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Abstract Wederive cutting planes for cardinality-constrained linear programs. These
inequalities can be used to separate any basic feasible solution of an LP relaxation
of the problem, assuming that this solution violates the cardinality requirement. To
derive them, we first relax the given simplex tableau into a disjunctive set, expressed
in the space of nonbasic variables. We establish that coefficients of valid inequalities
for the closed convex hull of this set obey ratios that can be computed directly from the
simplex tableau. We show that a transportation problem can be used to separate these
inequalities. We then give a constructive procedure to generate violated facet-defining
inequalities for the closed convex hull of the disjunctive set using a variant of Prim’s
algorithm.
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1 Introduction

A cardinality-constrained optimization problem (CCOP) is an optimization problem
with a constraint requiring that, in feasible solutions, the number of variables taking
nonzero values does not exceed a given threshold.

Cardinality constraints appear in a large number of important applications in fields
as diverse as computational finance, supply chain management, statistical data analy-
sis, and machine learning. They are used in cardinality-constrained optimal portfolio
selection problems in quantitative finance [11,13,17,19,33,38–40]. These problems
adapt the Markowitz mean–variance model where the objective is to minimize a
quadratic risk measure under linear constraints along with a restriction that the num-
ber of securities chosen for investment is sufficiently small. Another application is
in index tracking investment strategies [8,23,31,32,46,48]. These problems are mod-
eled as time series optimization models where the objective is to minimize a quadratic
tracking error under budget constraints and a restriction that the number of securities
selected for investment is small. Facility location problems are classical supply chain
managementmodels where a companymust decidewhere to locate facilities. The vari-
ant of the problemwhere atmost pwarehouses canbeopened is knownas the p-median
problem, and has been extensively studied in the literature [1,7,16,20,30,35,41]. In
statistical data analysis, principal component analysis (PCA) is a well-known tech-
nique for dimension reduction. It finds principal components as linear combinations of
the original variables. When the coefficients of many variables in these linear combi-
nations are nonzero, the principal components can be difficult to interpret. In order to
find principal components that are easier to explain, a cardinality constraint (referred
to as a sparsity constraint) is sometimes imposed on the original problem. The result-
ing problem is known as sparse principal component analysis (sparse PCA); see
[18,27,34,54]. Ensemble pruning [52] and variable selection in multiple regression
[9,10] are also often modeled as CCOPs.

For a given vector x , we define the cardinality of x , denoted as card(x), as the
number of its components that are nonzero. In this paper, we focus on CCOPs, where
the optimization problem is linear and refer to them as cardinality-constrained linear
programs (CCLPs). A CCLP can be formulated as

max
{
cᵀx + dᵀy

∣∣ Ax + By ≤ b, x ≥ 0, y ≥ 0, card(x) ≤ K
}

where c, x ∈ R
p, d, y ∈ R

q , b ∈ R
m , A ∈ R

m×p, B ∈ R
m×q , and K is a fixed positive

integer with K < p. The above model, which we study in this paper, contains a single
cardinality constraint. However, since it is a relaxation of problems with multiple
constraints, it can be used to derive cuts for such problems.

Although CCOPs find uses in a variety of applications, they are hard to solve to
global optimality. Perhaps the simplest of these problems, which involves optimiz-
ing a linear function over the intersection of a continuous knapsack polytope and a
cardinality constraint, is already NP-hard [22]. Further, large instances of practical
problems are computationally challenging to solve [11,22,40].

Various strategies have been proposed tomodel cardinality constraints, and to lever-
age classical mixed integer programming (MIP) branch-and-cut methodologies in the
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solution of cardinality-constrained problems.When variables x are bounded, auxiliary
binary variables z ∈ {0, 1}p can be introduced to model the cardinality constraint. The
bound constraints on variables, say 0 ≤ x ≤ 1, are then replaced with 0 ≤ x ≤ z
while the cardinality constraint card(x) ≤ K is replaced with 1ᵀz ≤ K , where 1 is
a vector of dimension p whose entries are all equal to one. When all constraints of
the initial problem are linear, such an approach allows the use of branch-and-cut or
greedy search algorithms developed for MIPs. This reformulation also allows for the
use of cutting planes derived for cardinality-constrained problems; see [50,51].

In [6] a specialized branch-and-bound algorithm was proposed to solve problems
with cardinality constraints where K ∈ {1, 2}. These techniques were adapted to
logically constrained linear programs [37], mixed integer quadratic programs [11], and
to cardinality-constrained knapsack problems (CCKPs) [22]. Moreover, [22] develops
valid inequalities for CCKPs that can be used for CCLPs.

In this paper, we follow a similar line of research, as we conduct a polyhedral
study of CCLPs in the space of original problem variables. In particular, we use
information contained in feasible simplex tableaux of LP relaxations of CCLPs to
construct strong valid inequalities. Our underlying motivation is that working in the
initial space of variables allows us to derive inequalities without the assumption that
cardinality-constrained variables are bounded, an assumption that is required for MIP
formulations. Further, avoiding the introduction of unnecessary indicator variableswill
help maintain the original problem structure, and might lead to streamlined solution
approaches for these problems. Other advantages of not introducing binary variable
are discussed in [21]. Finally, our cuts can be generated in a low-order polynomial
time and can augment the cutting plane strategies adopted in commercialMIP solvers.

Although we are not aware of previous studies of tableau-based cuts for CCOPs,
such inequalities have been proposed in the literature in the context of MIPs, quadratic
programming, concave programming, and linear complementarity problems [2,5,24,
25,29,44,49].

The remainder of this paper is organized as follows. In Sect. 3, we show that violated
cuts for CCLPs can be generated from a disjunctive relaxation of any simplex tableau
corresponding to a basic feasible solution violating the cardinality requirement. In
Sect. 4, we provide a closed form representation of the convex hull of the relaxation.
In Sect. 5, we transform the convex hull into the dual of a transportation problem
through a nonlinear map. In Sect. 6, we prove that nontrivial facets of the closed
convex hull of the disjunctive set correspond to label-connected spanning trees of
the bipartite network associated with the transportation problem. This result yields,
in Sect. 7, an explicit polynomial-time constructive procedure for the derivation of
nontrivial facet-defining inequalities. We give concluding remarks in Sect. 8.

2 Overview of results

This paper studies the closure convex hull of a disjunctive subset Q ofRn consisting of
K+1 disjuncts, each ofwhich excludes the origin and is defined as the intersection of a
single half-space and the nonnegative orthant. This disjunctive set appears as a natural
relaxation of simplex tableaux of CCLPs. In this context, identifying a facet-defining
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inequality of cl conv(Q) that separates Q from the origin is relevant. We characterize
the extreme points and extreme rays of each disjunct in Proposition 5. Then, by taking
their union, we obtain in Corollary 2 an inner representation for the closure convex
hull of the disjunctive set using points and rays. By homogenizing the set (Q0), we
express the valid inequalities as those whose normal vector belongs to the intersection
of the normal cone of the extreme rays. Then, in Theorem 1, we relate the coefficients
of the valid inequalities to extreme points of a polyhedron whose explicit form is
readily derived from the defining inequalities of the disjuncts. This polyhedron, which
has at most two non-zero coefficients per constraint, can be converted into the dual of
a transportation polyhedron via a logarithmic transformation. The face-lattice of the
transformed polyhedron is isomorphic to that of the original polyhedron.

Using this formulation, we show in Theorem 2 that the separation problem
reduces to a transportation problem. Assume the homogenized nontrivial inequali-
ties describing each disjunct are such that each requires a specific linear function to be
non-negative. The variables are then partitioned into two sets I+ and I−, where I−
consists of variables whose coefficients are negative in all the defining inequalities of
the disjuncts and I+ consists of the remaining variables. The transportation problem
is then defined over the bipartite graph (I+, I−). The constraint set controls the ratio
of coefficients of variables, one from each set. In particular, the absolute ratio of the
coefficients of variables with negative coefficients must be no more than the minimum
such ratio wi j , i ∈ I+, j ∈ I− in an inequality where they appear with opposing
signs. The cost on edge (i, j) ∈ I+ × I− is set to be log(wi j ) and the supply and
the demand vectors are chosen so that they are positive and their sums balance. The
transportation problem identifies the ratios that guarantee that the cut is valid while
ensuring that multiplicative factors determining the coefficients of the variables are
small; see (15). Since the common disjunctive cut, which we refer to as c-max cut,
corresponds to a feasible solution to the transportation problem but may not be one of
its extreme point, the cuts we generate are at least as tight.

We then use the structure of the transportation problem to develop a deeper under-
standing of these inequalities. In particular, if we set the homogenizing variable
(corresponding to the right-hand-side) at some value, the coefficients of the remaining
variables are determined using ratios from the tree-structure that corresponds to an
optimal extreme point. Moreover, we show in Theorem 3 that the ratios arising from
a particular disjunct can be arranged to form a connected component in the tree. An
inequality is not a facet-defining inequality when it does not have sufficiently many
tight edges to form a tree. In Proposition 16, we develop an algorithm that expresses
any separating valid inequality that is not facet-defining for cl conv(Q0) as either a
conic combination of two valid inequalities or the combination of a valid inequality
and a trivial increase of a coefficient. Finally, in Theorem4we use this result to develop
a Prim-type algorithm that, given a valid inequality, adds sufficiently many ratios to
form a connected tree and thus produce a facet-defining inequality. This algorithm
yields a characterization of when the c-max cut is facet-defining, and also provides a
way to tighten it when it is not. This characterization was not even known for com-
plementarity problems, which are a special case of the cardinality problems we treat
here.
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3 Disjunctive relaxation of a cardinality-constrained simplex tableau

Given an LP relaxation of a CCLP, a basic feasible solution that violates the cardinality
constraint, card(x) ≤ K , and the associated simplex tableau, we discuss how we can
obtain an inequality valid for the CCLP that cuts off this solution. Denoting the basic
variables in this tableau by v (indexed by set M), and the nonbasic variables by t
(indexed by set N ), we write the simplex tableau as

vl = v∗
l −∑i∈N fli ti ,∀l ∈ M; vl ≥ 0,∀l ∈ M; ti ≥ 0,∀i ∈ N ; (1)

where v∗
l ≥ 0 for l ∈ M. Since we have assumed that the current basic solution

(v, t) = (v∗, 0) does not satisfy the cardinality constraint, there exists a subsetL ⊆ M
of basic variables such that (i) |L| = K + 1, (i i) variables vl for l ∈ L appear in the
cardinality constraint, and (i i i) v∗

l > 0 for l ∈ L. We construct the desired disjunctive
relaxation Q̄ by (i) relaxing the cardinality constraint card(x) ≤ K into the disjunction∨

l∈L(vl ≤ 0), which forces one of the K + 1 variables in L to be nonpositive, (i i)
removing the nonnegativity requirements on basic variables, and (i i i) omitting tableau
constraints associated with basic variables vM\L:

Q̄ := {(v, t) ∈ R
|L| × R

|N |
+
∣∣ vl = v∗

l −∑i∈N fli ti ,∀l ∈ L; ∨l∈L(vl ≤ 0)
}
,

(2)

where each equality corresponds to a basic variable in L, and represents it as an affine
function of the nonbasic variables. If a nonbasic variable is a slack variable for a
constraint in Ax + By ≤ b, then an inequality valid for Q̄ can be written in the space
of original problem variables using the defining inequality for the slack variable. The
relaxation steps applied to the initial simplex tableau in order to obtain Q̄ resemble
those made to obtain the corner relaxation of an MIP; see [26].

Remark 1 Our procedure applies more generally to the setup where we separate an
extreme point of a polyhedron from K + 1 disjuncts not containing the point, each
of which is defined by a single inequality. Separation is possible because the extreme
point cannot be expressed as a convex combination of points feasible in the disjuncts.
The disjuncts in (2) are not always parallel. We will show that the c-max cut, described
in (3), does not suffice to yield the closed convex hull of Q̄, unlike the case of 0–1
disjunction, where [4] showed that similar disjunctive cuts are sufficient. This lack of
correspondence was also observed in [36] while deriving a procedure that identifies
disjunctive cuts.

Since Q̄ is a finite union of polyhedra, cl conv(Q̄) is a polyhedron; see for instance
Theorem 19.6 in [45].

Proposition 1 The set cl conv(Q̄) is a polyhedron. �	
The convex hull of Q̄ is not necessarily closed, as the following example shows:

Q̄ := {(v, t) ∈ R
2 × R

2+
∣∣ v1 = 2 − t1 + 2t2, v2 = 3 − t1 + t2, (v1 ≤ 0) ∨ (v2 ≤ 0)

}
.
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Hence, we will characterize the closure convex hull of Q̄. Since (v1, v2, t1, t2) =
(0, 0, 1, 1) is a recession direction for the disjunct v2 ≤ 0 but not for v1 ≤ 0, Q̄ is not
MIP representable. Lack of upper bounds on t variables is a key reason why Q̄ is not
MIP representable and its convex hull is not closed. Therefore, MIP cuts and those in
[22] do not directly apply to our setting.

A linear inequality is valid for Q̄ if and only if it is valid for cl conv(Q̄). We
characterize these inequalities by studying cl conv(Q) where Q is the projection of Q̄
onto the space of nonbasic variables t . Formally, for each l ∈ L, define Ql := {

t ∈
R

|N |
+

∣∣ ∑
i∈N fli ti ≥ v∗

l

}
and set Q := ⋃

l∈L Ql . Without loss of generality, we

assume that N = {1, . . . , n}. Let h∗(t) =
(

v∗
0

)
+
(−F

I

)
t , where the entry (l, i) of

matrix F is fli , as used in the definition of Q̄ in (2). It is clear that h∗(·) is an affine
map, and that Q̄ = h∗(Q).

Proposition 2 For i = 1, . . . , p, let Pi ∈ R
n be nonempty polyhedra. Also let h :

R
n → R

m be an affine map. Then cl conv
(⋃p

i=1 h(Pi )
) = h

(
cl conv

(⋃p
i=1 Pi

))
.

Consequently, cl conv(Q̄) = h∗ (cl conv(Q)). �	
In the remainder of this paper, we restrict our attention to the study of cl conv(Q)

since Proposition 2 shows that this is sufficient to characterize cl conv(Q̄).
Since v∗

l > 0 for l ∈ L, we may scale each constraint so that v∗
l = 1. That is, for

l ∈ L, Ql = {t |∑i∈N fli ti ≥ 1, ti ≥ 0,∀i ∈ N
}
. For each l ∈ L, define

Il+ = {i ∈ N | fli > 0}, Il− = {i ∈ N | fli < 0}, Il
0 = {i ∈ N | fli = 0}.

Throughout the paper, we assume without loss of generality that Ql �= ∅ for each
l ∈ L. In fact, if Ql = ∅ for some l ∈ L, then we can simply drop the corresponding
set from the disjunction. Clearly, Ql = ∅ if and only if fli ≤ 0 for all i ∈ N . We
therefore make the following assumption in the rest of the paper.

Assumption 1 For each l ∈ L, Il+ �= ∅.
Proposition 3 Polyhedron Ql is full-dimensional for l ∈ L. Further, cl conv(Q) is
full-dimensional.

Proof ByAssumption 1,Il+ �= ∅. Choose i ∈ Il+ and consider the point
(

1
fli

+ 1
)
ei+∑

k∈N \{i} εek , where ε is positive but sufficiently small and ei is the i th unit vector.
This point is in the interior of Ql because it satisfies all the constraints in Ql with strict
inequalities. Therefore, Ql is full-dimensional because a small enough ball centered
at this point lies entirely in Ql ; see Chapter 8 of [47], for example. Further, since
Ql ⊆ Q, then cl conv(Q) is also full-dimensional. �	

We next argue that there are valid inequalities of cl conv(Q) that can be used to
separate the basic feasible solution associated with the initial simplex tableau (1), if
this solution violates the cardinality requirement. For instance, consider

∑

i∈N
(c-max)i ti ≥ 1 (3)
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where (c-max)i = max{ fli | l ∈ L} for i ∈ N . This inequality, which we refer to
hereafter as c-max cut was introduced in [29] for complementarity problems. Com-
plementarity problems are special instances of cardinality problems requiring that at
most one of two variables takes a nonzero value. The c-max cut is valid for cl conv(Q)

because
∑

i∈N (c-max)i ti ≥ ∑i∈N fli ti ≥ 1 for all t ∈ Ql and l ∈ L, i.e., it is valid
for each disjunct Ql . Moreover, it separates the closed convex hull from t = 0 because
this point violates (3). For the particular case where |L| = 2, [42] observed that the
c-max cut is not always facet-defining for cl conv(Q). In this paper, we provide a com-
plete description of the nontrivial facet-defining inequalities of cl conv(Q), each of
which cuts off the current basic feasible solution of (1), and we precisely characterize
when the c-max cut is strong.

4 A characterization of cl conv(Q)

In this section, we provide a characterization of the facet-defining inequalities of
cl conv(Q). Recall that Minkowski–Weyl’s theorem, see Theorem 7.13 in [28] for
instance, establishes that a polyhedron can be represented in two forms, either using
its vertices and extreme rays or as a finite intersection of half-spaces. Following [53],
we refer to the former as a V-polyhedron, and to the latter as aH-polyhedron.

Instead of Q, for notational convenience, we study its homogenization and show
that this change iswithout loss of generality; see Proposition 6. LetN0 := N∪{0}. Let
Q0

l be the homogenization of Ql obtained as Q0
l := {

t := (t1, . . . , tn, t0) ∈ R
|N0|+

∣∣
∑

i∈N fli ti ≥ t0
}
. After defining fl0 := −1 and fl := ( fl1, . . . , fln, fl0)ᵀ, we can

rewrite Q0
l = {

t ∈ R
|N0| | f ᵀ

l t ≥ 0, t ≥ 0
}
. We refer to f ᵀ

l t ≥ 0 as the nontrivial
constraint of disjunct l. It is clear that Q0

l is a polyhedral cone. Referring to
⋃

l∈L Q0
l as

Q0, it is clear that cl conv(Q0) is a cone.We relate these cones to the sets we originally
introduced. For a nonempty convex set C , we let K (C) := {λ(d, 1) | d ∈ C, λ > 0}.
Proposition 4 It holds that Q0

l = cl(K (Ql)) and cl conv(Q0) = cl(K (cl conv(Q))).
�	

Propositions 3 and 4 directly yield

Corollary 1 Polyhedron cl conv(Q0) is full-dimensional. �	
In Proposition 5, we present V-polyhedron representations of Q0

l and Ql . We then
obtain similar representations for cl conv(Q0) and cl conv(Q) in Corollary 2.

Proposition 5 It holds that Q0
l = cone(R0

l ) and Ql = conv (Vl) + cone(Rl), where

R0
l = { fli e j − fl j ei ∈ R

|N0| | i ∈ Il+, j ∈ Il− ∪ {0}} ∪ {ek ∈ R
|N0| | k ∈ Il+ ∪ Il

0},
Vl = { 1

fli
ei ∈ R

|N | | i ∈ Il+
}
, and Rl = { fli e j − fl j ei ∈ R

|N | | i ∈ Il+, j ∈
Il−} ∪ {ek ∈ R

|N | | k ∈ Il+ ∪ Il
0}. Furthermore, each point and ray used in the

representation is extremal.

Proof We first show that Q0
l = cone(R0

l ). Since Q0
l is a cone in the nonnegative

orthant, it is pointed. This implies that all the points in the cone can be written as a
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conic combination of its extreme rays. Let r be a ray of Q0
l . Then, r is extreme if

and only if it belongs to the intersection of n = |N0| − 1 independent hyperplanes
among {t ∈ R

|N0| | f ᵀ
l t = 0} and {t ∈ R

|N0| | tk = 0}, for k ∈ N0. First, for
each i ∈ N0, suppose that these n hyperplanes are {t | tk = 0} for k �= i . Then
rk = 0 for all k �= i and hence r = ρei with ρ > 0. In order to be a ray, this vector
must satisfy f ᵀ

l r ≥ 0, i.e., i must be chosen in Il+ ∪ Il
0 . Next, suppose that these

n hyperplanes are {t ∈ R
|N0| | f ᵀ

l t = 0} and {t ∈ R
|N0| | tk = 0} for k �= i, j

for some i, j ∈ N0. Then the face defined by the intersection of these hyperplanes is
F := {t ∈ R

|N0| | fli ti + fl j t j = 0, t ≥ 0, tk = 0,∀k �= i, j}. In order for r to be a
ray, F �= {0} and hence fli fl j ≤ 0. By independence, fli �= 0 or fl j �= 0. If fli = 0
or fl j = 0 then we have that r = ek for some k ∈ Il

0. Now assume that fli fl j < 0.
Without loss of generality, assume that fli > 0 and fl j < 0. Then, r = fli e j − fl j ei
where i ∈ Il+ and j ∈ Il− ∪ {0}. We conclude that R0

l is precisely the collection of
extreme rays of Q0

l , and therefore Q0
l = cone(R0

l ).
It follows directly fromProposition 4 andLemma5.41 in [28] that Ql = conv (Vl)+

cone(Rl). Extremality follows from the extremality of rays in R0
l . �	

The result of Proposition 5 yields a V-polyhedron representation for the closed
convex hull of the union of the associated disjuncts.

Corollary 2 It holds that cl conv(Q0) = cone(R0) and cl conv(Q) = conv(V ) +
cone(R), where R0 :=⋃l∈L R0

l , V :=⋃l∈L Vl , and R :=⋃l∈L Rl .

The coefficient vectors β ∈ R
|N | and β ′ ∈ R

|N0| that give rise to strong valid
inequalities of cl conv(Q) and cl conv(Q0), respectively, are closely related. There is
a straightforward one-to-one correspondence betweenvalid inequalities for cl conv(Q)

and cl conv(Q0). The following result shows further that characterizing the facets of
cl conv(Q0) is equivalent to characterizing the facets of cl conv(Q).

Proposition 6 Inequality

∑

i∈N
βi ti ≥ γ (4)

is facet-defining for cl conv(Q) if and only if inequality

∑

i∈N
βi ti ≥ γ t0 (5)

is facet-defining for cl conv(Q0) and is not a scalar multiple of t0 ≥ 0.

Proof The fact that validity is preserved is clear. Suppose now that (4) is facet-defining
for cl conv(Q). Then there exist n = |N | affinely independent points w1, . . . , wn of
cl conv(Q) that satisfy (4) at equality. Points (w j , 1) belong to cl conv(Q0) for all
j ∈ N and satisfy (5) at equality. Since {w j | j ∈ N } are affinely independent,
{(w j , 1) | j ∈ N } are linearly independent. This proves that (5) is facet-defining for
cl conv(Q0). Clearly, (5) is not t0 ≥ 0 as otherwise (4) would be 0ᵀt ≥ −1, which is
not facet-defining for cl conv(Q).
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Conversely, suppose that (5) is facet-defining for cl conv(Q0). Since cl conv(Q0)

is a full-dimensional polyhedral cone, there exist n linearly independent extreme rays
(r j , r j

0 ) of cl conv(Q0) that satisfy (5) at equality. Suppose r j
0 = 0 for all j ∈ N .

Observe that {r j | j ∈ N } are linearly independent and βᵀr j = 0 for all j ∈ N . This
shows that β = 0. However, this is not possible as (5) would then correspond to the
face of cl conv(Q0) induced by t0 ≥ 0. Therefore, there must exist j ∈ N such that

r j
0 �= 0. Define I1 = { j ′ ∈ N | r j ′

0 �= 0}( �= ∅) and I2 = { j ′ ∈ N | r j ′
0 = 0}. Then,

for j ∈ I1, βᵀ r j

r j
0

= 1
r j
0

βᵀr j = γ . Further, for k ∈ I2, βᵀrk = 0. Fix j0 ∈ I1, and

consider the sets of points

{
r j

r j
0

∣∣∣∣∣
j ∈ I1

}

∪
{
r j0

r j0
0

+ rk
∣∣∣∣∣
k ∈ I2

}

.

It is clear that these points satisfy (4) at equality and that they belong to cl conv(Q)

by Proposition 4. It remains to prove that they are affinely independent, which can be
established easily because the linear independence of vectors

{
r j

r j
0

− r j0

r j0
0

∣∣∣∣∣
j ∈ I1\{ j0}

}

∪
{
rk
∣∣∣ k ∈ I2

}

follows from the assumed independence of {(r j , r0), j ∈ N }. Therefore, (4) is facet-
defining for cl conv(Q). �	

In the remainder of this paper, we prefer to study cl conv(Q0) because, being homo-
geneous, it allows for a unified treatment of the extreme points and extreme rays of
Q, and thus permits a more streamlined presentation.

Weare now ready to further investigate the structure of coefficient vectors associated
with facet-defining inequalities (5) of cl conv(Q0). In particular, we will show in
Proposition 8 that, except for some simple inequalities we describe next, most facet-
defining inequalities (5) are such that γ > 0.

For i ∈ N0, we refer to the inequalities ti ≥ 0 of cl conv(Q0) as trivial. For
notational convenience, we redefine Il− := Il− ∪ {0} because fl0 = −1. Hence Il+,
Il−, and Il

0 partition N0. We also define

I+ = {i ∈ N0 | fli > 0 for some l ∈ L} =⋃l∈L Il+,

I− = {i ∈ N0 | fli < 0 for all l ∈ L} =⋂l∈L Il−,

I0 = N0\(I+ ∪ I−).

It is clear that 0 ∈ I− and it follows from Assumption 1 that I+ �= ∅. In the
next proposition, we provide necessary and sufficient conditions under which trivial
inequalities are facet-defining for cl conv(Q0).

Proposition 7 Inequality ti ≥ 0 is facet-defining for cl conv(Q0) if and only if

1. i ∈ I− ∪ I0, or
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2. i ∈ I+ and |I+| ≥ 2.

Proof Inequality ti ≥ 0 is clearly valid for cl conv(Q0). Assume first that i ∈ I− ∪I0.
Since I+ �= ∅, there exists j ∈ I+ and l ∈ L such that fl j > 0. Consider the point

∑

k∈N0\{i, j}
εek + 1 −∑k∈N0\{i, j} ε flk

fl j
e j (6)

for ε positive and sufficiently small. This point is in the relative interior of Q0
l ∩ {t ∈

R
|N0| | ti = 0}.Hence, it is in the relative interior of cl conv(Q0)∩{t ∈ R

|N0| | ti = 0}.
It follows that ti ≥ 0 is facet-defining for cl conv(Q0). Next, assume that i ∈ I+. If
|I+| ≥ 2, there exists j ∈ I+\{i} and l ∈ L such that fl j > 0. Then, (6) is an
interior point of Q0

l ∩ {t ∈ R
|N0| | ti = 0} and hence ti ≥ 0 is facet-defining for

cl conv(Q0). Suppose I+ = {i} and j ∈ I−. Then, for each l ∈ L, every point in
Q0

l ∩ {t ∈ R
|N0| | ti = 0} satisfies t j = 0. It follows that ti ≥ 0 defines a face of

cl conv(Q0) of dimension at least two less than that of cl conv(Q0), showing that this
inequality is not facet-defining. �	

Proposition 7 shows that trivial inequalities ti ≥ 0 are facet-defining unless i ∈ I+
and |I+| = 1. In the remainder of this paper, we consider β to be a vector in R

|N0|.
We show next that the sign of the entries of coefficient vectors β for nontrivial facet-
defining inequalities of cl conv(Q0) can be deduced directly from the sets I+, I−, and
I0.

Proposition 8 Let

∑

i∈N0

βi ti ≥ 0 (7)

be a nontrivial facet-defining inequality for cl conv(Q0). Then

1. βi ≥ −max{ fli | l ∈ L}β0 for i ∈ I+,
2. β j < 0 for j ∈ I−
3. βk = 0 if max{ flk | l ∈ L} = 0.

In particular, βi > 0 for i ∈ I+.

Proof Consider a nontrivial facet-defining inequality (7). Observe that βi ≥ 0 for
i ∈ I+ ∪ I0 because ei is a ray of Q0.

We first prove 1. Choose j ′ ∈ I− with β j ′ < 0. Such a j ′ exists because otherwise,
(7) is implied by trivial inequalities. Let i ∈ Il+ for some l ∈ L. Since fli e j ′ − fl j ′ei

is a ray for cl conv(Q0), it follows that βi ≥ max{ fli | l ∈ L} β j ′
fl j ′

> 0. Remember

now that 0 ∈ I−. If β0 < 0, Part 1 follows easily since fl0 = −1. If β0 = 0, Part 1
simply states that βi ≥ 0 while the inequality just proven for j ′ is stronger.

We now prove 2 and 3. Consider j ∈ I− ∪ I0. There exists an extreme ray r of
cl conv(Q0) such thatβᵀr = 0 and r j > 0 because otherwise, (7) is a trivial inequality.
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Proposition 5 shows that this ray is one of two forms. First, let r = fli e j − fl j ei for
some l ∈ L and i ∈ Il+. As shown, βi > 0. It follows from βᵀr = 0 that β j < 0.
This shows Part 2 when j ∈ I− and shows that it is not the desired ray when j ∈ I0
as it contradicts the established relation β j ≥ 0. Now, consider j ∈ I0. We must have
that r = e j . This shows that β j = 0 proving Part 3. �	
Example 1 Consider the set Q0 with disjuncts defined by the constraints

5t1 −3t2 +0t3 +1t4 −5t5 −t0 ≥ 0
3t1 −1t2 +2t3 −3t4 −3t5 −t0 ≥ 0
4t1 −6t2 +4t3 −2t4 +0t5 −t0 ≥ 0
2t1 −2t2 −2t3 +0t4 −2t5 −t0 ≥ 0.

(8)

Then I+ = {1, 3, 4}, I− = {2, 0}, and I0 = {5}. We use PORTA [14,15] to obtain
the extreme rays of eachdisjunct and run it again to obtain all facet-defining inequalities
of cl conv(Q0), from which the nontrivial ones below:

5t1 − 5
3 t2 +4t3 +t4 +0t5 −t0 ≥ 0

9t1 −3t2 +6t3 +t4 +0t5 −t0 ≥ 0
6t1 −2t2 +4t3 +t4 +0t5 −t0 ≥ 0.

(9)

We observe that, as argued in Proposition 8, βi > 0 for i ∈ I+, βi < 0 for i ∈ I− and
β5 = 0 in all nontrivial facet-defining inequalities (9). �	

Proposition 8 shows that, for nontrivial facet-defining inequalities of cl conv(Q0),
βk equals zero for each index k for which the tableau coefficients satisfy flk ≤ 0 for
all l ∈ L and fl ′k = 0 for some l ′ ∈ L. Then, cl conv(Q) = {t = (t−k, tk) | t−k ∈
cl conv(Q−k), tk ∈ R+} where t−k is the vector obtained by dropping component
tk from t and Q−k := projt−k

(Q). Thus, it is sufficient to study cl conv(Q−k). We
therefore make the following assumption in the remainder of the paper.

Assumption 2 I0 = ∅.
With Assumption 2, it follows that I+ and I− partition N0.

Wenext derive anH-polyhedron representation of cl conv(Q0).Weobtain the linear
inequalities of this representation by considering the dual cone of its V-polyhedron
representation, which was obtained in Corollary 2. For a given cone C ⊆ R

n , we
denote the dual cone of C by C∗. Recall that C∗ = {y ∈ R

n | yᵀx ≥ 0, ∀x ∈ C}. As
we established in Corollary 2 that cl conv(Q0) = cone(R0) where R0 :=⋃l∈L R0

l , it
is easy to see that βᵀt ≥ 0 is a valid inequality for cl conv(Q0) if and only if βᵀr ≥ 0
for all r ∈ R0. Therefore, the coefficient vectors of valid inequalities for cl conv(Q0)

belong to

B1 =
{
β ∈ R

|N0|
∣∣∣∣
fliβ j − fl jβi ≥ 0, ∀(i, j) ∈ Il+ × Il−, l ∈ L
βk ≥ 0, ∀k ∈ Il+ ∪ Il

0, l ∈ L

}
, (10)

where we use B1 as a shorthand notation for [cl conv(Q0)]∗.
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Among the facet-defining inequalities of cl conv(Q0), trivial inequalities are not
useful in practice, since they do not cut off the basic solution associated with sim-
plex tableau (1). We therefore concentrate on nontrivial facet-defining inequalities of
cl conv(Q0), which have β0 < 0 as shown in Proposition 8. Therefore, by scaling
if necessary, we may assume that β0 = −1. For this reason, we focus our ensuing
study on B2 := B1 ∩ {β ∈ R

|N0| | β0 = −1}, and show that the description of this
polyhedron requires fewer constraints than those given in (10).

Proposition 9 For (i, j) ∈ I+ × I−, define

wi j = min

{
− fl j

fli

∣∣∣∣ fli > 0, l ∈ L
}

. (11)

Then

B2 =
{
β ∈ R

|N0|
∣∣∣∣
β j + wi jβi ≥ 0, ∀(i, j) ∈ I+ × I−
β0 = −1

}
. (12)

Proof Just as in the proof of Proposition 8, when β0 < 0, the inequalities βk ≥ 0 for
k ∈ Il+ ∪ Il

0 do not support B1 and can therefore be dropped. Now, for any i ∈ Il+
and j ∈ Il−, βi ≥ fli

fl j
β j . This inequality is redundant if j ∈ I+ because, as argued

above, βi > 0. Therefore, j ∈ I−. Maximizing fli
fl j

β j yields (12). �	
It is easy to see that the coefficients β ∈ B2 are sign-constrained. Therefore, B2

has no lines. Because B2 does not have a line, it has at least one extreme point; see
Corollary 18.5.3 in [45]. We mention that B2 does also have rays, including vectors
ei for i ∈ I+ ∪ I−\{0}.

We next show that there is a one-to-one correspondence between the nontrivial
facet-defining inequalities of cl conv(Q0) and the extreme points of B2.

Theorem 1 Any inequality βᵀt ≥ 0 with β0 = −1 is facet-defining for cl conv(Q0)

if and only if β is an extreme point of B2.

Proof For a facet-defining inequality, βᵀt ≥ 0 of cl conv(Q0), β is an extreme point
of B2 because of the n linearly independent tight constraints βᵀr j = 0, one for each
tight linearly independent extreme ray r j of cl conv(Q0) and the equality constraint
β0 = −1. For the reverse inclusion, the tight constraints, besides β0 = −1, each yield
a linearly independent extreme ray tight for the inequality. �	

Extreme rays of B2 also lead to valid inequalities for cl conv(Q0). In fact, consider a
solution β and an extreme ray ρ of B2. Clearly, ρ0 = 0. For all τ ≥ 0,β+τρ ∈ B2, and
therefore the inequality (β + τρ)ᵀt ≥ 0 is valid for cl conv(Q0). Dividing throughout
by τ and letting τ → ∞, we then conclude that ρᵀt ≥ 0, an inequality with ρ0 = 0,
is valid for cl conv(Q0). If this inequality is facet-defining for cl conv(Q0), then it
must be one of the trivial ones. However, extreme rays, unlike extreme points, do not
necessarily yield facet-defining inequalities for cl conv(Q0). We next illustrate these
observations, together with the statement of Theorem 1.
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Example 1 (continued) For the set Q0 with disjuncts defined by (8) and where
variable t5 has been removed, we compute that w12 := min

{ 3
5 ,

1
3 ,

6
4 ,

2
2

} = 1
3 ,

w10 := min
{ 1
5 ,

1
3 ,

1
4 ,

1
2

} = 1
5 , w32 := min

{ 1
2 ,

6
4

} = 1
2 , w30 := min

{ 1
2 ,

1
4

} = 1
4 ,

w42 := 3, and w40 := 1. It then follows from Proposition 9 that

B2 =

⎧
⎪⎨

⎪⎩
(β1, β2, β3, β4, β0) ∈ R

5

∣∣∣∣∣∣∣

β2 + 1
3β1 ≥ 0, β0 + 1

5β1 ≥ 0, β2 + 1
2β3 ≥ 0,

β0 + 1
4β3 ≥ 0, β2 + 3β4 ≥ 0, β0 + β4 ≥ 0,

β0 = −1

⎫
⎪⎬

⎪⎭
.

Coefficient vectors of all facet-defining inequalities of cl conv(Q0) that cut off
the solution (0, 0, 0, 0, 1) belong to B2. For instance, the coefficient vector β =
(5,− 5

3 , 4, 1,−1) belongs to B2. Further, it satisfies the following system of linearly
independent equations β2 + 1

3β1 = 0, β0 + 1
5β1 = 0, β0 + 1

4β3 = 0, β0 + β4 = 0,
and β0 = −1. Since the system has a unique solution, β is an extreme point of B2.
This extreme point is the coefficient vector of the first facet-defining inequality of (9)
(where we have omitted the coefficient β5 since I0 = {5}). It can also be verified
that (3,−1, 2, 1

3 , 0) is an extreme ray of B2. It corresponds to the valid inequality
3t1 − t2 + 2t3 + 1

3 t4 ≥ 0, which is not facet-defining for cl conv(Q0) since it can
be obtained as a conic combination of the second facet-defining inequality of (9) and
t0 ≥ 0 with equal weights of 1

3 . �	

5 Dual network formulation of B2

In this section, we present a nonlinear transformation that maps (a subset of) the
polyhedron B2 to the feasible region of the dual of a transportation problem. We show
that this transformation preserves the face-lattice of B2 (see below for a definition).
We use these results in Sect. 6 to establish a correspondence between the extreme
points of B2, i.e., the nontrivial facet-defining inequalities of cl conv(Q0), and certain
spanning trees of a suitably defined transportation network.

We have shown in Proposition 8 that if β is an extreme point of B2, βi > 0 for all
i ∈ I+ and β j < 0 for all j ∈ I−. Define A = {β ∈ R

|N0| | βi > 0, β j < 0,∀i ∈
I+,∀ j ∈ I−}. Observe that, for any β ∈ B2 ∩ A and for (i, j) ∈ I+ × I−,

β j + wi jβi ≥ 0 ⇐⇒ −β j

βi
≤ wi j ⇐⇒ log(−β j ) − log(βi ) ≤ log(wi j ).

All the logarithms computed above are well-defined under the conditions of A. Define
T : A → R

|N0| by [T (β)]k := log |βk |. Its inverse transformation T−1 is then
[T−1(δ)]k = eδk if k ∈ I+ and −eδk if k ∈ I−. After introducing the new variables
δi = log(βi ), for i ∈ I+ and δ j = log(−β j ), for j ∈ I−, and the constants ci j =
log(wi j ), for (i, j) ∈ I+ × I−, we define

D1 :=
{
δ ∈ R

|N0|
∣∣∣ δ j − δi ≤ ci j ,∀(i, j) ∈ I+ × I−

}
,

D2 :=
{
δ ∈ R

|N0|
∣∣∣ δ j − δi ≤ ci j , δ0 = 0,∀(i, j) ∈ I+ × I−

}
.
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Proposition 10 It holds that T (B2 ∩ A) = D2. �	
It is clear that for β ∈ B2 ∩ A and δ = T (β) ∈ D2,

β j + wi jβi = 0 ⇐⇒ δ j − δi = ci j , (13)

β j + wi jβi ≤ 0 ⇐⇒ δ j − δi ≤ ci j . (14)

Let H(E) be the subgraph of the complete bipartite graphG := (I+, I−)with edge
set E ⊆ I+ ×I−. Let P, Q ∈ R

|I+|×|I−| be two matrices. We create the |E |× (n+1)
matrix M(H(E), P, Q) by fixing an ordering of the edges of E (say lexicographical)
and by assigning the row of M(H(E), P, Q) corresponding to edge {i, j} ∈ E to be
the vector Pi j e

ᵀ
j + Qi j e

ᵀ
i .

Lemma 1 Assume that H(E) is a subforest of G. Assume also that Pi j �= 0 and
Qi j �= 0 for all {i, j} ∈ E. Then M(H(E), P, Q) has full rank.

Proof Suppose H(E) is a subforest of G. Since |E | < n + 1, we only need to prove
independence of the rows of M(H(E), P, Q). For a positive integer k = 1, . . . , |E |−
1, observe that the (k + 1)th row of M(H(E), P, Q) introduces a new nonzero entry,
which was zero in the first k rows because H(E) does not contain a cycle, Pi j �= 0
and Qi j �= 0. This shows that the rows of M(H(E), P, Q) are independent. �	

Define J to be the |I+| × |I−| matrix of ones andW to be the |I+| × |I−| matrix
whose (i, j) entry is wi j . For any E ⊆ I+ × I− such that H(E) is a forest, Lemma 1
shows that both matrices M(H(E),J,−J) and M(H(E),J,W) have full rank.

Proposition 11 Let H(E) be a subgraph of G with n = |N0| − 1 edges such that
rank(M(H(E),J,W)) = n and M(H(E),J,W)β = 0 for some β ∈ B2. Then
H(E) is a tree of G.

Proof Assumeby contradiction that H(E) has a cycleC , and letβC be the components
of β associated with nodes of C . Let M ′ be the n × n submatrix of M(H(E),J,W)

associated with cycleC . Then it is easy to verify that M ′ is nonsingular and M ′βC = 0
which implies that βC = 0. Since G is bipartite, C contains a node k ∈ I+, and so
βk = 0. Because β ∈ B2, it satisfies β0 +wk0βk ≥ 0, which implies that β0 ≥ 0. This
is a contradiction to the fact that β0 = −1. Since H(E) has n edges, n + 1 nodes and
no cycle, it is a tree. �	

A finite partially ordered set (S,≤), or poset, is the association of a finite set S with
a relation “≤” which is (i) reflexive: x ≤ x for all x ∈ S, (ii) transitive: x ≤ y and
y ≤ z imply x ≤ z, and (iii) antisymmetric: x ≤ y and y ≤ x imply x = y. The
face-lattice of a polyhedron P is the poset of its faces, partially ordered by inclusion.
We say that two posets (S,≤) and (S′,�) are isomorphic if there is a bijection T (·)
from S to S′ such that s1 ≤ s2 if and only if T (s1) � T (s2). Moreover, we say two
polyhedra are isomorphic if their face-lattices are isomorphic.

Proposition 12 Polyhedra D2 and B2 are isomorphic.
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Proof Given a polyhedron P ⊆ R
n , we defineF(P) to be the set of faces of P . Given

E ⊆ I+ × I−, we define

B2|E = {β ∈ B2 | β j + wi jβi = 0,∀(i, j) ∈ E}
D2|E = {δ ∈ D2 | δ j − δi = ci j ,∀(i, j) ∈ E}.

Clearly, B2|E and D2|E are (possibly empty) faces of B2 and D2, respectively. Given a
nonempty face F of B2, we denote by E(F) the largest subset E ⊆ I+ ×I− such that
F = B2|E . In particular, for every pointβ∗ in the relative interior of F ,β∗

j +wi jβ
∗
i < 0

for (i, j) ∈ (I+ × I−)\E(F). Similarly, given a nonempty face F ′ of D2, we denote
by E′(F ′) the largest subset E ′ ⊆ I+ × I− such that F ′ = D2|E ′ . For every point δ∗
in the relative interior of F ′, δ j − δi < ci j for (i, j) ∈ (I+ × I−)\E′(F ′).

Next, we define ϕ : F(B2) �→ F(D2) to be such that ϕ(F) = D2|E(F) for any
nonempty face F ∈ F(B2) andϕ(∅) = ∅.We show thatϕ is a bijection by constructing
an inverse to ϕ. Define ψ : F(D2) �→ F(B2) to be such that ψ(F ′) = B2|E′(F ′) for
any nonempty face F ′ ∈ F(D2) and ψ(∅) = ∅. First, we argue that if F ∈ F(B2)

and F ′ = ϕ(F), then E(F) = E
′(F ′). Consider a point β̄ in the relative interior

of F and an extreme point β̃ of that face. The line segment [β̄, β̃) is in the relative
interior of F ; see Theorem 6.1 of [45]. Further, there exists a point β on this line
segment, sufficiently close to β̃, that belongs to A. Define δ = T (β). It follows from
(13) and (14) that δ belongs to the relative interior of F ′ and that E(F) = E

′(F ′).
Similarly, if F ′ ∈ F(D2) and F ′′ = ψ(F ′), then E

′(F ′) = E(F ′′). Second, we argue
that for each F ∈ F(B2), ψ(ϕ(F)) = F . The result is clear when F = ∅. When
F �= ∅, define F ′ = ϕ(F) and F ′′ = ψ(F ′). It follows from the above discussion that
E(F) = E

′(F ′) = E(F ′′) Therefore F ′′ = B2|E(F ′′) = B2|E(F) = F .
To conclude the proof, consider two faces F1 and F2 of F(B2) such that F1 ⊆ F2.

Define F ′
1 = ϕ(F1) and F ′

2 = ϕ(F2). Since F1 ⊆ F2, then E(F1) ⊇ E(F2). It follows
from the above discussion that E′(F ′

1) ⊇ E
′(F ′

2), showing that ϕ(F1) = F ′
1 ⊆ F ′

2 =
ϕ(F2). �	

It is shown in Theorem 10.1 of [12] that two isomorphic polytopes have the same
dimension, and that faces matched through the bijection T (·) have identical dimen-
sions. The proof idea extends to our setting.

The proof of Proposition 12 therefore implies that there is a one-to-one correspon-
dence between the faces of dimension one of B2 and D2. We obtain

Corollary 3 If u (resp. v) is an extreme point of D2 (resp. B2) then T−1(u) (resp.
T (v)) is an extreme point of B2 (resp. D2). �	

Extreme points of D2 can be exposed as unique optimal solutions to certain linear
programs (LPs) over D2, or equivalently can be obtained from optimal solutions of
certain LPs over D1. In order for such LPs to have an optimal extreme point solution,
the objective coefficient vector should be chosen in the polar cone of the recession
cone of the feasible set. The recession cones of D1 and D2 are

rec(D1) = {δ ∈ R
|N0| | δ j − δi ≤ 0,∀(i, j) ∈ I+ × I−},

rec(D2) = {δ ∈ R
|N0| | δ j − δi ≤ 0, δ0 = 0,∀(i, j) ∈ I+ × I−}.
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We next derive a V-polyhedron description of rec(D1) and rec(D2). In this result, we
let 1 = ∑k∈N0

ek . For a set of vectors V , we define lin(V ) to be the linear subspace
generated by V . For notational convenience, we use lin(v) to denote lin({v}) for a
vector v.

Proposition 13 1. Let R2 = {ei | i ∈ I+} ∪ {−e j | j ∈ I−\{0}} ∪ {1 − e0}. Then
rec(D2) = cone(R2).

2. Let R1 = {ei | i ∈ I+} ∪ {−e j | j ∈ I−}. Then rec(D1) = cone(R1) + lin(1).

Proof Assume that δ ∈ rec(D2). Let a = min{δi | i ∈ I+} and b = max{δ j | j ∈
I−}. Then, b ≥ δ0 = 0. Furthermore, δ j ≤ b ≤ a ≤ δi , for i ∈ I+ and j ∈ I−. We
can then write

δ = b(1 − e0) +
∑

j∈I−\{0}
(b − δ j )(−e j ) +

∑

i∈I+
(δi − b)ei ,

which shows that rec(D2) ⊆ cone(R2). Observe next that R2 ⊆ rec(D2) since the
elements of R2 are rays of D2. Therefore cone(R2) ⊆ rec(D2), proving 13. We next
show that rec(D1) = rec(D2)+lin(1),whichwill prove 13 since1−e0 ∈ −e0+lin(1).
To prove the forward inclusion (⊆), consider δ′ in rec(D1). Then δ′ − δ′

01 belongs to
rec(D2). To prove the reverse inclusion (⊇), consider δ′ in rec(D2) and t ∈ R. It is
clear that δ′ + t1 ∈ rec(D1). �	

By definition of polar cone,

(rec(D1))
o := {y | yᵀx ≤ 0, x ∈ rec(D1)}

= {y | yᵀx ≤ 0, x ∈ R1 ∪ {−1,1}}

=
⎧
⎨

⎩
y

∣∣∣∣∣∣
yi ≤ 0,∀i ∈ I+; y j ≥ 0,∀ j ∈ I−;

∑

k∈N0

yk = 0

⎫
⎬

⎭
.

Similar to B2, it is simple to verify that D2 does not contain lines, and therefore
has at least one extreme point. We next show that each extreme point of D2 can be
derived from an optimal solution of an LP over D1 by setting an appropriate objective
vector y in ri (rec(D1)

o). Define s := −yI+ and d := yI− . The desired LP is

max −
∑

i∈I+
siδi +

∑

j∈I−
d jδ j

s.t. δ j − δi ≤ ci j , ∀(i, j) ∈ I+ × I−. (15)

123



On cutting planes for cardinality-constrained linear programs 433

Its dual is the transportation problem:

min
∑

i∈I+

∑

j∈I−
ci j xi j

s.t.
∑

j∈I−
xi j = si , ∀i ∈ I+,

∑

i∈I+
xi j = d j , ∀ j ∈ I−, (16)

xi j ≥ 0 ∀(i, j) ∈ I+ × I−.

We next argue that both primal (16) and dual (15) problems are feasible, thereby
showing that optimal primal and dual solutions exist. The primal problem (16) is
feasible because

∑
j∈I− d j = ∑i∈I+ si . The c-max cut shows that the dual problem

(16) is feasible. In fact, let c-max be the coefficient vector of the c-max cut. This
vector is in B2. Furthermore, (c-max)i > 0 for i ∈ I+ and (c-max) j < 0 for j ∈ I−.
Therefore, (c-max) ∈ B2 ∩ A. It follows that T (c-max) ∈ D2 ⊆ D1. The fact that D1
is nonempty also follows from Proposition 12.

Proposition 13 shows that D1 has a lineality. It follows that the faces of D1 of
smallest dimension are edges. Because (15) has an optimal solution, it must therefore
be that it has an edge of optimal solutions. Let δ′ be a solution on this edge. There are
n active constraints of D1 at δ′. Now define δ∗ = δ′ − δ′

01. Then,

−
∑

i∈I+
siδ∗

i +
∑

j∈I−
d jδ

∗
j = −

∑

i∈I+
si
(
δ′
i − δ0

)+
∑

j∈I−
d j

(
δ′
j − δ0

)

= −
∑

i∈I+
siδ′

i +
∑

j∈I−
d jδ

′
j + δ0

⎛

⎝
∑

i∈I+
si −

∑

j∈I−
d j

⎞

⎠

= −
∑

i∈I+
siδ′

i +
∑

j∈I−
d jδ

′
j .

Hence δ∗ has the same objective function value as δ′. Moreover, δ∗ satisfies all the
constraints in (15) because δ∗

j − δ∗
i = (δ′

j − δ′
0) − (δ′

i − δ′
0) = δ′

j − δ′
i ≤ ci j for all

(i, j) ∈ I+ × I−. Clearly, δ∗ is an extreme point of D2 since it satisfies δ∗
0 = 0 in

addition to the n independent constraints active at δ′. Proposition 12 then implies that
β∗ = T−1(δ∗) is an extreme point of B2, i.e., the coefficient vector of a facet-defining
inequality for cl conv(Q0) that cuts off (t1, . . . , tn, t0) = (0, . . . , 0, 1).

Theorem 2 A solution to the separation problem (which consists of finding a hyper-
plane that separates (t1, . . . , tn, t0) and Q0) is (β∗)ᵀt ≥ 0 where β∗ = T−1(δ∗)
and δ∗ is an optimal solution to the dual transportation problem (15) with δ∗

0 = 0.
Moreover, this solution yields a facet-defining inequality for cl conv(Q0). �	

Because basic feasible solutions of (16) correspond to certain spanning trees of G,
it is natural to suspect that facet-defining inequalities of cl conv(Q0) can be associated
to those spanning trees. We explore this connection in Sect. 6.
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6 Label-connected trees and facet-defining inequalities of cl conv(Q0)

In this section, we show that facet-defining inequalities for cl conv(Q0) correspond
to certain subtrees of the complete undirected bipartite graph G = (I+, I−). Recall
that, in (11), we associated a weight wi j to each arc {i, j} where i ∈ I+ and j ∈ I−.
To streamline notation, we define w j i := 1

wi j
for (i, j) ∈ I+ × I−.

Consider a spanning tree S of G. Then for any node i ∈ I+ ∪ I−\{0} there exists
a unique path from node 0 to node i in S. We denote this path P0i by

(0 =)i0 − i1 − i2 − · · · − i p(= i).

We say that an inequality βᵀt ≥ 0 (or the associated coefficient vector β) is induced by
the spanning tree S if βi := (−1)pβ0wi0i1wi1i2 . . . wi p−1i p for each i ∈ N . It follows
directly from the definition of induced inequality that, on path P0i , if 0 ≤ q < r ≤ p

βir = (−1)r−qβiqwiq iq+1wiq+1iq+2 . . . wir−1ir . (17)

In particular, if two distinct spanning trees S and S′ of G share the same path from

node iq to node ir , then it follows from (17) that
βS
ir

βS
iq

= βS′
ir

βS′
iq

where βS and βS′
represent

the coefficient vectors induced by spanning trees S and S′, respectively.
In Proposition 14 and Example 2, we show that every facet-defining inequality

is induced by a spanning tree of G, but some spanning trees do not induce valid
inequalities.

Example 2 Consider the set Q0 with disjuncts defined by 4t1 + 3t2 − t3 − t0 ≥ 0
5t1 + t2 − 2t3 − t0 ≥ 0, and 5t1 + 2t2 − 2t3 − t0 ≥ 0. We have that I+ = {1, 2}
and I− = {3, 0}. Further, edge weights can be computed to be w13 = 1

4 ,w10 = 1
5 ,

w23 = 1
3 , and w20 = 1

3 . Two spanning trees of G are shown in Fig. 1. The inequality
induced by the subtree of Fig. 1a is 5t1 + 3t2 − t3 − t0 ≥ 0. This inequality is
the c-max cut and, hence, is valid for cl conv(Q0). Furthermore, it can be verified
to be facet-defining for this set. The inequality induced by the subtree of Fig. 1b is
5t1 + 3t2 − 5

4 t3 − t0 ≥ 0, which is not valid because it cuts off the feasible point
(0, 1, 3, 0) ∈ Q0

1 ⊆ cl conv(Q0). �	
Example 2 shows that not all spanning trees of G induce a valid inequality. The

reason is that the induced coefficients may violate an inequality corresponding to an
edge that is not included in the spanning tree.We refer to a spanning tree that induces a
valid inequality as a feasible spanning tree. We next show that any inequality induced
by a feasible spanning tree is facet-defining for cl conv(Q0).

Proposition 14 Inequality βᵀt ≥ 0 with β0 = −1 is facet-defining for cl conv(Q0)

if and only if β is induced by a feasible spanning tree of G.

Proof Let βᵀt ≥ 0 with β0 = −1 be a facet-defining inequality for cl conv(Q0).
Then, by Theorem 1, β is an extreme point of B2. Since β is an extreme point of B2, it
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Fig. 1 Spanning trees and
induced inequalities for
Example 2. a Tree inducing
5t1 + 3t2 − t3 − t0 ≥ 0 b tree
inducing
5t1 + 3t2 − 5

4 t3 − t0 ≥ 0

1 3

2 0

I+ I−

w10 = 1
5w23 = 1

3

w20 = 1
3

1 3

2 0

I+ I−
w13 = 1

4

w10 = 1
5

w20 = 1
3

(a) (b)

belongs to n = |N0|−1 hyperplanes of the form {β ∈ R
|N0| | β j +wi jβi = 0}whose

coefficient vectors are linearly independent, in addition toβ0 = −1.ByProposition 11,
the subgraph with respect to β forms a spanning tree of G.

For the converse, suppose βᵀt ≥ 0 with β0 = −1 is induced by a feasible spanning
tree. The validity of βᵀt ≥ 0 follows directly from the definition of a feasible spanning
tree. By construction, see (17), coefficients β satisfy n equations of the form β j +
wi jβi = 0, one for each edge of the tree. Lemma 1 shows that these n coefficient
vectors are independent. Therefore, β is an extreme point of B2. Hence, Theorem 1
implies that βᵀt ≥ 0 is facet-defining for cl conv(Q0). �	

We next introduce the notion of label-connectivity. Let S be a spanning tree of G
with edge set E ⊆ I+ × I−. A function L : E → L is called a label-function if

L({i, j}) ∈
{
l ∈ L

∣∣∣ fli > 0,− fl j
fli

= wi j

}
for each {i, j} ∈ E . In words, L({i, j})

returns the index l of an inequality in the description of Q0 with fli > 0 and the
property that the ratio of the coefficient of t j over that of ti equals −wi j . Because
the ratio wi j might be achieved in different rows, several label-functions might be
associated with a single spanning tree. For this reason, we define the set of all the label-
functions of spanning tree S by L(S). We write S(E, L) to refer to a specific spanning
tree with edge set E and label-function L . We say there is a label-disconnection
for label l in S(E, L) if the subgraph of S(E, L) induced by the edges of label l is
disconnected. This definition is equivalent to stating that there exists a path in S(E, L)

where two edges with label l are connected within the tree using a path whose edges
do not have label l. Finally, we say that a spanning tree S with edge set E is label-
connected if there exists a label-function L ∈ L(S) such that S(E, L) does not exhibit
label-disconnection for any l ∈ L. Otherwise we say it is label-disconnected.

Example 2 (continued) In Fig. 2, we add all possible valid edge labels to the edges
of the spanning trees presented in Fig. 1. In Fig. 2a, we observe that there are two
possible labels for edge {1, 0}, each of which determines that w10 = 1

5 . We see that,
independent of the choice of label for edge {1, 0}, the spanning tree does not exhibit
any label-disconnection. It is therefore label-connected. In Fig. 2b, we observe that
independent of the choice of label for edge {1, 0}, the spanning tree will exhibit a label-
disconnection for label 1 along the path 3–1–0–2. We conclude that this spanning tree
is label-disconnected. �	
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Fig. 2 Possible edge labels for
two spanning trees of
Example 2. a Tree inducing
5t1 + 3t2 − t3 − t0 ≥ 0 b tree
inducing
5t1 + 3t2 − 5

4 t3 − t0 ≥ 0

1 3

2 0

I+ I−

2,31

1

1 3

2 0

I+ I−
1

2,3

1

(a) (b)

Label-connected spanning trees do not necessarily induce valid inequalities and not
all feasible trees that induce a facet-defining inequality are label-connected. However,
we show next via an example and later prove that, for facet-defining inequalities, there
exists a feasible spanning tree that is label-connected.

Example 3 Consider the set Q0 with disjuncts definedby 25
4 t1− 5

2 t2+ 5
16 t3+ 15

4 t4−t0 ≥
0 and 5t1 − 5

2 t2 + t3 + 7
2 t4 − t0 ≥ 0. Here, I+ = {1, 3, 4}; I− = {2, 0}; w10 = 4

25 ,
w30 = 1, w40 = 4

15 , w12 = 2
5 , w32 = 5

2 , w42 = 2
3 ; l10 = 1, l30 = 2, l40 = 1, l12 = 1,

l32 = 2, and l42 = 1. The facet-defining inequality

1/4 (25t1 − 10t2 + 4t3 + 15t4 − 4t0) ≥ 0 (18)

is induced by the spanning tree of Fig. 3a, which is label-disconnected, and also by
that in Fig. 3b, which is label-connected. �	

Lemma 2 Consider a facet-defining inequality induced by a spanning tree S forwhich
there is a label-disconnection for label l. Let C1 andC2 be any two distinct components
in the subgraph induced by edges with label l. Then, there exists a non-empty subtree
of C2 that can be detached from C2 and attached to C1, using an edge with label l,
without changing the rest of the tree or the corresponding facet-defining inequality.

Fig. 3 Two spanning trees
inducing (18) in Example 3. a
Label-disconnected spanning
tree, b label-connected spanning
tree

1

2

3

0

4

I+ I−
1

2

2

1

1

2

3

0

4

I+ I−
1

2

2
1

(a) (b)
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Proof Since the given facet-defining inequality is induced by a spanning tree, there
exists a unique path from a node in C1 to a node in C2 that contains no edge from C1
or C2. Let the starting node be i1 ∈ C1 and the ending node be j1 ∈ C2. Further, let i2
be a neighbor of i1 in C1, and j2 be a neighbor of j1 in C2. Let i ′ ∈ I+ ∩ {i1, i2}, j ′ ∈
{i1, i2}\{i ′} and let i ′′ ∈ I+ ∩ { j1, j2}, j ′′ ∈ { j1, j2}\{i ′′}. Since edges (i ′, j ′) and
(i ′′, j ′′) have label l, it follows that

β j ′ = βi ′
fl j ′

fli ′
, and β j ′′ = βi ′′

fl j ′′

fli ′′
. (19)

Further, since the spanning tree yields a valid inequality,

βi ′′
fl j ′

fli ′′
≤ β j ′ , and βi ′

fl j ′′

fli ′
≤ β j ′′ . (20)

We write βi ′′
fl j ′
fli ′′

≤ β j ′ = βi ′
fl j ′
fli ′

= βi ′
fl j ′′
fli ′

fl j ′
fl j ′′

≤ β j ′′
fl j ′
fl j ′′

= βi ′′
fl j ′
fli ′′

, where the

inequalities hold because of (20) and the equalities holds because of (19). Therefore,

equality holds throughout and β j ′′ = βi ′
fl j ′′
fli ′

, and β j ′ = βi ′′
fl j ′
fli ′′

. Now create a new
spanning tree by deleting arc ( j1, j2) from S and by connecting j2 to the one node
among i1 and i2 that belongs to the other partition of the bipartite graph. Call this node
k and refer to the resulting spanning tree as S′. Clearly S′ contains a label-connected
component for label l that subsumes C1 and has at least one more arc. Further, the
label of both the edge added and the edge removed is l, while all other edges and their
labels remain unchanged.

For any node i , βi is obtained by taking products of −wi ′ j ′ for edges {i ′, j ′} along
the path from 0 assuming β0 = −1. We split this path into three parts from 0 to ī ,
ī to j̄ , and j̄ to i , where ī (resp. j̄) is the first (resp. last) of the nodes {i1, i2, j1, j2}
encountered along this path. Since the arcs from 0 to ī and those from j̄ to i are

untouched, the ratios
βī
β0

and βi
β j̄

are preserved. We showed that the tree preserves
β j̄
βī
.

Taking a product, we see that βi is preserved. �	
Example 3 (continued) We have seen that the spanning tree of Fig. 3a is feasible, but
is label-disconnected. Label-1 disconnection occurs on the path 1 − 2 − 3 − 0 − 4,
as L({1, 2}) = L({4, 0}) = 1 and L({3, 2}) = L({3, 0}) = 2. Consider edge {4, 2}.
It is shown in Example 3 that L({4, 2}) = 1. Replacing edge {4, 0} with {4, 2} in the
spanning tree does not change the induced inequality and yields the label-connected
spanning tree shown in Fig. 3b. �	
Theorem 3 Let βᵀt ≥ 0 be a non-trivial facet-defining inequality for cl conv(Q0).
Then, there exists a label-connected feasible spanning tree that induces it.

Proof If βᵀt ≥ 0 is a nontrivial facet-defining inequality, Proposition 14 shows that
it is induced by a feasible spanning tree. We prove the existence of a label-connected
feasible spanning tree by contradiction. Let T be the set of all feasible spanning
trees that induce this inequality. Note that T �= ∅, T is a finite set, and each tree
in T is disconnected for some label. For any tree T ∈ T , let l(T ) be the smallest
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Table 1 Feasible spanning trees for Example 4

Edge 1 Edge 2 Edge 3 Edge 4 β Violated edge

Tree 1 (1, 2) (1, 0) (3, 2) (4, 2) 1/9(45,− 15, 30, 5, − 9) (3, 0)

Tree 2 (1, 2) (1, 0) (3, 0) (4, 2) 1/9(45,− 15, 36, 5, − 9) (4, 0)

Tree 3 (1, 2) (3, 2) (3, 0) (4, 2) 1/3(18,− 6, 12, 2, − 3) (4, 0)

Tree 4 (1, 0) (3, 2) (3, 0) (4, 2) 1/3(15,− 6, 12, 2, − 3) (4, 0)

Tree 5 (1, 2) (1, 0) (3, 2) (4, 0) 1/3(15,− 5, 10, 3,− 3) (3, 0)

Tree 6 (1, 2) (1, 0) (3, 0) (4, 0) 1/3(15,− 5, 12, 3,− 3) −
Tree 7 (1, 2) (3, 2) (3, 0) (4, 0) (6, − 2, 4, 1,− 1) −
Tree 8 (1, 0) (3, 2) (3, 0) (4, 0) (5, − 2, 4, 1,− 1) (1, 2)

Tree 9 (1, 2) (3, 2) (4, 2) (4, 0) (9, − 3, 6, 1, − 1) −
Tree 10 (1, 0) (3, 2) (4, 2) (4, 0) (5, − 3, 6, 1, − 1) (1, 2)

Tree 11 (1, 2) (3, 0) (4, 2) (4, 0) (9, − 3, 4, 1, − 1) (3, 2)

Tree 12 (1, 0) (3, 0) (4, 2) (4, 0) (5, − 3, 4, 1, − 1) (3, 2)

label index for which it exhibits disconnection. Let l ′ = max{l(T ) | T ∈ T } and
let C(T, l) be the size of the largest connected component of label l in T . Choose
T ′ ∈ argmax{C(T, l ′) | T ∈ T , l(T ) = l ′}. Using Lemma 2, we can construct
T ′′ from T ′ by choosing C1 as a component of size C(T ′, l ′). Since T ′′ is obtained
without altering labels on any arc with labels other than l ′, labels that were previously
connected remain connected. Further, T ′′ has a connected component for label l ′ of
size larger thanC(T ′, l ′). The existence of T ′′ contradicts the definition of T ′, proving
that there must exist a label-connected feasible spanning tree in T . �	
Example 4 Consider the set Q0 defined in Example 1, where variable t5 has been
omitted. We record all spanning trees of G(I+, I−) in Table 1. In particular, the
columns of Table 1 contain the edges of each spanning tree, the coefficient β this
spanning tree induces, and, in the case where the tree is infeasible, one edge that
β violates. We conclude that cl conv(Q0) has only three nontrivial facet-defining
inequalities, which were previously listed in (9). It can be easily verified that the three
feasible spanning trees are label-connected. �	

7 A fast algorithm to generate a facet-defining inequality

This section presents a constructive algorithm to strengthen a given inequality to a
facet-defining inequality for cl conv(Q0) using label-connected spanning trees, which
were introduced in Sect. 6.

We first discuss the case of complementarity problems, which is a special case
of our setting and has been recently studied in [42]. Later, we will show that our
results substantially generalize this work and yield new insights even for comple-
mentarity problems. For f1, f2 ∈ R

n , f1 �≤ 0 and f2 �≤ 0, [42] considered
Qc = {

t ∈ R
n
∣∣ f ᵀ

1 t ≥ 1, t ≥ 0
} ∪ {t ∈ R

n
∣∣ f ᵀ

2 t ≥ 1, t ≥ 0
}
, and proposed the
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Equate-and-Relax (E&R) procedure to construct cl conv(Qc). Set Qc arises, similarly
to our derivations in Sect. 3, while relaxing a complementarity constraint between
basic variables in a simplex tableau. The E&R procedure has two steps. In the E-step,
either the right-hand-side, or a variable ti whose coefficients f1i and f2i are of the
same sign is chosen. The nontrivial disjunct constraints f ᵀ

1 t ≥ 1 and f ᵀ
2 t ≥ 1 are

then multiplied by suitable nonnegative scalars α and γ so that their right-hand-sides
or the coefficients of variable ti become equal, i.e., α = γ or α f1i = γ f2i . In the
R-step, a valid inequality is created by setting the coefficient of each variable to be
the maximum of its coefficients in the scaled inequalities. The right-hand-side of the
inequality is set to the minimum of the right-hand-sides of the scaled inequalities. The
valid inequality produced is

n∑

i=1

max{α f1i , γ f2i }ti ≥ min{α, γ }. (21)

When α = γ > 0, (21) is the c-max cut described in Sect. 3. It is shown in
[42] that the family of E&R cuts characterizes cl conv(Qc). The requirement that
α = γ or α f1i = γ f2i for some i , which is not explicit in traditional disjunctive
programming constructs, allows for the set of multipliers to be restricted to a finite
collection. Although they collectively describe cl conv(Qc), not all E&R inequalities
are facet-defining for cl conv(Qc). In [42], partial results are presented as towhenE&R
inequalities are facet-defining for complementarity problems. However, this charac-
terization is incomplete, even for the case of the c-max cut. Next, wewill first provide a
precise characterization of when an E&R inequality is facet-defining for cl conv(Qc).
En route, we will generalize E&R to the cardinality setting. Recall that we are inter-
ested in Q0 =⋃l∈L Q0

l with |L| = K +1 where Q0
l = {t ∈ R

|N0| | f ᵀ
l t ≥ 0, t ≥ 0}

and fl0 = −1 for all l ∈ L. For multipliers ul ≥ 0, where l ∈ L, we derive the
following valid inequality

∑

i∈N
max
l∈L

{ul fli } ti ≥ 0. (22)

It follows from [3] that the collection of inequalities of the form (22) characterizes
cl conv(Q0). We show next that it is sufficient to consider weights associated with
feasible label-connected spanning trees. We first illustrate the result on an example.

Example 5 Consider the set Q0 defined in Example 1, where variable t5 has been

omitted. Using multipliers
(
1, 5

3 , 1, 1
)
, we obtain

5t1 − 5

3
t2 + 4t3 + t4 − t0 ≥ 0, (23)

an inequality that is facet-defining inequality for cl conv(Q0); see (9)a. �	
Given a nontrivial facet-defining inequality, we next describe how to derive it using

(22) by computing the appropriate multipliers ul for l ∈ L. If βᵀt ≥ 0 is a non-
trivial facet-defining inequality of cl conv(Q0), then by Theorem 3 there exists a
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label-connected feasible spanning tree T that induces it. Consider 0 as the root of
spanning tree T . For each label l ∈ L that appears in T , let �̇l be the node with
smallest distance (measured in number of arcs) from 0 among all nodes incident to an
arc with label l. Let {�n}n=1,...,r be the sequence of distinct labels encountered on the
path from 0 to �̇l and let �r+1 be l. Compute

ul =

⎧
⎪⎨

⎪⎩

∏r+1

j=2

f� j−1�̇� j

f� j �̇� j

if r ≥ 1

1 if r = 0.

(24)

For labels l that do not appear in the spanning tree T , choose

ul ∈
[
max

{
β j

fl j

∣∣∣∣ j ∈ I−
}

,min

{
βi

fli

∣∣∣∣ i ∈ I+, fli > 0

}]
. (25)

We now explain the procedure intuitively before providing a formal proof. For each
l ∈ L, the subgraph induced by all arcs with label l is a (possibly empty) tree because
T is label-connected. We refer to it as Sl and to its node set as N (Sl). If Sl is empty,
then disjunct l does not play an active role in the derivation of the inequality. If Sl is
not empty, the valid inequality produced is such that the coefficients of variables ti for
i ∈ N (Sl) are a common multiple ul of their coefficients in the nontrivial constraint of
disjunct l. This multiple ul is chosen to be 1 if 0 ∈ N (Sl). Otherwise ul is computed
so that the scaled coefficients in disjuncts l and �r of the variable t�̇l

are equal. In the
complementarity case, where |L| = 2, this procedure reduces to aggregating scaled
constraints using (21) such that either the right-hand-sides match or one variable has
the same coefficient in both constraints.

Proposition 15 Let βᵀt ≥ 0 be a nontrivial facet-defining inequality of cl conv(Q0).
Let T be any feasible label-connected spanning tree that induces it. Then βᵀt ≥ 0
can be obtained as (22) by selecting weights ul for l ∈ L as in (24) and (25).

Proof First, we argue that weights ul are well-defined for l ∈ L. For labels l that
appear in T , weights are uniquely defined by (24) since label-connectedness implies
that �̇l is uniquely defined. For labels l that do not appear in T , the interval described
in (25) is nonempty because T is feasible and therefore fliβ j − fl jβi ≥ 0 implies that
βi
fli

≥ β j
fl j

for all i ∈ I+ with fli > 0 and j ∈ I−.
Second, we show that the given weights are nonnegative. When l does not appear in

T , ul is chosen according to (25). The lower bound of this interval is positive, proving
the claim. Assume therefore that label l appears in the tree T . Let k be a node incident
to an arc of label l. Assume that the path from 0 to k is (k0(= 0), . . . , ks, k) with
sequence of labels {�′

n}n=1,...,s+1 and sequence of distinct labels {�n}n=1,...,r where
�r+1 = l. Note that the node associating �n and �n+1 for n = 1, . . . , r is �̇�n+1 and
hence
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βk = (−1)s+1wk0,k1 . . . wks ,kβ0 = f�′
1k1

f�′
1k0

. . .
f�′

s ks

f�′
s ks−1

f�′
s+1k

f�′
s+1ks

β0

=
f�1�̇�2

f�1�̇�1

f�2�̇�3

f�2�̇�2

. . .
f�r �̇�r+1

f�r �̇�r

f�r+1k

f�r+1�̇�r+1

β0

=
f�1�̇�2

−1

f�2�̇�3

f�2�̇�2

. . .
f�r �̇�r+1

f�r �̇�r

f�r+1k

f�r+1�̇�r+1

(−1)

=
⎧
⎨

⎩

(
∏r+1

j=2

f� j−1�̇� j
f� j �̇� j

)
f�r+1k if r ≥ 1

f�r+1k if r = 0

= ul flk . (26)

If k ∈ I−, βk < 0 and flk < 0. It follows from (26) that ul = βk
fk

> 0. If k ∈ I+, then
βk > 0 and flk > 0. It follows from (26) that ul = βk

fk
> 0.

Finally, we show that with the given weights, (22) yields the desired inequality. Let
k ∈ N0. It follows directly from (26) that βk ≤ maxl∈L{ul flk}. We next show that
βk ≥ max{ul flk | l ∈ L}. If l is not in the tree, the definition of the interval (25)
directly implies that βk ≥ ul flk . Consider therefore the situation where l is in the
tree. Assume for a contradiction that βk < ul flk . Let C1 be the set of nodes in the
connected component for label l. Then, for any i ∈ C1, βi = ul fli . This shows that
k /∈ C1. Choose a node k′ in C1 that belongs to I− if k ∈ I+ and that belongs to I+ if
k ∈ I−. Because k′ ∈ C1, ul = βk′

flk′
. Our assumption then implies that βk <

βk′
flk′

flk ,
which is a contradiction to the fact that T is feasible. �	
Example 5 (continued) Consider the label-connected feasible spanning tree in Fig. 4.
Because labels 1 and 3 are adjacent to node 0, we set u1 = 1 and u3 = 1. Then, u2 = 5

3
because f21 = 3 and f11 = 5. Finally, u4 can be any value in [1, 5/2], because label
4 does not appear in the tree. Using these weights yields (23). �	

We next describe a procedure that expresses a valid inequality for cl conv(Q0) that
is not facet-defining as a conic combination of “stronger” valid inequalities. In order to
express this result, given a vectorβ ∈ B2, we introduce the notation dB2(β) = dim(F),
where F is the face of B2 that contains β in its relative interior. Although this result can
be proven in a more general setting, the specialized proof we give has the advantage of

Fig. 4 Label-connected feasible
spanning tree for Example 5

1

2

3

0

4

I+ I−

2

1
3

1
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yielding a low-order polynomial time algorithm for strengthening a valid inequality
of cl conv(Q0) into a facet-defining inequality.

Proposition 16 Let βᵀt ≥ 0 be a valid inequality for cl conv(Q0) with β0 < 0 that
is not facet-defining, i.e., dB2(β) = k > 0. Then either

1. There exist two valid inequalities β̄ᵀt ≥ 0 and β̃ᵀt ≥ 0 and θ ∈ (0, 1) such that
β = θβ̄ + (1 − θ)β̃, dB2(β̄) < k and dB2(β̃) < k, or

2. There exists a valid inequality β̄ᵀt ≥ 0 such that β̄ ≤ β and dB2(β̄) < k.

Proof Let βᵀt ≥ 0 be the given inequality. We may assume that β ∈ B2, βi ≥ 0 for
i ∈ I+, and β j ≤ 0 for j ∈ I−. Define δ = log(|β|) where log(0) := −∞.

Given δ, we construct the subgraph Gδ(I+, I−) of G(I+, I−) induced by the
edges (i, j) for which inequality δ j − δi ≤ ci j is satisfied at equality by δ. Subgraph
Gδ(I+, I−) is disconnected. In fact, if it was connected, any spanning tree would
induce βᵀt ≥ 0, and being feasible, would contradict the fact that this inequality is
not facet-defining for cl conv(Q0); see Proposition 14.

Let C1 and C2 be the partition of N0 where C1 is the node set of the connected
component of Gδ(I+, I−) that contains 0 and C2 = N0\C1. Compute

Δ+ = min
{
δi − δ j + ci j

∣∣ i ∈ C1 ∩ I+, j ∈ C2 ∩ I−
}
,

Δ− = max
{−ci j − δi + δ j

∣∣ i ∈ C2 ∩ I+, j ∈ C1 ∩ I−
}
.

There is at least one arc connecting C1 with C2 in G(I+, I−). If not, C2 ∩I+ = ∅,
whichmeansC1∩I+ ⊇ I+ �= ∅, yielding a contradiction toC2 �= ∅. Let χ(C) denote
the indicator vector of C . Clearly, at least one of Δ+ and Δ− is well-defined. When
Δ+ is not well defined then χ(C2) (resp.−χ(C1)) is a recession direction of D2 when
C2 ∩ I− = ∅ (resp. C1 ∩ I+ = ∅) and we express δ = (δ + Δ−χ(C2)) − Δ−χ(C2)

(resp. δ = (δ − Δ−χ(C1)) + Δ−χ(C1)). Similarly, when Δ− is not well defined,
C2 ∩ I+ = ∅ then −χ(C2) is a recession direction for D2 and we express δ =
(δ + Δ+χ(C2)) − Δ+χ(C2). Finally, when Δ+ and Δ− are well defined, we express
δ = Δ+

Δ+−Δ− (δ + Δ−χ(C2)) − Δ−
Δ+−Δ− (δ + Δ+χ(C2)). The result still works after

the transformation β = eδ because for Δ′,Δ′′ ≥ 0 and some set of nodes C , the
perturbation δ + Δ′χ(C) (resp. δ − Δ′′χ(C)) yields an inequality β ′ = eΔ′χ(C) ◦ β

(resp.β ′′ = e−Δ′′χ(C)◦β),where ◦ denotesHadamard product. Since e−Δ′′ ≤ 1 ≤ eΔ′
,

β can be expressed as a convex combination of β ′ and β ′′. The case with recession
cones also follows by letting Δ → ∞. Since the size of C1 increases each time,
the inequalities we use (if not the trivial recession directions) come from a smaller
dimension face of D2 and, hence of B2. �	

We now illustrate the procedure used in the proof of Proposition 16.

Example 5 (continued) Consider the inequality 21t1−7t2+20t3+4t4−4t0 ≥ 0which
is valid for cl conv(Q0).Wenext express this inequality as a conic combinationof facet-
defining inequalities of cl conv(Q0) using the procedure in the proof of Proposition 16.
Let β = (21,−7, 20, 4,−4). For this vector β, only the two inequalities β2+w12β1 ≥
0 and β0 + w40β4 ≥ 0 are satisfied at equality. It follows that C1 = {4, 0} and
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C2 = {1, 2, 3}. For f = 12/7 and g = 20/21, define β ′ = (21 f,−7 f, 20 f, 4,−4) and
β ′′ = (21g,−7g, 20g, 4,−4) and express

β = 1 − g

f − g
β ′ + f − 1

f − g
β ′′ = 1

16
β ′ + 15

16
β ′′. (27)

We recursively treat β1 = β ′ and β2 = β ′′. For β1, C1 = {1, 2, 4, 0} and C2 = {3}.
With g′ = 7/10, let β1,′′ = (36,−12, 240/7 g′, 4,−4). For β2, C1 = {1, 2, 4, 0} and
C2 = {3}. With g′′ = 21/25, we define β2,′′ = (20,−20/3, 400/21 g′′, 4,−4). Then

β1 = β1,′′ + (0, 0, 240/7 (1 − g′), 0, 0) = β1,′′ + (0, 0, 72/7, 0, 0), (28)

β2 = β2,′′ + (0, 0, 400/21 (1 − g′′), 0, 0) = β2,′′ + (0, 0, 64/21, 0, 0). (29)

Both β1,′′ and β2,′′ are facet-defining. Combining (27), (28) and (29), we obtain β =
1/16β1,′′+ 15/16β2,′′+ 7/2(0, 0, 1, 0, 0). Thus, our valid inequality is a conic combination
of (9)b, (9)a and t3 ≥ 0 with weights 4/16, 60/16, 7/2, respectively. �	

When the c-max cut does not define a facet, which can occur even when |L| = 2
[42], we use the algorithm in the proof of Proposition 16 to strengthen its coefficients
to those of a facet-defining inequality.

Proposition 17 Any c-max cut can be expressed as a conic combination of a single
nontrivial facet-defining inequality together with trivial inequalities. Moreover, the
coefficients of the c-max cut and those of the single nontrivial facet-defining inequality
are identical for each i ∈ I+.

Proof In the proof of Proposition 16, when C1 ⊇ I+, Δ− is not defined and the
inequality is expressed as a conic combination of a tighter valid inequality and a
trivial inequality. The coefficients of the variables in C1 do not change. Thus, we only
need to show that throughout C1 ⊇ I+. This is true at the beginning because the
coefficient for each i ∈ I+ is derived from inequality l ′ ∈ argmaxl fli . It is also true
at each subsequent step because C1 grows at each step. �	

The question of when the c-max cut is facet-defining for cl conv(Q0)with |L| = 2,
was raised but left open in [42]. The proofs of Propositions 16 and 17answer this
question in the general case where |L| ≥ 2. A c-max cut βᵀt ≥ 0 is facet-defining
for cl conv(Q0) precisely when C2 = ∅ at the first step in the proof of Proposition 16.
Since I+ ⊆ C1, this condition can be restated as each node j ∈ I−\{0} is such that
β j + wi jβi = 0 for some i ∈ I+, yielding the following.

Corollary 4 A c-max cut βT t ≥ 0 is facet-defining for cl conv(Q0) if and only if for
each j ∈ I−\{0}, βi = fli and β j = fl j for some l ∈ L and i ∈ I+. �	

We may also use the constructive procedure used in the proof of Proposition 16 to
design an algorithm to “tighten” a valid inequality for cl conv(Q0) into a facet-defining
of cl conv(Q0). We choose to develop such an algorithm in the space of δ variables.
A similar procedure could be developed in the space of β variables. The underlying
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idea is to expand the subgraph of tight equalities in D1 for the given δ into a connected
graph, while maintaining feasibility for the non-tight inequalities.

The constructive procedure is presented in Algorithm 1 and is a variation of Prim’s
algorithm for minimum weight spanning trees; see [43]. It requires sets I+ and I−,
a coefficient vector δ ∈ D1, and the matrix C = [ci j ] where ci j = log(wi j ). Define
s ji = si j = ci j − δ j + δi for i ∈ I+ and j ∈ I−. Since δ ∈ D1, s ji = si j ≥ 0. If
key∗ is the key on termination then δ + key∗ gives the coefficient vector of the desired
facet-defining inequality. We refer to “Appendix” for more detail.

Algorithm 1 Cut-Strengthening (S = [si j ], I+, I−)

1: k ← 0, Q+ ← I+, Q− ← I−\{0}
2: key[i] ← −si0, ∀i ∈ Q+, key[i] ← ∞, ∀i ∈ Q−, key[0] ← 0
3: while Q+ �= ∅ orQ− �= ∅ do
4: if Min(Q−) − key[k] ≤ key[k] − Max(Q+) then
5: k ← Extract- Min(Q−)
6: else
7: k ← Extract- Max(Q+)
8: end if
9: for i ∈ Adj[k] do
10: if i ∈ I+ then
11: key[i] ← max{key[i], −sik + key[k]}
12: else
13: key[i] ← min{key[i], ski + key[k]}
14: end if
15: end for
16: end while

Theorem 4 From any valid inequality of cl conv(Q0), Algorithm 1 constructs a facet-
defining inequality in time O(e + n log n), where e and n are the number of edges
and nodes of G(I+, I−), respectively. Further, the facet obtained contains the face
defined by the initial inequality. �	

8 Conclusion

Considerable attention has been paid to optimization problems with cardinality con-
straints. Given an LP relaxation and a basic solution that does not satisfy the cardinality
requirement, we derive violated valid inequalities, which are facet-defining for a dis-
junctive relaxation of the problem. Separation is carried out by solving a network-flow
problem in the original problem space instead of a higher-dimensional cut-generation
LP. We show that facet-defining inequalities can be associated with label-connected
feasible spanning trees of a suitably defined bipartite graph and, consequently, derive
various insights into their structure and validity. Using these insights, we modify the
recently proposed E&R procedure, which generates cuts for complementarity prob-
lems, to themore general setting involving cardinality constraints. Our analysis reveals
conditions under which the c-max cut, a cut widely used in the complementarity lit-
erature, is not facet-defining and can be improved using a simple procedure. More
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generally, we develop a fast separation procedure that tightens valid inequalities into
facet-defining inequalities for our relaxation using a Prim-type combinatorial algo-
rithm.

A Appendix: Proof of Theorem 4

Proof For a given node set X ⊆ N0, the operation Extract- Min(X) (resp.
Extract- Max(X)) removes and returns the element of X with the smallest (resp.
largest) key.We also defineMin(X) := mini∈X key[i] andMax(X) := maxi∈X key[i].
We denote by Q+ (resp. Q−) the max-priority queue in I+ (resp. min-priority queue
in I−) whose keys are not yet finalized. We let Q = Q+ ∪ Q−. For a node v, Adj[v]
is the set of nodes adjacent to v in Q.

Let H represent the sequence of nodes extracted during the successive iterations
of the while loop. For nodes i and j , we write j ≺ i if j occurs in H before i .
We define key[0] = 0. Then, for i ∈ Q+ (resp. Q−\{0}), we define key[i] to be
max j∈I−\Q−, j≺i −si j +key[ j] (resp. min j∈I+\Q+, j≺i si j +key[ j]).We use induction
to show that keys follow this definition. The base case can be verified via the initial
assignment of keys and the convention that min{∅} = ∞. If we assume that the keys
satisfy the above definition before the iteration, then since k ≺ i for any i ∈ Q\{k},
the definition remains valid after the step 11 (resp. step 13). It is clear that once a node
is extracted, the key of the node never changes in the remainder of the algorithm.

We first show that min(Q−) − key[k] ≥ 0 and key[k] −max(Q+) ≥ 0 at step 4 of
the algorithm. This is clearly true for the base case. We assume that these inequalities
are true and we choose to extract k′ at either step 5 or step 7. We will only argue that
the above inequalities hold for k′ selected at step 5 because the other case is similar.
We first argue that the result holds before step 9. If k′ was selected at step 5, i.e.,
k′ ∈ Q−, then the first inequality holds because k′ was chosen to be the node with
minimum key in Q−. The second inequality holds because key[k′] − key[k] ≥ 0 and
key[k]−max(Q+) ≥ 0 by induction hypothesis. Now, we show that these inequalities
continue to hold until the step 4 of the next iteration. In particular, observe that for
j ∈ Q− (resp. j ∈ Q+), since key[ j] ≥ key[k′] (resp. key[ j] ≤ key[k′]) before the
update in step 13 (resp. step 11) and s jk′ ≥ 0, it remains so after the update as well.

Now, we show that at each iteration of the algorithm where node k′ is extracted,
δ+∑ j�k′ key[ j]χ({ j})+key[k′]χ(Q) defines a valid cut. This is trivially true for the
base case.Wenowconsider the casewhen k′ is extracted. The incremental change to the
vector is (key[k′]−key[k])χ(Q∪{k′}), where k immediately precedes k′ in H . Clearly,
this change does not affect any inequality in D1 expressed for nodes i and j which both
precede k′ or both succeed k′. Therefore, we only need to concern ourselves with an
inequality with respect to i and j where i � k′ � j . Assume j ∈ Q+. If k′ ∈ I+, then
the result follows because 0 ≤ si j +key[ j]−key[i] ≤ si j +key[k′]−key[i] because k′
is the maximizer inQ+. On the other hand, if k′ ∈ I−, then si j +key[k′]−key[i] ≥ 0
if k′ = i and si j + key[k′] − key[i] ≥ si j + key[k] − key[i] ≥ 0, where the first
inequality follows because key[k′] − key[k] ≥ 0 by our earlier proof and the second
inequality by the induction hypothesis and because key[i] was not updated. The proof
for the case j ∈ Q− is similar.
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It follows from the definition of keys that at least one of the inequalities with respect
to k′ and its predecessors becomes tight. Since the procedure only stops when all the
nodes are visited, it follows that the graph of tight inequalities is connected at the end
and δ +∑ j∈N0

key∗[ j]χ({ j}) defines a facet-defining inequality.
We now show that all the tight inequalities remain tight during the procedure. In

particular, assume si j = 0. Assume j � i where j ∈ I− (the proof for j ∈ I+ is
similar). Clearly, when k = j at step 4, key[ j] ≥ key[i]. However, key[i] ≥ key[ j]
because of the previous update at step 11. Therefore, key[ j] − key[i] = 0. Then,
because of the condition in step 4, the keys added match key[i]. Therefore, there
is no update to key[i] because key[i] ≥ −sik + key[k] follows from sik ≥ 0 and
key[i] = key[k].

The above algorithm can be implemented using heaps for both Q+ and Q−. If the
graph G(I+, I−) has n nodes and e edges, it requires O(n) Insert, O(n) Min, O(n)

Max, O(n) Extract-Min and Extract-Max, and O(e)Decrease-Key operations.
With Fibonacci heaps, the running time is O(e + n log n) which exactly matches that
of Prim’s algorithm. �	
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