
(
x 1
1 y

)
for x, y ∈ R. In fact,

problem (27) has the following equivalent form (see (18) in [20]):

min
x,y∈R

x + y s.t. x ≥ 0, y ≥ 0, xy ≥ 1. (28)

More details related to problem (27) can be found in Sect. 3 in [20]. From (24)-(26)
in [20], we have

u(X) = x + y

xy + 1
, S(X) =

(
1 − u(X)

− u(X) 1

)
,

and

D(X) = − xy − 1

xy + 1

(
x2 − 1 0

0 y2 − 1

)
.

The initial point (x0, y0) in [20] is chosen from the set

L = {(x, y)|xy > 1, x < 1, y > 1},

and in this situation, from Proposition 3 and (32) in [20], we can obtain

ρ(X) = xy + 1

xy − 1
· − (x + y) + √

(x + y)2 + 4R(x, y)

2R(x, y)
,

where R(x, y) = (1−x2)(y2−1)
xy−1 . In the numerical tests, we also choose the initial point

(x0, y0) fromL. In particular, we choose an x0 in (0, 1) and set ε(x0) = 1−x0
2 . Finally,

we choose a y0 > 1 such that

√
x0y0 − 1 <

τ 2ε(x0)(1 − ε(x0) − x0)

2
.
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16 X. Qian et al.

Table 1 Numerical results for
problem (27) with τ = 0.5

x0 ε(x0) x0y0 − 1 I teres I ter x f

0.2 0.4 3.9 × 10−4 11,865 144,367 0.215

0.4 0.3 1.2 × 10−4 8672 215,459 0.416

0.6 0.2 2.4 × 10−5 13,429 550,369 0.611

0.8 0.1 1.5 × 10−6 57,513 5,078,004 0.804

The values of |x+ y−2| are not listed since they are all less than 10−6

Table 2 Numerical results for
problem (27) with τ = 0.9

x0 ε(x0) x0y0 − 1 I teres I ter x f

0.2 0.4 4.0 × 10−3 2298 18,145 0.220

0.4 0.3 1.3 × 10−3 1156 16,234 0.423

0.6 0.2 2.5 × 10−4 1361 26,059 0.615

0.8 0.1 1.5 × 10−5 3484 92,600 0.805

The values of |x+ y−2| are not listed since they are all less than 10−6

From Theorem 7 in [20], the limit point of the iterations {(xk, yk)}will be contained in
the closure of Lε(x0) = {(x, y) ∈ L|x < 1− ε(x0)} if αk = τρ(Xk) at each iteration.
In the numerical tests, we set ak = 1√

x0 y0−1·ln(2+k)
to make a0 and ρ(X0) have the

same magnitude.
The following two tables list the numerical results of our algorithm for problem

(27) with different τ values and initial points. The unique solution of problem (28)
is (1, 1), and the stopping criterion of the program is |x + y − 2| < 10−6. I teres
denotes the iteration number when (xk, yk) escaped from Lε(x0) the first time, and
I ter denotes the total iteration number when the algorithm stopped. We also report
the behaviors of the long step affine scaling algorithm in [20]. We set αk = τρ(Xk)

at each iteration and use x f to denote the value of x after 107 iterations.
From Tables 1 and 2, we can see for the long step affine scaling algorithm where

αk = τρ(Xk) at each iteration, the numerical results confirm the findings of Theorem
7 in [20], and even after 1.0 × 107 iterations, (xk, yk) is still contained in Lε(x0).
However, by adopting our new step size rule, we can obtain the optimal solution
within 10−6 accuracy successfully in all cases.

Next we report the numerical results of our affine scaling algorithm on some ran-
domly generated linear SDP problems. LetC•X be the objective function of randomly
generated linear SDP. Then each element of C and Ai (i = 2, . . . ,m) is chosen ran-
domly and uniformly in [− 1, 1], while A1 is set at the identity matrix I . Finally, we
set bi = Ai • I (i = 1, . . . ,m). In this way, I will be an interior feasible point for
problem (P), and we use I as the initial point in our numerical experiments. These
randomly generated SDP problems are actually the same as the ones in Section 4.1 of
[34].

In our tests, after a linear SDP problem is generated, we firstly use SDPT3 [29]
to obtain the optimal objective function value f ∗ with the default accuracy tolerance
of 10−8. Then we run our program from the initial point X0 = I , and the stopping
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Table 3 Numerical results for randomly generated linear SDPs

m n CPU (s) I ter | f (Xk )− f ∗|
| f ∗|+1 ‖Asvec(Xk ) − b‖

20 20 0.030 32.25 8.00 × 10−7 4.11 × 10−8

40 20 0.032 24.35 7.72 × 10−7 2.95 × 10−8

80 20 0.046 23.00 7.20 × 10−7 3.04 × 10−8

200 40 0.234 23.40 7.25 × 10−7 1.26 × 10−7

200 100 1.334 24.85 6.84 × 10−7 1.06 × 10−6

400 40 0.513 23.00 8.18 × 10−7 1.07 × 10−7

400 100 2.726 24.05 7.90 × 10−7 8.77 × 10−7

800 40 1.336 22.80 7.50 × 10−7 4.17 × 10−7

800 100 6.254 23.95 6.32 × 10−7 1.07 × 10−6

800 200 28.045 25.05 6.39 × 10−7 5.52 × 10−6

criterion is set as | f (Xk )− f ∗|
| f ∗|+1 < 10−6. For each (m, n) pair, we run the program for

20 times, and each number reported in Table 3 is the average of 20 runs. In all of our
tests, we set ak = mn

ln(k+2) and τ = 0.5.

7 Concluding remarks

In this paper, an affine scaling algorithm with a new step size rule for linearly con-
strained convex semidefinite programming is proposed. It is proven that, starting from
any feasible interior point, the accumulation points of the sequence generated by this
algorithm are optimal solutions if the optimal solution set is nonempty and bounded.
This global convergence does not depend on nondegeneracy assumptions. This con-
firms our conjecture that by just selecting a suitable step size at each iteration, the affine
scaling algorithm can bemade convergent even if it is applied to semidefinite program-
ming, which includes linearly constrained convex programming as a special case.

A possible future topic of research is the convergence of the generated sequence,
which we call strong convergence. Even in the special case where X is diagonal, as
far as we know, the strong convergence of the affine scaling algorithm for convex
programming has not been resolved. Tseng et al. [32] showed that for some first-order
interior point method, the strong convergence can be obtained for the quadratic case,
but not for the affine scaling algorithm. It would be of theoretical interest to know if
this is true if we allow more flexibility in selecting the step size or initial points.
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